4.25 Gbps 40 × 40 Digital Crosspoint Switch ADN4605 FEATURES FUNCTIONAL BLOCK DIAGRAM DVCC IP[39:0] VTTIA, VTTIB IN[39:0] Rx VCC 40 × 40 SWITCH MATRIX EQ Tx OP[39:0] PREEMPHASIS VTTOA, VTTOB ON[39:0] EQUALIZATION SETTINGS CONNECTION MAP 1 CONNECTION MAP 0 RESET SER/PAR I2C/SPI (UPDATE) CS SCL/SCK/ WE SDI/RE OUTPUT LEVEL SETTINGS PREEMPHASIS LEVEL SETTINGS DATA[0]/ SDA/SDO DATA[1] (UPDATE) DATA[7:2] PARALLEL/SERIA L CONTROL LOGIC INTERFACE ADDR[7:0] ADN4605 VEE 09796-001 DC to 4.25 Gbps per port NRZ data rate Adjustable receive equalization 3 dB, 6 dB, or 12 dB boost Compensates over 40 inches of FR4 at 4.25 Gbps Adjustable transmit preemphasis/deemphasis Programmable boost and output level Compensates over 40 inches of FR4 at 4.25 Gbps Low power 105 mW per channel at 2.5 V (400 mV p-p differential output level swing) 40 × 40, fully differential, nonblocking array Double rank connection programming with dual maps Low jitter, typically <25 ps Flexible 2.5 V to 3.3 V supply range DC- or ac-coupled differential PECL/CML inputs Differential CML outputs Per-lane polarity inversion for routing ease 50 Ω on-chip I/O termination with disable feature Supports 8b10b, scrambled or uncoded NRZ data Serial (IC slave or SPI) control interface Parallel control interface Figure 1. APPLICATIONS Digital video (HDMI, DVI, DisplayPort, 3G/HD/SD-SDI) Fiber optic network switching High speed serial backplane routing to OC-48 with FEC XAUI, 4x Fibre Channel, Infiniband®, and GbE over backplane Data storage networks GENERAL DESCRIPTION The ADN4605 is a 40 × 40 asynchronous, protocol agnostic, digital crosspoint switch, with 40 differential PECL/CMLcompatible inputs and 40 differential programmable CML outputs. The ADN4605 nonblocking switch core implements a 40 × 40 crossbar and supports independent channel switching through serial and parallel control interfaces. The ADN4605 has low latency and very low channel-to-channel skew. The ADN4605 is optimized for NRZ signaling with data rates of up to 4.25 Gbps per port. Each port offers adjustable levels of input equalization, programmable output swing, and output preemphasis/deemphasis. An I2C, SPI, or parallel interface is used to communicate with the device for control of connectivity and other features. The ADN4605 is assembled in a 35 mm × 35 mm, 352 BGA package and operates over a temperature range of −40°C to +85°C. Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved. ADN4605 TABLE OF CONTENTS Features .............................................................................................. 1 Transmitters ................................................................................ 29 Functional Block Diagram .............................................................. 1 Termination................................................................................. 32 2 Applications....................................................................................... 1 I C Serial Control Interface........................................................... 33 General Description ......................................................................... 1 I2C Data Write............................................................................. 33 Revision History ............................................................................... 2 I2C Data Read.............................................................................. 34 Specifications..................................................................................... 3 SPI Serial Control Interface .......................................................... 35 Electrical Specifications............................................................... 3 Parallel Control Interface .............................................................. 38 2 I C Timing Specifications............................................................ 5 Address Inputs: ADDR[7:0]...................................................... 38 SPI Timing Specifications ........................................................... 5 Data Inputs/Outputs: DATA[7:0]............................................. 38 Parallel Mode Specifications ....................................................... 6 Write Operation.......................................................................... 38 Absolute Maximum Ratings............................................................ 7 Read Operation........................................................................... 38 ESD Caution.................................................................................. 7 Register Map ................................................................................... 39 Pin Configuration and Function Descriptions............................. 8 Applications Information .............................................................. 49 Typical Performance Characteristics ........................................... 18 Supply Sequencing ..................................................................... 51 Theory of Operation ...................................................................... 24 Power Dissipation....................................................................... 51 Introduction ................................................................................ 24 Output Compliance ................................................................... 51 Receivers ...................................................................................... 25 Printed Circuit Board (PCB) Layout Guidelines ................... 54 Polarity Inversion ....................................................................... 26 Outline Dimensions ....................................................................... 55 Switch Core ................................................................................. 27 Ordering Guide............................................................................... 55 Reset ............................................................................................. 28 REVISION HISTORY 6/11—Revision 0: Initial Version Rev. 0 | Page 2 of 56 ADN4605 SPECIFICATIONS ELECTRICAL SPECIFICATIONS VCC = 2.5 V, VTTIx = 2.5 V, VTTOx = 2.5 V, DVCC = 3.3 V, VEE = 0 V, RL = 50 Ω, output level (OLEV) = 4 (16 mA), preemphasis (PE) = 0 (0 dB), equalizer (EQ) = 1 (3 dB), data rate = 4.25 Gbps (PRBS7 data pattern), ac-coupled inputs and outputs, differential input swing = 800 mV p-p, TA = 25°C, unless otherwise noted. Table 1. Parameter DYNAMIC PERFORMANCE Data Rate (DR) per Channel (NRZ) Deterministic Jitter Random Jitter Residual Deterministic Jitter with Receive Equalization Residual Deterministic Jitter with Transmit Preemphasis Propagation Delay Channel-to-Channel Skew Switching Time Output Rise/Fall Time INPUT CHARACTERISTICS Minimum Differential Input Voltage Swing1 Maximum Differential Input Voltage Swing1 Input Voltage Range OUTPUT CHARACTERISTICS Output Voltage Swing Output Voltage Range Per-Port Output Current TERMINATION CHARACTERISTICS Resistance Temperature Coefficient POWER SUPPLY Operating Range VCC DVCC VTTIA, VTTIB VTTOA, VTTOB Supply Current ICC IDVCC ITTIA + ITTIB ITTOA+ ITTOB Conditions Min Typ dc Max Unit 4.25 Data rate ≤ 4.25 Gbps, no channel RMS, no channel Data rate = 4.25 Gbps, 20 in. FR4, EQ boost = 12 dB Data rate = 4.25 Gbps, 30 in. FR4, EQ boost = 12 dB Data rate = 4.25 Gbps, 40 in. FR4, EQ boost = 12 dB Data rate = 4.25 Gbps, 20 in. FR4, PE boost = 5.6 dB Data rate = 4.25 Gbps, 30 in. FR4, PE boost = 6.8 dB Data rate = 4.25 Gbps, 40 in. FR4, PE boost = 9.5 dB Input to output Earliest input/output lane to latest input/output lane Update logic switching to 50% output data 20% to 80% 20 0.8 14 15 25 22 28 32 920 200 20 108 Gbps ps p-p ps rms ps p-p ps p-p ps p-p ps p-p ps p-p ps p-p ps ps ns ps VICM = VCC − 0.6 V 50 mV p-p diff VICM = VCC − 0.6 V 2000 mV p-p diff Single-ended absolute voltage level, VL Single-ended absolute voltage level, VH VEE + 1.0 Differential, PE boost = 0 dB, default output level, at dc Single-ended absolute voltage level, VL Single-ended absolute voltage level, VH PE boost = 0 dB, default output level PE boost = 6 dB, default output level 670 800 875 VCC – 1.4 VCC + 0.3 16 32 mV p-p diff V V mA mA Differential, VCC = VMIN to VMAX, TA = TMIN to TMAX 88 100 0.015 114 Ω Ω/°C VEE = 0 V VEE = 0 V VEE = 0 V VEE = 0 V Inputs/outputs disabled (reset condition) 2.25 3.0 2.5 3.3 2.5 2.5 3.6 3.6 VCC + 0.3 VCC + 0.3 V V V V 55 0.3 0 0 64 1.1 1.5 1.5 mA mA mA mA Inputs floating Outputs floating Rev. 0 | Page 3 of 56 VCC + 0.3 V V ADN4605 Parameter Supply Current ICC IDVCC ITTIA + ITTIB ITTOA+ ITTOB Conditions All outputs enabled, ac-coupled I/O, 200 mV I/O swings (400 mV p-p differential), PE boost = 0 dB, 50 Ω far-end terminations Supply Current ICC IDVCC ITTIA + ITTIB ITTOA + ITTOB Supply Current ICC IDVCC ITTIA+ ITTIB ITTOA + ITTOB THERMAL CHARACTERISTICS Operating Temperature2 θJA θJB θJC LOGIC CHARACTERISTICS Input High Voltage Threshold (VIH) All outputs enabled, ac-coupled I/O, 400 mV I/O swings (800 mV p-p differential), PE boost = 0 dB, 50 Ω far-end terminations Min All outputs enabled, ac-coupled I/O, 400 mV I/O swings (800 mV p-p differential), PE boost = 6 dB, 50 Ω far-end terminations Typ Max Unit 1320 0.3 11 335 1410 1.1 15 360 mA mA mA mA 1370 0.3 11 665 1460 1.1 15 715 mA mA mA mA 1850 0.3 11 1340 1960 1.1 15 1380 mA mA mA +85 °C °C/W °C/W °C/W −40 Still air; JEDEC multilayer test board 1 m/s air velocity 1 m/s air velocity DVCC = 3.3 V 11.6 5.4 0.72 V 0.7 × DVCC Input Low Voltage Threshold (VIL) DVCC = 3.3 V Output High Voltage (VOH) IOH = −3 mA (I2C/SPI mode only) Output Low Voltage (VOL) IOL = +3 mA 1 VICM is the input common-mode voltage. Junction temperature cannot exceed 125°C (see the Absolute Maximum Ratings section). 