Rohm BA2904SF Operational amplifiers: ground sense Datasheet

ROHM’s Selection Operational Amplifier / Comparator Series
Operational Amplifiers:
Ground Sense
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,
BA2904HFVM-C,BA2902S F/FV/KN,BA2902F/FV/KN,BA3404F/FVM
●Description
General-purpose BA10358/BA10324A family and
high-reliability BA2904S/BA2904/BA2902S/BA2902
family and automotive BA2904HFVM-C integrate two
or four independent Op-Amps andphase compensation
capacitors on a single chip andhave some features of
high-gain, low power consumption,and operating
voltage range of 3[V] to 32[V] (single powersupply ).
BA3404 family is realized high speed operation
andreduce the crossover distortions that compare with
BA10358/ BA2904 family.
General-purpose
BA10358 F/FV
Dual
High-reliabillity
Automotive
No.09049EAT03
Quad
BA10324A F/FV
Dual
BA2904S F/FV/FVM
Operation guaranteed up to +105℃
BA2904 F/FV/FVM
Operation guaranteed up to +125℃
Quad
BA2902S F/FV/KN
Operation guaranteed up to +105℃
BA2902 F/FV/KN
Operation guaranteed up to +125℃
Dual
BA3404 F/FVM
Dual
BA2904H FVM-C
●Characteristics
1) Operable with a single power supply
2) Wide operating supply voltage
+3.0[V]~+32.0[V](single supply) (BA10358/BA10324A/BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C)
+4.0[V]~+36.0[V](single supply) (BA3404 family)
3) Standard Op-Amp Pin-assignments
4) Input and output are operable GND sense
5) Internal phase compensation type
6) Low supply current
7) High open loop voltage gain
8) Internal ESD protection
Human body model(HBM) ±5000[V](Typ.) (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C)
9) Gold PAD (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C)
10) Wide temperature range
-40[℃]~+125[℃] (BA2904/BA2902 family,BA2904HFVM-C)
-40[℃]~+105[℃] (BA2904S/BA2902S family)
-40[℃]~+85[℃] (BA10358/BA10324/BA3404 family)
●Pin Assignment
OUT1 1
-IN1
+IN1
VEE
SOP8
BA10358F
BA10358F
BA2904F
BA2904SF
BA2904F
BA3404F
BA3404F
2
3
8 VCC
CH1
7 OUT2
- +
CH2
+ -
4
6 -IN2
5 +IN2
SSOP-B8
BA10358FV
BA10358FV
BA2904FV
BA2904SFV
BA2904FV
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
MSOP8
BA2904SFVM
BA2904FVM
BA2904FVM
BA3404FVM
BA3404FVM
BA2904HFVM-C
OUT1
1
-IN1
2
+IN1
VCC
14
13
-IN4
3
12
+IN4
4
11
VEE
+IN2
5
-IN2
6
OUT2
7
CH1
- +
- +
CH2
SOP14
BA10324AF
BA10324AF
BA2902F
BA2902SF
BA2902F
1/24
CH4
+ -
+ CH3
-IN1
OUT4
10
+IN3
9
-IN3
8
OUT3
+IN1 1
NC
3
14
11
-
6
7
VEE
10
NC
9
+IN3
CH3
CH2
5
12 +IN4
+
-
-IN2
13
CH4
+
+
+IN2 4
BA10324AFV
BA2902FV
BA2902SFV
BA2902FV
15
CH1
+
VCC 2
SSOP-B14
BA10324AFV
OUT1 OUT4 -IN4
16
8
OUT2 OUT3 -IN3
VQFN16
BA2902SKN
BA2902KN
BA2902KN
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
○BA10358 family,BA10324A family
Parameter
Supply Voltage
Differential Input Voltage
Rating
Symbol
BA10358 family
VCC-VEE
(*1)
Unit
BA10324A family
+32
V
Vid
VCC-VEE
V
Input Common-mode Voltage Range
Vicm
VEE~VCC
V
Operating Temperature Range
Topr
-40~+85
℃
Storage Temperature Range
Tstg
-55~+125
℃
Tjmax
+125
℃
Maximum Junction Temperature
Note bsolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause
deterioration of characteristics.
(*1) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA10358 family,BA10324A family(Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃])
Guaranteed limit
Parameter
Temperature
Symbol
Range
BA10358 family
BA10324A family
Unit
Min.
Typ.
Max.
Min.
Typ.
Max.
Condition
Input Offset Voltage
Vio
25℃
-
2
7
-
2
7
mV
Input Offset Current
Iio
25℃
-
5
50
-
5
50
nA
-
Input Bias Current (*2)
Ib
25℃
-
45
250
-
20
250
nA
-
Supply Current
ICC
25℃
-
0.7
1.2
-
0.6
2
mA
High LevelOutput Voltage
VOH
25℃
-
-
-
VCC-1.5
-
-
V
RL=2[kΩ]
Low Level Output Voltage
VOL
25℃
-
-
-
-
-
250
mV
RL=2[kΩ]
Large Signal Voltage Gain
AV
25℃
25
100
-
25
100
-
Vicm
25℃
0
-
VCC-1.5
0
-
VCC-1.5
V
-
Common-mode Rejection Ratio
CMRR
25℃
65
80
-
65
75
-
dB
-
Power Supply
Rejection Ratio
PSRR
25℃
65
100
-
65
100
-
dB
RS=50[Ω]
Output SourceCurrent
IOH
25℃
10
20
-
20
35
-
mA
VIN+=1[V],VIN-=0[V],VOUT=0[V]
Output SinkCurrent
IOL
25℃
10
20
-
10
20
-
mA
VIN+=0[V],VIN-=1[V],VOUT=VCC
Output Voltage Range
Vo
25℃
0
-
VCC-1.5
-
-
-
V
RL=2[kΩ]
Channel Separation
CS
25℃
-
120
-
-
120
-
dB
f=1[kHz], input referred
Input Common-mode
Voltage Range
(*2)
RS=50[Ω]
RL=∞, All Op-Amps
V/mV RL≧2[kΩ],VCC=15[V]
Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
2/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Absolute Maximum Ratings (Ta=25[℃])
○BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C
Parameter
Symbol
Supply Voltage
Differential Input Voltage (*3)
Rating
BA2904 family
BA2902 family
BA2904S family
BA2902S family
BA2904HFVM-C
Unit
VCC-VEE
+32
+36
V
Vid
32
36
V
Input Common-mode Voltage Range
Vicm
Operating Temperature Range
Topr
Storage Temperature Range
Tstg
-55~+150
℃
Tjmax
+150
℃
Maximum Junction Temperature
(VEE-0.3)~(VEE+32)
(VEE-0.3)~(VEE+36)
-40~+105
-40~+125
V
℃
Note Absolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics.
(*3) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA2904S/BA2904 family (Unless otherwise specified VCC=+5[V], VEE=0[V])
Guaranteed limit
Temperature
BA2904S/BA2904 family
Parameter
Symbol
Range
Min.
Typ.
Max.
25℃
2
7
Input Offset Voltage (*4)
Vio
Full range
10
Input Offset Voltage Drift
△Vio/△T
±7
25℃
2
50
Input Offset Current (*4)
Iio
Full range
200
Input Offset Current Drift
△lio/△T
±10
25℃
20
250
(*4)
Input Bias Current
Ib
Full range
250
25℃
0.7
1.2
Supply Current
Vicm
Full range
2
25℃
3.5
High Level Output Voltage
VOH
Full range
27
28
Low Level
VOL
Full range
5
20
Output Voltage
Large Signal Voltage Gain
AV
Unit
VOUT=1.4[V]
VCC=5~30[V],VOUT=1.4[V]
μV/℃ VOUT=1.4[V]
mV
nA
nA
VOUT=1.4[V]
mA
RL=∞All Op-Amps
V
mV
100
-
25℃
Full range
25℃
25℃
25℃
Full range
25℃
Full range
0
50
65
20
10
10
2
80
100
30
20
-
VCC-1.5
-
Isink
25℃
12
40
-
μA
Channel Separation
CS
25℃
-
120
-
dB
Slew rate
SR
25℃
-
0.2
-
V/μs
ft
25℃
-
0.5
-
MHz
Vn
25℃
-
40
-
nV/(Hz)1/2
Output Sink Current
(*5)
IOH
IOL
Maximum frequency
Input referred noise voltage
(*4)
(*5)
(*6)
RL=2[kΩ]
VCC=30[V],RL=10[kΩ]
25
Output SourceCurrent (*5)
VOUT=1.4[V]
pA/℃ VOUT=1.4[V]
25℃
Input Common-mode
Vicm
Voltage Range
Common-mode Rejection Ratio CMRR
Power Supply Rejection Ratio PSRR
Condition
V/mV
RL=∞All Op-Amps
RL≧2[kΩ],VCC=15[V]
VOUT=1.4~11.4[V]
V
(VCC-VEE)=5V,VOUT=VEE+1.4[V]
dB
dB
VOUT=1.4[V]
VCC=5~30[V]
mA
VIN+=1[V],VIN-=0[V]
VOUT=0[V] 1CH is short circuit
mA
VIN+=0[V],VIN-=1[V]
VOUT=5[V] 1CH is short circuit
VIN+=0[V],VIN-=1[V]
VOUT=200[mV]
f=1[kHz], input referred
VCC=15[V],AV=0[V],
RL=2[kΩ],CL=100[pF]
VCC=30[V],RL=2[kΩ],
CL=100[pF]
VCC=15[V],VEE=-15[V],
RS=100[Ω],Vi=0[V],f=1[kHz]
Absolute value
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
BA2904S family:Full range -40~105℃ BA2904 family:Full range -40~+125℃
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
3/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
○BA2902S/BA2902 family (Unless otherwise specified VCC=+5[V], VEE=0[V])
Guaranteed limit
Temperature
Parameter
Symbol
BA2902S/BA2902 family
Range
Min.
