ROHM’s Selection Operational Amplifier / Comparator Series Operational Amplifiers: Ground Sense BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM, BA2904HFVM-C,BA2902S F/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Description General-purpose BA10358/BA10324A family and high-reliability BA2904S/BA2904/BA2902S/BA2902 family and automotive BA2904HFVM-C integrate two or four independent Op-Amps andphase compensation capacitors on a single chip andhave some features of high-gain, low power consumption,and operating voltage range of 3[V] to 32[V] (single powersupply ). BA3404 family is realized high speed operation andreduce the crossover distortions that compare with BA10358/ BA2904 family. General-purpose BA10358 F/FV Dual High-reliabillity Automotive No.09049EAT03 Quad BA10324A F/FV Dual BA2904S F/FV/FVM Operation guaranteed up to +105℃ BA2904 F/FV/FVM Operation guaranteed up to +125℃ Quad BA2902S F/FV/KN Operation guaranteed up to +105℃ BA2902 F/FV/KN Operation guaranteed up to +125℃ Dual BA3404 F/FVM Dual BA2904H FVM-C ●Characteristics 1) Operable with a single power supply 2) Wide operating supply voltage +3.0[V]~+32.0[V](single supply) (BA10358/BA10324A/BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C) +4.0[V]~+36.0[V](single supply) (BA3404 family) 3) Standard Op-Amp Pin-assignments 4) Input and output are operable GND sense 5) Internal phase compensation type 6) Low supply current 7) High open loop voltage gain 8) Internal ESD protection Human body model(HBM) ±5000[V](Typ.) (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C) 9) Gold PAD (BA2904S/BA2904/BA2902S/BA2902/BA3404 family,BA2904HFVM-C) 10) Wide temperature range -40[℃]~+125[℃] (BA2904/BA2902 family,BA2904HFVM-C) -40[℃]~+105[℃] (BA2904S/BA2902S family) -40[℃]~+85[℃] (BA10358/BA10324/BA3404 family) ●Pin Assignment OUT1 1 -IN1 +IN1 VEE SOP8 BA10358F BA10358F BA2904F BA2904SF BA2904F BA3404F BA3404F 2 3 8 VCC CH1 7 OUT2 - + CH2 + - 4 6 -IN2 5 +IN2 SSOP-B8 BA10358FV BA10358FV BA2904FV BA2904SFV BA2904FV www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. MSOP8 BA2904SFVM BA2904FVM BA2904FVM BA3404FVM BA3404FVM BA2904HFVM-C OUT1 1 -IN1 2 +IN1 VCC 14 13 -IN4 3 12 +IN4 4 11 VEE +IN2 5 -IN2 6 OUT2 7 CH1 - + - + CH2 SOP14 BA10324AF BA10324AF BA2902F BA2902SF BA2902F 1/24 CH4 + - + CH3 -IN1 OUT4 10 +IN3 9 -IN3 8 OUT3 +IN1 1 NC 3 14 11 - 6 7 VEE 10 NC 9 +IN3 CH3 CH2 5 12 +IN4 + - -IN2 13 CH4 + + +IN2 4 BA10324AFV BA2902FV BA2902SFV BA2902FV 15 CH1 + VCC 2 SSOP-B14 BA10324AFV OUT1 OUT4 -IN4 16 8 OUT2 OUT3 -IN3 VQFN16 BA2902SKN BA2902KN BA2902KN 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Absolute Maximum Ratings (Ta=25[℃]) ○BA10358 family,BA10324A family Parameter Supply Voltage Differential Input Voltage Rating Symbol BA10358 family VCC-VEE (*1) Unit BA10324A family +32 V Vid VCC-VEE V Input Common-mode Voltage Range Vicm VEE~VCC V Operating Temperature Range Topr -40~+85 ℃ Storage Temperature Range Tstg -55~+125 ℃ Tjmax +125 ℃ Maximum Junction Temperature Note bsolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA10358 family,BA10324A family(Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃]) Guaranteed limit Parameter Temperature Symbol Range BA10358 family BA10324A family Unit Min. Typ. Max. Min. Typ. Max. Condition Input Offset Voltage Vio 25℃ - 2 7 - 2 7 mV Input Offset Current Iio 25℃ - 5 50 - 5 50 nA - Input Bias Current (*2) Ib 25℃ - 45 250 - 20 250 nA - Supply Current ICC 25℃ - 0.7 1.2 - 0.6 2 mA High LevelOutput Voltage VOH 25℃ - - - VCC-1.5 - - V RL=2[kΩ] Low Level Output Voltage VOL 25℃ - - - - - 250 mV RL=2[kΩ] Large Signal Voltage Gain AV 25℃ 25 100 - 25 100 - Vicm 25℃ 0 - VCC-1.5 0 - VCC-1.5 V - Common-mode Rejection Ratio CMRR 25℃ 65 80 - 65 75 - dB - Power Supply Rejection Ratio PSRR 25℃ 65 100 - 65 100 - dB RS=50[Ω] Output SourceCurrent IOH 25℃ 10 20 - 20 35 - mA VIN+=1[V],VIN-=0[V],VOUT=0[V] Output SinkCurrent IOL 25℃ 10 20 - 10 20 - mA VIN+=0[V],VIN-=1[V],VOUT=VCC Output Voltage Range Vo 25℃ 0 - VCC-1.5 - - - V RL=2[kΩ] Channel Separation CS 25℃ - 120 - - 120 - dB f=1[kHz], input referred Input Common-mode Voltage Range (*2) RS=50[Ω] RL=∞, All Op-Amps V/mV RL≧2[kΩ],VCC=15[V] Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 2/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Absolute Maximum Ratings (Ta=25[℃]) ○BA2904S/BA2904/BA2902S/BA2902 family,BA2904HFVM-C Parameter Symbol Supply Voltage Differential Input Voltage (*3) Rating BA2904 family BA2902 family BA2904S family BA2902S family BA2904HFVM-C Unit VCC-VEE +32 +36 V Vid 32 36 V Input Common-mode Voltage Range Vicm Operating Temperature Range Topr Storage Temperature Range Tstg -55~+150 ℃ Tjmax +150 ℃ Maximum Junction Temperature (VEE-0.3)~(VEE+32) (VEE-0.3)~(VEE+36) -40~+105 -40~+125 V ℃ Note Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*3) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA2904S/BA2904 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature BA2904S/BA2904 family Parameter Symbol Range Min. Typ. Max. 25℃ 2 7 Input Offset Voltage (*4) Vio Full range 10 Input Offset Voltage Drift △Vio/△T ±7 25℃ 2 50 Input Offset Current (*4) Iio Full range 200 Input Offset Current Drift △lio/△T ±10 25℃ 20 250 (*4) Input Bias Current Ib Full range 250 25℃ 0.7 1.2 Supply Current Vicm Full range 2 25℃ 3.5 High Level Output Voltage VOH Full range 27 28 Low Level VOL Full range 5 20 Output Voltage Large Signal Voltage Gain AV Unit VOUT=1.4[V] VCC=5~30[V],VOUT=1.4[V] μV/℃ VOUT=1.4[V] mV nA nA VOUT=1.4[V] mA RL=∞All Op-Amps V mV 100 - 25℃ Full range 25℃ 25℃ 25℃ Full range 25℃ Full range 0 50 65 20 10 10 2 80 100 30 20 - VCC-1.5 - Isink 25℃ 12 40 - μA Channel Separation CS 25℃ - 120 - dB Slew rate SR 25℃ - 0.2 - V/μs ft 25℃ - 0.5 - MHz Vn 25℃ - 40 - nV/(Hz)1/2 Output Sink Current (*5) IOH IOL Maximum frequency Input referred noise voltage (*4) (*5) (*6) RL=2[kΩ] VCC=30[V],RL=10[kΩ] 25 Output SourceCurrent (*5) VOUT=1.4[V] pA/℃ VOUT=1.4[V] 25℃ Input Common-mode Vicm Voltage Range Common-mode Rejection Ratio CMRR Power Supply Rejection Ratio PSRR Condition V/mV RL=∞All Op-Amps RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] V (VCC-VEE)=5V,VOUT=VEE+1.4[V] dB dB VOUT=1.4[V] VCC=5~30[V] mA VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit mA VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[V], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz] Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. BA2904S family:Full