2 Rev. 0 | Page 4 of 56 0.75 × DVCC VEE 0.25 × DVCC DVCC V 0.4 V V ADN4605 I2C TIMING SPECIFICATIONS SDA tf tLOW tf tSU;DAT tr tHD;STA tBUF tr tSP tHD;STA tHD;DAT S tSU;STO tSU;STA tHIGH Sr P S 09796-002 SCL Figure 2. I2C Timing Diagram Table 2. I2C Timing Specifications Parameter SCL Clock Frequency Hold Time for a Start Condition Setup Time for a Repeated Start Condition Low Period of the SCL Clock High Period of the SCL Clock Data Hold Time Data Setup Time Rise Time for Both SDA and SCL Fall Time for Both SDA and SCL Setup Time for Stop Condition Bus Free Time Between a Stop Condition and a Start Condition Bus Idle Time After a Reset Reset Pulse Width Symbol fSCL tHD; STA tSU; STA tLOW tHIGH tHD; DAT tSU; DAT tr tf tSU; STO tBUF Min 0 0.5 0.5 Max 500+ Unit kHz μs μs μs μs μs μs ns ns μs ns ns ns 1.4 0.6 0.02 0.02 1 1 0.5 1 20 20 300 300 SPI TIMING SPECIFICATIONS CS t1 t2 t7 SCLK DIN D7 D6 D5 t5 D4 D3 D2 t6 D1 D0 X X X X X X X t8 t4 DOUT X X X X X X X X D7 D6 X D5 D4 D3 D2 D1 09796-003 t3 D0 Figure 3. SPI Timing Diagram Table 3. SPI Timing Specifications Parameter SCK Clock Frequency CS to SCLK Setup Time SCLK High Pulse Width SCLK Low Pulse Width Data Access Time After SCLK Falling Edge Data Setup Time Prior to SCLK Rising Edge Data Hold Time After SCLK Rising Edge CS to SCLK Hold Time CS to SDO High Impedance Reset Pulse Width Symbol fSCK t1 t2 t3 t4 t5 t6 t7 t8 Min 0 30 30 45 10 30 0 45 20 Rev. 0 | Page 5 of 56 Max 10 Unit MHz ns ns ns ns ns ns ns ns ns ADN4605 PARALLEL MODE SPECIFICATIONS 1 t8 t1 CS 0 t3 t5 1 WE 0 t2 D7:D0 1 A7:A0 0 t4 t6 t7 09796-004 1 UPDATE 0 Figure 4. Parallel Mode Write Cycle Table 4. Parallel Mode Write Cycle Timing Specifications Parameter Chip Select Setup Time Parallel Data Setup Time WE Pulse Width Parallel Data Hold Time WE Pulse Separation WE to UPDATE Delay UPDATE Pulse Width Chip Select Hold Time Reset Pulse Width 1 Symbol t1 t2 t3 t4 t5 t6 t7 t8 Min 0 0 30 25 Limit Typ Max Unit ns ns ns ns ns ns ns ns ns Max Unit ns ns 50 25 40 30 0 20 t6 t1 CS 0 t4 1 t2 RE 0 t3 1 ADDR 2 ADDR 1 A7:A0 0 t5 1 DATA (ADDR 2) DATA (ADDR 1) 09796-005 D7:D0 0 Figure 5. Parallel Mode Read Cycle Table 5. Parallel Mode Read Cycle Timing Specifications Limit Typ Parameter Chip Select Setup Time Parallel RE Setup to Valid Time Symbol t1 t2 Min 0 10 Data Access Time Address to RE Hold Time t3 t4 25 25 Data to RE Hold Time t5 25 ns Chip Select Hold Time t6 5 ns Rev. 0 | Page 6 of 56 50 ns ns ADN4605 ABSOLUTE MAXIMUM RATINGS Table 6. Parameter VCC to VEE DVCC to VEE VTTIA, VTTIB VTTOA, VTTOB Internal Power Dissipation1 Differential Input Voltage Logic Input Voltage Storage Temperature Range Junction Temperature 1 Rating 3.7 V 3.7 V VCC + 0.6 V VCC + 0.6 V 8.4 W 2.0 V VEE – 0.3 V < VIN < VCC + 0.6 V −65°C to +125°C 125°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ESD CAUTION Internal power dissipation is for the device in free air. TA = 27° C; θJA = 11.6°C/W in still air. Rev. 0 | Page 7 of 56 ADN4605 PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 1 2 A VEE VEE VEE ON39 OP39 ON37 OP37 ON35 OP35 ON33 OP33 ON31 OP31 ON29 OP29 ON27 OP27 ON25 OP25 ON23 OP23 ON21 OP21 VEE 4 5 25 26 VEE VEE A B VEE VEE VEE VEE ON38 OP38 ON36 OP36 ON34 OP34 ON32 OP32 ON30 OP30 ON28 OP28 ON26 OP26 ON24 OP24 ON22 OP22 ON20 OP20 VEE VEE B VCC DVCC VEE VEE C VCC VCC 6 7 8 9 10 11 12 VCC VTTOB VTTOB VTTOB VTTOB VCC 13 14 15 16 VCC VTTOB VTTOB VTTOB VCC 17 18 19 20 21 22 VCC VTTOB VTTOB VTTOB VTTOB VCC 23 24 C VEE IP0 VEE D IP1 IN0 VCC DVCC VCC VCC E IN1 IP2 VCC F IP3 IN2 VTTIA VEE VEE VTTIB IP38 IN37 F G IN3 IP4 VTTIA VEE VEE VTTIB IN36 IP37 G H IP5 IN4 VTTIA VEE WE VTTIB IP36 IN35 H IN5 IP6 VTTIA SPI K IP7 IN6 VCC SER/ PAR CS VCC IP34 IN33 K L IN7 IP8 VCC RESET DATA0 VCC IN32 IP33 L M IP9 IN8 VTTIA ADDR0 DATA1 VTTIB IP32 IN31 M N IN9 IP10 VTTIA ADDR1 DATA2 VTTIB IN30 IP31 N P IP11 IN10 VTTIA ADDR2 DATA3 VTTIB IP30 IN29 P R IN11 IP12 VCC ADDR3 DATA4 VCC IN28 IP29 R T IP13 IN12 VCC ADDR4 DATA5 VCC IP28 IN27 T U IN13 IP14 VTTIA ADDR5 DATA6 VTTIB IN26 IP27 U V IP15 IN14 VTTIA ADDR6 DATA7 VTTIB IP26 IN25 V W IN15 IP16 VTTIA ADDR7 Y IP17 IN16 VTTIA VEE VEE VTTIB IP24 IN23 Y AA IN17 IP18 VCC VEE VEE VCC IN22 IP23 AA AB IP19 IN18 VCC VEE VEE VCC IP22 IN21 AB AC IN19 VEE J VEE VEE VEE VEE VCC VCC VEE VEE VEE VCC VCC VEE VEE VEE VEE VCC DVCC VCC VEE VEE I2C/ VEE IN39 D VCC IN38 IP39 E RE VTTIB IN34 IP35 J ADN4605 Top View VEE VTTIB IN24 IP25 W VCC DVCC VCC VCC VEE VEE VEE VEE VCC VCC VCC VTTOA VTTOA VTTOA VCC VEE AD VEE VEE VEE VCC VCC VCC VTTOA VTTOA VTTOA VTTOA VCC AE VEE VEE OP0 ON0 OP2 ON2 OP4 ON4 OP6 ON6 OP8 ON8 AF VEE VEE VEE OP1 ON1 OP3 ON3 OP5 ON5 OP7 ON7 OP9 ON9 1 2 3 4 5 6 7 8 9 10 11 12 13 VEE VEE VCC VCC VEE VEE VEE VEE VCC DVCC VCC IN20 IP21 AC VCC VTTOA VTTOA VTTOA VTTOA VCC VCC VEE IP20 VEE AD OP10 ON10 OP12 ON12 OP14 ON14 OP16 ON16 OP18 ON18 VEE VEE VEE VEE AE OP11 ON11 OP13 ON13 OP15 ON15 OP17 ON17 OP19 ON19 VEE VEE VEE AF 24 25 26 14 15 16 Figure 6. Pin Configuration Rev. 0 | Page 8 of 56 17 18 19 20 21 22 23 09796-006 3 ADN4605 Table 7. Pin Function Descriptions Pin No. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 Mnemonic VEE VEE VEE ON39 OP39 ON37 OP37 ON35 OP35 ON33 OP33 ON31 OP31 ON29 OP29 ON27 OP27 ON25 OP25 ON23 OP23 ON21 OP21 VEE VEE VEE VEE VEE VEE VEE ON38 OP38 ON36 OP36 ON34 OP34 ON32 OP32 ON30 OP30 ON28 OP28 ON26 OP26 ON24 OP24 ON22 OP22 Type Power Power Power Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Power Power Power Power Power Power Power Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Description Negative Supply. Negative Supply. Negative Supply. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. Rev. 0 | Page 9 of 56 ADN4605 Pin No. B23 B24 B25 B26 C1 C2 C3 C4 C5 C6 C7 Mnemonic ON20 OP20 VEE VEE VEE IP0 VEE VCC VCC VCC VTTOB Type Output Output Power Power Power Input Power Power Power Power Power C8 VTTOB Power C9 VTTOB Power C10 VTTOB Power C11 C12 C13 VCC VCC VTTOB Power Power Power C14 VTTOB Power C15 VTTOB Power C16 C17 C18 VCC VCC VTTOB Power Power Power C19 VTTOB Power C20 VTTOB Power C21 VTTOB Power C22 C23 C24 C25 C26 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 VCC VCC DVCC VEE VEE IP1 IN0 VCC DVCC VCC VCC VEE VEE VEE VEE VCC VCC Power Power Power Power Power Input Input Power Power Power Power Power Power Power Power Power Power Description High Speed Output Complement. High Speed Output. Negative Supply. Negative Supply. Negative Supply. High Speed Input. Negative Supply. Positive Supply. Positive Supply. Positive Supply. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). T The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Positive Supply. Positive Supply. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Positive Supply. Positive Supply. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Output Termination Supply (B). The VTTOB pins are normally tied to the VTTOA pins. Positive Supply. Positive Supply. Digital Positive Supply. Negative Supply. Negative Supply. High Speed Input. High Speed Input Complement. Positive Supply. Digital Positive Supply. Positive Supply. Positive Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Positive Supply. Positive Supply. Rev. 0 | Page 10 of 56 ADN4605 Pin No. D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 E1 E2 E3 E4 E23 E24 E25 E26 F1 F2 F3 Mnemonic VEE VEE VEE VCC VCC VEE VEE VEE VEE VCC DVCC VCC VEE IN39 IN1 IP2 VCC VEE VEE VCC IN38 IP39 IP3 IN2 VTTIA Type Power Power Power Power Power Power Power Power Power Power Power Power Power Input Input Input Power Power Power Power Input Input Input Input Power F4 F23 F24 VEE VEE VTTIB Power Power Power F25 F26 G1 G2 G3 IP38 IN37 IN3 IP4 VTTIA Input Input Input Input Power G4 G23 G24 VEE VEE VTTIB Power Power Power G25 G26 H1 H2 H3 IN36 IP37 IP5 IN4 VTTIA Input Input Input Input Power H4 H23 VEE WE/SCL/SCK Power Control H24 VTTIB Power Description Negative Supply. Negative Supply. Negative Supply. Positive Supply. Positive Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Positive Supply. Digital Positive Supply. Positive Supply. Negative Supply. High Speed Input Complement. High Speed Input Complement. High Speed Input. Positive Supply. Negative Supply. Negative Supply. Positive Supply. High Speed Input Complement. High Speed Input High Speed Input High Speed Input Complement. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Negative Supply. Negative Supply. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input. High Speed Input Complement. High Speed Input Complement. High Speed Input. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Negative Supply. Negative Supply. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input Complement. High Speed Input. High Speed Input. High Speed Input Complement. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Negative Supply. Parallel control interface: First-Rank Write Strobe (WE) Active Low. I2C Control Interface: I2C Clock (SCL). SPI Control Interface: SPI Clock (SCK). Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. Rev. 0 | Page 11 of 56 ADN4605 Pin No. H25 H26 J1 J2 J3 Mnemonic IP36 IN35 IN5 IP6 VTTIA Type Input Input Input Input Power J4 I2C/SPI/UPDATE Control J23 RE/SDI Control J24 VTTIB Power J25 J26 K1 K2 K3 K4 IN34 IP35 IP7 IN6 VCC SER/PAR Input Input Input Input Power Control K23 K24 K25 K26 L1 L2 L3 L4 CS VCC IP34 IN33 IN7 IP8 VCC RESET Control Power Input Input Input Input Power Control L23 DATA0/SDA/SDO Control L24 L25 L26 M1 M2 M3 VCC IN32 IP33 IP9 IN8 VTTIA Power Input Input Input Input Power M4 ADDR0 Control M23 DATA1/UPDATE Control M24 VTTIB Power M25 M26 N1 N2 N3 IP32 IN31 IN9 IP10 VTTIA Input Input Input Input Power N4 ADDR1 Control Description High Speed Input. High Speed Input Complement. High Speed Input Complement. High Speed Input. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. I2C Control Interface Selection (I2C). SPI Control Interface Selection (SPI) Active Low. Parallel Control Interface (UPDATE) Active Low. Parallel Control Interface: Read Strobe (RE) Active Low. SPI Control Interface: Data Input (SDI) SPI Control. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input. High Speed Input Complement. High Speed Input. High Speed Input Complement. Power Supply. Serial Control Interface Selection (SER). Parallel Control Interface Selection (PAR) Active Low. Chip Select Active Low. Positive Supply. High Speed Input. High Speed Input Complement. High Speed Input Complement. High Speed Input. Positive Supply. Configuration Registers: Reset (Active Low). This pin is normally pulled up to DVCC. Parallel Control Interface: Register Data Bit 0 (DATA0). I2C Control Interface: Data In (SDA). SPI Control Interface: Data Out (SDO). Positive Supply. High Speed Input Complement. High Speed Input. High Speed Input. High Speed Input Complement. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Parallel Control Interface: Register Address Bit 0. I2C Control Interface: Slave Address Bit 0. Parallel Control Interface: Register (DATA1). Data Bit 1. I2C or SPI Serial Control Interface (UPDATE). Active Low. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input High Speed Input Complement. High Speed Input Complement. High Speed Input. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Parallel Control Interface: Register Address Bit 1. I2C Control Interface: Slave Address Bit 1. Rev. 0 | Page 12 of 56 ADN4605 Pin No. N23 N24 Mnemonic DATA2 VTTIB Type Control Power N25 N26 P1 P2 P3 IN30 IP31 IP11 IN10 VTTIA Input Input Input Input Power P4 ADDR2 Control P23 P24 DATA3 VTTIB Control Power P25 P26 R1 R2 R3 R4 IP30 IN29 IN11 IP12 VCC ADDR3 Input Input Input Input Power Control R23 R24 R25 R26 T1 T2 T3 T4 DATA4 VCC IN28 IP29 IP13 IN12 VCC ADDR4 Control Power Input Input Input Input Power Control T23 T24 T25 T26 U1 U2 U3 DATA5 VCC IP28 IN27 IN13 IP14 VTTIA Control Power Input Input Input Input Power U4 ADDR5 Control U23 U24 DATA6 VTTIB Control Power U25 U26 V1 V2 V3 IN26 IP27 IP15 IN14 VTTIA Input Input Input Input Power V4 ADDR6 Control V23 DATA7 Control Description Parallel Control Interface: Register Data Bit 2. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input Complement. High Speed Input. High Speed Input. High Speed Input Complement. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Parallel Control Interface: Register Address Bit 2. I2C Control Interface: Slave Address Bit 2. Parallel Control Interface: Register Data Bit 3. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input. High Speed Input Complement. High Speed Input Complement. High Speed Input. Positive Supply. Parallel Control Interface: Register Address Bit 3. I2C Control Interface: Slave Address Bit 3. Parallel Control Interface: Register Data Bit 4. Positive Supply. High Speed Input Complement. High Speed Input. High Speed Input. High Speed Input Complement. Positive Supply. Parallel Control Interface: Register Address Bit 4. I2C Control Interface: Slave Address Bit 4. Parallel Control Interface: Register Data Bit 5. Positive Supply. High Speed Input. High Speed Input Complement. High Speed Input Complement. High Speed Input. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Parallel Control Interface: Register Address Bit 5. I2C Control Interface: Slave Address Bit 5. Parallel Control Interface: Register Data Bit 6. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input Complement. High Speed Input. High Speed Input. High Speed Input Complement. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Parallel Control Interface: Register Address Bit 6. I2C Control Interface: Slave Address Bit 6. Parallel Control Interface: Register Data Bit 7. Rev. 0 | Page 13 of 56 ADN4605 Pin No. V24 Mnemonic VTTIB Type Power V25 V26 W1 W2 W3 IP26 IN25 IN15 IP16 VTTIA Input Input Input Input Power W4 ADDR7 Control W23 W24 VEE VTTIB Power Power W25 W26 Y1 Y2 Y3 IN24 IP25 IP17 IN16 VTTIA Input Input Input Input Power Y4 Y23 Y24 VEE VEE VTTIB Power Power Power Y25 Y26 AA1 AA2 AA3 AA4 AA23 AA24 AA25 AA26 AB1 AB2 AB3 AB4 AB23 AB24 AB25 AB26 AC1 AC2 AC3 AC4 AC5 AC6 AC7 AC8 AC9 AC10 IP24 IN23 IN17 IP18 VCC VEE VEE VCC IN22 IP23 IP19 IN18 VCC VEE VEE VCC IP22 IN21 IN19 VEE VCC DVCC VCC VCC VEE VEE VEE VEE Input Input Input Input Power Power Power Power Input Input Input Input Power Power Power Power Input Input Input Power Power Power Power Power Power Power Power Power Description Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input. High Speed Input Complement. High Speed Input Complement. High Speed Input. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Parallel Control Interface: Register Address Bit 7. I2C Control Interface: Slave Address Bit 7. Negative Supply. Input Termination Supply (B). The VTTIB pins are normally tied to the VTTIA pins. High Speed Input Complement. High Speed Input. High Speed Input. High Speed Input Complement. Input Termination Supply (A). The VTTIA pins are normally tied to the VTTIB pins. Negative Supply. Negative Supply. Input Termination Supply (B). The VTTOB pins are normally tied to the VTTIA pins. High Speed Input. High Speed Input Complement. High Speed Input Complement. High Speed Input. Positive Supply. Negative Supply. Negative Supply. Positive Supply. High Speed Input Complement. High Speed Input. High Speed Input. High Speed Input Complement. Positive Supply. Negative Supply. Negative Supply. Positive Supply. High Speed Input. High Speed Input Complement. High Speed Input Complement. Negative Supply. Positive Supply. Digital Positive Supply. Positive Supply. Positive Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Rev. 0 | Page 14 of 56 ADN4605 Pin No. AC11 AC12 AC13 AC14 AC15 AC16 AC17 AC18 AC19 AC20 AC21 AC22 AC23 AC24 AC25 AC26 AD1 AD2 AD3 AD4 AD5 AD6 AD7 Mnemonic VCC VCC VEE VEE VEE VCC VCC VEE VEE VEE VEE VCC DVCC VCC IN20 IP21 VEE VEE VEE VCC VCC VCC VTTOA Type Power Power Power Power Power Power Power Power Power Power Power Power Power Power Input Input Power Power Power Power Power Power Power AD8 VTTOA Power AD9 VTTOA Power AD10 VTTOA Power AD11 AD12 AD13 VCC VCC VTTOA Power Power Power AD14 VTTOA Power AD15 VTTOA Power AD16 AD17 AD18 VCC VCC VTTOA Power Power Power AD19 VTTOA Power AD20 VTTOA Power AD21 VTTOA Power AD22 AD23 AD24 AD25 AD26 VCC VCC VEE IP20 VEE Power Power Power Input Power Description Positive Supply. Positive Supply. Negative Supply. Negative Supply. Negative Supply. Positive Supply. Positive Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Positive Supply. Digital Positive Supply. Positive Supply. High Speed Input Complement. High Speed Input. Negative Supply. Negative Supply. Negative Supply. Positive Supply. Positive Supply. Positive Supply. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Positive Supply. Positive Supply. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Positive Supply. Positive Supply. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Output Termination Supply (A). The VTTOA pins are normally tied to the VTTOB pins. Positive Supply. Positive Supply. Negative Supply. High Speed Input. Negative Supply. Rev. 0 | Page 15 of 56 ADN4605 Pin No. AE1 AE2 AE3 AE4 AE5 AE6 AE7 AE8 AE9 AE10 AE11 AE12 AE13 AE14 AE15 AE16 AE17 AE18 AE19 AE20 AE21 AE22 AE23 AE24 AE25 AE26 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 AF16 AF17 AF18 AF19 AF20 AF21 AF22 Mnemonic VEE VEE OP0 ON0 OP2 ON2 OP4 ON4 OP6 ON6 OP8 ON8 OP10 ON10 OP12 ON12 OP14 ON14 OP16 ON16 OP18 ON18 VEE VEE VEE VEE VEE VEE VEE OP1 ON1 OP3 ON3 OP5 ON5 OP7 ON7 OP9 ON9 OP11 ON11 OP13 ON13 OP15 ON15 OP17 ON17 OP19 Type Power Power Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Power Power Power Power Power Power Power Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Description Negative Supply. Negative Supply. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. Negative Supply. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. High Speed Output Complement. High Speed Output. Rev. 0 | Page 16 of 56 ADN4605 Pin No. AF23 AF24 AF25 AF26 Mnemonic ON19 VEE VEE VEE Type Output Power Power Power Description High Speed Output Complement. Negative Supply. Negative Supply. Negative Supply. Rev. 0 | Page 17 of 56 ADN4605 TYPICAL PERFORMANCE CHARACTERISTICS VCC = 2.5 V, VTTIx = 2.5 V, VTTOx = 2.5 V, DVCC = 3.3 V, VEE = 0 V, RL = 50 Ω, output level (OLEV) = 4 (16 mA), preemphasis (PE) = 0 (0 dB), equalizer (EQ) = 1 (3 dB), data rate = 4.25 Gbps (PRBS7 data pattern), ac-coupled inputs and outputs, differential input swing = 800 mV p-p, TA = 25°C, unless otherwise noted. DATA OUT 2 50Ω CABLES INPUT PIN OUTPUT 2 PIN 50Ω CABLES 2 50Ω ADN4605 AC-COUPLED EVALUATION BOARD TP1 TP2 HIGH SPEED SAMPLING OSCILLOSCOPE 09796-048 PATTERN GENERATOR 2 09796-034 09796-035 200mV/DIV 200mV/DIV Figure 7. Standard Test Circuit 0.167UI/DIV Figure 8. 3.25 Gbps Input Eye (TP1 from Figure 7) Figure 10. 3.25 Gbps Output Eye (TP2 from Figure 7) 0.167UI/DIV Figure 11. 4.25 Gbps Output Eye (TP2 from Figure 7) Figure 9. 4.25 Gbps Input Eye (TP1 from Figure 7) Rev. 0 | Page 18 of 56 09796-046 0.167UI/DIV 09796-047 200mV/DIV 200mV/DIV 0.167UI/DIV ADN4605 DATA OUT 2 50Ω CABLES 2 50Ω CABLES 2 2 DIFFERENTIAL STRIPLINE TRACES TP1 TP2 8mils WIDE, 8mils SPACE, 8mils DIELECTRIC HEIGHT LENGTHS = 10 INCHES, 20 INCHES, 30 INCHES, 40 INCHES INPUT OUTPUT 2 PIN PIN 50Ω CABLES 2 50Ω ADN4605 AC-COUPLED EVALUATION BOARD TP3 HIGH SPEED SAMPLING OSCILLOSCOPE 09796-049 PATTERN GENERATOR FR4 TEST BACKPLANE Figure 13. 4.25 Gbps Input Eye, 20 Inch FR4 Input Channel (TP2 from Figure 12) 0.167UI/DIV 09796-038 0.167UI/DIV 09796-040 200mV/DIV 200mV/DIV Figure 12. Equalization Test Circuit Figure 14. 4.25 Gbps Input Eye, 40-Inch FR4 Input Channel (TP2 from Figure 12) 0.167UI/DIV 09796-043 0.167UI/DIV 09796-045 200mV/DIV 200mV/DIV Figure 15. 4.25 Gbps Output Eye, 20-Inch FR4 Input Channel, EQ = 12 dB (TP3 from Figure 12) Figure 16. 4.25 Gbps Output Eye, 40-Inch FR4 Input Channel, EQ = 12 dB (TP3 from Figure 12) Rev. 0 | Page 19 of 56 ADN4605 DATA OUT 2 50Ω CABLES 2 2 50Ω CABLES 2 50Ω HIGH DIFFERENTIAL SPEED STRIPLINE TRACES TP2 TP3 SAMPLING 8mils WIDE, 8mils SPACE, 8mils DIELECTRIC HEIGHT OSCILLOSCOPE LENGTHS = 10 INCHES, 20 INCHES, 30 INCHES, 40 INCHES ADN4605 TP1 FR4 TEST BACKPLANE AC-COUPLED EVALUATION BOARD 09796-050 PATTERN GENERATOR 50Ω CABLES 2 INPUT OUTPUT 2 PIN PIN 0.167UI/DIV Figure 20. 4.25 Gbps Output Eye, 20-Inch FR4 Input Channel, PE = 5.6 dB (TP3 from Figure 17) 0.167UI/DIV Figure 19. 4.25 Gbps Output Eye, 40-Inch FR4 Input Channel, PE = 0 dB (TP3 from Figure 17) 09796-041 0.167UI/DIV 09796-044 200mV/DIV 200mV/DIV Figure 18. 4.25 Gbps Output Eye, 20-Inch FR4 Output Channel, PE = 0 dB (TP3 from Figure 17) 09796-036 200mV/DIV 0.167UI/DIV 09796-039 200mV/DIV Figure 17. Preemphasis Test Circuit Figure 21. 