Typ.
Max.
Input Offset Voltage (*4)
Input Offset Voltage Drift
Input Offset Current (*4)
Input Offset Current Drift
Input Bias Current (*4)
Supply Current
Vio
Low Level
Output Voltage
Large Signal Voltage Gain
Full range
Iio
VOH
2
7
-
-
10
±7
-
25℃
-
2
50
Full range
-
-
200
-
±10
-
25℃
-
20
250
Full range
-
-
250
△lio/△T
Ib
-
△Vio/△T
Vicm
High Level Output Voltage
25℃
25℃
-
0.7
2
Full range
-
-
3
25℃
3.5
-
-
-
-
-
27
28
-
Full range
mV
nA
mA
RL=∞All Op-Amps
V
AV
25℃
25
100
-
V/mV
-
VCC-1.5
-
Common-mode Rejection Ratio CMRR
25℃
50
80
Power Supply Rejection Ratio
25℃
65
25℃
20
Full range
PSRR
IOH
-
dB
VOUT=1.4[V]
100
-
dB
VCC=5~30[V]
30
-
10
-
-
mA
VIN+=1[V],VIN-=0[V]
VOUT=0[V] 1CH is short circuit
mA
VIN+=0[V],VIN-=1[V]
VOUT=5[V] 1CH is short circuit
10
20
-
2
-
-
Isink
25℃
12
40
-
μA
Channel Separation
CS
25℃
-
120
-
dB
Slew rate
SR
25℃
-
0.2
-
V/μs
ft
25℃
-
0.5
-
MHz
Vn
25℃
-
40
-
nV/(Hz)1/2
Output Sink Current
Maximum frequency
Input referred noise voltage
(*4)
(*5)
(*6)
RL≧2[kΩ],VCC=15[V]
VOUT=1.4~11.4[V]
(VCC-VEE)=5V,VOUT=VEE+1.4[V]
25℃
IOL
RL=∞All Op-Amps
V
Full range
(*5)
RL=2[kΩ]
VCC=30[V],RL=10[kΩ]
mV
-
VOUT=1.4[V]
VOUT=1.4[V]
20
-
VCC=5~30[V],VOUT=1.4[V]
nA
5
0
VOUT=1.4[V]
pA/℃ VOUT=1.4[V]
-
Vicm
Condition
μV/℃ VOUT=1.4[V]
Full range
25℃
Output SourceCurrent (*5)
Unit
VOL
Full range
Input Common-mode
Voltage Range
Technical Note
VIN+=0[V],VIN-=1[V]
VOUT=200[mV]
f=1[kHz], input referred
VCC=15[V],AV=0[V],
RL=2[kΩ],CL=100[pF]
VCC=30[V],RL=2[kΩ],
CL=100[pF]
VCC=15[V],VEE=-15[V],
RS=100[Ω],Vi=0[V],f=1[kHz]
Absolute value
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
BA2902S family:Full range -40~105℃ ,BA2902 family:Full range -40~+125℃
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
4/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
○BA2904HFVM-C(Unless otherwise specified VCC=+5[V], VEE=0[V])
Guaranteed limit
Temperature
Parameter
Symbol
BA2904HFVM-C
Range
Min.
Typ.
Max.
Input Offset Voltage (*4)
Input Offset Voltage Drift
Input Offset Current (*4)
Input Offset Current Drift
Input Bias Current (*4)
Supply Current
Vio
Low Level
Output Voltage
Large Signal Voltage Gain
Full range
Iio
VOH
2
7
-
-
7
-
-
25℃
-
2
50
Full range
-
-
100
-
-
-
△lio/△T
Ib
-
△Vio/△T
Vicm
High Level Output Voltage
25℃
25℃
-
20
60
Full range
-
-
100
25℃
-
0.7
1.2
Full range
-
-
1.2
25℃
3.5
-
-
3.2
-
-
27
28
-
Full range
mV
nA
mA
RL=∞All Op-Amps
V
AV
25℃
-
-
-
V/mV
-
VCC-1.5
VCC-2.0
Common-mode Rejection Ratio CMRR
25℃
65
80
Power Supply Rejection Ratio
25℃
65
25℃
20
Full range
PSRR
IOH
-
dB
VOUT=1.4[V]
100
-
dB
VCC=5~30[V]
30
-
10
-
-
mA
VIN+=1[V],VIN-=0[V]
VOUT=0[V] 1CH is short circuit
mA
VIN+=0[V],VIN-=1[V]
VOUT=5[V] 1CH is short circuit
10
20
-
2
-
-
Isink
25℃
12
40
-
μA
Channel Separation
CS
25℃
-
-
-
dB
Slew rate
SR
25℃
-
-
-
V/μs
ft
25℃
-
-
-
MHz
Vn
25℃
-
-
-
nV/(Hz)1/2
Output Sink Current
Maximum frequency
Input referred noise voltage
(*4)
(*5)
(*6)
RL≧2[kΩ],VCC=15[V]
VOUT=1.4~11.4[V]
(VCC-VEE)=5V,VOUT=VEE+1.4[V]
25℃
IOL
RL=∞All Op-Amps
V
Full range
(*5)
RL=2[kΩ]
VCC=30[V],RL=10[kΩ]
mV
-
VOUT=1.4[V]
VOUT=1.4[V]
20
0
VCC=5~30[V],VOUT=1.4[V]
nA
5
0
VOUT=1.4[V]
pA/℃ VOUT=1.4[V]
-
Vicm
Condition
μV/℃ VOUT=1.4[V]
Full range
25℃
Output SourceCurrent (*5)
Unit
VOL
Full range
Input Common-mode
Voltage Range
Technical Note
VIN+=0[V],VIN-=1[V]
VOUT=200[mV]
f=1[kHz], input referred
VCC=15[V],AV=0[V],
RL=2[kΩ],CL=100[pF]
VCC=30[V],RL=2[kΩ],
CL=100[pF]
VCC=15[V],VEE=-15[V],
RS=100[Ω],Vi=0[V],f=1[kHz]
Absolute value
Under high temperatures, please consider the power dissipation when selecting the output current.
When the output terminal is continuously shorted the output current reduces the internal temperature by flushing.
BA2904HFVM-C:Full range -40~+125℃
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
5/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
●Absolute Maximum Ratings (Ta=25[℃])
○BA3404 family
Parameter
Technical Note
Symbol
Rating
Unit
VCC-VEE
+36
V
Vid
36
V
Input Common-mode Voltage Range
Vicm
(VEE-0.3)~(VEE+36)
V
Operating Temperature Range
Topr
-40~+85
℃
Tstg
-55~+150
℃
Tjmax
+150
℃
Supply Voltage
Differential Input Voltage
(*7)
Storage Temperature Range
Maximum Junction Temperature
Note Absolute maximum rating item indicates the condition which must not be exceeded.
Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause
deterioration of characteristics.
(*7) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
●Electric Characteristics
○BA3404 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃])
Guaranteed limit
Temperature
Unit
Parameter
Symbol
Range
Min.
Typ.
Max.