range -40~105℃ BA2904 family:Full range -40~+125℃ www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 3/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA2902S/BA2902 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol BA2902S/BA2902 family Range Min. Typ. Max. Input Offset Voltage (*4) Input Offset Voltage Drift Input Offset Current (*4) Input Offset Current Drift Input Bias Current (*4) Supply Current Vio Low Level Output Voltage Large Signal Voltage Gain Full range Iio VOH 2 7 - - 10 ±7 - 25℃ - 2 50 Full range - - 200 - ±10 - 25℃ - 20 250 Full range - - 250 △lio/△T Ib - △Vio/△T Vicm High Level Output Voltage 25℃ 25℃ - 0.7 2 Full range - - 3 25℃ 3.5 - - - - - 27 28 - Full range mV nA mA RL=∞All Op-Amps V AV 25℃ 25 100 - V/mV - VCC-1.5 - Common-mode Rejection Ratio CMRR 25℃ 50 80 Power Supply Rejection Ratio 25℃ 65 25℃ 20 Full range PSRR IOH - dB VOUT=1.4[V] 100 - dB VCC=5~30[V] 30 - 10 - - mA VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit mA VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit 10 20 - 2 - - Isink 25℃ 12 40 - μA Channel Separation CS 25℃ - 120 - dB Slew rate SR 25℃ - 0.2 - V/μs ft 25℃ - 0.5 - MHz Vn 25℃ - 40 - nV/(Hz)1/2 Output Sink Current Maximum frequency Input referred noise voltage (*4) (*5) (*6) RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] (VCC-VEE)=5V,VOUT=VEE+1.4[V] 25℃ IOL RL=∞All Op-Amps V Full range (*5) RL=2[kΩ] VCC=30[V],RL=10[kΩ] mV - VOUT=1.4[V] VOUT=1.4[V] 20 - VCC=5~30[V],VOUT=1.4[V] nA 5 0 VOUT=1.4[V] pA/℃ VOUT=1.4[V] - Vicm Condition μV/℃ VOUT=1.4[V] Full range 25℃ Output SourceCurrent (*5) Unit VOL Full range Input Common-mode Voltage Range Technical Note VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[V], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz] Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. BA2902S family:Full range -40~105℃ ,BA2902 family:Full range -40~+125℃ www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 4/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA2904HFVM-C(Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol BA2904HFVM-C Range Min. Typ. Max. Input Offset Voltage (*4) Input Offset Voltage Drift Input Offset Current (*4) Input Offset Current Drift Input Bias Current (*4) Supply Current Vio Low Level Output Voltage Large Signal Voltage Gain Full range Iio VOH 2 7 - - 7 - - 25℃ - 2 50 Full range - - 100 - - - △lio/△T Ib - △Vio/△T Vicm High Level Output Voltage 25℃ 25℃ - 20 60 Full range - - 100 25℃ - 0.7 1.2 Full range - - 1.2 25℃ 3.5 - - 3.2 - - 27 28 - Full range mV nA mA RL=∞All Op-Amps V AV 25℃ - - - V/mV - VCC-1.5 VCC-2.0 Common-mode Rejection Ratio CMRR 25℃ 65 80 Power Supply Rejection Ratio 25℃ 65 25℃ 20 Full range PSRR IOH - dB VOUT=1.4[V] 100 - dB VCC=5~30[V] 30 - 10 - - mA VIN+=1[V],VIN-=0[V] VOUT=0[V] 1CH is short circuit mA VIN+=0[V],VIN-=1[V] VOUT=5[V] 1CH is short circuit 10 20 - 2 - - Isink 25℃ 12 40 - μA Channel Separation CS 25℃ - - - dB Slew rate SR 25℃ - - - V/μs ft 25℃ - - - MHz Vn 25℃ - - - nV/(Hz)1/2 Output Sink Current Maximum frequency Input referred noise voltage (*4) (*5) (*6) RL≧2[kΩ],VCC=15[V] VOUT=1.4~11.4[V] (VCC-VEE)=5V,VOUT=VEE+1.4[V] 25℃ IOL RL=∞All Op-Amps V Full range (*5) RL=2[kΩ] VCC=30[V],RL=10[kΩ] mV - VOUT=1.4[V] VOUT=1.4[V] 20 0 VCC=5~30[V],VOUT=1.4[V] nA 5 0 VOUT=1.4[V] pA/℃ VOUT=1.4[V] - Vicm Condition μV/℃ VOUT=1.4[V] Full range 25℃ Output SourceCurrent (*5) Unit VOL Full range Input Common-mode Voltage Range Technical Note VIN+=0[V],VIN-=1[V] VOUT=200[mV] f=1[kHz], input referred VCC=15[V],AV=0[V], RL=2[kΩ],CL=100[pF] VCC=30[V],RL=2[kΩ], CL=100[pF] VCC=15[V],VEE=-15[V], RS=100[Ω],Vi=0[V],f=1[kHz] Absolute value Under high temperatures, please consider the power dissipation when selecting the output current. When the output terminal is continuously shorted the output current reduces the internal temperature by flushing. BA2904HFVM-C:Full range -40~+125℃ www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 5/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ●Absolute Maximum Ratings (Ta=25[℃]) ○BA3404 family Parameter Technical Note Symbol Rating Unit VCC-VEE +36 V Vid 36 V Input Common-mode Voltage Range Vicm (VEE-0.3)~(VEE+36) V Operating Temperature Range Topr -40~+85 ℃ Tstg -55~+150 ℃ Tjmax +150 ℃ Supply Voltage Differential Input Voltage (*7) Storage Temperature Range Maximum Junction Temperature Note Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*7) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA3404 family (Unless otherwise specified VCC=+15[V], VEE=-15[V], Ta=25[℃]) Guaranteed limit Temperature Unit Parameter Symbol Range Min. Typ. Max. Condition Input Offset Voltage(*8) Vio 25℃ - 2 5 mV VOUT=0[V], Vicm=0[V] Input Offset Current (*8) Iio 25℃ - 5 50 nA VOUT=0[V], Vicm=0[V] Input Bias Current (*8) Ib 25℃ - 70 200 nA VOUT=0[V], Vicm=0[V] Large Signal Voltage Gain AV 25℃ 88 100 - dB RL≧2[kΩ],VOUT=±10[V],Vicm=0[V] Maximum Output Voltage VOM 25℃ ±13 ±14 - V RL≧2[kΩ] Input Common-mode Voltage Range Vicm 25℃ -15 - 13 V VOUT=0[V] Common-mode Rejection Ratio CMRR 25℃ 70 90 - dB VOUT=0[V], Vicm=-15[V]~+13[V] Power Supply Rejection Ratio PSRR 25℃ 80 94 - dB Ri≦10[kΩ], VCC=+4[V]~+30[V] ICC 25℃ - 2.0 3.5 mA RL=∞ All Op-Amps, VIN+=0[V] Isource 25℃ 20 30 - mA VIN+=1[V], VIN-=0[V],VOUT=+12[V], Output of one channel only Isink 25℃ 10 20 - mA VIN+=0[V], VIN-=1[V],VOUT=-12[V], Output of one channel only SR 25℃ - 1.2 - V/μs AV=0[dB], RL=2[kΩ],CL=100[pF] ft 25℃ - 1.2 - MHz RL=2[kΩ] THD 25℃ - 0.1 - Supply Current Output Source Current Output Sink Current Slew rate Unity Gain Frequency Total Harmonic Distortion (*8) % VOUT=10[Vp-p], f=20[kHz],AV=0[dB],RL=2[kΩ] Absolute value www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 6/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM . POWER DISSIPATION [mW] . SUPPLY CURRENT [mA] 800 BA10358F 600 400 BA10358FV 200 BA10358 family 1.0 1000 0.8 25℃ 0.6 0.4 0.8 32V 0.6 0 25 50 75 100 0.2 3V 0 0 125 5 10 15 20 25 SUPPLY VOLTAGE [V] AMBIENT TEMPERTURE [℃] . Fig. 1 Derating Curve 35 -50 15 25℃ 10 -40℃ 5 0 3 2 1 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 -40℃ 30 20 25℃ 10 85℃ 0 0 0 100 BA10358 family 40 OUTPUT SO URCE CURRENT [mA] 20 4 OUTPUT VOLTAGE [V] 85℃ -25 0 25 50 75 AMBIE NT TEMPERATURE [℃] Fig. 3 Supply Current - Ambient Temperature BA10358 family 5 MAXIMUM OUTPUT VOLTAGE [V] 30 25 30 Fig. 2 Supply Current - Supply Voltage BA10358 family 35 5V 0.4 0.0 0 MAXIMUM OUTPUT VOLTAGE [V] OUTPUT VOLTAGE [V] -40℃ 85℃ 0.2 BA10358 family 1 SUPP LY CURRENT [mA ] ●Example of electrical characteristics ○BA10358 family BA10358 family Technical Note -50 -25 0 25 50 75 AMBIENT TE MPERATURE[℃] 0 100 1 2 3 4 OUTPUT VOLTAGE [V] 5 Fig. 4 Maximum Output Voltage – Supply Voltage Fig. 5 Maximum Output Voltage– Ambient Temperature Fig. 6 Output Source Current - Output Voltage (RL=10[kΩ]) (VCC=5[V],RL=2[kΩ]) (VCC=5[V]) BA10358 family 15V 20 5V 3V 10 0 10 85℃ 1 0.1 25℃ 0.01 -40℃ -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 15V 0.4 0.8 1.2 1.6 30 -40℃ 85℃ 0 50 10 15 20 25 30 35 32V 40 5V 20 3V 10 -50 0 25 50 75 100 Fig. 10 Low Level Sink Current – Supply Voltage Fig. 11 Low Level Sink Current – Ambient Temperature www.rohm.com 100 6 4 2 -40℃ 0 -2 -4 25℃ -6 85℃ -8 -25 AMBIENT TEMPERATURE [℃] © 2009 ROHM Co., Ltd. All rights reserved. 