4.25 Gbps Output Eye, 40-Inch FR4 Input Channel, PE = 9.5 dB (TP3 from Figure 17) Rev. 0 | Page 20 of 56 ADN4605 1000 EQ = 3dB EQ = 6dB EQ = 12dB 900 800 80 EYE HEIGHT (mV p-p DIFF) DETERMINISTIC JITTER (ps) 100 60 40 700 600 500 400 300 200 20 0 1 2 3 4 5 DATA RATE (Gbps) 0 09796-033 0 0 3 4 5 Figure 25. Eye Height vs. Data Rate 1000 EQ = 3dB EQ = 6dB EQ = 12dB 900 800 80 EYE HEIGHT (mV p-p DIFF) DETERMINISTIC JITTER (ps) 2 DATA RATE (Gbps) Figure 22. Deterministic Jitter vs. Data Rate 100 1 09796-030 100 60 40 700 600 500 400 300 200 20 2.50 2.75 3.00 3.25 3.50 3.75 SUPPLY VOLTAGE (V) 0 2.25 09796-024 0 2.25 3.00 3.25 3.50 3.75 Figure 26. Eye Height vs. Supply Voltage 1000 EQ = 3dB EQ = 6dB EQ = 12dB EQ = 3dB EQ = 6dB EQ = 12dB 900 800 EYE HEIGHT (mV p-p DIFF) 80 60 40 700 600 500 400 300 200 20 0 –40 –15 10 35 60 TEMPERATURE (°C) 85 0 –40 –15 10 35 60 TEMPERATURE (°C) Figure 27. Eye Height vs. Temperature Figure 24. Deterministic Jitter vs. Temperature Rev. 0 | Page 21 of 56 85 09796-026 100 09796-025 DETERMINISTIC JITTER (ps) 2.75 SUPPLY VOLTAGE (V) Figure 23. Deterministic Jitter vs. Supply Voltage 100 2.50 09796-027 100 ADN4605 60 0dB 2.2dB 3.5dB 5.4dB 6.0dB 7.4dB 9.5dB 90 DETERMINISTIC JITTER (ps) 50 DETERMINISTIC JITTER (ps) 100 EQ = 3dB EQ = 6dB EQ = 12dB 40 30 20 10 80 70 60 50 40 30 20 10 20 30 40 INPUT FR4 TRACE LENGTH (Inches) 0 09796-032 0 90 90 80 80 70 70 60 60 JITTER (ps) 50 40 50 60 70 40 DETERMINISTIC JITTER p-p 20 10 RANDOM JITTER RMS 0.1 1 0 09796-029 0 0.01 INPUT SWING (VDIFF p-p ) RANDOM JITTER RMS 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 INPUT COMMON-MODE (V) 09796-028 10 Figure 32. Jitter vs. Input Common-Mode Voltage Figure 29. Jitter vs. Differential Input Swing 0 VCC = 2.5V VCC = 3.3V –5 80 –10 70 –15 LOSS (dB) 60 50 40 –20 –25 –30 30 20 –35 10 –40 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 TERMINATION VOLTAGE (V) 09796-022 DETERMINISTIC JITTER (ps) 40 50 30 DETERMINISTIC JITTER p-p 20 0 30 –45 100k 6 INCHES 10 INCHES 20 INCHES 40 INCHES 30 INCHES 1M 10M 100M FREQUENCY (Hz) Figure 33. S21 Test Traces Figure 30. Deterministic Jitter vs. Output Termination Voltage (VTTO) Rev. 0 | Page 22 of 56 1G 10G 09796-017 JITTER (ps) 100 90 20 Figure 31. Deterministic Jitter vs. Output FR4 Channel Length 100 100 10 OUTPUT FR4 CHANNEL LENGTH (Inches) Figure 28. Deterministic Jitter vs. Input FR4 Channel Length 30 0 09796-031 10 0 ADN4605 140 25000 STANDARD DEVIATION = 0.81ps 120 100 SAMPLES RISE/FALL TIME (ps) 20000 80 60 15000 10000 40 5000 RISE TIME FALL TIME 0 20 40 60 80 100 TEMPERATURE (°C) 0 –4.0 –3.7 –3.4 –3.0 –2.7 –2.4 –2.1 –1.8 –1.4 –1.1 –0.8 –0.5 –0.2 0.2 0.5 0.8 1.1 1.4 1.8 2.1 2.4 2.7 3.0 3.4 3.7 4.0 –20 09796-018 0 –40 RANDOM JITTER (ps) Figure 37. Random Jitter Histogram 1200 1200 1150 1150 1100 1100 PROPAGATION DELAY (ps) 1050 1000 950 900 VCC = 2.5V VCC = 3.3V 1050 1000 950 900 2.375 2.500 3.300 800 –40 09796-051 800 3.630 SUPPLY VOLTAGE (V) 20 40 60 80 100 10G Figure 38. Propagation Delay vs. Temperature 5 0 –5 RETURN LOSS (dB) –10 –15 –20 –25 –30 S22 –35 –40 S11 1080 1100 09796-023 PROPAGATION DELAY (ps) 1040 1060 1000 1020 960 980 920 940 880 900 –45 860 820 840 780 800 740 760 700 720 0 TEMPERATURE (°C) Figure 35. Propagation Delay vs. Supply Voltage 160 152 PROP DELAY MEAN 922.4ps 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 –20 09796-020 850 850 09796-019 PROPAGATION DELAY (ps) Figure 34. Rise/Fall Time vs. Temperature SAMPLES 09796-021 20 Figure 36. Propagation Delay Histogram –50 10M 100M 1G FREQUENCY (Hz) Figure 39. Return Loss (S11, S22) Rev. 0 | Page 23 of 56 ADN4605 THEORY OF OPERATION DVCC INTRODUCTION The ADN4605 is a 40 × 40, buffered, asynchronous crosspoint switch that provides input equalization, output preemphasis, and output level programming capabilities. The receivers integrate an equalizer that is optimized to compensate for typical backplane losses. The switch supports multicast and broadcast operation, allowing the ADN4605 to work in redundancy and port replication applications. IP[39:0] VTTIA, VTTIB IN[39:0] Rx VCC 40 × 40 SWITCH MATRIX EQ Tx OP[39:0] PREEMPHASIS VTTOA, VTTOB ON[39:0] EQUALIZATION SETTINGS CONNECTION MAP 1 CONNECTION MAP 0 RESET SER/PAR I2C/SPI (UPDATE) CS SCL/SCK/ WE SDI/RE PREEMPHASIS LEVEL SETTINGS DATA[0]/ SDA/SDO DATA[1] (UPDATE) DATA[7:2] PARALLEL/SERIA L CONTROL LOGIC INTERFACE ADDR[7:0] ADN4605 VEE 09796-007 The ADN4605 is configured through either the serial or parallel control interface. The serial or parallel control interface is selected using the SER/PAR dedicated control pin. The serial interface supports both I2C and SPI protocols selected using the I2C/SPI dedicated control pin. The ADN4605 control pins function differently depending on which programming interface is selected, as described in Table 8. OUTPUT LEVEL SETTINGS Figure 40. Block Diagram Table 8. Parallel/Serial Interface Pin Control I2C Mode (SER/PAR = 1, I2C/SPI = 1) Parallel Mode (SER/PAR = 0) Pin No. K4 Pin Name SER/PAR J4 SPI Mode (SER/PAR = 1, I2C/SPI = 0) I2C/SPI/UPDATE Pin Function Serial/parallel control interface selection Update strobe Pin Function Serial/parallel control interface selection I2C/SPI control interface selection Pin Function Serial/parallel control interface selection I2C/SPI control interface selection H23 WE/SCL/SCK Parallel write strobe I2C clock SPI clock J23 RE/SDI Parallel read strobe N/A SPI data input K23 CS Chip select N/A Chip select L23 M23 DATA0/SDA/SDO DATA1/UPDATE Parallel register data bit (LSB) Parallel register data bits I2C data input Update strobe SPI data output Update strobe N23, P23, R23, T23, U23, V23 L4 DATA2 to DATA7 Parallel register data bits N/A N/A RESET Device register reset (active low) Device register reset (active low) M4 ADDR0 N/A N/A N4, P4, R4, T4, U4, V4, W4 ADDR1to ADDR7 Device register reset (active low) Parallel register address bit (LSB) Parallel register address bits I2C LSB device address to I2C MSB device address N/A Rev. 0 | Page 24 of 56 ADN4605 input channel to the specified logic combinations as shown in Table 9. RECEIVERS Input Structure and Input Levels VCC The ADN4605 receiver inputs incorporate 50 Ω termination resistors, ESD protection, and a fixed equalizer that is optimized for operation over long backplane traces. Each receive channel also provides a positive/negative (P/N) inversion function, which allows the user to swap the sign of the input signal path to eliminate the need for board-level crossovers. VTTI RP 53Ω RN 53Ω R1 210Ω R3 630Ω R2 210Ω R4 630Ω IPx EQUALIZER INx Equalization The ADN4605 receiver incorporates a continuous time equalizer (EQ) that provides up to 12 dB of high frequency boost to compensate up to 40 inches of FR4 at 4.25 Gbps. Each input has two equalizer control bits. The receiver is disabled by default. The boost can be set to defined levels by programming the respective address register bits (Address 0xC0 through Address 0xC9) for the target 600µA 09796-008 600µA VEE Figure 41. Simplified Input Circuit Table 9. Equalization Control Registers Register Address 0xC0 Default 0x0 Register Name Rx EQ Control (Rx IN 3 to Rx IN 0) 0xC1 0x0 Rx EQ Control (Rx IN 7 to Rx IN 4) 0xC2 0x0 Rx EQ Control (Rx IN 11 to Rx IN 8) 0xC3 0x0 Rx EQ Control (Rx IN 15 to Rx IN 12) 0xC4 0x0 Rx EQ Control (Rx IN 19 to Rx IN 16) 0xC5 0x0 Rx EQ Control (Rx IN 23to Rx IN 20) 0xC6 0x0 Rx EQ Control (Rx IN 27 to Rx IN 24) Bits 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 Bit Name RXEQIN [3] RXEQIN [2] RXEQIN [1] RXEQIN [0] RXEQIN [7] RXEQIN [6] RXEQIN [5] RXEQIN [4] RXEQIN [11] RXEQIN [10] RXEQIN [9] RXEQIN [8] RXEQIN [15] RXEQIN [14] RXEQIN [13] RXEQIN [12] RXEQIN [19] RXEQIN [18] RXEQIN [17] RXEQIN [16] RXEQIN [23] RXEQIN [22] RXEQIN [21] RXEQIN [20] RXEQIN [27] RXEQIN [26] RXEQIN [25] RXEQIN [24] Rev. 0 | Page 25 of 56 Functionality Description 00 = Rx disabled (default) 01 = 3 dB boost 10 = 6 dB boost 11 = 12 dB boost ADN4605 Register Address 0xC7 Default 0x0 Register Name Rx EQ Control (Rx IN 31 to Rx IN 28) 0xC8 0x0 Rx EQ Control (Rx IN35 to Rx IN 32) 0xC9 0x0 Rx EQ Control (Rx IN 39 to Rx IN 36) 0xCA 0x0 (Write only) Rx EQ Control (Rx IN Broadcast) Bits 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 1:0 Bit Name RXEQIN [31] RXEQIN [30] RXEQIN [29] RXEQIN [28] RXEQIN [35] RXEQIN [34] RXEQIN [33] RXEQIN [32] RXEQIN [39] RXEQIN [38] RXEQIN [37] RXEQIN [36] RXEQIN BC Functionality Description 00 = Rx disabled (default) 01 = 3 dB boost 10 = 6 dB boost 11 = 12 dB boost POLARITY INVERSION The P/N inversion is a feature intended to allow the user to implement the equivalent of a board-level crossover in a much smaller area and without additional via impedance discontinuities that degrade the high frequency integrity of the signal path. The P/N inversion is available independently for each of the 40 input and output channels, which are controlled by writing to the RXSIGN bit of the RX Sign control registers (Addresses 0xCB through Address 0xCF) and the TXSIGN bit of the TX control registers (Address 0xA9 through Address 0xAD). Table 10. Signal Path Polarity Control Register Address 0xCB Default 0x00 0xCC 0x00 0xCD 0x00 0xCE 0x00 0xCF 0x00 0xA9 0x00 0xAA 0x00 0xAB 0x00 0xAC 0x00 0xAD 0x00 Register Name RX SIGN RX IN 07 to RX IN 00 RX SIGN RX IN 15 to RX IN 08 RX SIGN RX IN 23 to RX IN 16 RX SIGN RX IN31 to RX IN 24 RX SIGN RX IN 39 to RX IN 32 TX SIGN TX OUT 07 to TX OUT 00 TX SIGN TX OUT 15 to TX OUT 08 TX SIGN TX OUT 23 to TX OUT 16 TX SIGN TX OUT 31 to TX OUT 24 TX SIGN TX OUT 39 to TX OUT 32 Bits 7: 0 Bit Name RXSIGN [7]to RXSIGN [0] 7: 0 RXSIGN [15] to RXSIGN [8] 7: 0 RXSIGN[23] to RXSIGN [16] 7: 0 RXSIGN [31] to RXSIGN [24] 7: 0 RXSIGN [39] to RXSIGN [32] 7: 0 TXSIGN [7] to TXSIGN [0] 7: 0 TXSIGN [15] to TXSIGN [8] 7: 0 TXSIGN [23] to TXSIGN [16] 7: 0 TXSIGN [31] to TXSIGN [24] 7: 0 TXSIGN [39] to TXSIGN [32] Rev. 0 | Page 26 of 56 Functionality Description Signal path polarity inversion (input/output) 0 = noninvert 1 = invert ADN4605 Similarly, by default, Map 1 contains the opposite diagonal connection configuration where Input 0 is connected to Output 39, Input 1 to Output 38, and so on. Both maps are read/write accessible registers. The active map is selected by writing to the XPT Map Table Select register (Address 0x02). SWITCH CORE The ADN4605 switch core is a fully nonblocking 40 × 40 array that allows multicast and broadcast configurations. The configuration of the switch core is programmed through either the serial or parallel control interface. The crosspoint configuration map, which controls the connectivity of the switch core, consists of a double rank register architecture, as shown in Figure 42. The crosspoint is configured by addressing the register assigned to the desired output and writing the desired connection data into the first rank of latches in either Map 0 or Map 1. The connection data is equivalent to the binary coded value of the input number. This process is repeated until each of the desired connections is programmed. The second rank registers contain the current state of the crosspoint. The first rank registers contain the next state. Each entry in the connection map stores six bits per output, which indicates which of the 40 inputs are connected to a given output. An entire connectivity matrix can be programmed at once by passing data from the first rank registers into the second rank by writing 0x01 to the XPT Update register (Address 0x01). An external UPDATE pin can also be used to control the data transfer as shown in Table 8. In situations where multiple outputs are to be programmed to a single input, a broadcast command is available. A broadcast command is issued by writing the binary value of the desired input to the XPT Broadcast register (Address 0x03). The broadcast is applied to the selected map table. The current state of the crosspoint connectivity is available by reading the XPT Status registers (Address 0x54 to Address 0x7B). Register descriptions for Map 0, Map 1, and XPT status registers are shown in Table 11. The first rank registers store connection configurations for the crosspoint. Map 0 is the default map and is located at Address 0x04 to Address 0x2B. By default, Map 0 contains a diagonal connection configuration whereby Input 0 is connected to Output 