Condition
Input Offset Voltage(*8)
Vio
25℃
-
2
5
mV
VOUT=0[V], Vicm=0[V]
Input Offset Current (*8)
Iio
25℃
-
5
50
nA
VOUT=0[V], Vicm=0[V]
Input Bias Current (*8)
Ib
25℃
-
70
200
nA
VOUT=0[V], Vicm=0[V]
Large Signal Voltage Gain
AV
25℃
88
100
-
dB
RL≧2[kΩ],VOUT=±10[V],Vicm=0[V]
Maximum Output Voltage
VOM
25℃
±13
±14
-
V
RL≧2[kΩ]
Input Common-mode
Voltage Range
Vicm
25℃
-15
-
13
V
VOUT=0[V]
Common-mode Rejection Ratio CMRR
25℃
70
90
-
dB
VOUT=0[V], Vicm=-15[V]~+13[V]
Power Supply Rejection Ratio
PSRR
25℃
80
94
-
dB
Ri≦10[kΩ], VCC=+4[V]~+30[V]
ICC
25℃
-
2.0
3.5
mA
RL=∞ All Op-Amps, VIN+=0[V]
Isource
25℃
20
30
-
mA
VIN+=1[V], VIN-=0[V],VOUT=+12[V],
Output of one channel only
Isink
25℃
10
20
-
mA
VIN+=0[V], VIN-=1[V],VOUT=-12[V],
Output of one channel only
SR
25℃
-
1.2
-
V/μs AV=0[dB], RL=2[kΩ],CL=100[pF]
ft
25℃
-
1.2
-
MHz RL=2[kΩ]
THD
25℃
-
0.1
-
Supply Current
Output Source Current
Output Sink Current
Slew rate
Unity Gain Frequency
Total Harmonic Distortion
(*8)
%
VOUT=10[Vp-p],
f=20[kHz],AV=0[dB],RL=2[kΩ]
Absolute value
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
6/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
.
POWER DISSIPATION [mW] .
SUPPLY CURRENT [mA]
800
BA10358F
600
400
BA10358FV
200
BA10358 family
1.0
1000
0.8
25℃
0.6
0.4
0.8
32V
0.6
0
25
50
75
100
0.2
3V
0
0
125
5
10
15
20
25
SUPPLY VOLTAGE [V]
AMBIENT TEMPERTURE [℃] .
Fig. 1
Derating Curve
35
-50
15
25℃
10
-40℃
5
0
3
2
1
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
-40℃
30
20
25℃
10
85℃
0
0
0
100
BA10358 family
40
OUTPUT SO URCE CURRENT [mA]
20
4
OUTPUT VOLTAGE [V]
85℃
-25
0
25
50
75
AMBIE NT TEMPERATURE [℃]
Fig. 3
Supply Current - Ambient Temperature
BA10358 family
5
MAXIMUM OUTPUT VOLTAGE [V]
30
25
30
Fig. 2
Supply Current - Supply Voltage
BA10358 family
35
5V
0.4
0.0
0
MAXIMUM OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
-40℃
85℃
0.2
BA10358 family
1
SUPP LY CURRENT [mA ]
●Example of electrical characteristics
○BA10358 family
BA10358 family
Technical Note
-50
-25
0
25
50
75
AMBIENT TE MPERATURE[℃]
0
100
1
2
3
4
OUTPUT VOLTAGE [V]
5
Fig. 4
Maximum Output Voltage – Supply Voltage
Fig. 5
Maximum Output Voltage– Ambient Temperature
Fig. 6
Output Source Current - Output Voltage
(RL=10[kΩ])
(VCC=5[V],RL=2[kΩ])
(VCC=5[V])
BA10358 family
15V
20
5V
3V
10
0
10
85℃
1
0.1
25℃
0.01
-40℃
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
15V
0.4
0.8
1.2
1.6
30
-40℃
85℃
0
50
10
15
20
25
30
35
32V
40
5V
20
3V
10
-50
0
25
50
75
100
Fig. 10
Low Level Sink Current – Supply Voltage
Fig. 11
Low Level Sink Current – Ambient Temperature
www.rohm.com
100
6
4
2
-40℃
0
-2
-4
25℃
-6
85℃
-8
-25
AMBIENT TEMPERATURE [℃]
© 2009 ROHM Co., Ltd. All rights reserved.
75
BA10358 family
SUPPLY VOLTAGE [V]
(VOUT=0.2[V])
(*)The data above is ability value of sample, it is not guaranteed.
50
8
0
5
25
(VOUT=VCC)
BA10358 family
30
0
Fig. 9
Output Sink Current - Ambient Temperature
INPUT OFFSET VO LTAG E [mV]
25℃
.
40
60
LOW LE VEL SINK CURRENT [μA]
50
0
-25
AMBIENT TEMPERAURE [℃]
(VCC=5[V])
BA10358 family
10
-50
OUTPUT VOLTAGE [V]
(VOUT=0[V])
20
3V
10
2
Fig. 8
Output Sink Current - Output Voltage
60
5V
20
0
0
Fig. 7
Output Source Current - Ambient Temperature
LOW LEVEL SINK CURRENT [μA]
30
0.001
-50
BA10358 family
40
OUTPUT SINK CURRENT [mA]
30
100
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
40
BA10358 family
(VOUT=0.2[V])
7/24
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 12
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
.
○BA10358 family
BA10358 family
BA10358 family
50
BA10358 family
50
4
2
0
3V
-2
-4
5V
32V
-6
INPUT BIAS CURRENT [nA]
6
INPUT BIAS CURRENT [nA]
INP UT O FFSET VOLTAGE [mV]
8
Technical Note
40
85℃
30
25℃
20
-40℃
10
40
32V
30
5V
20
10
3V
-8
0
-50
-25
0
25
50
75
100
0
0
5
10
15
20
25
SUPPLY VO LTAGE [V]
AMBIENT TEMPERATURE [ ℃]
30
35
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig. 15
Input Bias Current – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V],VOUT=1.4[V])
INPUT BIAS CURRENT [nA]
40
30
20
10
8
6
4
2
-40℃
0
25℃
-2
-4
85℃
-6
-8
0
-50
-25
0
25
50
75
AMBIE NT TE MPERATURE [°C]
Fig. 16
Input Bias Current – Ambient Temperature
25℃
-5
85℃
0
1
2
3
4
5
COMMON MODE INPUT VOLTAGE [V]
0
.
(VCC=5[V])
140
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 18
Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
BA10358 family
BA10358 family
140
5
3V
0
32V
5V
-5
LARGE SIGNAL VOLTAGE GAIN [dB]
LARGE SIGNAL VOLTAGE GAIN [dB]
INPUT OFFSET CURRENT [nA]
.
10
-40℃
0
Fig. 17
Input Offset Voltage
– Common Mode Input Voltage
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
BA10358 family
5
-10
-1
100
BA10358 family
10
.
50
BA10358 family
INPUT OFFSE T CURRENT [nA ]
BA10358 family
.
Fig. 14
Input Bias Current – Supply Voltage
INPUT OFFSET VOLTAGE [mV]
Fig. 13
Input Offset Voltage – Ambient Temperature
130
-40℃
25℃
120
110
100
90
85℃
80
70
130
120
100
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
80
70
60
2
100
15V
90
60
-10
5V
110
4
6
8
10 12 14
SUPPLY VOLTAGE[V]
16
18
Fig. 19
Input Offset Current – Ambient Temperature
Fig. 20
Large Signal Voltage Gain – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
(RL=2[kΩ])
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
Fig. 21
Large Signal Voltage Gain
– Ambient Temperature
.
.
(RL=2[kΩ])
120
100
-40℃
25℃
80
85℃
60
40
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 22
Common Mode Rejection Ratio
– Supply Voltage
BA10358 family
140
BA10358 family
140
POWER SUPPLY REJECTION RATIO [dB]
.
COMMON MODE REJECTION RATIO [dB]
..
140
COMMON MODE REJECTION RATIO [dB]
BA10358 family
130
120
120
110
32V
100
5V
100
80
60
3V
40
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
Fig. 23
Common Mode Rejection Ratio
– Ambient Temperature
90
80
70
60
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
Fig. 24
Power Supply Rejection Ratio
– Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
8/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA10324A family
.
SUPPLY CURRENT [mA]
BA10324AFV
600
400
BA10324AF
200
0
1.6
25℃
1.2
0.8
-40℃
0.4
50
75
100
125
0
0.4
3V
0
-50
15
25℃
10
-40℃
5
30
35
35
3
2
1
-25
0
25
50
75
-40℃
40
30
25℃
20
85℃
10
0
100
0
O UTPUT SINK CURRENT [mA]
30
5V
10
0
0
25
50
75
1
85℃
0.1
25℃
0.01
-40℃
100
0.0
0.4
0.8
1.2
1.6
20
3V
(VCC=5[V])
0
-50
50
25℃
40
30
85℃
20
10
0
10
15
20
25
30
35
Fig. 34
25
50
75
100
(VOUT=VCC)
BA10324A family
8
6
50
32V
40
5V
30
20
3V
10
85℃
4
2
0
25℃
-2
-40℃
-4
-6
-8
-50
SUPPLY VOLTAGE [V]
Low Level Sink Current – Supply Voltage
0
Fig. 33
BA10324A family
0
5
-25
Output Sink Current - Ambient Temperature
INPUT OFFSET VOLTAGE [mV]
LOW LEVEL SINK CURRENT [μA]
.