75 BA10358 family SUPPLY VOLTAGE [V] (VOUT=0.2[V]) (*)The data above is ability value of sample, it is not guaranteed. 50 8 0 5 25 (VOUT=VCC) BA10358 family 30 0 Fig. 9 Output Sink Current - Ambient Temperature INPUT OFFSET VO LTAG E [mV] 25℃ . 40 60 LOW LE VEL SINK CURRENT [μA] 50 0 -25 AMBIENT TEMPERAURE [℃] (VCC=5[V]) BA10358 family 10 -50 OUTPUT VOLTAGE [V] (VOUT=0[V]) 20 3V 10 2 Fig. 8 Output Sink Current - Output Voltage 60 5V 20 0 0 Fig. 7 Output Source Current - Ambient Temperature LOW LEVEL SINK CURRENT [μA] 30 0.001 -50 BA10358 family 40 OUTPUT SINK CURRENT [mA] 30 100 OUTPUT SINK CURRENT [mA] OUTPUT SOURCE CURRENT [mA] 40 BA10358 family (VOUT=0.2[V]) 7/24 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V] Fig. 12 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM . ○BA10358 family BA10358 family BA10358 family 50 BA10358 family 50 4 2 0 3V -2 -4 5V 32V -6 INPUT BIAS CURRENT [nA] 6 INPUT BIAS CURRENT [nA] INP UT O FFSET VOLTAGE [mV] 8 Technical Note 40 85℃ 30 25℃ 20 -40℃ 10 40 32V 30 5V 20 10 3V -8 0 -50 -25 0 25 50 75 100 0 0 5 10 15 20 25 SUPPLY VO LTAGE [V] AMBIENT TEMPERATURE [ ℃] 30 35 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] Fig. 15 Input Bias Current – Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) (Vicm=0[V], VOUT=1.4[V]) (Vicm=0[V],VOUT=1.4[V]) INPUT BIAS CURRENT [nA] 40 30 20 10 8 6 4 2 -40℃ 0 25℃ -2 -4 85℃ -6 -8 0 -50 -25 0 25 50 75 AMBIE NT TE MPERATURE [°C] Fig. 16 Input Bias Current – Ambient Temperature 25℃ -5 85℃ 0 1 2 3 4 5 COMMON MODE INPUT VOLTAGE [V] 0 . (VCC=5[V]) 140 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 18 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V]) BA10358 family BA10358 family 140 5 3V 0 32V 5V -5 LARGE SIGNAL VOLTAGE GAIN [dB] LARGE SIGNAL VOLTAGE GAIN [dB] INPUT OFFSET CURRENT [nA] . 10 -40℃ 0 Fig. 17 Input Offset Voltage – Common Mode Input Voltage (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) BA10358 family 5 -10 -1 100 BA10358 family 10 . 50 BA10358 family INPUT OFFSE T CURRENT [nA ] BA10358 family . Fig. 14 Input Bias Current – Supply Voltage INPUT OFFSET VOLTAGE [mV] Fig. 13 Input Offset Voltage – Ambient Temperature 130 -40℃ 25℃ 120 110 100 90 85℃ 80 70 130 120 100 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 80 70 60 2 100 15V 90 60 -10 5V 110 4 6 8 10 12 14 SUPPLY VOLTAGE[V] 16 18 Fig. 19 Input Offset Current – Ambient Temperature Fig. 20 Large Signal Voltage Gain – Supply Voltage (Vicm=0[V],VOUT=1.4[V]) (RL=2[kΩ]) -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 21 Large Signal Voltage Gain – Ambient Temperature . . (RL=2[kΩ]) 120 100 -40℃ 25℃ 80 85℃ 60 40 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 22 Common Mode Rejection Ratio – Supply Voltage BA10358 family 140 BA10358 family 140 POWER SUPPLY REJECTION RATIO [dB] . COMMON MODE REJECTION RATIO [dB] .. 140 COMMON MODE REJECTION RATIO [dB] BA10358 family 130 120 120 110 32V 100 5V 100 80 60 3V 40 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 23 Common Mode Rejection Ratio – Ambient Temperature 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 24 Power Supply Rejection Ratio – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 8/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ○BA10324A family . SUPPLY CURRENT [mA] BA10324AFV 600 400 BA10324AF 200 0 1.6 25℃ 1.2 0.8 -40℃ 0.4 50 75 100 125 0 0.4 3V 0 -50 15 25℃ 10 -40℃ 5 30 35 35 3 2 1 -25 0 25 50 75 -40℃ 40 30 25℃ 20 85℃ 10 0 100 0 O UTPUT SINK CURRENT [mA] 30 5V 10 0 0 25 50 75 1 85℃ 0.1 25℃ 0.01 -40℃ 100 0.0 0.4 0.8 1.2 1.6 20 3V (VCC=5[V]) 0 -50 50 25℃ 40 30 85℃ 20 10 0 10 15 20 25 30 35 Fig. 34 25 50 75 100 (VOUT=VCC) BA10324A family 8 6 50 32V 40 5V 30 20 3V 10 85℃ 4 2 0 25℃ -2 -40℃ -4 -6 -8 -50 SUPPLY VOLTAGE [V] Low Level Sink Current – Supply Voltage 0 Fig. 33 BA10324A family 0 5 -25 Output Sink Current - Ambient Temperature INPUT OFFSET VOLTAGE [mV] LOW LEVEL SINK CURRENT [μA] . (VOUT=0[V]) 60 5V 10 AMBIENT TEMPERAURE [℃] Fig. 32 Output Sink Current - Output Voltage 0 15V 30 2.0 Fig. 31 Output Source Current - Ambient Temperature -40℃ BA10324A family OUTPUT VOLTAGE [V] BA10324A family 5 (VCC=5[V]) 10 AMBIENT TEMPERATURE [℃] 60 2 3 4 OUTPUT VOLTAGE [V] 40 0.001 -25 1 Fig. 30 Output Source Current - Output Voltage BA10324A family 100 100 BA10324A family 50 (VCC=5[V],RL=2[kΩ]) 15V - 50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] Fig. 27 Supply Current - Ambient Temperature Fig. 29 Maximum Output Voltage – Ambient Temperature BA10324A family 20 30 4 (RL=10[kΩ]) 50 3V 25 AMBIENT TEMPERATURE[℃] Fig. 28 Maximum Output Voltage – Supply Voltage 40 20 BA10324A family 0 -50 0 10 15 20 25 S UPPLY VOLTAGE [V] 15 5 MAXIMUM OUTPUT VOLTAGE [V] OUTPUT VOLTAGE [V] 20 5 10 Fig. 26 Supply Current - Supply Voltage 85℃ 0 5V SUPPLY VOLTAGE [V] 30 25 5 . BA10324A family 35 MAXIMUM OUTPUT VOLTAGE [V] O UTPUT VOLTAGE [V] 0.8 85℃ Fig. 25 Derating Curve OUTPUT SOURCE CURRENT [mA] 32V 1.2 OUTPUT SOURCE CURRENT [mA] 25 AMBIENT TEMPERTURE [℃] LOW LEVEL SINK CURRENT [μA] 1.6 0.0 0 BA10324A family 2 OUTPUT SINK CURRENT [mA] POWER DISSIPATION [mW] . 