0, Input 1 to Output 1, Input 2 to Output 2, and so on. FIRST RANK REGISTERS 0 XPT MAP 0 OUTPUTS 39 INPUTS 0 SECOND RANK REGISTERS XPT CORE OUTPUTS 39 0 INPUTS 39 REGISTER 0x04 TO REGISTER 0x2B 0 0 XPT MAP 1 OUTPUTS 39 39 REGISTER 0x2C TO REGISTER 0x53 1 MAP TABLE SELECT REGISTER 0x02 39 UPDATE REGISTER 0x01/ EXTERNAL PIN XPT STATUS READ REGISTER 0x54 TO REGISTER 0x7B Figure 42. Crosspoint Connection Map Block Diagram Rev. 0 | Page 27 of 56 09796-009 0 INPUTS 0 ADN4605 Table 11. XPT Control Registers Register Address 0x00 0x01 0x02 0x03 0x04 to 0x2B Default 0x00 (Write only) 0x00 (Write only) 0x00 Register Name Software Reset Bits 0 Bit Name Software reset Functionality Description Reset the ADN4605 registers to default values XPT Update 0 XPT Update Updates XPT switch core (active high) XPT Map Table Select 0 Map Table Select 0x00 (Write only) 0x00 to 0x27 XPT Broadcast 5:0 XPT BCAST [5:0] 0: Map 0 is selected (default) 1: Map 1 is selected Assigns all output values at once for the selected XPT table map XPT Map 0 5:0 OUT x [5:0] Output (x = 0 to 39) connection assignments 5:0 OUT x [5:0] Output (x = 39 to 0) connection assignments 5:0 OUT x [5:0] Output (x = 0 to 39) connection status Control 0 to Control 39 0x2C to 0x53 0x27 to 0x00 0x54 to 0x7B 0x00 to 0x00 XPT Map 1 Control 39 to Control 0 XPT Status Control 39 to Control 0 RESET On initial power-up, or at any point in operation, the ADN4605 register set can be restored to the default values by pulling the RESET pin low according to the control logic timing specifications. During normal operation, however, the RESET pin must be pulled up to DVCC. A software reset is also available by writing the value 0x01 to the Reset register at Address 0x00. This register is write-only. Rev. 0 | Page 28 of 56 ADN4605 Table 12 summarizes the absolute output levels and preemphasis level control settings. The output level control sets the dc current level, and the preemphasis level control sets the PE current in the transmitter, as shown in Figure 43. The full resolution of eight settings is available through the serial or parallel interface. A single setting can be programmed to all outputs simultaneously by writing to the TX Lane Control Broadcast Register (Address 0xA8). TRANSMITTERS Output Structure and Output Levels The ADN4605 transmitter outputs incorporate 50 Ω termination resistors, ESD protection, and output current switches. Each channel provides independent control of both the absolute output level and the preemphasis output level. Note that the choice of output current affects the output common-mode level. Preemphasis In addition to the enabled state, the Tx has three possible disabled states (standby, squelched, and disabled) controlled by the Tx Drive Control registers (Address 0xB0 to Address 0xB9) shown in Table 13. Disabled is the lowest power-down state. When squelched, the output voltage at both the P and N outputs is the common-mode voltage as defined by the output current settings. Note that the squelch feature is only available when using a 3.3 V core supply voltage (VCC). In standby, the output level of both P and N outputs is pulled up to the termination supply (VTTOA or VTTOB). Transmission line attenuation can be equalized at the transmitter using preemphasis. The transmit equalizer setting can be chosen by matching the channel loss to the amount of boost provided by the preemphasis. Transmitter preemphasis levels, as well as dc output levels, can be set through either the serial or parallel control interface. VCC ESD ON-CHIP TERMINATION VTTOx V3 VC RP 50Ω RN 50Ω V2 VP OPx V1 VN ONx Q1 IDC + IPE = IT VEE 09796-010 Q2 Figure 43. Simplified Tx Output Circuit Table 12. Preemphasis and Output Level Settings Register Address 0x80 (Output 0) to 0xA7 (Output 39) and 0xA8 (Tx Broadcast) Default 0x40 Register Name Tx Lane Control Output 0 to Tx Lane Control Output 39 and Tx Broadcast Bits 7 6:4 Bit Name Reserved OLEV Description 0 (Reserve bit) 000: 0 mA 001: 4 mA 010: 8 mA 011: 12 mA 100: 16 mA 101: 20 mA 110: 24 mA 111: (Reserve bit) Rev. 0 | Page 29 of 56 3 Overdrive 1: overdrive (increases OLEV and PE currents by 25%) 0: no overdrive 2:0 PE 000: 0 mA 001: 2 mA 010: 3 mA 011: 4 mA 100: 5 mA 101: 6 mA 110: 7 mA 111: 8 mA ADN4605 Table 13. Transmitter Output Enable State Settings Register Address 0xB0 Default 0x00 Register Name Tx Drive Control Tx3 to Tx0 0xB1 0x00 Tx Drive Control Tx7 to Tx4 0xB2 0x00 Tx Drive Control Tx11 to Tx8 0xB3 0x00 Tx Drive Control Tx15 to Tx12 0xB4 0x00 Tx Drive Control Tx19 to Tx16 0xB5 0x00 Tx Drive Control Tx23 to Tx20 0xB6 0x00 Tx Drive Control Tx27 to Tx24 0xB7 0x00 Tx Drive Control Tx31 to Tx28 0xB8 0x00 Drive Control Tx35 to Tx32 0xB9 0x00 Drive Control Tx39 to Tx36 0xBA 0x00 (Write only) Tx Drive Control Bits 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 7:6 5:4 3:2 1:0 1:0 Rev. 0 | Page 30 of 56 Bit Name TXEN [3] TXEN [2] TXEN [1] TXEN [0] TXEN [7] TXEN [6] TXEN [5] TXEN [4] TXEN [11] TXEN [10] TXEN [9] TXEN [8] TXEN [15] TXEN [14] TXEN [13] TXEN [12] TXEN [19] TXEN [18] TXEN [17] TXEN [16] TXEN [23] TXEN [22] TXEN [21] TXEN [20] TXEN [27] TXEN [26] TXEN [25] TXEN [24] TXEN [31] TXEN [30] TXEN [29] TXEN [28] TXEN [35] TXEN [34] TXEN [33] TXEN [32] TXEN [39] TXEN [38] TXEN [37] TXEN [36] TXENBC [39] Functionality Description 11: enabled 10: Tx standby 01: Tx squelched 00: Tx disabled (default) ADN4605 Table 14 provides an example of how the absolute output and preemphasis level settings determine the amount of high frequency boost at the Tx output. Note that the OLEV setting refers to the main tap output current and the PE setting refers to the delayed tap current. VTTO VH-PE VH-DC VOCM VSW-PE VL-DC TPE The preemphasis boost equation follows: ⎛ V − V SW − DC ⎞ ⎟⎟ Gain[dB] = 20 × log 10 ⎜⎜1 + SW − PE V SW −DC ⎝ ⎠ VSW-DC VL-PE 09796-011 The amount of high frequency boost provided by the transmitter is determined by both the output and preemphasis level settings. Figure 44. Signal Level Definitions (1) Table 14. Preemphasis Boost and Overshoot vs. Setting Example PE Setting 0 3 7 7 7 Delayed Tap Current (mA) 0 4 8 8 8 OLEV Setting 4 5 6 4 3 Main Tap Current (mA) 16 20 24 16 12 Gain (dB) 0.00 3.52 6.02 9.54 13.98 Overshoot (%) 0.00 50.00 100.00 200.00 400.00 DC Swing (mV p-p Diff) 800 800 800 400 200 Table 15. Symbol Definitions Symbol IDC IPE ITTO VDPP-DC VDPP-PE VSW-DC VSW-PE ∆VOCM_DC-COUPLED ∆VOCM_AC-COUPLED VOCM VH-DC VL-DC VH-PE VL-PE Formula Programmable Programmable IDC + IPE 25 Ω × IDC × 2 25 Ω × ITTO × 2 VDPP-DC/2 = VH-DC – VL-DC VDPP-PE/2 = VH-PE – VL-PE 25 Ω × ITTO/2 50 Ω × ITTO/2 VTTO − ∆VOCM = (VH-DC + VL-DC)/2 VTTO − ∆VOCM + VDPP-DC/2 VTTO − ∆VOCM − VDPP-DC/2 VTTO − ∆VOCM + VDPP-PE/2 VTTO − ∆VOCM − VDPP-PE/2 Definition Output current for main tap output level (OLEV) Output current for PE delayed tap (PE) Total transmitter output current Peak-to-peak differential voltage swing of nonpreemphasized waveform Peak-to-peak differential voltage swing of preemphasized waveform DC single-ended voltage swing Preemphasized single-ended voltage swing Output common-mode shift, dc-coupled outputs Output common-mode shift, ac-coupled outputs Output common-mode voltage DC single-ended output high voltage DC single-ended output low voltage Maximum single-ended output voltage Minimum single-ended output voltage Rev. 0 | Page 31 of 56 ADN4605 TERMINATION Register Address 0xD1 (Input 20 to Input 39). The termination control for the transmitter outputs can be accessed through Register Address 0xBC (Output 0 to Output 19) and Register Address 0x BD (Output 20 to Output 39). The inputs and outputs include integrated 50 Ω termination resistors. The internal resistors can be disabled for applications that require external termination resistors. For example, disabling the integrated 50 Ω termination resistors allow alternative termination values such as 75 Ω as shown in Figure 45. Table 16 shows the termination control registers. Each bit controls the terminations settings for four inputs/outputs. A Logic 0 enables the terminations for the respective group. A Logic 1 disables the terminations for the respective group. The terminations are enabled by default. Note that the integrated 50 Ω termination resistors are optimal for high data rate digital signaling. Disabling the terminations can reduce the overall performance. The termination control for the receiver inputs can be accessed through Register Address 0xD0 (Input 0 to Input 19) and VTTIx VTTIx VCC VTTOx VTTOx 75Ω 50Ω 50Ω 50Ω 50Ω 50Ω 75Ω 50Ω 50Ω Rx CML ADN4605 75Ω 50Ω VEE 09796-012 75Ω Figure 45. 75 Ω to 50 Ω Impedance Translator Table 16. Termination Control Register Register Address 0xBD Default 0x00 Register Name Tx Termination Control Bit 4 3 2 1 0 Bit Name TXB_TERM TXB_TERM TXB_TERM TXB_TERM TXB_TERM Description Output [39:36] (B side) termination control Output [35:32] (B side) termination control Output [31:28] (B side) termination control Output [27:24] (B side) termination control Output [23:20] (B side) termination control 0xBC 0x00 Tx Termination Control 4 3 2 1 0 TXA_TERM TXA_TERM TXA_TERM TXA_TERM TXA_TERM Output [19:16] (A side) termination control Output [15:12] (A side) termination control Output [11:8] (A side) termination control Output [7:4] (A side) termination control Output [3:0] (A side) termination control 0xD1 0x00 Rx Termination Control 0xD0 0x00 Rx Termination Control 4 3 2 1 0 4 3 2 1 0 RXB_TERM RXB_TERM RXB_TERM RXB_TERM RXB_TERM RXA_TERM RXA_TERM RXA_TERM RXA_TERM RXA_TERM Input [39:36] (B side) termination control Input [35:32] (B side) termination control Input [31:28] (B side) termination control Input [27:24] (B side) termination control Input [23:20] (B side) termination control Input [19:16] (A side) termination control Input [15:12] (A side) termination control Input [11:8] (A side) termination control Input [7:4] (A side) termination control Input [3:0] (A side) termination control Rev. 0 | Page 32 of 56 Functionality 0 = terminations enabled 1= terminations disabled ADN4605 2. I2C SERIAL CONTROL INTERFACE The ADN4605 register set is controlled through a 2-wire I2C interface. To access the I2C serial interface, both the SER/PAR line and I2C/SPI lines must be held at logic high. The ADN4605 acts only as an I2C slave device. Therefore, the I2C bus in the system needs to include an I2C master to configure the ADN4605 and other I2C devices that may be on the bus. 3. 4. 5. 6. 7. 