(VOUT=0[V])
60
5V
10
AMBIENT TEMPERAURE [℃]
Fig. 32
Output Sink Current - Output Voltage
0
15V
30
2.0
Fig. 31
Output Source Current - Ambient Temperature
-40℃
BA10324A family
OUTPUT VOLTAGE [V]
BA10324A family
5
(VCC=5[V])
10
AMBIENT TEMPERATURE [℃]
60
2
3
4
OUTPUT VOLTAGE [V]
40
0.001
-25
1
Fig. 30
Output Source Current - Output Voltage
BA10324A family
100
100
BA10324A family
50
(VCC=5[V],RL=2[kΩ])
15V
- 50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
Fig. 27
Supply Current - Ambient Temperature
Fig. 29
Maximum Output Voltage – Ambient Temperature
BA10324A family
20
30
4
(RL=10[kΩ])
50
3V
25
AMBIENT TEMPERATURE[℃]
Fig. 28
Maximum Output Voltage – Supply Voltage
40
20
BA10324A family
0
-50
0
10
15
20
25
S UPPLY VOLTAGE [V]
15
5
MAXIMUM OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
20
5
10
Fig. 26
Supply Current - Supply Voltage
85℃
0
5V
SUPPLY VOLTAGE [V]
30
25
5
.
BA10324A family
35
MAXIMUM OUTPUT VOLTAGE [V]
O UTPUT VOLTAGE [V]
0.8
85℃
Fig. 25
Derating Curve
OUTPUT SOURCE CURRENT [mA]
32V
1.2
OUTPUT SOURCE CURRENT [mA]
25
AMBIENT TEMPERTURE [℃]
LOW LEVEL SINK CURRENT [μA]
1.6
0.0
0
BA10324A family
2
OUTPUT SINK CURRENT [mA]
POWER DISSIPATION [mW] .
800
BA10324A family
2.0
SUPPLY CURRENT [mA]
BA10324A family
1000
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Fig. 35
Low Level Sink Current – Ambient Temperature
(VOUT=0.2[V])
(VOUT=0.2[V])
0
5
10
15
20
25
30
35
SUPPLY VOLTAGE [V]
Fig. 36
Input Offset Voltage - Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
9/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
○BA10324A family
.
BA10324A family
BA10324A family
50
32V
2
0
5V
3V
-2
-4
INPUT BIAS CURRENT [nA]
4
40
30
85℃
25℃
20
10
-6
40
30
32V
20
5V
10
-40℃
-8
3V
0
-25
0
25
50
75
100
0
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 37
Input Offset Voltage – Ambient Temperature
-50
35
20
10
6
-40℃
4
25℃
2
85℃
0
-2
-4
-6
-8
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
BA10324A family
75
100
BA10324A family
10
5
85℃
0
25℃
-40℃
-5
0
1
2
3
4
5
COMMON MODE INP UT VOLTAGE [V]
0
5
Fig. 41
Input Offset Voltage – Common Mode
Input Voltage(VCC=5[V])
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
30
35
Fig. 42
Input Offset Current – Supply
Voltage(Vicm=0[V],VOUT=1.4[V])
BA10324A family
140
10
15
20
25
SUPP LY VOLTAGE [V]
BA10324A family
140
5
32V
5V
0
3V
-5
-10
LARGE SIGNAL VOLTAGE GAIN [dB]
LARGE SIGNAL VOLTAGE GAIN [dB]
INPUT OFFSET CURRENT [nA]
.
10
50
-10
-1
Fig. 40
Input Bias Current – Ambient Temperature
25
(Vicm=0[V],VOUT=1.4[V])
BA10324A family
.
.
30
INPUT O FFSET VOLTAGE [mV]
40
8
0
Fig. 39
Input Bias Current – Ambient Temperature
(Vicm=0[V], VOUT=1.4[V])
BA10324A family
-25
AMBIENT TEMPERATURE [℃]
Fig. 38
Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
50
30
INPUT OFFSET CURRENT [nA]
-50
INPUT BIAS CURRENT [nA]
BA10324A family
50
6
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
8
Technical Note
130
120
-40℃
110
100
90
25℃
85℃
80
70
130
120
100
90
5V
80
70
60
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
60
4
6
8
10
12
14
SUPPLY VOLTAGE [V]
16
Fig. 43
Fig. 44
Input Offset Current – Ambient Temperature
Large Signal Voltage Gain – Supply Voltage
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
Fig. 45
Large Signal Voltage Gain – Ambient
Temperature(RL=2[kΩ])
(RL=2[kΩ])
(Vicm=0[V],VOUT=1.4[V])
.
.
15V
110
120
100
-40℃
25℃
80
85℃
60
40
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
BA10324A family
140
130
120
120
110
32V
100
5V
100
80
60
3V
40
-50
Fig. 46
Common Mode Rejection Ratio
– Supply Voltage
BA10324A family
140
POWER SUPPLY REJECTION RATIO [dB]
.
COMMON MODE REJECTION RATIO [dB]
..
COMMON MODE REJECTION RATIO [dB]
BA10324A family
140
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
100
90
80
70
60
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
Fig. 47
Fig. 48
Common Mode Rejection Ratio
– Ambient Temperature
Power Supply Rejection Ratio
– Ambient Temperature
100
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
10/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA2904S/BA2904 family,BA2904HFVM-C
BA2904S/BA2904 family,BA2904H
BA2904FV
BA2904FVM
BA2904HFVM-C
600
400
0.8
BA2904SF
200
25℃
0.6
-40℃
0.4
125℃
105℃
0.2
BA2904SFV
BA2904SFVM
25
50
75
100
105 125
0
Fig. 49
Derating Curve
10
25℃
105℃
0
20
30
4
3
2
1
40
SUPPLY VOLTAGE [V]
15V
10
0
-50
-25
0
25
50
75
10
125℃
1
-40℃
0.1
25℃
0.01
0.4
(VOUT=0[V])
60
50
40
125
30
105
20
10
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
Fig. 58
Low Level Sink Current
– Supply Voltage(VOUT=0.2[V])
35
20
5V
3V
10
60
5V
50
40
3V
30
20
10
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 57
Output Sink Current - Ambient Temperature
(VOUT=VCC)
BA2904S/BA2904 family,BA2904H
8
32V
70
0
0
BA2904S/BA2904 family,BA2904H
-50
BA2904S/BA2904 family,BA2904H
80
LOW LEVEL SINK CURRENT [μA]
LOW LEVEL SINK CURRENT [μA]
25
5
15V
2
(VCC=5[V])
-40
70
0.8
1.2
1.6
OUTPUT VOLTAGE [V]
Fig. 56
Output Sink Current - Output Voltage
BA2904S/BA2904 family,BA2904H
2
3
4
OUTPUT VOLTAGE [V]
0
0
Fig. 55
Output Source Current - Ambient Temperature
1
30
0.001
100 125 150
AMBIENT TEMPERATURE [℃]
80
125℃
10
Fig. 54
Output Source Current
- Output Voltage(VCC=5[V])
OUTPUT SINK CURRENT [mA]
5V
20
105℃
20
0
BA2904S/BA2904 family,BA2904H
100
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
3V
30
25℃
30
-25
0
25
50 75 100 125 150
AMBIENT TEMPERATURE [℃]
105℃
40
-40℃
40
Fig. 53
Maximum Output Voltage – Ambient
Temperature(VCC=5[V],RL=2[kΩ])
BA2904S/BA2904 family,BA2904H
50
BA2904S/BA2904 family,BA2904H
0
-50
Fig. 52
Maximum Output Voltage
– Supply Voltage(RL=10[kΩ])
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
50
INPUT OFFSET VOLTAGE [mV]
10
-25
Fig. 51
Supply Current - Ambient Temperature
0
0
5V
0.2
-50
OUTPUT SOURCE CURRENT [mA]
MAXIMUM OUTPUT VOLTAGE [V]
MAXIMUM OUTPUT VOLTAGE [V]
100℃
10
0.4
40
BA2904S/BA2904 family,BA2904H
5
-40℃
20
20
30
SUPPLY VOLTAGE [V]
Fig. 50
Supply Current - Supply Voltage
BA2904S/BA2904 family,BA2904H
30