800 BA10324A family 2.0 SUPPLY CURRENT [mA] BA10324A family 1000 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] Fig. 35 Low Level Sink Current – Ambient Temperature (VOUT=0.2[V]) (VOUT=0.2[V]) 0 5 10 15 20 25 30 35 SUPPLY VOLTAGE [V] Fig. 36 Input Offset Voltage - Supply Voltage (Vicm=0[V], VOUT=1.4[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 9/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM ○BA10324A family . BA10324A family BA10324A family 50 32V 2 0 5V 3V -2 -4 INPUT BIAS CURRENT [nA] 4 40 30 85℃ 25℃ 20 10 -6 40 30 32V 20 5V 10 -40℃ -8 3V 0 -25 0 25 50 75 100 0 0 5 10 15 20 25 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 37 Input Offset Voltage – Ambient Temperature -50 35 20 10 6 -40℃ 4 25℃ 2 85℃ 0 -2 -4 -6 -8 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 BA10324A family 75 100 BA10324A family 10 5 85℃ 0 25℃ -40℃ -5 0 1 2 3 4 5 COMMON MODE INP UT VOLTAGE [V] 0 5 Fig. 41 Input Offset Voltage – Common Mode Input Voltage(VCC=5[V]) (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) 30 35 Fig. 42 Input Offset Current – Supply Voltage(Vicm=0[V],VOUT=1.4[V]) BA10324A family 140 10 15 20 25 SUPP LY VOLTAGE [V] BA10324A family 140 5 32V 5V 0 3V -5 -10 LARGE SIGNAL VOLTAGE GAIN [dB] LARGE SIGNAL VOLTAGE GAIN [dB] INPUT OFFSET CURRENT [nA] . 10 50 -10 -1 Fig. 40 Input Bias Current – Ambient Temperature 25 (Vicm=0[V],VOUT=1.4[V]) BA10324A family . . 30 INPUT O FFSET VOLTAGE [mV] 40 8 0 Fig. 39 Input Bias Current – Ambient Temperature (Vicm=0[V], VOUT=1.4[V]) BA10324A family -25 AMBIENT TEMPERATURE [℃] Fig. 38 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V]) 50 30 INPUT OFFSET CURRENT [nA] -50 INPUT BIAS CURRENT [nA] BA10324A family 50 6 INPUT BIAS CURRENT [nA] INPUT OFFSET VOLTAGE [mV] 8 Technical Note 130 120 -40℃ 110 100 90 25℃ 85℃ 80 70 130 120 100 90 5V 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 60 4 6 8 10 12 14 SUPPLY VOLTAGE [V] 16 Fig. 43 Fig. 44 Input Offset Current – Ambient Temperature Large Signal Voltage Gain – Supply Voltage -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 45 Large Signal Voltage Gain – Ambient Temperature(RL=2[kΩ]) (RL=2[kΩ]) (Vicm=0[V],VOUT=1.4[V]) . . 15V 110 120 100 -40℃ 25℃ 80 85℃ 60 40 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 BA10324A family 140 130 120 120 110 32V 100 5V 100 80 60 3V 40 -50 Fig. 46 Common Mode Rejection Ratio – Supply Voltage BA10324A family 140 POWER SUPPLY REJECTION RATIO [dB] . COMMON MODE REJECTION RATIO [dB] .. COMMON MODE REJECTION RATIO [dB] BA10324A family 140 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] Fig. 47 Fig. 48 Common Mode Rejection Ratio – Ambient Temperature Power Supply Rejection Ratio – Ambient Temperature 100 (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 10/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ○BA2904S/BA2904 family,BA2904HFVM-C BA2904S/BA2904 family,BA2904H BA2904FV BA2904FVM BA2904HFVM-C 600 400 0.8 BA2904SF 200 25℃ 0.6 -40℃ 0.4 125℃ 105℃ 0.2 BA2904SFV BA2904SFVM 25 50 75 100 105 125 0 Fig. 49 Derating Curve 10 25℃ 105℃ 0 20 30 4 3 2 1 40 SUPPLY VOLTAGE [V] 15V 10 0 -50 -25 0 25 50 75 10 125℃ 1 -40℃ 0.1 25℃ 0.01 0.4 (VOUT=0[V]) 60 50 40 125 30 105 20 10 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 Fig. 58 Low Level Sink Current – Supply Voltage(VOUT=0.2[V]) 35 20 5V 3V 10 60 5V 50 40 3V 30 20 10 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 57 Output Sink Current - Ambient Temperature (VOUT=VCC) BA2904S/BA2904 family,BA2904H 8 32V 70 0 0 BA2904S/BA2904 family,BA2904H -50 BA2904S/BA2904 family,BA2904H 80 LOW LEVEL SINK CURRENT [μA] LOW LEVEL SINK CURRENT [μA] 25 5 15V 2 (VCC=5[V]) -40 70 0.8 1.2 1.6 OUTPUT VOLTAGE [V] Fig. 56 Output Sink Current - Output Voltage BA2904S/BA2904 family,BA2904H 2 3 4 OUTPUT VOLTAGE [V] 0 0 Fig. 55 Output Source Current - Ambient Temperature 1 30 0.001 100 125 150 AMBIENT TEMPERATURE [℃] 80 125℃ 10 Fig. 54 Output Source Current - Output Voltage(VCC=5[V]) OUTPUT SINK CURRENT [mA] 5V 20 105℃ 20 0 BA2904S/BA2904 family,BA2904H 100 OUTPUT SINK CURRENT [mA] OUTPUT SOURCE CURRENT [mA] 3V 30 25℃ 30 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 105℃ 40 -40℃ 40 Fig. 53 Maximum Output Voltage – Ambient Temperature(VCC=5[V],RL=2[kΩ]) BA2904S/BA2904 family,BA2904H 50 BA2904S/BA2904 family,BA2904H 0 -50 Fig. 52 Maximum Output Voltage – Supply Voltage(RL=10[kΩ]) 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 50 INPUT OFFSET VOLTAGE [mV] 10 -25 Fig. 51 Supply Current - Ambient Temperature 0 0 5V 0.2 -50 OUTPUT SOURCE CURRENT [mA] MAXIMUM OUTPUT VOLTAGE [V] MAXIMUM OUTPUT VOLTAGE [V] 100℃ 10 0.4 40 BA2904S/BA2904 family,BA2904H 5 -40℃ 20 20 30 SUPPLY VOLTAGE [V] Fig. 50 Supply Current - Supply Voltage BA2904S/BA2904 family,BA2904H 30 32V 0.6 0.0 0.0 150 AMBIENT TEMPERATURE [℃] 40 0.8 3V 0 0 BA2904S/BA2904 family,BA2904H 1.0 SUPPLY CURRENT [mA] BA2904F 800 BA2904S/BA2904 family,BA2904H 1.0 SUPPLY CURRENT [mA] POWER DISSIPATION POWER DISSIPATION [mA][mA] 1000 6 -40 4 25 2 0 -2 105 125 -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 59 Low Level Sink Current – Ambient Temperature(VOUT=0.2[V]) 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 60 Input Offset Voltage - Supply Voltage(Vicm=0[V], VOUT=1.4[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 11/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ○BA2904S/BA2904 family,BA2904HFVM-C BA2904S/BA2904 family,BA2904H BA2904S/BA2904 family,BA2904H 50 3V 2 0 5V -2 32V -4 40 -40℃ 30 10 105℃ 40 32V 30 20 3V 10 5V 125℃ 0 0 -25 0 25 50 75 0 100 125 150 5 10 15 20 25 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 61 Input Offset Voltage – Ambient Temperature -50 35 Fig. 62 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V]) Fig. 63 Input Bias Current – Ambient Temperature 30 20 10 0 -10 (Vicm=0[V],VOUT=1.4[V]) BA2904S/BA2904 family,BA2904H 8 INPUT OFFSET VOLTAGE [mV] 40 6 -40℃ 105℃ 4 25℃ 2 125℃ 0 -2 -4 -6 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 0 1 2 3 4 [Vin] COMMON INPUT MODEVOLTAGE INPUT VOLTAGE [V] Fig. 64 Input Bias Current – Ambient Temperature (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) BA2904S/BA2904 family,BA2904H 5 3V 0 5V 32V -5 -10 0 25 50 75 130 -40℃ 120 25℃ 110 100 90 125℃ 105℃ 80 70 100 125℃ 80 105℃ 60 40 0 10 20 30 SUPPLY VOLTAGE [V] Fig. 70 Common Mode Rejection Ratio – Supply Voltage 40 20 25 30 35 BA2904S/BA2904 family,BA2904H 140 130 15V 120 110 100 5V 90 80 70 60 4 6 8 10 12 SUPPLY VOLTAGE [V] 14 -50 16 Fig. 68 Large Signal Voltage Gain – Supply Voltage(RL=2[kΩ]) COMMON MODE REJECTION RATIO [dB] 25℃ 15 (Vicm=0[V],VOUT=1.4[V]) BA2904S/BA2904 family,BA2904H Input Offset Current – Ambient Temperature(Vicm=0[V],VOUT=1.4[V]) -40℃ 10 SUPPLY VOLTAGE [V] Input Offset Current – Supply Voltage Fig. 67 120 5 Fig. 66 100 125 150 BA2904S/BA2904 family,BA2904H 125℃ Fig. 65 AMBIENT TEMPERATURE [℃] 140 105℃ -5 0 BA2904S/BA2904 family,BA2904H 140 36V 32V 120 100 80 5V 3V 60 