2 The ADN4605 I C interface can be run in the standard (100 kHz) and fast (400 kHz) modes. The SDA line only changes value when the SCL pin is low with two exceptions. To indicate the beginning or continuation of a transfer, the SDA pin is driven low while the SCL pin is high; to indicate the end of a transfer, the SDA line is driven high while the SCL line is high. Therefore, it is important to control the SCL clock to toggle only when the SDA line is stable unless indicating a start, repeated start, or stop condition. To establish I2C communication with the ADN4605, parallel address lines (ADDR[7:1]) need to be configured to the user-assigned I2C device address as shown in Table 17. 8. 9. Table 17. Example of I2C Device Address Assignment A6 0 0 0 0 A5 0 0 0 0 A4 1 1 1 1 A3 0 0 0 0 A2 0 0 1 1 A1 0 1 0 1 A0 X X X X I2C Device Address 0x90 0x92 0x94 0x96 I2C DATA WRITE The ADN4605 write process is shown in Figure 46. The SCL signal is shown along with a general write operation and a specific example. In the example, Data 0x4B is written to Address 0x6D of an ADN4605 part with a part address of 0x92. The ADN4605 device address selections are more flexible than shown. It is important to note that the SDA line only changes when the SCL line is low, except for the case of sending a start, stop, or repeated start condition, Step 1 and Step 9 in this case. To write data to the ADN4605 register set, a microcontroller, or any other I2C master, must send the appropriate control signals to the ADN4605 slave device. The steps to be followed are listed below; the signals are controlled by the I2C master unless otherwise specified. A diagram of the procedure is shown in Figure 46. 1. Send a start condition (while holding the SCL line high, pull the SDA line low). SCL SDA START b10010 ADDR R/W ACK [1:0] REGISTER ADDR ACK DATA ACK STOP SDA EXAMPLE 1 2 2 3 4 5 2 Figure 46. I C Write Diagram Rev. 0 | Page 33 of 56 6 7 8 9a 09796-013 A7 1 1 1 1 Send the ADN4605 part address (seven bits) whose bits are controlled by the input pins ADDR[7:1]. This transfer should be MSB first. Send the write indicator bit (0). Wait for the ADN4605 to acknowledge the request. Send the register address (eight bits) to which data is to be written. This transfer should be MSB first. Wait for the ADN4605 to acknowledge the request. Send the data (eight bits) to be written to the register whose address was set in Step 5. This transfer should be MSB first. Wait for the ADN4605 to acknowledge the request. Do one or more of the following: a. Send a stop condition (while holding the SCL line high, pull the SDA line high) and release control of the bus. b. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of the write procedure (see the I2C Data Write section) to perform a write. c. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of this procedure to perform a read from another address. d. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 8 of this procedure to perform a read from the same address. ADN4605 I2C DATA READ 12. Acknowledge the data. To read data from the ADN4605 register set, a microcontroller, or any other I2C master needs to send the appropriate control signals to the ADN4605 slave device. The steps are listed below; the signals are controlled by the I2C master unless otherwise specified. A diagram of the procedure is shown in Figure 47. 13. Do one or more of the following: a. Send a stop condition (while holding the SCL line high pull the SDA line high) and release control of the bus. b. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of the write procedure (see the I2C Data Write section) to perform a write. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 2 of this procedure to perform a read from another address. Send a repeated start condition (while holding the SCL line high, pull the SDA line low) and continue with Step 8 of this procedure to perform a read from the same address. 1. Send a start condition (while holding the SCL line high, pull the SDA line low). 2. Send the ADN4605 part address (seven bits) whose bits are controlled by the input pins ADDR[7:1]. This transfer should be MSB first. c. 3. Send the write indicator bit (0). d. 4. Wait for the ADN4605 to acknowledge the request. 5. Send the register address (eight bits) from which data is to be read. This transfer should be MSB first. The register address is kept in memory in the ADN4605 until the part is reset or the register address is written over with the same procedure (Step 1 to Step 6). The ADN4605 read process is shown in Figure 47. The SCL signal is shown along with a general read operation and a specific example. In the example, Data 0x49 is read from Address 0x6D of an ADN4605 part with a part address of 0x92. The part address is seven bits wide and is composed of the ADN4605 (ADDR[7:1]). In this example, the ADDR{1:0] bits are set to b01. 6. Wait for the ADN4605 to acknowledge the request. 7. Send a repeated start condition (while holding the SCL line high, pull the SDA line low). 8. Send the ADN4605 part address (seven bits) whose bits are controlled by the input pins ADDR[7:1]. This transfer should be MSB first. In Figure 47, the corresponding step number is visible in the circle under the waveform. The SCL line is driven by the I2C master and never by the ADN4605 slave. As for the SDA line, the data in the shaded polygons is driven by the ADN4605, whereas the data in the nonshaded polygons is driven by the I2C master. The end phase case shown is that of Step13a. 9. Send the read indicator bit (1). 10. Wait for the ADN4605 to acknowledge the request. 11. The ADN4605 then serially transfers the data (eight bits) held in the register indicated by the address set in Step 5. Note that the SDA line only changes when the SCL line is low, except for the case of sending a start, stop, or repeated start condition, as in Step 1, Step 7, and Step 13. In Figure 47, A is the same as ACK. Equally, Sr represents a repeated start where the SDA line is brought high before SCL is raised. SDA is then dropped while SCL is still high. SCL SDA START b10010 ADDR R/ [1:0] W A REGISTER ADDR A Sr 5 6 7 b10010 ADDR [1:0] R/ A W DATA A STOP 11 12 13a 1 2 2 3 4 8 Figure 47. I2C Read Diagram Rev. 0 | Page 34 of 56 8 9 10 09796-014 SDA EXAMPLE ADN4605 SPI SERIAL CONTROL INTERFACE The SPI serial interface of the ADN4605 consists of four wires: CS, SCK, SDI, and SDO. In order to access the SPI interface the SER/PAR line must be held at logic high and the I2C/SPI line must be held at logic low. The CS pin is used to select the device when more than one device is connected to the serial clock and data lines and must be held at logic low to enable write/read capability to the device when in SPI control mode. The SCK is used to clock data in and out of the part. The SDI line is used to write to the registers, and the SDO line is used to read data back from the registers. Data on SDI line is clocked on the rising edge of SCK. Data on SDO changes on the falling edge of SCK. The recommended pull-up resistor value is between 500 Ω and 1 kΩ. Strong pull-ups are needed when serial clock speeds that are close to the maximum limit are used or when the SPI interface lines are experiencing large capacitive loading. Larger resistor values can be used for pull-up resistors when the serial clock speed is reduced. The part operates in a slave mode and requires an externally applied serial clock to the SCK input. The serial interface is designed to allow the part to be interfaced to systems that provide a serial clock that is synchronized to the serial data. There are two types of serial operations, a read and a write. Command words are used to distinguish between a read and a write operation as shown in Table 18. Table 18. SPI Command Words Write Command Read Command 0x02 (0000 0010) 0x03 (0000 0011) Write Operation Figure 48 shows the diagram for a write operation to the ADN4605. Data is clocked into the registers on the rising edge of SCK. When the CS line is high, the SDI and SDO lines are in three-state mode. Only when the CS goes from a high to a low does the part accept any data on the SDI line. The 8-bit write command must precede the register address byte. The register address byte is then followed by the data byte as shown in Figure 48. To allow continuous writes, the address pointer register autoincrements by one without having to load the address pointer register each time. Subsequent data bytes are written into sequential registers. Note that not all registers in the 256-byte address space exist and not all registers are writable. Zeroes should be entered for nonexistent address fields when implementing a continuous write operation. Address space 0xE0 to Address 0xFF is reserved and should not be overwritten. Read Operation To read back from a register, first send the read command followed by the desired register address. Subsequent clock cycles, with CS asserted low, stream data starting from the desired register address onto SDO, MSB first. SDO changes on the falling edge of SCK. Multiple data reads are possible in SPI interface mode because the address pointer register is autoincremented. Rev. 0 | Page 35 of 56 ADN4605 CS 1 8 1 8 SCK D7 D6 X SDO D5 X D4 X D3 X D2 X D1 X D0 X D7 X D6 X D5 X D4 X D3 D2 X X D1 X D0 X X START WRITE COMMAND REGISTER ADDRESS CS (CONTINUED) 1 8 SCK (CONTINUED) SDI (CONTINUED) SDO (CONTINUED) D7 D6 X D5 X D4 X D3 X D2 X D1 X D0 X X STOP DATA BYTE Figure 48. SPI–Writing to the Address Pointer Register Followed by a Single Byte of Data to the Selected Register Rev. 0 | Page 36 of 56 09796-015 SDI ADN4605 CS 1 8 1 8 SCK D7 D6 X SDO D5 X D4 X D3 X D2 X D1 X D0 D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0 X X X START READ COMMAND REGISTER ADDRESS CS (CONTINUED) 1 8 SCK (CONTINUED) SDI (CONTINUED) SDO (CONTINUED) X X D7 X D6 X D5 X D4 X D3 X D2 X D1 D0 STOP DATA BYTE Figure 49. SPI–Reading a Single Byte of Data from a Selected Register Rev. 0 | Page 37 of 56 09796-016 SDI ADN4605 PARALLEL CONTROL INTERFACE The parallel control interface of the ADN4605 consists of nineteen wires: ADDR[7:0], DATA[7:0], WE, RE, and CS. To access the parallel control interface, the SER/PAR line must be held at logic low. The CS line is used to select a device when one or more devices share the same address and data lines. The CS line must be held at logic low to enable write/read capability to the device when in parallel control mode. ADDRESS INPUTS: ADDR[7:0] WRITE OPERATION For first rank write enable, forcing this pin to logic low allows the data on the DATA[7:0] lines to be stored in the first rank latch for the register specified by the address lines (ADDR[7:0]). The data is latched during the high-to-low transition of the write enable pulse. The WE line must be returned to a logic high state after the write cycle to avoid overwriting the first rank data. READ OPERATION The binary coded address applied to the address lines determines