32V
0.6
0.0
0.0
150
AMBIENT TEMPERATURE [℃]
40
0.8
3V
0
0
BA2904S/BA2904 family,BA2904H
1.0
SUPPLY CURRENT [mA]
BA2904F
800
BA2904S/BA2904 family,BA2904H
1.0
SUPPLY CURRENT [mA]
POWER
DISSIPATION
POWER
DISSIPATION
[mA][mA]
1000
6
-40
4
25
2
0
-2
105
125
-4
-6
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 59
Low Level Sink Current
– Ambient Temperature(VOUT=0.2[V])
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 60
Input Offset Voltage
- Supply Voltage(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
11/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA2904S/BA2904 family,BA2904HFVM-C
BA2904S/BA2904 family,BA2904H
BA2904S/BA2904 family,BA2904H
50
3V
2
0
5V
-2
32V
-4
40
-40℃
30
10
105℃
40
32V
30
20
3V
10
5V
125℃
0
0
-25
0
25
50
75
0
100 125 150
5
10
15
20
25
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Fig. 61
Input Offset Voltage – Ambient Temperature
-50
35
Fig. 62
Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
Fig. 63
Input Bias Current – Ambient Temperature
30
20
10
0
-10
(Vicm=0[V],VOUT=1.4[V])
BA2904S/BA2904 family,BA2904H
8
INPUT OFFSET VOLTAGE [mV]
40
6
-40℃
105℃
4
25℃
2
125℃
0
-2
-4
-6
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
0
1
2
3
4
[Vin]
COMMON INPUT
MODEVOLTAGE
INPUT VOLTAGE
[V]
Fig. 64
Input Bias Current – Ambient Temperature
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
BA2904S/BA2904 family,BA2904H
5
3V
0
5V
32V
-5
-10
0
25
50
75
130
-40℃
120
25℃
110
100
90
125℃
105℃
80
70
100
125℃
80
105℃
60
40
0
10
20
30
SUPPLY VOLTAGE [V]
Fig. 70
Common Mode Rejection Ratio
– Supply Voltage
40
20
25
30
35
BA2904S/BA2904 family,BA2904H
140
130
15V
120
110
100
5V
90
80
70
60
4
6
8
10
12
SUPPLY VOLTAGE [V]
14
-50
16
Fig. 68
Large Signal Voltage Gain
– Supply Voltage(RL=2[kΩ])
COMMON MODE REJECTION RATIO [dB]
25℃
15
(Vicm=0[V],VOUT=1.4[V])
BA2904S/BA2904 family,BA2904H
Input Offset Current
– Ambient Temperature(Vicm=0[V],VOUT=1.4[V])
-40℃
10
SUPPLY VOLTAGE [V]
Input Offset Current – Supply Voltage
Fig. 67
120
5
Fig. 66
100 125 150
BA2904S/BA2904 family,BA2904H
125℃
Fig. 65
AMBIENT TEMPERATURE [℃]
140
105℃
-5
0
BA2904S/BA2904 family,BA2904H
140
36V
32V
120
100
80
5V
3V
60
40
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 71
Common Mode Rejection Ratio
– Ambient Temperature
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 69
Large Signal Voltage Gain
– Ambient Temperature(RL=2[kΩ])
BA2904S/BA2904 family,BA2904H
140
POWER SUPPLY REJECTION RATIO [dB]
-25
0
5
60
-50
25℃
-40℃
Input Offset Voltage – Common Mode
Input Voltage(VCC=5[V])
140
LARGE SIGNAL VOLTAGE GAIN [dB]
10
5
-10
-1
LARGE SIGNAL VOLTAGE GAIN [dB]
-25
BA2904S/BA2904 family,BA2904H
10
-8
-50
-25
0
25
50
75 100 125 150
AMBIENT TEMPERATURE [℃]
(Vicm=0[V], VOUT=1.4[V])
BA2904S/BA2904 family,BA2904H
50
30
INPUT OFFSET CURRENT [nA]
-50
INPUT BIAS CURRENT[nA]
25℃
20
-6
INPUT OFFSET CURRENT [nA]
INPUT BIAS CURRENT [nA]
4
-8
COMMON MODE REJECTION RATIO [dB]
BA2904S/BA2904 family,BA2904H
50
6
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
8
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 72
Power Supply Rejection Ratio
- Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
12/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA2902S/BA2902 family
BA2902S/BA2902 family
BA2902KN
0.8
SUPPLY CURRENT [mA]
POWER DISSIPATION [mW]
800
BA2902F
600
400
BA2902SFV
BA2902SKN
200
BA2902S/BA2902 family
1.0
BA2902FV
25℃
0.6
-40℃
0.4
125℃
105℃
0.2
BA2902S/BA2902 family
1.0
SUPPLY CURRENT [mA]
1000
0.8
32V
0.6
0.4
5V
0.2
3V
BA2902SF
0
0.0
0.0
150
0
Fig. 73
Derating Curve
30
100℃
20
25℃
105℃
10
0
0
10
20
30
3
2
1
15V
20
10
0
0
25
50
75
125℃
1
-40℃
0.1
25℃
0.01
0.4
25℃
60
50
40
125℃
30
105℃
20
10
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
Fig. 82
Low Level Sink Current
– Supply Voltage(VOUT=0.2[V])
35
5V
3V
10
-50
70
60
5V
50
40
3V
30
20
10
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 81
Output Sink Current
- Ambient Temperature (VOUT=VCC)
BA2902S/BA2902 family
8
32V
0
0
BA2902S/BA2902 family
20
2
BA2902S/BA2902 family
80
LOW LEVEL SINK CURRENT [μA]
LOW LEVEL SINK CURRENT [μA]
70
0.8
1.2
1.6
OUTPUT VOLTAGE [V]
Fig. 80
Output Sink Current
- Output Voltage (VCC=5[V])
BA2902S/BA2902 family
5
0
0
Fig. 79
Output Source Current
- Ambient Temperature(VOUT=0[V])
-40℃
2
3
4
OUTPUT VOLTAGE [V]
30
0.001
100 125 150
1
15V
10
AMBIENT TEMPERATURE [℃]
80
125℃
10
Fig. 78
Output Source Current
- Output Voltage(VCC=5[V])
OUTPUT SINK CURRENT [mA]
5V
-25
105℃
20
0
BA2902S/BA2902 family
100
OUTPUT SINK CURRENT [mA]
OUTPUT SOURCE CURRENT [mA]
3V
-50
25℃
30
0
105℃
30
-40℃
Fig. 77
Maximum Output Voltage – Ambient
Temperature(VCC=5[V],RL=2[kΩ])
BA2902S/BA2902 family
40
BA2902S/BA2902 family
40
-50 -25 0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 76
Maximum Output Voltage
– Supply Voltage(RL=10[kΩ])
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
50
0
40
-25
Fig. 75
Supply Current - Ambient Temperature
4
SUPPLY VOLTAGE [V]
50
-50
40
BA2902S/BA2902 family
5
MAXIMUM OUTPUT VOLTAGE [V]
MAXIMUM OUTPUT VOLTAGE [V]
-40℃
20
30
SUPPLY VOLTAGE [V]
Fig. 74
Supply Current - Supply Voltage
BA2902S/BA2902 family
40
10
OUTPUT SOURCE CURRENT [mA]
25
50
75
100
125
AMBIENT TEMPERTURE [℃]
INPUT OFFSET VOLTAGE [mV]
0
6
-40℃
4
25℃
2
0
-2
105℃
125℃
-4
-6
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 83
Low Level Sink Current
– Ambient Temperature(VOUT=0.2[V])
0
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Fig. 84
Input Offset Voltage
- Supply Voltage(Vicm=0[V], VOUT=1.4[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
13/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA2902S/BA2902 family
BA2902S/BA2902 family
BA2902S/BA2902 family
50
3V
2
0
5V
-2
32V
-4
INPUT BIAS CURRENT [nA]
4
40
-40℃
30
25℃
20
10
105℃
-6
-25
0
25
50
75
20
3V
10
5V
0
0
100 125 150
AMBIENT TEMPERATURE [℃]
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
Fig. 86
Input Bias Current – Supply Voltage
(Vicm=0[V], VOUT=1.4[V])
(Vicm=0[V], VOUT=1.4[V])
50