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 71 Common Mode Rejection Ratio – Ambient Temperature -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 69 Large Signal Voltage Gain – Ambient Temperature(RL=2[kΩ]) BA2904S/BA2904 family,BA2904H 140 POWER SUPPLY REJECTION RATIO [dB] -25 0 5 60 -50 25℃ -40℃ Input Offset Voltage – Common Mode Input Voltage(VCC=5[V]) 140 LARGE SIGNAL VOLTAGE GAIN [dB] 10 5 -10 -1 LARGE SIGNAL VOLTAGE GAIN [dB] -25 BA2904S/BA2904 family,BA2904H 10 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] (Vicm=0[V], VOUT=1.4[V]) BA2904S/BA2904 family,BA2904H 50 30 INPUT OFFSET CURRENT [nA] -50 INPUT BIAS CURRENT[nA] 25℃ 20 -6 INPUT OFFSET CURRENT [nA] INPUT BIAS CURRENT [nA] 4 -8 COMMON MODE REJECTION RATIO [dB] BA2904S/BA2904 family,BA2904H 50 6 INPUT BIAS CURRENT [nA] INPUT OFFSET VOLTAGE [mV] 8 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 72 Power Supply Rejection Ratio - Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 12/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ○BA2902S/BA2902 family BA2902S/BA2902 family BA2902KN 0.8 SUPPLY CURRENT [mA] POWER DISSIPATION [mW] 800 BA2902F 600 400 BA2902SFV BA2902SKN 200 BA2902S/BA2902 family 1.0 BA2902FV 25℃ 0.6 -40℃ 0.4 125℃ 105℃ 0.2 BA2902S/BA2902 family 1.0 SUPPLY CURRENT [mA] 1000 0.8 32V 0.6 0.4 5V 0.2 3V BA2902SF 0 0.0 0.0 150 0 Fig. 73 Derating Curve 30 100℃ 20 25℃ 105℃ 10 0 0 10 20 30 3 2 1 15V 20 10 0 0 25 50 75 125℃ 1 -40℃ 0.1 25℃ 0.01 0.4 25℃ 60 50 40 125℃ 30 105℃ 20 10 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 Fig. 82 Low Level Sink Current – Supply Voltage(VOUT=0.2[V]) 35 5V 3V 10 -50 70 60 5V 50 40 3V 30 20 10 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 81 Output Sink Current - Ambient Temperature (VOUT=VCC) BA2902S/BA2902 family 8 32V 0 0 BA2902S/BA2902 family 20 2 BA2902S/BA2902 family 80 LOW LEVEL SINK CURRENT [μA] LOW LEVEL SINK CURRENT [μA] 70 0.8 1.2 1.6 OUTPUT VOLTAGE [V] Fig. 80 Output Sink Current - Output Voltage (VCC=5[V]) BA2902S/BA2902 family 5 0 0 Fig. 79 Output Source Current - Ambient Temperature(VOUT=0[V]) -40℃ 2 3 4 OUTPUT VOLTAGE [V] 30 0.001 100 125 150 1 15V 10 AMBIENT TEMPERATURE [℃] 80 125℃ 10 Fig. 78 Output Source Current - Output Voltage(VCC=5[V]) OUTPUT SINK CURRENT [mA] 5V -25 105℃ 20 0 BA2902S/BA2902 family 100 OUTPUT SINK CURRENT [mA] OUTPUT SOURCE CURRENT [mA] 3V -50 25℃ 30 0 105℃ 30 -40℃ Fig. 77 Maximum Output Voltage – Ambient Temperature(VCC=5[V],RL=2[kΩ]) BA2902S/BA2902 family 40 BA2902S/BA2902 family 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 76 Maximum Output Voltage – Supply Voltage(RL=10[kΩ]) 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] 50 0 40 -25 Fig. 75 Supply Current - Ambient Temperature 4 SUPPLY VOLTAGE [V] 50 -50 40 BA2902S/BA2902 family 5 MAXIMUM OUTPUT VOLTAGE [V] MAXIMUM OUTPUT VOLTAGE [V] -40℃ 20 30 SUPPLY VOLTAGE [V] Fig. 74 Supply Current - Supply Voltage BA2902S/BA2902 family 40 10 OUTPUT SOURCE CURRENT [mA] 25 50 75 100 125 AMBIENT TEMPERTURE [℃] INPUT OFFSET VOLTAGE [mV] 0 6 -40℃ 4 25℃ 2 0 -2 105℃ 125℃ -4 -6 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 83 Low Level Sink Current – Ambient Temperature(VOUT=0.2[V]) 0 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 35 Fig. 84 Input Offset Voltage - Supply Voltage(Vicm=0[V], VOUT=1.4[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 13/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ○BA2902S/BA2902 family BA2902S/BA2902 family BA2902S/BA2902 family 50 3V 2 0 5V -2 32V -4 INPUT BIAS CURRENT [nA] 4 40 -40℃ 30 25℃ 20 10 105℃ -6 -25 0 25 50 75 20 3V 10 5V 0 0 100 125 150 AMBIENT TEMPERATURE [℃] 5 10 15 20 25 SUPPLY VOLTAGE [V] 30 Fig. 86 Input Bias Current – Supply Voltage (Vicm=0[V], VOUT=1.4[V]) (Vicm=0[V], VOUT=1.4[V]) 50 INPUT OFFSET VOLTAGE [mV] 40 30 20 10 0 -10 (Vicm=0[V],VOUT=1.4[V]) BA2902S/BA2902 family 8 6 -40℃ 105℃ 4 25℃ 2 125℃ 0 -2 -4 -6 0 25 50 75 100 125 150 1 2 3 4 INPUT VOLTAGE [Vin] COMMON MODE INPUT VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 88 Input Bias Current – Ambient Temperature BA2902S/BA2902 family 5 3V 0 5V 32V -5 -10 0 25 50 75 130 -40℃ 120 25℃ 110 100 90 125℃ 105℃ 80 70 100 125 150 Fig. 91 (Vicm=0[V],VOUT=1.4[V]) -40℃ COMMON MODE REJECTION RATIO [dB] 120 25℃ 100 125℃ 80 105℃ 60 40 0 10 20 30 SUPPLY VOLTAGE [V] Fig. 94 Common Mode Rejection Ratio – Supply Voltage 40 5 10 15 20 25 30 35 Fig. 90 Input Offset Current – Supply Voltage (Vicm=0[V],VOUT=1.4[V]) BA2902S/BA2902 family 140 130 15V 120 110 100 5V 90 80 70 6 8 10 12 SUPPLY VOLTAGE [V] 14 -50 16 Fig. 92 Large Signal Voltage Gain – Supply Voltage(RL=2[kΩ]) Input Offset Current – Ambient Temperature BA2902S/BA2902 family 125℃ 60 4 AMBIENT TEMPERATURE [℃] 140 105℃ -5 SUPPLY VOLTAGE [V] BA2902S/BA2902 family 140 36V 32V 120 100 80 5V 3V 60 40 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 95 Common Mode Rejection Ratio – Ambient Temperature -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 93 Large Signal Voltage Gain – Ambient Temperature(RL=2[kΩ]) BA2902S/BA2902 family 140 POWER SUPPLY REJECTION RATIO [dB] -25 0 0 60 -50 25℃ -40℃ 5 BA2902S/BA2902 family 140 LARGE SIGNAL VOLTAGE GAIN [dB] 10 0 Fig. 89 Input Offset Voltage – Common Mode Input Voltage(VCC=5[V]) (VCC=30[V],Vicm=28[V],VOUT=1.4[V]) 5 -10 -1 LARGE SIGNAL VOLTAGE GAIN [dB] -25 BA2902S/BA2902 family 10 -8 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 87 Input Bias Current – Ambient Temperature INPUT OFFSET CURRENT [nA] BA2902S/BA2902 family -50 35 Fig. 85 Input Offset Voltage – Ambient Temperature INPUT BIAS CURRENT[nA] 32V 30 0 -50 INPUT OFFSET CURRENT [nA] 40 125℃ -8 COMMON MODE REJECTION RATIO [dB] BA2902S/BA2902 family 50 6 INPUT BIAS CURRENT [nA] INPUT OFFSET VOLTAGE [mV] 8 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 96 Power Supply Rejection Ratio – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 14/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ○BA3404 family BA3404 family BA3404 family 4 SUPPLY CURRENT [mA] BA3404F 600 400 BA3404FVM 200 0 25 50 75 16 24 32 SUP PLY VOLTAG E [V] 5 0 -5 VOL -15 -50 10 1000 LOAD RESISTANCE [kΩ] 5 0 -5 -10 VOH 5 0 -5 VOL -15 ±0 Fig. 100 Maximum Output Voltage – Load Resistance ±4 ±8 ±12 ±16 SUPPLY VOLTAGE [V] 0.001 ±20 0.01 0.1 1 10 100 OUTPUT CURRENT [mA] Fig. 101 Maximum Output Voltage – Supply Voltage Fig. 102 Output Voltage – Output Current (VCC/VEE=+15[V]/-15[V],Ta=25[℃]) (VCC/VEE=+15[V]/-15[V],Ta=25[℃]) BA3404 family BA3404 family 6 BA3404 family 250 4 2 85 0 25 -40 -2 -4 -6 4 200 ±18.0V 2 ±15.0V 0 ±2.0V -2 -4 ±10 ±15 ±20 -50 SUPPLY VOLTAGE [V] 0 25 50 75 150 ±2.0V 100 ±15.0V ±18.0V 0 25 50 ±5 . 