STMicroelectronics L4973D3.3-L4973D5.1 3.5a step down switching regulator Datasheet

L4973V3.3 - L4973V5.1
L4973D3.3 - L4973D5.1

3.5A STEP DOWN SWITCHING REGULATOR
UPTO 3.5ASTEP DOWNCONVERTER
OPERATING INPUT VOLTAGE FROM 8V TO
55V
3.3V AND 5.1V (±1%) FIXED OUTPUT, AND
ADJUSTABLE OUTPUTS FROM:
0V TO 50V (3.3V type)
5.1V TO 50V (5.1 type)
FREQUENCY ADJUSTABLE UP TO 300KHz
VOLTAGE FEED FORWARD
ZERO LOAD CURRENT OPERATION (min
1mA)
INTERNAL CURRENT LIMITING (PULSE BY
PULSE AND HICCUP MODE)
PRECISE 5.1V (1.5%) REFERENCE VOLTAGE EXTERNALLY AVAILABLE
INPUT/OUTPUT SYNCHRONIZATION FUNCTION
INHIBIT FOR ZERO CURRENT CONSUMPTION (100µA Typ. at VCC = 24V)
PROTECTION AGAINST FEEDBACK DISCONNECTION
THERMAL SHUTDOWN
OUTPUT OVERVOLTAGE PROTECTION
SOFT START FUNCTION
MULTIPOWER BCD TECHNOLOGY
POWERDIP (12+3+3)
SO20(12+4+4)
ORDERING NUMBERS:
L4973V3.3 (Powerdip)
L4973D3.3
(SO20)
L4973V5.1 (Powerdip)
L4973D5.1
(SO20)
DESCRIPTION
The L4973 is a step down monolithic power
switching regulator delivering 3.5A at fixed voltages of 3.3V or 5.1V and using a simple external
divider output adjustable voltage up to 50V.
Realized in BCD mixed technology, the device
TYPICAL APPLICATION CIRCUIT (POWERDIP)
VCC (8V to 55V)
7
10 12
8
ROSC
9
L4973
CIN
C2
1
4,5,6,
13,14,15 16
CBOOT
3
11 2
17
VO(3.3V or 5.1V)
L1
RCOMP
COSC
CSS
D1
COUT
CCOMP
D97IN554A
April 2000
1/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
uses an internal power D-MOS transistor (with a
typical Rdson of 0.15ohm) to obtain very high efficiency and very fast switching times.
Switching frequency up to 300KHz are achievable
(the maximum power dissipation of the packages
must be observed).
A wide input voltage range between 8V to 55V
and output voltages regulated from 3.3V to 40V
cover the majority of the today applications.
Features of this new generation of DC-DC con-
verter includes pulse by pulse current limit, hiccup
mode for output short circuit protection, voltage
feed forward regulation, soft start, input/output
synchronization, protection against feedback loop
disconnection, inhibit for zero current consumption and thermal shutdown.
Packages available are in plastic dual in line, DIP18 (12+3+3) for standard assembly, and SO20
(12+4+4) for SMD assembly.
PIN CONNECTIONS (Top view)
OSC
1
18
SYNC
OSC
1
20
SYNC
OUT
2
17
SS
OUT
2
19
SS
V5.1
OUT
3
18
V5.1
GND
GND
4
17
GND
GND
5
16
GND
GND
6
15
GND
GND
7
14
GND
VCC
8
13
VFB
VCC
9
12
COMP
10
11
INH
3
OUT
16
4
GND
15
5
GND
14
GND
GND
6
13
GND
VCC
7
12
VFB
VCC
8
11
COMP
BOOT
9
10
INH
BOOT
D94IN162A
D94IN163A
POWERDIP (12+3+3)
SO20 (12+4+4)
BLOCK DIAGRAM
VCC
V5.1
INH
10(11)
16(18)
VCC
7(8)
8(9)
CBOOT
CHARGE
ZERO CURRENT
INHIBIT
VREF
GOOD
5.1V
INTERNAL
REFERENCE
INTERNAL
SUPPLY
5.1V
3.3V
SS
COMP
17(19)
SOFT
START
11(12)
THERMAL
SHUTDOWN
5.1V
3.3V
VFB
SYNC
12(13)
18(20)
+
E/A
-
CURRENT
LIMITING
PWM
+
R
Q
S
Q
9(10)
BOOT
OSCILLATOR
DRIVER
1(1)
OSC
Pin x = Powerdip
Pin (x) = S020
2/16
HICCUP CURRENT
LIMITING
4,5,6,13,14,15
(4,5,6,7,14,15,16,17)
GND
2(2)
OUT
3(3)
OUT
D94IN161B
L4973V3 - L4973V5 - L4973D3 - L4973D5
THERMAL DATA
Symbol
Powerdip
SO20
Unit
Rth(j-pin)
Thermal Resistance Junction to pin
Parameter
Max.