INPUT OFFSET VOLTAGE [mV]
40
30
20
10
0
-10
(Vicm=0[V],VOUT=1.4[V])
BA2902S/BA2902 family
8
6
-40℃
105℃
4
25℃
2
125℃
0
-2
-4
-6
0
25
50
75
100 125 150
1
2
3
4
INPUT VOLTAGE
[Vin]
COMMON MODE
INPUT VOLTAGE
[V]
AMBIENT TEMPERATURE [℃]
Fig. 88
Input Bias Current – Ambient Temperature
BA2902S/BA2902 family
5
3V
0
5V
32V
-5
-10
0
25
50
75
130
-40℃
120
25℃
110
100
90
125℃
105℃
80
70
100 125 150
Fig. 91
(Vicm=0[V],VOUT=1.4[V])
-40℃
COMMON MODE REJECTION RATIO [dB]
120
25℃
100
125℃
80
105℃
60
40
0
10
20
30
SUPPLY VOLTAGE [V]
Fig. 94
Common Mode Rejection Ratio
– Supply Voltage
40
5
10
15
20
25
30
35
Fig. 90
Input Offset Current – Supply Voltage
(Vicm=0[V],VOUT=1.4[V])
BA2902S/BA2902 family
140
130
15V
120
110
100
5V
90
80
70
6
8
10
12
SUPPLY VOLTAGE [V]
14
-50
16
Fig. 92
Large Signal Voltage Gain
– Supply Voltage(RL=2[kΩ])
Input Offset Current – Ambient Temperature
BA2902S/BA2902 family
125℃
60
4
AMBIENT TEMPERATURE [℃]
140
105℃
-5
SUPPLY VOLTAGE [V]
BA2902S/BA2902 family
140
36V
32V
120
100
80
5V
3V
60
40
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 95
Common Mode Rejection Ratio
– Ambient Temperature
-25 0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 93
Large Signal Voltage Gain
– Ambient Temperature(RL=2[kΩ])
BA2902S/BA2902 family
140
POWER SUPPLY REJECTION RATIO [dB]
-25
0
0
60
-50
25℃
-40℃
5
BA2902S/BA2902 family
140
LARGE SIGNAL VOLTAGE GAIN [dB]
10
0
Fig. 89
Input Offset Voltage – Common Mode
Input Voltage(VCC=5[V])
(VCC=30[V],Vicm=28[V],VOUT=1.4[V])
5
-10
-1
LARGE SIGNAL VOLTAGE GAIN [dB]
-25
BA2902S/BA2902 family
10
-8
-50
-25
0
25 50 75 100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 87
Input Bias Current – Ambient Temperature
INPUT OFFSET CURRENT [nA]
BA2902S/BA2902 family
-50
35
Fig. 85
Input Offset Voltage – Ambient Temperature
INPUT BIAS CURRENT[nA]
32V
30
0
-50
INPUT OFFSET CURRENT [nA]
40
125℃
-8
COMMON MODE REJECTION RATIO [dB]
BA2902S/BA2902 family
50
6
INPUT BIAS CURRENT [nA]
INPUT OFFSET VOLTAGE [mV]
8
130
120
110
100
90
80
70
60
-50
-25
0
25
50
75
100 125 150
AMBIENT TEMPERATURE [℃]
Fig. 96
Power Supply Rejection Ratio
– Ambient Temperature
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
14/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA3404 family
BA3404 family
BA3404 family
4
SUPPLY CURRENT [mA]
BA3404F
600
400
BA3404FVM
200
0
25
50
75
16
24
32
SUP PLY VOLTAG E [V]
5
0
-5
VOL
-15
-50
10
1000
LOAD RESISTANCE [kΩ]
5
0
-5
-10
VOH
5
0
-5
VOL
-15
±0
Fig. 100
Maximum Output Voltage – Load Resistance
±4
±8
±12
±16
SUPPLY VOLTAGE [V]
0.001
±20
0.01
0.1
1
10
100
OUTPUT CURRENT [mA]
Fig. 101
Maximum Output Voltage – Supply Voltage
Fig. 102
Output Voltage – Output Current
(VCC/VEE=+15[V]/-15[V],Ta=25[℃])
(VCC/VEE=+15[V]/-15[V],Ta=25[℃])
BA3404 family
BA3404 family
6
BA3404 family
250
4
2
85
0
25
-40
-2
-4
-6
4
200
±18.0V
2
±15.0V
0
±2.0V
-2
-4
±10
±15
±20
-50
SUPPLY VOLTAGE [V]
0
25
50
75
150
±2.0V
100
±15.0V
±18.0V
0
25
50
±5
.
20
25℃
10
0
-10
75
100
±15
±20
Fig. 105
Input Bias Current - Supply Voltage
(Vicm=0[V], VOUT=0[V])
30
-40℃
±10
SUPPLY VOLTAGE [V]
85℃
-20
-30
-40
0
±0
100
BA3404 family
40
INPUT OFFSET CURRENT [nA]
200
-25
85℃
(Vicm=0[V], VOUT=0[V])
BA3404 family
-50
25
50
Fig. 104
Input Offset Voltage - Ambient Temperature
(Vicm=0[V], VOUT=0[V])
50
-40
100
AMBIENT TEMPE RATURE [°C]
Fig. 103
Input Offset Voltage - Supply voltage
250
-25
BA3404 family
40
INPUT OFFSET CURRENT [nA]
±5
150
0
-6
±0
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
INPUT OFFSET V OLTA GE [mV]
INPUT OFFSET V OLTG E [mV]
INPUT OFFSET VOLTAGE [mV]
.
6
BA3404 family
-10
VOL
-15
100
10
VOH
10
-25
0
25
50
75
AMB IENT TEMPERATURE [℃]
15
15
100000
±15.0V
Fig. 99
Supply Current - Ambient Temperature
-20
0.1
±2.0V
1
40
BA3404 family
20
OUTPUT
VOLTAGE
[V]
MAXIMUM
OUTPUT
VOLTAGE
[V]
VOH
-10
8
Fig. 98
Supply Current - Supply Voltage
BA3404 family
10
±18.0V
2
0
0
.
Fig. 97
Derating Curve
15
85℃
-40℃
1
3
0
100
AMBIENT TEMPERTURE [℃ ]
25℃
2
OUTPUT VOLTAGE [V]
0
3
SUPPLY CURRENT [mA]
800
MAXIMUM
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
BA3404 family
4
.
POWER DISSIPATION [mW] .
1000
30
20
±18.0V
10
0
±2.0V
-10
±15.0V
-20
-30
-40
±0
±5
±10
±15
±20
SUPPLY VOLTAG E [V]
AMBIENT TEMPERATURE [°C]
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Fig. 106
Input Bias Current – Ambient Temperature
Fig. 107
Input Offset Current – Supply Voltage
Fig. 108
Input Offset Current – Ambient Temperature
(Vicm=0[V], VOUT=0[V])
(Vicm=0[V], VOUT=0[V])
(Vicm=0[V], VOUT=0[V])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
15/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
○BA3404 family
0
-5
25℃
-40℃
-10
-15
-20
-3
-2
-1
0
1
2
3
100
75
50
25
0
-50
COMMO N MODE INPUT VO LTAGE [V]
Fig. 109
Input Offset Voltage
– Common Mode Input Voltage
.
50
25
0
-50
-40℃
85℃
80
60
40
±2
±4
±6
±8 ±10 ±12 ±14 ±16 ±18 ±20
BA3404 family
50
Phase
125
±15.0V
100
75
±2.0V
50
25
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
(RL=2[kΩ])
(RL=2[kΩ])
BA3404 family
-40℃
0.8
SLEW RATE H-L [V/us]
1.0
85℃
0.6
0.4
0.2
±0
±4
±8
±12
±16
SUPPLY VOLTAGE[V]
±20
60
10
40
1.0
0.8
±2.5V
±15.0V
0.6
0.4
0.2
-50
-25
0
25
50
75
0
(VCC=±15V)
±18.0V
1.2
100
Fig. 116
Slew Rate H-L – Ambient Temperature
BA3404 family
80
80
Fig. 114
AMBIENT TEMPERATURE [℃]
Fig. 115
Slew Rate L-H – Supply Voltage
100
20
Voltage Gain - Frequency
0.0
0.0
120
1.E+02 1.E +03 1.E+04 1.E+05 1.E+06 1.E+07
FREQUE NCY [Hz]
100
BA3404 family
1.4
.
1.2
140
30
20
Fig. 113
Large Signal Voltage Gain
– Ambient Temperature
25℃
160
Gain
0
0
Fig. 112
Large Signal Voltage Gain
– Supply Voltage
1.4
200
180
40
-50
SUPPLY VOLTAGE [V]
100
(VCC/VEE=+15[V]/-15[V])
BA3404 family
150
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
Fig. 111
Power Supply Rejection Ratio
– Ambient Temperature
VOLTAGE
G AINGAIN
[dB] [dB]
LARGE SIGNAL VOLTAGE GAIN [dB]
LARGE SIGNAL VOLTAGE GAIN [dB]
.
25℃
100
.
75
±18.0V
120
SLEW RATE L-H [V/us]
100
(VCC/VEE=+15[V]/-15[V])
BA3404 family
140
EQUIVALENT INPUT NOISE VOLTAGE
[nV/√Hz]
.