20 25℃ 10 0 -10 75 100 ±15 ±20 Fig. 105 Input Bias Current - Supply Voltage (Vicm=0[V], VOUT=0[V]) 30 -40℃ ±10 SUPPLY VOLTAGE [V] 85℃ -20 -30 -40 0 ±0 100 BA3404 family 40 INPUT OFFSET CURRENT [nA] 200 -25 85℃ (Vicm=0[V], VOUT=0[V]) BA3404 family -50 25 50 Fig. 104 Input Offset Voltage - Ambient Temperature (Vicm=0[V], VOUT=0[V]) 50 -40 100 AMBIENT TEMPE RATURE [°C] Fig. 103 Input Offset Voltage - Supply voltage 250 -25 BA3404 family 40 INPUT OFFSET CURRENT [nA] ±5 150 0 -6 ±0 INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] INPUT OFFSET V OLTA GE [mV] INPUT OFFSET V OLTG E [mV] INPUT OFFSET VOLTAGE [mV] . 6 BA3404 family -10 VOL -15 100 10 VOH 10 -25 0 25 50 75 AMB IENT TEMPERATURE [℃] 15 15 100000 ±15.0V Fig. 99 Supply Current - Ambient Temperature -20 0.1 ±2.0V 1 40 BA3404 family 20 OUTPUT VOLTAGE [V] MAXIMUM OUTPUT VOLTAGE [V] VOH -10 8 Fig. 98 Supply Current - Supply Voltage BA3404 family 10 ±18.0V 2 0 0 . Fig. 97 Derating Curve 15 85℃ -40℃ 1 3 0 100 AMBIENT TEMPERTURE [℃ ] 25℃ 2 OUTPUT VOLTAGE [V] 0 3 SUPPLY CURRENT [mA] 800 MAXIMUM OUTPUT VOLTAGE [V] OUTPUT VOLTAGE [V] BA3404 family 4 . POWER DISSIPATION [mW] . 1000 30 20 ±18.0V 10 0 ±2.0V -10 ±15.0V -20 -30 -40 ±0 ±5 ±10 ±15 ±20 SUPPLY VOLTAG E [V] AMBIENT TEMPERATURE [°C] -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 106 Input Bias Current – Ambient Temperature Fig. 107 Input Offset Current – Supply Voltage Fig. 108 Input Offset Current – Ambient Temperature (Vicm=0[V], VOUT=0[V]) (Vicm=0[V], VOUT=0[V]) (Vicm=0[V], VOUT=0[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 15/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ○BA3404 family 0 -5 25℃ -40℃ -10 -15 -20 -3 -2 -1 0 1 2 3 100 75 50 25 0 -50 COMMO N MODE INPUT VO LTAGE [V] Fig. 109 Input Offset Voltage – Common Mode Input Voltage . 50 25 0 -50 -40℃ 85℃ 80 60 40 ±2 ±4 ±6 ±8 ±10 ±12 ±14 ±16 ±18 ±20 BA3404 family 50 Phase 125 ±15.0V 100 75 ±2.0V 50 25 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] (RL=2[kΩ]) (RL=2[kΩ]) BA3404 family -40℃ 0.8 SLEW RATE H-L [V/us] 1.0 85℃ 0.6 0.4 0.2 ±0 ±4 ±8 ±12 ±16 SUPPLY VOLTAGE[V] ±20 60 10 40 1.0 0.8 ±2.5V ±15.0V 0.6 0.4 0.2 -50 -25 0 25 50 75 0 (VCC=±15V) ±18.0V 1.2 100 Fig. 116 Slew Rate H-L – Ambient Temperature BA3404 family 80 80 Fig. 114 AMBIENT TEMPERATURE [℃] Fig. 115 Slew Rate L-H – Supply Voltage 100 20 Voltage Gain - Frequency 0.0 0.0 120 1.E+02 1.E +03 1.E+04 1.E+05 1.E+06 1.E+07 FREQUE NCY [Hz] 100 BA3404 family 1.4 . 1.2 140 30 20 Fig. 113 Large Signal Voltage Gain – Ambient Temperature 25℃ 160 Gain 0 0 Fig. 112 Large Signal Voltage Gain – Supply Voltage 1.4 200 180 40 -50 SUPPLY VOLTAGE [V] 100 (VCC/VEE=+15[V]/-15[V]) BA3404 family 150 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] Fig. 111 Power Supply Rejection Ratio – Ambient Temperature VOLTAGE G AINGAIN [dB] [dB] LARGE SIGNAL VOLTAGE GAIN [dB] LARGE SIGNAL VOLTAGE GAIN [dB] . 25℃ 100 . 75 ±18.0V 120 SLEW RATE L-H [V/us] 100 (VCC/VEE=+15[V]/-15[V]) BA3404 family 140 EQUIVALENT INPUT NOISE VOLTAGE [nV/√Hz] . 100 125 Fig. 110 Common Mode Rejection Ratio – Ambient Temperature (VCC/VEE=+2.5[V]/-2.5[V]) 160 -25 0 25 50 75 AMBIE NT TEMPERATURE [°C] BA3404 family 150 BA3404 family 1 0.1 20kHz 0.01 20Hz 1kHz 0.001 0.01 0.1 1 OUTPUT VOLTAGE [Vrms] 10 Fig. 117 Total Harmonic Distoration – Output Voltage (VCC/VEE=+4[V]/-4[V],Av=0[dB], RL=2[kΩ],80[kHz]-LPF,Ta=25[℃]) 60 40 20 0 10 100 1000 FREQUENCY [Hz] 10000 Fig. 118 Equivalent Input Noise Voltage - Frequency (VCC/VEE=+15[V]/-15[V],Rs=100[Ω],Ta=25[℃]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. PHA SE [deg] 85℃ 5 125 PSRR [dB] . RATIO [dB] POWER SUPPLY REJECTION 10 BA3404 family 150 TOTAL HARMONIC DISTORTION [%] INPUT OFFSE T VOLTAGE [mV ] 15 COMMON MODE REJECTION RATIO [dB] CMRR [dB ] . BA3404 family 20 16/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Circuit Diagram VCC VCC -IN VOUT -IN VOUT+IN +IN VEE VEE BA10358/BA10324A/BA2904S/BA2904/ BA3404 simplified schematic BA2902S/BA2902/BA2904H simplified schematic Fig. 119 Circuit Diagram (one channel only) ●Test circuit1 NULL method VCC,VEE,EK,Vicm Unit:[V] Parameter VF S1 S2 S3 BA2904S/BA2904 family BA2902S/BA2902 family BA2904HFVM-C Vcc VEE EK Vicm Vcc VEE EK BA3404 family Vicm VCC VEE Calculation EK Vicm Input Offset Voltage VF1 ON OFF 5 0 -1.4 0 5~30 0 -1.4 0 15 -15 0 0 1 Input Offset Current VF2 OFF OFF OFF 5 0 -1.4 0 5 0 -1.4 0 15 -15 0 0 2 VF3 OFF ON VF4 ON OFF 5 0 -1.4 0 5 0 -1.4 0 15 -15 0 0 3 ON ON ON 15 0 -1.4 0 15 0 -1.4 0 15 -15 10 0 15 0 -11.4 0 15 0 -11.4 0 15 -15 -10 0 5 0 -1.4 0 5 0 -1.4 0 15 -15 0 -15 ON ON OFF 5 0 -1.4 3.5 5 0 -1.4 3.5 15 -15 0 13 ON ON OFF 5 0 -1.4 0 5 0 -1.4 0 2 -2 0 0 30 0 -1.4 0 30 0 -1.4 0 15 -15 0 0 Input Bias Current Large Signal Voltage Gain VF5 Common-mode Rejection Ratio (Input common-mode Voltage Range) VF7 VF6 VF8 VF9 Power Supply Rejection Ratio VF10 ON BA10358/BA10324A family OFF 4 5 6 -Calculation1. Input Offset Voltage (Vio) | VF1 | Vio = 1 + Rf / Rs [V] C2 0.1[μF] 2. Input Offset Current (Iio) Iio = | VF2-VF1 | Ri ×(1 + Rf / Rs) [A] Rf 50[kΩ] C1 RK 3. Input Bias Current (Ib) Ib = | VF4-VF3 | 2×Ri× (1 + Rf / Rs) S1 Rs [A] 4. Large Signal Voltage Gain (Av) Av = 20×Log ΔEK×(1+Rf /Rs) |VF5-VF6| Vicm [dB] EK 500[kΩ] 0.1[μF] Ri 50[Ω] 10[kΩ] 50[Ω] 10[kΩ] Rs VCC +15[V] DUT NULL S3 Ri S2 RK 500[kΩ] VEE RL C3 1000[pF] -15[V] V VF 5. Common-mode Rejection Ration (CMRR) CMRR = 20×Log ΔVicm×(1+Rf /Rs) Fig. 120 Measurement circuit1 (one channel only) [dB] |VF8-VF7| 6. Power supply rejection ratio (PSRR) PSRR = 20×Log ΔVcc×(1+Rf /Rs) |VF10-VF9| www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. [dB] 17/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Measurement Circuit 2 Switch Condition SW 1 SW 3 SW 4 SW 5 SW 6 SW 7 Supply Current OFF OFF OFF ON OFF ON OFF OFF OFF OFF OFF OFF OFF OFF High Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF ON OFF Low Level Output Voltage OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF ON OFF Output Source Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Output Sink Current OFF OFF ON OFF OFF ON OFF OFF OFF OFF OFF OFF OFF ON Slew Rate OFF OFF OFF Gain Bandwidth Product OFF ON OFF OFF ON Equivalent Input Noise Voltage ON OFF OFF OFF ON SW No. SW 2 ON SW 8 OFF OFF OFF SW 9 ON SW 10 SW 11 SW 12 SW 13 SW 14 ON ON ON OFF OFF OFF OFF ON OFF OFF ON ON OFF OFF OFF OFF ON OFF OFF OFF OFF ON OFF OFF OFF Input voltage SW4 電圧 VH R2 SW5 VCC VL A - SW1 SW2 SW3 SW6 RS SW7 電圧 SW8 R1 SW9 SW10 SW11 SW12 SW13 SW14 時間 t Input wave 入力電圧波形 Output voltage + SR=ΔV/Δt VH VEE ΔV A ~ VIN- RL ~ VIN+ V ~ CL V VL VOUT Δt Output wave 出力電圧波形 Fig. 121 Measurement Circuit 2 (each Op-Amp) 時間 t Fig. 122 Slew Rate Input Waveform ●Measurement Circuit 3 Amplifier To Amplifier Coupling VCC VCC R1//R2 R1//R2 OTHER CH VEE R1 VIN R2 VEE R1 V VOUT1 V CS=20×log Fig. 123 www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. R2 =0.5[Vrms] VOUT2 100×VOUT1 VOUT2 Measurement Circuit 3 18/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Description of Electrical Characteristics Described below are descriptions of the relevant electrical terms Please note that item names, symbols and their meanings may differ from those on another manufacturer’s documents. 