12
15
°C/W
Rth(j-amb)
Thermal Resistance to Ambient
Max.
60 (*)
80 (*)
°C/W
Value
Unit
(*) Package mounted on board.
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
DIP-18
S0-20
V7,V8
V9,V8
Input voltage
58
V
V2,V3
V2,V3
Output DC voltage
Output peak voltage at t = 0.1µs f=200KHz
-1
-5
V
V
I2,I 3
I2,I3
V9-V8
V10-V8
14
V
V9
V10
Bootstrap voltage
70
V
V
Maximum output current
int. limit.
V11
V12
Analogs input voltage (VCC = 24V)
12
V17
V19
Analogs input voltage (VCC = 24V)
13
V
V12
V13
(VCC = 20V)
6
-0.3
V
V
V18
V20
(VCC = 20V)
5.5
-0.3
V
V
V10
V11
Inhibit
Vcc
-0.3
V
V
5
1.3
2
W
W
W
Ptot
TJ,TSTG
Power dissipation a Tpins ≤ 90°C
(Tamb = 70°C no copper area)
(Tamb = 70°C 4cm copper area on PCB)
DIP
12+3+3
Power dissipation a Tpins = 90°C
SO20
Junction and storage temperature
4
W
-40 to 150
°C
PIN FUNCTIONS
Powerdip
SO20
NAME
11
12
COMP
DESCRIPTION
10
11
INH
A logic signal (active high) disables the device (sleep mode operation).
If not used it must be connected to GND; if floating the device is disabled.
9
10
BOOT
A capacitor connected between this pin and the output allows to drive the
internal D-MOS.
E/A output to be used for frequency compensation
18
20
SYNC
Input/Output synchronization.
7,8
8,9
Vcc
Unregulated DC input voltage
2,3
2,3
OUT
Stepdown regulator output.
12
13
VFB
Stepdown feedback input. Connecting the output directly to this pin results
in an output voltage of 3.3V for the L4973V3.3 and 5.1V. An external
resistive divider is required for higher output voltages. For output voltage
less than 3.3V, see note ** and Figure 32.
16
18
V5.1
Reference voltage externally available.
4,5,6
13,14,15
4,5,6,7
14,15,16,17
GND
Signal ground
1
1
OSC
An external resistor connected between the unregulated input voltage and
Pin 1 and a capacitor connected from Pin 1 to ground fixes the switching
frequency. (Line feed forward is automatically obtained)
3/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
ELECTRICAL CHARACTERISTICS ( Refer to the test circuit,VCC = 24V; Tj = 25°C, COSC = 2.7nF;
ROSC = 20KΩ; unless otherwise specified) • = specifications referred to TJ from 0 to 125°C.
Symbol
Parameter
Test Conditions
DYNAMIC CHARACTERISTICS
Input Voltage Range (*)
Output Voltage
L4973V5.1
Output Voltage
L4973V3.3
R DSON
η
∆fsw
Maximum Limiting Current
Efficiency
Switching Frequency
Supply Voltage Ripple
Rejection
Switching Frequency Stability
vs, Supply Voltage
VO = VREF to 40V; IO = 3.5A
IO = 1A
IO = 0.5A to 3.5A
VCC = 8V to 55V
IO = 1A
IO = 0.5A to 3.5A
VCC = 8V to 40V
VCC = 10.5V
IO = 3.5A
VCC = 8V to 55V
VO = 5.1V; IO = 3.5A
VO = 3.3V; IO = 3.5A
Min.
•
Typ.
8
•
5.05
5.00
4.95
3.326
3.292
3.26
•
•
5.1
5.1
5.1
3.36
3.36
3.36
0.15
4
4.5
90
85
100
•
•
Vi = VCC +2VRMS
VO = Vref; IO = 1A; fripple = 100Hz
VCC = 8V to 55V
90
60
Max.