100
125
Fig. 110
Common Mode Rejection Ratio
– Ambient Temperature
(VCC/VEE=+2.5[V]/-2.5[V])
160
-25
0
25
50
75
AMBIE NT TEMPERATURE [°C]
BA3404 family
150
BA3404 family
1
0.1
20kHz
0.01
20Hz
1kHz
0.001
0.01
0.1
1
OUTPUT VOLTAGE [Vrms]
10
Fig. 117
Total Harmonic Distoration – Output Voltage
(VCC/VEE=+4[V]/-4[V],Av=0[dB],
RL=2[kΩ],80[kHz]-LPF,Ta=25[℃])
60
40
20
0
10
100
1000
FREQUENCY [Hz]
10000
Fig. 118
Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15[V]/-15[V],Rs=100[Ω],Ta=25[℃])
(*)The data above is ability value of sample, it is not guaranteed.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
PHA SE [deg]
85℃
5
125
PSRR
[dB]
. RATIO [dB]
POWER SUPPLY
REJECTION
10
BA3404 family
150
TOTAL HARMONIC DISTORTION [%]
INPUT OFFSE T VOLTAGE [mV ]
15
COMMON MODE REJECTION RATIO [dB]
CMRR [dB ]
.
BA3404 family
20
16/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Circuit Diagram
VCC
VCC
-IN
VOUT
-IN
VOUT+IN
+IN
VEE
VEE
BA10358/BA10324A/BA2904S/BA2904/
BA3404 simplified schematic
BA2902S/BA2902/BA2904H simplified schematic
Fig. 119 Circuit Diagram (one channel only)
●Test circuit1 NULL method
VCC,VEE,EK,Vicm Unit:[V]
Parameter
VF
S1
S2
S3
BA2904S/BA2904 family
BA2902S/BA2902 family
BA2904HFVM-C
Vcc
VEE
EK
Vicm
Vcc
VEE
EK
BA3404 family
Vicm VCC VEE
Calculation
EK
Vicm
Input Offset Voltage
VF1
ON
OFF
5
0
-1.4
0
5~30
0
-1.4
0
15
-15
0
0
1
Input Offset Current
VF2
OFF OFF OFF
5
0
-1.4
0
5
0
-1.4
0
15
-15
0
0
2
VF3
OFF
ON
VF4
ON
OFF
5
0
-1.4
0
5
0
-1.4
0
15
-15
0
0
3
ON
ON
ON
15
0
-1.4
0
15
0
-1.4
0
15
-15
10
0
15
0
-11.4
0
15
0
-11.4
0
15
-15
-10
0
5
0
-1.4
0
5
0
-1.4
0
15
-15
0
-15
ON
ON
OFF
5
0
-1.4
3.5
5
0
-1.4
3.5
15
-15
0
13
ON
ON
OFF
5
0
-1.4
0
5
0
-1.4
0
2
-2
0
0
30
0
-1.4
0
30
0
-1.4
0
15
-15
0
0
Input Bias Current
Large Signal
Voltage Gain
VF5
Common-mode
Rejection Ratio
(Input common-mode
Voltage Range)
VF7
VF6
VF8
VF9
Power Supply
Rejection Ratio
VF10
ON
BA10358/BA10324A family
OFF
4
5
6
-Calculation1. Input Offset Voltage (Vio)
| VF1 |
Vio =
1 + Rf / Rs
[V]
C2
0.1[μF]
2. Input Offset Current (Iio)
Iio =
| VF2-VF1 |
Ri ×(1 + Rf / Rs)
[A]
Rf
50[kΩ]
C1
RK
3. Input Bias Current (Ib)
Ib =
| VF4-VF3 |
2×Ri× (1 + Rf / Rs)
S1
Rs
[A]
4. Large Signal Voltage Gain (Av)
Av = 20×Log
ΔEK×(1+Rf /Rs)
|VF5-VF6|
Vicm
[dB]
EK
500[kΩ]
0.1[μF]
Ri
50[Ω]
10[kΩ]
50[Ω]
10[kΩ]
Rs
VCC
+15[V]
DUT
NULL
S3
Ri
S2
RK 500[kΩ]
VEE
RL
C3
1000[pF]
-15[V]
V VF
5. Common-mode Rejection Ration (CMRR)
CMRR = 20×Log
ΔVicm×(1+Rf /Rs)
Fig. 120 Measurement circuit1 (one channel only)
[dB]
|VF8-VF7|
6. Power supply rejection ratio (PSRR)
PSRR = 20×Log
ΔVcc×(1+Rf /Rs)
|VF10-VF9|
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
[dB]
17/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Measurement Circuit 2 Switch Condition
SW
1
SW
3
SW
4
SW
5
SW
6
SW
7
Supply Current
OFF OFF OFF
ON
OFF
ON
OFF OFF OFF OFF OFF OFF OFF OFF
High Level Output Voltage
OFF OFF
ON
OFF OFF
ON
OFF OFF
OFF OFF OFF
ON
OFF
Low Level Output Voltage
OFF OFF
ON
OFF OFF
ON
OFF OFF OFF OFF OFF OFF
ON
OFF
Output Source Current
OFF OFF
ON
OFF OFF
ON
OFF OFF OFF OFF OFF OFF OFF
ON
Output Sink Current
OFF OFF
ON
OFF OFF
ON
OFF OFF OFF OFF OFF OFF OFF
ON
Slew Rate
OFF OFF OFF
Gain Bandwidth Product
OFF
ON
OFF OFF
ON
Equivalent Input Noise Voltage
ON
OFF OFF OFF
ON
SW No.
SW
2
ON
SW
8
OFF OFF OFF
SW
9
ON
SW
10
SW
11
SW
12
SW
13
SW
14
ON
ON
ON
OFF OFF OFF OFF
ON
OFF OFF
ON
ON
OFF OFF OFF OFF
ON
OFF OFF OFF OFF
ON
OFF OFF OFF
Input voltage
SW4
電圧
VH
R2
SW5
VCC
VL
A
-
SW1
SW2
SW3
SW6
RS
SW7
電圧
SW8
R1
SW9
SW10
SW11
SW12
SW13
SW14
時間 t
Input wave
入力電圧波形
Output voltage
+
SR=ΔV/Δt
VH
VEE
ΔV
A
~
VIN-
RL
~
VIN+
V
~
CL
V
VL
VOUT
Δt
Output wave
出力電圧波形
Fig. 121 Measurement Circuit 2 (each Op-Amp)
時間 t
Fig. 122 Slew Rate Input Waveform
●Measurement Circuit 3 Amplifier To Amplifier Coupling
VCC
VCC
R1//R2
R1//R2
OTHER
CH
VEE
R1
VIN
R2
VEE
R1
V VOUT1
V
CS=20×log
Fig. 123
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
R2
=0.5[Vrms]
VOUT2
100×VOUT1
VOUT2
Measurement Circuit 3
18/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Description of Electrical Characteristics
Described below are descriptions of the relevant electrical terms
Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents.
1.Absolute maximum ratings
The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of
electrical characteristics or damage to the part itself as well as peripheral components.
1.1 Power supply voltage (VCC-VEE)
Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing
deterioration of the electrical characteristics or destruction of the internal circuitry.
1.2 Differential input voltage (Vid)
Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC.
1.3 Input common-mode voltage range (Vicm)
Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration
of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage
range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead.
1.4 Operating and storage temperature ranges (Topr,Tstg)
The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient
temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of
temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics.
1.5 Power dissipation (Pd)
Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For packaged
products, Pd is determined by the maximum junction temperature and the thermal resistance.
2. Electrical characteristics
2.1 Input offset voltage (Vio)
Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage
difference required for setting the output voltage to 0 V.
2.2 Input offset voltage drift (△Vio/△T)
Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation.
2.3 Input offset current (Iio)
Indicates the difference of input bias current between the non-inverting and inverting terminals.
2.4 Input offset current drift (△Iio/△T)
Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation.
2.5 Input bias current (Ib)
Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the
non-inverting terminal and the input bias current at the inverting terminal.
2.6 Circuit current (ICC)
Indicates the current of the IC itself that flows under specified conditions and during no-load steady state.
2.7 High level output voltage/low level output voltage (VOH/VOL)
Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level output
voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low
level output voltage the lower limit.
2.8 Large signal voltage gain (AV)
The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting
terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage.
AV = (output voltage fluctuation) / (input offset fluctuation)
2.9 Input common-mode voltage range (Vicm)
Indicates the input voltage range under which the IC operates normally.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
19/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
2.10 Common-mode rejection ratio (CMRR)
Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation).
CMRR = (change in input common-mode voltage) / (input offset fluctuation)
2.11 Power supply rejection ratio (PSRR)
Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation).
SVR = (change in power supply voltage) / (input offset fluctuation)
2.12 Output source current/ output sink current (IOH/IOL)
The maximum current that can be output under specific output conditions, it is divided into output source current and
output sink current. The output source current indicates the current flowing out of the IC, and the output sink current the
current flowing into the IC.
2.13 Channel separation (CS)
Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output
voltage of a driven channel.
2.14 Slew rate (SR)
Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied.
2.15 Gain bandwidth product (GBW)
The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value
of the frequency where the gain of the op-amp is 1 (maximum frequency, and unity gain frequency).