which device registers are being programmed or read back. DATA INPUTS/OUTPUTS: DATA[7:0] In write mode, the binary encoded data applied to the data lines (DATA[7:0]) determine the configuration setting of the register specified by the address lines (ADDR[7:0]). In read mode, data lines (DATA[7:0]) are low impedance outputs indicating the data byte stored in the register specified by the address lines (ADDR[7:0]). Note that some registers are write only and may not be read from (see Table 19) The readback drivers are designed to drive high impedances only (>1 kΩ). For second rank read enable, forcing this line to a logic low state enables the output drivers on the bidirectional data lines (DATA[7:0]), placing the logic in readback mode of operation. The register selected to read from is determined by the binary encoded data configured on the address lines (ADDR[7:0]). When the read enable line is at a logic low, the data stored in the specified register will be latched onto the data lines (DATA[7:0]). The RE line is higher priority than the WE line; therefore, first rank programming is not possible while in readback mode. Note that some registers are defined as write only and are not accessible in readback mode (see Table 19). Rev. 0 | Page 38 of 56 ADN4605 REGISTER MAP In the Register Map, when settings are provided in the Description column for the first bit, note that these settings apply to all bits with the same function. Table 19. Register Map Address: Channel 0x00 0x02 Default 0x00 Write only 0x0 Write only 0x00 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B Write only 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x01 Register Name Software Reset Bits 0 Bit Name Reset Description Software reset XPT Update 0 XPT Update Updates crosspoint switch core XPT Map Table Select XPT Broadcast XPT Map 0 Control 0 XPT Map 0 Control 1 XPT Map 0 Control 2 XPT Map 0 Control 3 XPT Map 0 Control 4 XPT Map 0 Control 5 XPT Map 0 Control 6 XPT Map 0 Control 7 XPT Map 0 Control 8 XPT Map 0 Control 9 XPT Map 0 Control 10 XPT Map 0 Control 11 XPT Map 0 Control 12 XPT Map 0 Control 13 XPT Map 0 Control 14 XPT Map 0 Control 15 XPT Map 0 Control 16 XPT Map 0 Control 17 XPT Map 0 Control 18 XPT Map 0 Control 19 XPT Map 0 Control 20 XPT Map 0 Control 21 XPT Map 0 Control 22 XPT Map 0 Control 23 XPT Map 0 Control 24 XPT Map 0 Control 25 XPT Map 0 Control 26 XPT Map 0 Control 27 XPT Map 0 Control 28 XPT Map 0 Control 29 XPT Map 0 Control 30 XPT Map 0 Control 31 XPT Map 0 Control 32 XPT Map 0 Control 33 XPT Map 0 Control 34 XPT Map 0 Control 35 XPT Map 0 Control 36 XPT Map 0 Control 37 XPT Map 0 Control 38 XPT Map 0 Control 39 0 Map Table Select 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 XPT BCAST [5:0] OUT 0 [5:0] OUT 1 [5:0] OUT 2 [5:0] OUT 3 [5:0] OUT 4 [5:0] OUT 5 [5:0] OUT 6 [5:0] OUT 7 [5:0] OUT 8 [5:0] OUT 9 [5:0] OUT 10 [5:0] OUT 11 [5:0] OUT 12 [5:0] OUT 13 [5:0] OUT 14 [5:0] OUT 15 [5:0] OUT 16 [5:0] OUT 17 [5:0] OUT 18 [5:0] OUT 19 [5:0] OUT 20 [5:0] OUT 21 [5:0] OUT 22 [5:0] OUT 23 [5:0] OUT 24 [5:0] OUT 25 [5:0] OUT 26 [5:0] OUT 27 [5:0] OUT 28 [5:0] OUT 29 [5:0] OUT 30 [5:0] OUT 31 [5:0] OUT 32 [5:0] OUT 33 [5:0] OUT 34 [5:0] OUT 35 [5:0] OUT 36 [5:0] OUT 37[5:0] OUT 38 [5:0] OUT 39 [5:0] 0: Map 0 is selected 1: Map 1 is selected All outputs connection assignment Output 0 connection assignment Output 1 connection assignment Output 2 connection assignment Output 3 connection assignment Output 4 connection assignment Output 5 connection assignment Output 6 connection assignment Output 7 connection assignment Output 8 connection assignment Output 9 connection assignment Output 10 connection assignment Output 11 connection assignment Output 12 connection assignment Output 13 connection assignment Output 14 connection assignment Output 15 connection assignment Output 16 connection assignment Output 17 connection assignment Output 18 connection assignment Output 19 connection assignment Output 20 connection assignment Output 21 connection assignment Output 22 connection assignment Output 23 connection assignment Output 24 connection assignment Output 25 connection assignment Output 26 connection assignment Output 27 connection assignment Output 28 connection assignment Output 29 connection assignment Output 30 connection assignment Output 31 connection assignment Output 32 connection assignment Output 33 connection assignment Output 34 connection assignment Output 35 connection assignment Output 36 connection assignment Output 37 connection assignment Output 38 connection assignment Output 39 connection assignment Rev. 0 | Page 39 of 56 ADN4605 Address: Channel 0x2C 0x2D 0x2E 0x2F 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x3A 0x3B 0x3C 0x3D 0x3E 0x3F 0x40 0x41 0x42 0x43 0x44 0x45 0x46 0x47 0x48 0x49 0x4A 0x4B 0x4C 0x4D 0x4E 0x4F 0x50 0x51 0x52 0x53 0x54 0x55 0x56 0x57 0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E 0x5F 0x60 Default 0x27 0x26 0x25 0x24 0x23 0x22 0x21 0x20 0x1F 0x1E 0x1D 0x1C 0x1B 0x1A 0x19 0x18 0x17 0x16 0x15 0x14 0x13 0x12 0x11 0x10 0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04 0x03 0x02 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 Register Name XPT Map 1 Control 0 XPT Map 1 Control 1 XPT Map 1 Control 2 XPT Map 1 Control 3 XPT Map 1 Control 4 XPT Map 1 Control 5 XPT Map 1 Control 6 XPT Map 1 Control 7 XPT Map 1 Control 8 XPT Map 1 Control 9 XPT Map 1 Control 10 XPT Map 1 Control 11 XPT Map 1 Control 12 XPT Map 1 Control 13 XPT Map 1 Control 14 XPT Map 1 Control 15 XPT Map 1 Control 16 XPT Map 1 Control 17 XPT Map 1 Control 18 XPT Map 1 Control 19 XPT Map 1 Control 20 XPT Map 1 Control 21 XPT Map 1 Control 22 XPT Map 1 Control 23 XPT Map 1 Control 24 XPT Map 1 Control 25 XPT Map 1 Control 26 XPT Map 1 Control 27 XPT Map 1 Control 28 XPT Map 1 Control 29 XPT Map 1 Control 30 XPT Map 1 Control 31 XPT Map 1 Control 32 XPT Map 1 Control 33 XPT Map 1 Control 34 XPT Map 1 Control 35 XPT Map 1 Control 36 XPT Map 1 Control 37 XPT Map 1 Control 38 XPT Map 1 Control 39 XPT Status 0 XPT Status 1 XPT Status 2 XPT Status 3 XPT Status 4 XPT Status 5 XPT Status 6 XPT Status 7 XPT Status 8 XPT Status 9 XPT Status 10 XPT Status 11 XPT Status 12 Bits 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 Bit Name OUT 0 [5:0] OUT 1 [5:0] OUT 2 [5:0] OUT 3 [5:0] OUT 4 [5:0] OUT 5 [5:0] OUT 6 [5:0] OUT 7 [5:0] OUT 8 [5:0] OUT 9 [5:0] OUT 10 [5:0] OUT 11 [5:0] OUT 12 [5:0] OUT 13 [5:0] OUT 14 [5:0] OUT 15 [5:0] OUT 16 [5:0] OUT 17 [5:0] OUT 18 [5:0] OUT 19 [5:0] OUT 20 [5:0] OUT 21 [5:0] OUT 22 [5:0] OUT 23 [5:0] OUT 24 [5:0] OUT 25 [5:0] OUT 26 [5:0] OUT 27 [5:0] OUT 28 [5:0] OUT 29 [5:0] OUT 30 [5:0] OUT 31 [5:0] OUT 32 [5:0] OUT 33 [5:0] OUT 34 [5:0] OUT 35 [5:0] OUT 36 [5:0] OUT 37[5:0] OUT 38 [5:0] OUT 39 [5:0] OUT 0 [5:0] OUT 1 [5:0] OUT 2 [5:0] OUT 3 [5:0] OUT 4 [5:0] OUT 5 [5:0] OUT 6 [5:0] OUT 7 [5:0] OUT 8 [5:0] OUT 9 [5:0] OUT 10 [5:0] OUT 11 [5:0] OUT 12 [5:0] Rev. 0 | Page 40 of 56 Description Output 0 connection assignment Output 1 connection assignment Output 2 connection assignment Output 3 connection assignment Output 4 connection assignment Output 5 connection assignment Output 6 connection assignment Output 7 connection assignment Output 8 connection assignment Output 9 connection assignment Output 10 connection assignment Output 11 connection assignment Output 12 connection assignment Output 13 connection assignment Output 14 connection assignment Output 15 connection assignment Output 16 connection assignment Output 17 connection assignment Output 18 connection assignment Output 19 connection assignment Output 20 connection assignment Output 21 connection assignment Output 22 connection assignment Output 23 connection assignment Output 24 connection assignment Output 25 connection assignment Output 26 connection assignment Output 27 connection assignment Output 28 connection assignment Output 29 connection assignment Output 30 connection assignment Output 31 connection assignment Output 32 connection assignment Output 33 connection assignment Output 34 connection assignment Output 35 connection assignment Output 36 connection assignment Output 37 connection assignment Output 38 connection assignment Output 39 connection assignment Output 0 connection status Output 1 connection status Output 2 connection status Output 3 connection status Output 4 connection status Output 5 connection status Output 6 connection status Output 7 connection status Output 8 connection status Output 9 connection status Output 10 connection status Output 11 connection status Output 12 connection status ADN4605 Address: Channel 0x61 0x62 0x63 0x64 0x65 0x66 0x67 0x68 0x69 0x6A 0x6B 0x6C 0x6D 0x6E 0x6F 0x70 0x71 0x72 0x73 0x74 0x75 0x76 0x77 0x78 0x79 0x7A 0x7B 0x7D 0x80: Output 0 0x81: Output 1 0x82: Output 2 0x83: Output 3 0x84: Output 4 0x85: Output 5 0x86: Output 6 0x87: Output 7 0x88: Output 8 0x89: Output 9 0x8A: Output 10 0x8B: Output 11 0x8C: Output 12 0x8D: Output 13 0x8E Output 14 0x8F: Output 15 0x90: Output 16 0x91: Output 17 0x92: Output 18 0x93: Output 19 0x94: Output 20 0x95: Output 21 0x96: Output 22 0x97: Output 23 0x98: Output 24 Default 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 Register Name XPT Status 13 XPT Status 14 XPT Status 15 XPT Status 16 XPT Status 17 XPT Status 18 XPT Status 19 XPT Status 20 XPT Status 21 XPT Status 22 XPT Status 23 XPT Status 24 XPT Status 25 XPT Status 26 XPT Status 27 XPT Status 28 XPT Status 29 XPT Status 30 XPT Status 31 XPT Status 32 XPT Status 33 XPT Status 34 XPT Status 35 XPT Status 36 XPT Status 37 XPT Status 38 XPT Status 39 XPT Headroom Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Bits 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 5:0 0 7 6:4 Bit Name OUT 13 [5:0] OUT 14 [5:0] OUT 15 [5:0] OUT 16 [5:0] OUT 17 [5:0] OUT 18 [5:0] OUT 19 [5:0] OUT 20 [5:0] OUT 21 [5:0] OUT 22 [5:0] OUT 23 [5:0] OUT 24 [5:0] OUT 25 [5:0] OUT 26 [5:0] OUT 27 [5:0] OUT 28 [5:0] OUT 29 [5:0] OUT 30 [5:0] OUT 31 [5:0] OUT 32 [5:0] OUT 33 [5:0] OUT 34 [5:0] OUT 35 [5:0] OUT 36 [5:0] OUT 37[5:0] OUT 38 [5:0] OUT 39 [5:0] XPT_HDROOM Reserved OLEV [2:0] Description Output 13 connection status Output 14 connection status Output 15 connection status Output 16 connection status Output 17 connection status Output 18 connection status Output 19 connection status Output 20 connection status Output 21 connection status Output 22 connection status Output 23 connection status Output 24 connection status Output 25 connection status Output 26 connection status Output 27 connection status Output 28 connection status Output 29 connection status Output 30 connection status Output 31 connection status Output 32 connection status Output 