Unit
55
V
5.15
5.20
5.25
3.393
3.427
3.46
0.22
0.35
5.5
V
V
V
V
V
V
Ω
Ω
A
%
%
KHz
dB
110
2
5
%
5.1
5.1
5.175
5.250
V
V
5
10
mV
30
2
6
65
10
25
100
mV
mV
mA
Soft Start Charge Current
30
45
60
µA
Soft Start Discharge Current
15
22
30
µA
16
15
0.8
50
50
V
V
µA
µA
4
6
mA
2.7
100
150
4
200
300
mA
µA
µA
2
300
0.65
3
600
V
V
µA
µA
REFERENCE SECTION
Reference Voltage
Line Regulation
Load Regulation
Iref = 0 to 20mA;
VCC = 8 to 55V
Iref = 0mA;
VCC = 8 to 55V
Vref = 0 to 5mA;
VCC = 0 to 20mA
•
Short Circuit Current
5.025
4.950
SOFT START
INHIBIT
High Level Voltage
Low Level Voltage
Isource High Level
Isource Low Level
VINH = 3V
VINH = 0.8V
•
•
•
•
3.0
10
10
DC CHARACTERISTICS
Total Operating Quiescent
Current
Quiescent Current
Total stand-by quiescent
current
Duty Cycle = 50%
Duty Cycle = 0
VCC = 24V; VINH = 5V
VCC = 55V; VINH = 5V
ERROR AMPLIFIER
High Level Output Voltage
Low Level Output Voltage
Source Bias Current
Source Output Current
4/16
11.0
1
200
L4973V3 - L4973V5 - L4973D3 - L4973D5
ELECTRICAL CHARACTERISTICS (continued)
Sink Output Current
Supply Voltage Ripple
Rejection
VCOMP = VFB
CREF =4.7µF 1-5mA load
current
RL = ∞
Icomp = -0.1 to 0.1mA;
Vcomp = 6V
DC Open Loop Gain
Transconductance
200
300
µA
60
80
dB
50
60
2.5
dB
mS
0.78
1.9
9
95
0.85
2.1
9.6
97
OSCILLATOR SECTION
Ramp valley
Ramp peak
VCC = 8V
VCC = 55V
Maximum Duty Cycle
Maximum Frequency
0.92
2.3
10.2
Duty Cycle = 0%; R OSC =
13KΩ; COSC = 820pF;
500
V
V
V
%
KHz
SYNC FUNCTION
High Input Voltage
Low Input Voltage
Slave Sink Current
Master Output Amplitude
Output Pulse Width
VCC = 8V to 55V
VCC = 8V to 55V
3.5
0.15
4
0.20
Isource = 3mA
no load, Vsync = 4.5V
0.9
0.45
0.25
4.5
0.35
V
V
mA
V
µs
(*) Pulse testing with a low duty cycle.
(**) The maximum power dissipation of the package must be observed.
Figure 1. Evaluation Board Circuit
VCC
(DIP18)
R2
7,8
12
1
C1
C2
C7
16
9
L4973
17
11
10
C8
4,5,6
2,3
13,14,15
L1
VO
R3
C3
C4
C5
D1
R1
3x
C0
C12
C6
R4
D97IN515B
C1=1000µF/63V
C2=220nF/63V
C3=470nF
C4=1µF/50V
C5=220pF
C6=22nF
C7=2.7nF
C8=220nF/63V
C0=100µF/40V(C9,C10,C11)
C12=Optional (220nF)
L1=150µH KOOLµ 77310 - 40 Turns - 0.9mm
R1=9.1K
R2=20K
D1=GI SB560
L4973 V3.3
VO(V)
R3(KΩ)
3.3
0
5.1
2.7
12
12
15
L4973 V5.1
R4(KΩ)
VO(V)
R3(KΩ)
5.1
0
R4(KΩ)
4.7
12
6.2
4.7
4.7
15
9.1
4.7
16
4.7
18
12
4.7
18
20
4.7
24
18
4.7
24
30
4.7
5/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Typical Performance (Using Evaluation Board) fsw = 100kHz