1.Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (VCC-VEE) Expresses the maximum voltage that can be supplied between the positive and negative supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (Vicm) Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the characteristics or damage to the IC itself. Normal operation is not guaranteed within the common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Operating and storage temperature ranges (Topr,Tstg) The operating temperature range indicates the temperature range within which the IC can operate. The higher the ambient temperature, the lower the power consumption of the IC. The storage temperature range denotes the range of temperatures the IC can be stored under without causing excessive deterioration of the electrical characteristics. 1.5 Power dissipation (Pd) Indicates the power that can be consumed by a particular mounted board at ambient temperature (25℃). For packaged products, Pd is determined by the maximum junction temperature and the thermal resistance. 2. Electrical characteristics 2.1 Input offset voltage (Vio) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0 V. 2.2 Input offset voltage drift (△Vio/△T) Denotes the ratio of the input offset voltage fluctuation to the ambient temperature fluctuation. 2.3 Input offset current (Iio) Indicates the difference of input bias current between the non-inverting and inverting terminals. 2.4 Input offset current drift (△Iio/△T) Signifies the ratio of the input offset current fluctuation to the ambient temperature fluctuation. 2.5 Input bias current (Ib) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.6 Circuit current (ICC) Indicates the current of the IC itself that flows under specified conditions and during no-load steady state. 2.7 High level output voltage/low level output voltage (VOH/VOL) Signifying the voltage range that can be output under specified load conditions, it is in general divided into high level output voltage and low level output voltage. High level output voltage indicates the upper limit of the output voltage, while low level output voltage the lower limit. 2.8 Large signal voltage gain (AV) The amplifying rate (gain) of the output voltage against the voltage difference between non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AV = (output voltage fluctuation) / (input offset fluctuation) 2.9 Input common-mode voltage range (Vicm) Indicates the input voltage range under which the IC operates normally. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 19/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note 2.10 Common-mode rejection ratio (CMRR) Signifies the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change in input common-mode voltage) / (input offset fluctuation) 2.11 Power supply rejection ratio (PSRR) Denotes the ratio of fluctuation of the input offset voltage when supply voltage is changed (DC fluctuation). SVR = (change in power supply voltage) / (input offset fluctuation) 2.12 Output source current/ output sink current (IOH/IOL) The maximum current that can be output under specific output conditions, it is divided into output source current and output sink current. The output source current indicates the current flowing out of the IC, and the output sink current the current flowing into the IC. 2.13 Channel separation (CS) Expresses the amount of fluctuation of the input offset voltage or output voltage with respect to the change in the output voltage of a driven channel. 2.14 Slew rate (SR) Indicates the time fluctuation ratio of the output voltage when an input step signal is supplied. 2.15 Gain bandwidth product (GBW) The product of the specified signal frequency and the gain of the op-amp at such frequency, it gives the approximate value of the frequency where the gain of the op-amp is 1 (maximum frequency, and unity gain frequency). www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 20/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Derating curves Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature). IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance. Fig.124(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below: θja = (Tj-Ta) / Pd [℃/W] ・・・・・ (Ⅰ) Derating curve in Fig.124(b) indicates power that can be consumed by IC with reference to ambient temperature.Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.125(a)~(d) show a derating curve for an example of BA10358, BA10324A, BA2904S, BA2904, BA2904HFVM-C, BA3404, BA2902S, BA2902. LSIの 消 費 力 [W] Power dissipation of 電 LSI Pd (max) θja = ( Tj ー Ta ) / Pd [℃/W] P2 θja2 < θja1 Ambient temperature 周囲温度 Ta [℃] θ' ja2 P1 θ ja2 Tj ' (max) Tj (max) θ' ja1 θ ja1 Chip surfaceチップ temperature 表面温度 Tj [℃] 0 消費電力 P [W] Power dissipation 25 50 75 100 125 150 周 囲 温 度 Ta [℃ ] Ambient temperature (b) Derating curve (a) Thermal resistance Fig. 124 Thermal resistance and derating curve 1000 800 許容損失 Pd [mW] POWER DISSIPATION Pd [mW] POWER DISSIPATION Pd [mW] 許容損失 Pd [mW] 1000 BA10358F 620mW (*1) 620mW(*9) 600 BA10358FV 550mW(*10) 550mW (*2) 400 200 800 BA10324AFV 700mW (*3) 700mW(*11) 600 BA10324AF 490mW (*4) 490mW(*12) 400 200 0 0 0 25 50 75 100 125 0 25 Ta [℃:Ta ] Ambient周囲温度 temperature [℃] 50 (a) BA10358 ファミリ (a)BA10358 family BA2904F BA3404F BA2904F 870mW(*16) 870mW( *8) BA2904FV BA2904FV 690mW(*14) 690mW( *6) BA2904FVM BA2904FVM BA2904HFVM-C BA3404FVM BA3404F BA3404F 590mW(*15) 590mW (*7) 400 400 400 BA3404FVM BA3404FVM BA2904SF 