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
20/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Derating curves
Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated
when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that
can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited.
Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal
resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum
value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead
frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called
thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this
thermal resistance. Fig.124(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient
temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below:
θja = (Tj-Ta) / Pd
[℃/W]
・・・・・ (Ⅰ)
Derating curve in Fig.124(b) indicates power that can be consumed by IC with reference to ambient temperature.Power that
can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal
resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package
condition, wind velocity, etc even when the same of package is used.
Thermal reduction curve indicates a reference value measured at a specified condition. Fig.125(a)~(d) show a derating
curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2904HFVM-C, BA3404, BA2902S, BA2902.
LSIの 消 費
力 [W]
Power dissipation
of 電
LSI
Pd (max)
θja = ( Tj ー Ta ) / Pd [℃/W]
P2
θja2 < θja1
Ambient temperature
周囲温度 Ta [℃]
θ' ja2
P1
θ ja2
Tj ' (max) Tj (max)
θ' ja1
θ ja1
Chip surfaceチップ
temperature
表面温度 Tj [℃]
0
消費電力 P [W]
Power dissipation
25
50
75
100
125
150
周 囲 温 度 Ta [℃ ]
Ambient temperature
(b) Derating curve
(a) Thermal resistance
Fig. 124 Thermal resistance and derating curve
1000
800
許容損失
Pd [mW]
POWER
DISSIPATION
Pd [mW]
POWER
DISSIPATION
Pd [mW]
許容損失
Pd [mW]
1000
BA10358F
620mW (*1)
620mW(*9)
600
BA10358FV
550mW(*10)
550mW (*2)
400
200
800
BA10324AFV
700mW
(*3)
700mW(*11)
600
BA10324AF
490mW
(*4)
490mW(*12)
400
200
0
0
0
25
50
75
100
125
0
25
Ta [℃:Ta
]
Ambient周囲温度
temperature
[℃]
50
(a)
BA10358 ファミリ
(a)BA10358
family
BA2904F
BA3404F
BA2904F
870mW(*16)
870mW(
*8)
BA2904FV
BA2904FV
690mW(*14)
690mW(
*6)
BA2904FVM
BA2904FVM
BA2904HFVM-C
BA3404FVM
BA3404F
BA3404F
590mW(*15)
590mW (*7)
400
400
400
BA3404FVM
BA3404FVM
BA2904SF
200
200
200
許容損失
Pd [mW]
POWER
DISSIPATION
Pd [mW]
POWER
DISSIPATION
Pd [mW]
許容損失
Pd [mW]
POWER DISSIPATION [mA]
780mW(
*5)
780mW(*13)
800
800
800
BA2902FV
800
BA2902KN
660mW(*17)
660mW(
*9)
600
BA2902F
610mW(*18)
610mW (*10)
400
BA2902SFV
BA2902SKN
200
BA2904SFV
BA2902SF
BA2904SFVM
00
0
25
25
50
50
75
75
75
105
105
100
100
100
0
125
125
125
Ambient周囲温度
temperature
:Ta
Ta [℃
] [℃]
150
150
0
(*11)
7.0
(*12)
4.9
(*13)
6.2
25
50
75
105
100
125
150
Ambient 周囲温度
temperature
:Ta
Ta [℃
] [℃]
AMBIENT TEMPERATURE
[℃]
(c)BA2904S/BA2904/BA3404
family,BA2904H
(a) BA2904 ファミリ
(*10)
5.5
125
1000
00
0
(*9)
6.2
100
(b)
(a) BA10324A family
ファミリ
(b)BA10324A
1000
1000
1000
600
600
600
75
Ta [℃:Ta
]
Ambient周囲温度
temperature
[℃]
(d)BA2902S/BA2902 family
(a) BA2902 ファミリ
(*14)
5.5
(*15)
4.8
(*16)
7.0
(*17)
5.3
(*18)
4.9
Unit
[mW/℃]
When using the unit above Ta=25[℃], subtract the value above per degree[℃].
Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted.
Fig. 125 Derating curve
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
21/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Precautions
1) Unused circuits
When there are unused circuits, it is recommended that they be connected as
in Fig.126, setting the non-inverting input terminal to a potential within the in-phase
input voltage range (Vicm).
VCC
2) Input voltage
Applying VEE+32[V](BA2904S/BA2904/BA2902S/BA2902 family, BA2904HFVM-C)
and VEE+36[V](BA3404 family) to the input terminal is possible without causing
deterioration of the electrical characteristics or destruction, irrespective of the
supply voltage.However, this does not ensure normal circuit operation.
Please note that the circuit operates normally only when the input voltage is
within the common mode input voltage range of the electric characteristics.
Please
keep this
同相入力電圧
potencial
in Vicm
範囲内の電位
VEE
Fig. 126 Example of processing unused
3) Power supply (single / dual)
The op-amp operates when the voltage supplied is between VCC and VEETherefore, the single supply op-mp can be used
as a dual supply op-amp as well.
4) Power dissipation (Pd)
Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise
in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation
(Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating
curves for more information.
5) Short-circuit between pins and erroneous mounting
Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output
and the power supply, or the output and GND may result in IC destruction.
6) Operation in a strong electromagnetic field
Operation in a strong electromagnetic field may cause malfunctions.
7) Radiation
This IC is not designed to withstand radiation.
8) IC handing
Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical
characteristics due to piezoelectric (piezo) effects.
9) IC operation
The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to
the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging of
the output current. Connecting a resistor between the output terminal and GND, and increasing the bias current for Class
A operation will suppress crossover distortion.
10) Board inspection
Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every
process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the
power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly
process as well as during transportation and storage.
11) Output capacitor
Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE,
causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation
due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance
less than 0.1μF.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
22/24
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
●Ordering part number
B
A
2
Part No.
9
0
4
F
Part No.
10358,10324A
2904S,2904
2904H,3404
B902S,2902
V
-
E
2
Packaging and forming specification
E2: Embossed tape and reel
Package
F: SOP8
SOP14
FV: SSOP-B8
SSOP-B14
FVM: MSOP8
KN:VQFN16
(SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16)
TR: Embossed tape and reel
(MSOP8)
SOP8
<Tape and Reel information>
7
5
6
6.2±0.3
4.4±0.2
0.3MIN
8
+6°
4° −4°
1 2
3
0.9±0.15
5.0±0.2
(MAX 5.35 include BURR)
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
4
0.595
1.5±0.1
+0.1
0.17 -0.05
0.11
S
1.27
0.42±0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SOP14
<Tape and Reel information>
8.7 ± 0.2
(MAX 9.05 include BURR)
8
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3MIN
4.4±0.2
6.2±0.3
14
1
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
1.5±0.1
0.15 ± 0.1
0.11
1.27
0.4 ± 0.1
0.1
1pin
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
SSOP-B8
<Tape and Reel information>
3.0 ± 0.2
(MAX 3.35 include BURR)
0.3MIN
4.4±0.2
6.4±0.3
8 76 5
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1.15±0.1
1 23 4
0.15 ± 0.1
0.1
S
0.1
+0.06
0.22 -0.04
(0.52)
0.08
M
0.65
1pin
Reel
(Unit : mm)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
23/24
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2009.05 - Rev.A
BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C,
BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM
Technical Note
SSOP-B14
<Tape and Reel information>
5.0 ± 0.2
8
1
Tape
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
0.3Min.
4.4 ± 0.2
6.4 ± 0.3
14
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
7
0.10
1.15 ± 0.1
0.15 ± 0.1
0.1
0.65
0.22 ± 0.1
Direction of feed
1pin
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
MSOP8
<Tape and Reel information>
2.8±0.1
4.0±0.2
8 7 6 5
0.6±0.2
+6°
4° −4°
0.29±0.15
2.9±0.1
(MAX 3.25 include BURR)
Tape
Embossed carrier tape
Quantity
3000pcs
Direction
of feed
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
)
1 2 3 4
1PIN MARK
1pin
+0.05
0.145 –0.03
0.475
+0.05
0.22 –0.04
0.08±0.05
0.75±0.05
0.9MAX
S
0.08 S
Direction of feed
0.65
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
VQFN16
<Tape and Reel information>
4.2±0.1
4.0±0.1
(1.35)
4.0±0.1
9
1
4
0.05
M
+0.03
0.02 −0.02
0.22±0.05
2500pcs
Direction
of feed
5
16
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
)
0.05
(0
.2
2
)
0.5
Embossed carrier tape (with dry pack)
Quantity
8
13
0.22±0.05
Tape
0.95MAX
4.2±0.1
12
)
.5
(0
)
5
.3
(0
3-
+0.1
0.6 −0.3
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Notice :
Do not use the dotted line area
for soldering
1pin
Reel
(Unit : mm)
24/24
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2009.05 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of
any of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
R0039A
Similar pages