Output Voltage
Output
Ripple
Efficiency
Line Regulator
Io = 3.5A VCC = 8 to 50V
Load Regulator
VCC =35V IO = 1 to 3.5A
3.3V
20mV
81.5 (%)
3mV
6mV
5.1V
20mV
86.7 (%)
3mV
6mV
12V
30mV
93.5 (%)
3mV (VCC =15 to 50V)
4mV
Figure 1a: Evaluation Board (Components Side)
Figure 1b: Evaluation Board (Solder Side)
6/16
L4973V3 - L4973V5 - L4973D3 - L4973D5
Figure 1c: Application Circuit (see fig. 1 part list)
VCC
R2
INH
SYNC
10
18
7,8
9
C8
1
L4973V5.1
17
C1
C2
C7
C3
16
C4
4,5,6
13,14,15 12
11
C5
L1
Vo
2,3
3x
C0
D1
R1
C12
C6
D97IN665A
Figure 1d: Application Circuit (see fig. 1 part list)
VCC
R2
7,8
INH
SYNC
10
18
9
C8
1
C1
C2
C7
C3
C4
17
L4973V3.3
16
4,5,6
13,14,15
C5
11
L1
12
D1
R1
Vo
2,3
3x
C0
C12
C6
D97IN664A
Figure 2: Quiescent Drain Current vs. Input
Voltage (0% Duty Cycle)
Ibias
(mA)
D97IN633A
200KHz-R2=22K
C7=1.2nF
5.0
Tamb=25°C
0% DC
Figure 3: Quiescent Drain Current vs. Junction
Temperature
Ibias
(mA)
D97IN634
200KHz-R2=22K
C7=1.2nF
4.0
4.5
100KHz-R2=20K
C7=2.7nF
4.0
100KHz-R2=20K
C7=2.7nF
3.5
3.5
0% DC
VCC = 35V
0Hz
3.0
3.0
0Hz
2.5
2.0
0
10
20
30
40
50 VCC(V)
2.5
-50
0
50
100
Tj(°C)
7/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Figure 4: Stand by Drain Current vs. input
Voltage
Ibias
(µA)
D97IN635A
Figure 5: Reference Voltage vs. Junction
Temperature (Pin 16)
VREF
(V)
D97IN637
Vinh = 5V
Pin 16
5.15
150
Vcc=35V
25°C
5.1
100
125°C
5.05
50
0
10
20
30
40
50 VCC(V)
Figure 6: Reference Voltage vs. Input Voltage
(Pin 16)
VREF
(V)
D97IN636A
5.0
-40 -20
0
20
40
60
80 100 Tj(°C)
Figure 7: Reference Voltage vs. Reference Input
Current
VREF
(V)
D97IN638
Tj=25°C
Pin 16
5.15
5.2
Vcc=40V
5.1
5.1
Vcc=10V
5.05
5.0
Tj=25°C
5.0
0
10
20
30
40
50 VCC(V)
Figure 8: Inhibit Current vs. Inhibit Voltage
(Pin 10)
Iinh
(µA)
D97IN651
Vcc=35V
Pin 10
100
4.9
0
10
20
30
40
50 IREF(mA)
Figure 9: Line Regulation (see fig. 1)
VO
(V)
D97IN639A
Tj=0°C
5.12
Tj=125°C
C
5°
=2
Tj
Tj=25°C
5.1
50
Tj=125°C
5.08
0
-50
8/16
5.06
0
5
10
15
Vinh(V)
IO = 1A
0
10
20
30
40
50
VCC(V)
L4973V3 - L4973V5 - L4973D3 - L4973D5
Figure 10: Load Regulation (see fig. 1c)
VO
(V)
Figure 11: Line Regulation (see fig. 1d)
D97IN640
VO
(V)
D97IN660A
3.35
VCC = 35V
5.15
Tj=125°C
3.34
Tj=125°C
Tj=25°C
5.1
3.33
Tj=25°C
3.32
5.05
IO = 1A
3.31
5.0
0
1
2
3
IO(A)
Figure 12: Load Regulation (see fig. 1d)
VO
(V)
0
10
20
30
40
50
VCC(V)
Figure 13: Switching Frequency vs.R2 and C7
(fig. 1)