200 200 200 許容損失 Pd [mW] POWER DISSIPATION Pd [mW] POWER DISSIPATION Pd [mW] 許容損失 Pd [mW] POWER DISSIPATION [mA] 780mW( *5) 780mW(*13) 800 800 800 BA2902FV 800 BA2902KN 660mW(*17) 660mW( *9) 600 BA2902F 610mW(*18) 610mW (*10) 400 BA2902SFV BA2902SKN 200 BA2904SFV BA2902SF BA2904SFVM 00 0 25 25 50 50 75 75 75 105 105 100 100 100 0 125 125 125 Ambient周囲温度 temperature :Ta Ta [℃ ] [℃] 150 150 0 (*11) 7.0 (*12) 4.9 (*13) 6.2 25 50 75 105 100 125 150 Ambient 周囲温度 temperature :Ta Ta [℃ ] [℃] AMBIENT TEMPERATURE [℃] (c)BA2904S/BA2904/BA3404 family,BA2904H (a) BA2904 ファミリ (*10) 5.5 125 1000 00 0 (*9) 6.2 100 (b) (a) BA10324A family ファミリ (b)BA10324A 1000 1000 1000 600 600 600 75 Ta [℃:Ta ] Ambient周囲温度 temperature [℃] (d)BA2902S/BA2902 family (a) BA2902 ファミリ (*14) 5.5 (*15) 4.8 (*16) 7.0 (*17) 5.3 (*18) 4.9 Unit [mW/℃] When using the unit above Ta=25[℃], subtract the value above per degree[℃]. Permissible dissipation is the value when FR4 glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted. Fig. 125 Derating curve www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 21/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Precautions 1) Unused circuits When there are unused circuits, it is recommended that they be connected as in Fig.126, setting the non-inverting input terminal to a potential within the in-phase input voltage range (Vicm). VCC 2) Input voltage Applying VEE+32[V](BA2904S/BA2904/BA2902S/BA2902 family, BA2904HFVM-C) and VEE+36[V](BA3404 family) to the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage.However, this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. Please keep this 同相入力電圧 potencial in Vicm 範囲内の電位 VEE Fig. 126 Example of processing unused 3) Power supply (single / dual) The op-amp operates when the voltage supplied is between VCC and VEETherefore, the single supply op-mp can be used as a dual supply op-amp as well. 4) Power dissipation (Pd) Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to the rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuit between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign substances between the outputs, the output and the power supply, or the output and GND may result in IC destruction. 6) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 7) Radiation This IC is not designed to withstand radiation. 8) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuation of the electrical characteristics due to piezoelectric (piezo) effects. 9) IC operation The output stage of the IC is configured using Class C push-pull circuits. Therefore, when the load resistor is connected to the middle potential of VCC and VEE, crossover distortion occurs at the changeover between discharging and charging of the output current. Connecting a resistor between the output terminal and GND, and increasing the bias current for Class A operation will suppress crossover distortion. 10) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned OFF before inspection and removal. Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. 11) Output capacitor Discharge of the external output capacitor to VCC is possible via internal parasitic elements when VCC is shorted to VEE, causing damage to the internal circuitry due to thermal stress. Therefore, when using this IC in circuits where oscillation due to output capacitive load does not occur, such as in voltage comparators, use an output capacitor with a capacitance less than 0.1μF. www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 22/24 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note ●Ordering part number B A 2 Part No. 9 0 4 F Part No. 10358,10324A 2904S,2904 2904H,3404 B902S,2902 V - E 2 Packaging and forming specification E2: Embossed tape and reel Package F: SOP8 SOP14 FV: SSOP-B8 SSOP-B14 FVM: MSOP8 KN:VQFN16 (SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16) TR: Embossed tape and reel (MSOP8) SOP8 <Tape and Reel information> 7 5 6 6.2±0.3 4.4±0.2 0.3MIN 8 +6° 4° −4° 1 2 3 0.9±0.15 5.0±0.2 (MAX 5.35 include BURR) Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 4 0.595 1.5±0.1 +0.1 0.17 -0.05 0.11 S 1.27 0.42±0.1 1pin Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SOP14 <Tape and Reel information> 8.7 ± 0.2 (MAX 9.05 include BURR) 8 Tape Embossed carrier tape Quantity 2500pcs Direction of feed 0.3MIN 4.4±0.2 6.2±0.3 14 1 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 7 1.5±0.1 0.15 ± 0.1 0.11 1.27 0.4 ± 0.1 0.1 1pin Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SSOP-B8 <Tape and Reel information> 3.0 ± 0.2 (MAX 3.35 include BURR) 0.3MIN 4.4±0.2 6.4±0.3 8 76 5 Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 1.15±0.1 1 23 4 0.15 ± 0.1 0.1 S 0.1 +0.06 0.22 -0.04 (0.52) 0.08 M 0.65 1pin Reel (Unit : mm) www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. 23/24 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2009.05 - Rev.A BA10358F/FV,BA10324AF/FV,BA2904SF/FV/FVM,BA2904F/FV/FVM,BA2904HFVM-C, BA2902SF/FV/KN,BA2902F/FV/KN,BA3404F/FVM Technical Note SSOP-B14 <Tape and Reel information> 5.0 ± 0.2 8 1 Tape Embossed carrier tape Quantity 2500pcs Direction of feed 0.3Min. 4.4 ± 0.2 6.4 ± 0.3 14 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 7 0.10 1.15 ± 0.1 0.15 ± 0.1 0.1 0.65 0.22 ± 0.1 Direction of feed 1pin Reel (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. MSOP8 <Tape and Reel information> 2.8±0.1 4.0±0.2 8 7 6 5 0.6±0.2 +6° 4° −4° 0.29±0.15 2.9±0.1 (MAX 3.25 include BURR) Tape Embossed carrier tape Quantity 3000pcs Direction of feed TR The direction is the 1pin of product is at the upper right when you hold ( reel on the left hand and you pull out the tape on the right hand ) 1 2 3 4 1PIN MARK 1pin +0.05 0.145 –0.03 0.475 +0.05 0.22 –0.04 0.08±0.05 0.75±0.05 0.9MAX S 0.08 S Direction of feed 0.65 Reel (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. VQFN16 <Tape and Reel information> 4.2±0.1 4.0±0.1 (1.35) 4.0±0.1 9 1 4 0.05 M +0.03 0.02 −0.02 0.22±0.05 2500pcs Direction of feed 5 16 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 0.05 (0 .2 2 ) 0.5 Embossed carrier tape (with dry pack) Quantity 8 13 0.22±0.05 Tape 0.95MAX 4.2±0.1 12 ) .5 (0 ) 5 .3 (0 3- +0.1 0.6 −0.3 www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. Notice : Do not use the dotted line area for soldering 1pin Reel (Unit : mm) 24/24 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2009.05 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. R0039A