D97IN661
fsw
(KHz)
D97IN630
500
VCC = 35V
3.35
3.3
Tamb=25°C
0.8
2nF
200
3.34
1.2
Tj=125°C
nF
100
2.2n
F
3.33
50
3.3n
F
Tj=25°C
3.32
4.7n
F
20
F
3.31
3.3
5.6n
10
5
0
1
2
3
Figure 14: Switching Frequency vs. Input Voltage
fsw
(KHz)
0
IO(A)
D97IN631
20
40
60
80
R2(KΩ)
Figure 15: Switching Frequency vs. Junction
temperature (see fig. 1)
fsw
(KHz)
D97IN632
Tamb=25°C
105
105
100
100
95
95
90
0
10
20
30
40
50 VCC(V)
90
-50
0
50
100
Tj(°C)
9/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Figure 16: Dropout Voltage Between pin 7,8 and
2,3
∆V
(V)
D97IN643
η
(%)
D97IN641
98
Tj=125°C
100KHz
°C
25
0.6
Figure 17: Efficiency vs. Output Voltage
(see fig.1)
96
Tj=
94
0.4
200KHz
92
Tj=0°C
90
0.2
IO = 3A
VCC = 50V
88
86
0
0
1
2
3
IO(A)
10
20
30
40 VO(V)
Figure 19: Efficiency vs. Output Current
( see fig.1c)
Figure 18: Efficiency vs. Output Voltage
(Diode STPS745D)
η
(%)
0
D97IN642
η
(%)
D97IN645
98
VO = 5.1V
fsw = 100KHz
100KHz
96
95
Vcc=12V
94
200KHz
90
92
Vcc=24V
90
Vcc=48V
85
IO = 3A
VCC = 35V
88
86
0
5
10
15
20
25
30
VO (V)
Figure 20: Efficiency vs. Output Current
(see fig.1c)
η
(%)
80
0
1
2
3
IO(A)
Figure 21: Efficiency vs. Output Current
(see fig.1d)
D97IN646
η
(%)
D97IN644
V O = 3.3V
fsw = 100KHz
Vcc=12V
90
90
Vcc=12V
Vcc=24V
85
85
Vcc=24V
Vcc=48V
80
75
10/16
80
VO = 5.1V
fsw = 200KHz
0
1
2
3
IO (A)
75
Vcc=48V
0
1
2
3
IO(A)
L4973V3 - L4973V5 - L4973D3 - L4973D5
Figure 23: Power dissipation vs. Input Voltage
(Device only) (see fig.1c)
Figure 22: Efficiency vs. Output Current
(see fig.1d)
η
(%)
Pdiss
(W)
D97IN662
VO = 5.1V
fsw = 100KHz
VO = 3.3V
fsw = 200KHz
90
D97IN647A
1.5
Vcc=12V
IO =3.5A
85
Vcc=24V
IO =3A
1.0
80
IO=2.5A
Vcc=48V
0.5
75
70
0
0.5
1
1.5
2
2.5
3
Figure 24: Power dissipation vs. Output Voltage
(Device only)
Pdiss
(W)
VCC = 35V
fsw = 100KHz
0
10
20
30
40
50
Vcc(V)
Figure 25: Pulse by Pulse Limiting Current vs.
Junction Temperature
Ilim
(A)
D97IN648
3.0
0
3.5 IO (A)
IO =2A
D97IN652
5.2
I O =3.5A
2.5
5
2.0
I O=3A
1.5
IO =2.5A
4.8
1.0
IO =2A
0.5
I O =1A
0
0
5
10
15
20
25
30
Vcc=35
4.6
4.4
V O(V)
Figure 26: Load Transient
IO
(A)
4.2
-40 -20 0
VCC
(V)
D97IN649
30
2
20
D97IN650
10
T
VO
(mV)
2
VO
(mV)
1
200µs/DIV
I O = 1A
f sw = 100KHz
100
1
Tj(°C)
Figure 27: Line Transient
3
1
20 40 60 80 100 120
T
0
VCC = 35V
fsw = 100KHz
2
100
0
-100
-100
1ms/DIV
11/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Figure 29: Soft Start Capacitor Selection vs.
Inductor and VCC max (ref. AN938)
Figure 28: Source Current Rise and Fall Time,
pin 2, 3 (See fig1)
Lomax
(µH)
D97IN653
Css=1µF
Css=820nF
300
fsw = 100KHz
250
Css=680nF
200
Css=470nF
150
100
Css=220nF
Css=100nF
50
0
Figure 30:Soft Start Capacitor Selection vs. Inductor and VCC max (ref. AN938)
Lomax
(µH)
35
40
45
GAIN
(dB)
50
Vi(V)
Phase
s=
68
56
nF
nF
D97IN663
50
Cs
s=
Cs
30
Figure 31: Open Loop Frequency and Phase of
Error amplifier
D97IN654
f sw = 200KHz
25
150
0
0
-50
45
Cs
s=
47
nF
GAIN
100
nF
3
=3
s
Cs
90
-100
nF
50
2
=2
Phase
s
Cs
135
-150
0
-200
15
20
25
30
35
40
45
50 Vi(V)
10
102 103 104 105 106 107 108 f(Hz)
Figure 32: 3.5A at VO< 3.3V (see part list fig. 1)
VCC
INH
R2
7,8
SYNC
10
18
9
L4973V3.3
17
C2
C7
11
4,5,6
13,14,15
16
R5
C3
C5
R1
C6
C4
D97IN666A
12/16
R5
R3
1
3.6K
4.7K
1.5
2K
2K
2
4.7K
3.6K
2.5
7.5K
3.6K
3
5.1K
1K
C8
1
C1
VP
L1
2,3
Vo
12
D1
3x
C0
R3
VO=3.36-1.74•
R3
R5
L4973V3 - L4973V5 - L4973D3 - L4973D5
Figure 33: 12V to 3.3V High Performance Buck Converter (fsw = 200kHz)
VCC
12V±5%
R2
22k
7,8
INH
SYNC
10
18
16
C1
560uF-25V
HFQ
Panasonic
C2
220nF
C3
33nF
L4973V3.3
17
C7
1.2nF
C4
1uF
4,5,6
13,14,15
11
C5
220pF
η
(%)
C8
220nF
9
1
92
L1
2,3
90
12
Vo=3.33V
Io=3.5A
R1
9k1
D1
C6
22nF
88
86
C9
470uF-25V
HFQ
Panasonic
84
82
L1
D1
KoolMm 77120- 24 Turns- 0.9mm
STPS1025
80
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Io(A)
D97IN668A
Figure 34: Synchronization Example
V CC1
VCC2
7,8
1
VCC
7,8
18
L4973
18
4,5,6
13,14,15
7,8
L4973
1
1
4,5,6
13,14,15
18
18
L4973
7,8
L4973
4,5,6
13,14,15
4,5,6
13,14,15
1
D97IN669
Figure 35: Multioutput not Isolated (Pin out referred to DIP12+3+3)
V CC
INH
SYNC
10
18
7,8
Vo2
D2
C8
R2
9
1
L4973
17
C1
C2
C7
C3
16
C4
C5
4,5,6
13,14,15
11
R1
n2
12
2,3
L1
Vo1
n1
D1
C9
C10
C11
C6
V O2 = VO1
n1 + n 2
n1
D97IN667A
PO2 < 20% P O1
13/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
mm
DIM.
MIN.
a1
0.51
B
0.85
b
b1
TYP.
inch
MAX.
MIN.
TYP.
MAX.
0.020
1.40
0.033
0.50
0.38
0.055
0.020
0.50
D
0.015
0.020
24.80
0.976
E
8.80
0.346
e
2.54
0.100
e3
20.32
0.800
F
7.10
0.280
I
5.10
0.201
L
Z
14/16
OUTLINE AND
MECHANICAL DATA
3.30
0.130
2.54
Powerdip 18
0.100
L4973V3 - L4973V5 - L4973D3 - L4973D5
mm
DIM.
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
2.35
2.65
0.093
0.104
A1
0.1
0.3
0.004
0.012
B
0.33
0.51
0.013
0.020
C
0.23
0.32
0.009
0.013
D
12.6
13
0.496
0.512
E
7.4
7.6
0.291
0.299
e
1.27
OUTLINE AND
MECHANICAL DATA
0.050
H
10
10.65
0.394
0.419
h
0.25
0.75
0.010
0.030
L
0.4
1.27
0.016
0.050
SO20
K
0° (min.)8° (max.)
L
h x 45°
A
B
e
A1
K
C
H
D
20
11
E
1
0
1
SO20MEC
15/16
L4973V3.3 - L4973V5.1 - L4973D3.3 - L4973D5.1
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
16/16
Similar pages