33 connection status Output 34 connection status Output 35 connection status Output 36 connection status Output 37 connection status Output 38 connection status Output 39 connection status 0 = disabled, 1 = enabled (required when VCC > 2.7 V) 0 (Reserve bit) 000: 0 mA 001: 4 mA 010: 8 mA 011: 12 mA 100: 16 mA (default) 101: 20 mA 110: 24 mA 111: (Reserve bit) 3 Overdrive 1: overdrive (increases OLEV and PE currents by 25%) 0: no overdrive (default) 2:0 PE [2:0] 000: 0 mA (default) 001: 2 mA 010: 3 mA 011: 4 mA 100: 5 mA 101: 6 mA 110: 7 mA 111: 8 mA Rev. 0 | Page 41 of 56 ADN4605 Address: Channel 0x99: Output 25 0x9A: Output 26 0x9B: Output 27 0x9C: Output 28 0x9D: Output 29 0x9E: Output 30 0x9F: Output 31 0xA0: Output 32 0xA1: Output 33 0xA2: Output 34 0xA3: Output 35 0xA4: Output 36 0xA5: Output 37 0xA6: Output 38 0xA7: Output 39 0xA8: Tx Broadcast 0xA9 Default 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x40 0x0 Register Name Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Lane Control Tx Sign Control 0xAA 0x0 Tx Sign Control 0xAB 0x0 Tx Sign Control 0xAC 0x0 Tx Sign Control Bits Bit Name Description 7 TXSIGN [7] 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 TXSIGN [6] TXSIGN [5] TXSIGN [4] TXSIGN [3] TXSIGN [2] TXSIGN [1] TXSIGN [0] TXSIGN [15] TXSIGN [14] TXSIGN [13] TXSIGN [12] TXSIGN [11] TXSIGN [10] TXSIGN [9] TXSIGN [8] TXSIGN [23] TXSIGN [22] TXSIGN [21] TXSIGN [20] TXSIGN [19] TXSIGN [18] TXSIGN [17] TXSIGN [16] TXSIGN [31] TXSIGN [30] TXSIGN [29] TXSIGN [28] TXSIGN [27] TXSIGN [26] TXSIGN [25] TXSIGN [24] Signal path polarity inversion Output 7 0 = noninverting 1 = inverting Signal path polarity inversion Output 6 Signal path polarity inversion Output 5 Signal path polarity inversion Output 4 Signal path polarity inversion Output 3 Signal path polarity inversion Output 2 Signal path polarity inversion Output 1 Signal path polarity inversion Output 0 Signal path polarity inversion Output 15 Signal path polarity inversion Output 14 Signal path polarity inversion Output 13 Signal path polarity inversion Output 12 Signal path polarity inversion Output 11 Signal path polarity inversion Output 10 Signal path polarity inversion Output 9 Signal path polarity inversion Output 8 Signal path polarity inversion Output 23 Signal path polarity inversion Output 22 Signal path polarity inversion Output 21 Signal path polarity inversion Output 20 Signal path polarity inversion Output 19 Signal path polarity inversion Output 18 Signal path polarity inversion Output 17 Signal path polarity inversion Output 16 Signal path polarity inversion Output 31 Signal path polarity inversion Output 30 Signal path polarity inversion Output 29 Signal path polarity inversion Output 28 Signal path polarity inversion Output 27 Signal path polarity inversion Output 26 Signal path polarity inversion Output 25 Signal path polarity inversion Output 24 Rev. 0 | Page 42 of 56 ADN4605 Address: Channel 0xAD Default 0x0 Register Name Tx Sign Control 0xB0 0x0 0xB1 0xB2 0xB3 0xB4 0x0 0x0 0x0 0x0 Tx Drive Control Bits 7 6 5 4 3 2 1 0 7:6 Bit Name TXSIGN [39] TXSIGN [38] TXSIGN [37] TXSIGN [36] TXSIGN [35] TXSIGN [34] TXSIGN [33] TXSIGN [32] TXEN [3] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [2] TXEN [1] TXEN [0] TXEN [7] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [6] TXEN [5] TXEN [4] TXEN [11] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [10] TXEN [9] TXEN [8] TXEN [15] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [14] TXEN [13] TXEN [12] TXEN [19] 5:4 3:2 1:0 TXEN [18] TXEN [17] TXEN [16] Rev. 0 | Page 43 of 56 Description Signal path polarity inversion Output 39 Signal path polarity inversion Output 38 Signal path polarity inversion Output 37 Signal path polarity inversion Output 36 Signal path polarity inversion Output 35 Signal path polarity inversion Output 34 Signal path polarity inversion Output 33 Signal path polarity inversion Output 32 Tx enable state Output 3 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 2 Tx enable state Output 1 Tx enable state Output 0 Tx enable state Output 7 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 6 Tx enable state Output 5 Tx enable state Output 4 Tx enable state Output 11 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 10 Tx enable state Output 9 Tx enable state Output 8 Tx enable state Output 15 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 14 Tx enable state Output 13 Tx enable state Output 12 Tx enable state Output 19 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 18 Tx enable state Output 17 Tx enable state Output 16 ADN4605 Address: Channel 0xB5 0xB6 0xB7 0xB8 0xB9 Default 0x0 0x0 0x0 0x0 0x0 Register Name Tx Drive Control Bits 7:6 Bit Name TXEN [23] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [22] TXEN [21] TXEN [20] TXEN [27] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [26] TXEN [25] TXEN [24] TXEN [31] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [30] TXEN [29] TXEN [28] TXEN [35] Tx Drive Control 5:4 3:2 1:0 7:6 TXEN [34] TXEN [33] TXEN [32] TXEN [39] TXEN [38] TXEN [37] TXEN [36] TXENBC [39] TX_HDROOM 0xBA Write Only Tx Drive Control 5:4 3:2 1:0 7:6 0xBB 0x0 Tx Headroom 0 Rev. 0 | Page 44 of 56 Description Tx enable state Output 23 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 22 Tx enable state Output 21 Tx enable state Output 20 Tx enable state Output 27 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 26 Tx enable state Output 25 Tx enable state Output 24 Tx enable state Output 31 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 30 Tx enable state Output 29 Tx enable state Output 28 Tx enable state Output 35 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 34 Tx enable state Output 33 Tx enable state Output 32 Tx enable state Output 39 11 = enabled 10 = standby 01 = squelch 00 = disabled Tx enable state Output 38 Tx enable state Output 37 Tx enable state Output 36 Tx enable state broadcast 11 = enabled 10 = standby 01 = squelch 00 = disabled 0 = disabled, 1 = enabled (required when VCC > 2.7 V) ADN4605 Address: Channel 0xBC 0xBD 0xC0 0xC1 0xC2 0xC3 Default 0x0 0x0 0x0 0x0 0x0 0x0 Register Name Tx Termination Control Bits 4 Bit Name TXA_TERM [19:16] 3 2 1 0 4 TXA_TERM [15:12] TXA_TERM [11:8] TXA_TERM [7:4] TXA_TERM [3:0] TXB_TERM [39:36] 3 2 1 0 TXB_TERM [35:32] TXB_TERM [31:28] TXB_TERM [27:24] TXB_TERM [23:20] Rx EQ Control 7:6 RXEQIN [3] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [2] RXEQIN [1] RXEQIN [0] RXEQIN [7] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [6] RXEQIN [5] RXEQIN [4] RXEQIN [11] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [10] RXEQIN [9] RXEQIN [8] RXEQIN [15] 5:4 3:2 1:0 RXEQIN [14] RXEQIN [13] RXEQIN [12] Tx Termination Control Rev. 0 | Page 45 of 56 Description Output[19:16] (B side) termination control 0: terminations enabled 1: terminations disabled Output[15:12] (B side) termination control Output[11:8] (B side) termination control Output[7:4] (B side) termination control Output[3:0] (B side) termination control Output[39:36] (B side) termination control 0: terminations enabled 1: terminations disabled Output[35:32] (B side) termination control Output[31:28] (B side) termination control Output[27:24] (B side) termination control Output[23:20] (B side) termination control Equalizer boost control for Input 3 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 2 Equalizer boost control for Input 1 Equalizer boost control for Input 0 Equalizer boost control for Input 7 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 6 Equalizer boost control for Input 5 Equalizer boost control for Input 4 Equalizer boost control for Input 11 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 10 Equalizer boost control for Input 9 Equalizer boost control for Input 8 Equalizer boost control for Input 15 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 14 Equalizer boost control for Input 13 Equalizer boost control for Input 12 ADN4605 Address: Channel 0xC4 0xC5 0xC6 0xC7 0xC8 0xC9 0xCA Default 0x0 0x0 0x0 0x0 0x0 0x0 0x0 Register Name Rx EQ Control Bits 7:6 Bit Name RXEQIN [19] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [18] RXEQIN [17] RXEQIN [16] RXEQIN [23] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [22] RXEQIN [21] RXEQIN [20] RXEQIN [27] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [26] RXEQIN [25] RXEQIN [24] RXEQIN [31] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [30] RXEQIN [29] RXEQIN [28] RXEQIN [35] Rx EQ Control 5:4 3:2 1:0 7:6 RXEQIN [34] RXEQIN [33] RXEQIN [32] RXEQIN [39] Rx EQ Control 5:4 3:2 1:0 1:0 RXEQIN [38] RXEQIN [37] RXEQIN [36] RXEQIN BC Rev. 0 | Page 46 of 56 Description Equalizer boost control for Input 19 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 18 Equalizer boost control for Input 17 Equalizer boost control for Input 16 Equalizer boost control for Input 23 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 22 Equalizer boost control for Input 21 Equalizer boost control for Input 20 Equalizer boost control for Input 27 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 26 Equalizer boost control for Input 25 Equalizer boost control for Input 24 Equalizer boost control for Input 31 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 30 Equalizer boost control for Input 29 Equalizer boost control for Input 28 Equalizer boost control for Input 35 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 34 Equalizer boost control for Input 33 Equalizer boost control for Input 32 Equalizer boost control for Input 39 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled Equalizer boost control for Input 38 Equalizer boost control for Input 37 Equalizer boost control for Input 36 Equalizer boost control for all inputs 11 = 12 dB 10 = 6 dB 01 = 3 dB 00 = disabled ADN4605 Address: Channel 0xCB Default 0x0 Register Name Rx Sign Control 0xCC 0x0 Rx Sign Control 0xCD 0x0 Rx Sign Control 0xCE 0x0 Rx Sign Control 0xCF 0x0 Rx Sign Control 0xD0 0x0 Rx Termination Control Bits 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 4 3 2 1 0 Bit Name RXSIGN [7] RXSIGN [6] RXSIGN [5] RXSIGN [4] RXSIGN [3] RXSIGN [2] RXSIGN [1] RXSIGN [0] RXSIGN [15] RXSIGN [14] RXSIGN [13] RXSIGN [12] RXSIGN [11] RXSIGN [10] RXSIGN [9] RXSIGN [8] RXSIGN [23] RXSIGN [22] RXSIGN [21] RXSIGN [20] RXSIGN [19] RXSIGN [18] RXSIGN [17] RXSIGN [16] RXSIGN [31] RXSIGN [30] RXSIGN [29] RXSIGN [28] RXSIGN [27] RXSIGN [26] RXSIGN [25] RXSIGN [24] RXSIGN [39] RXSIGN [38] RXSIGN [37] RXSIGN [36] RXSIGN [35] RXSIGN [34] RXSIGN [33] RXSIGN [32] RXA_TERM [19:16] Description Signal path polarity inversion Input 7 Signal path polarity inversion Input 6 Signal path polarity inversion Input 5 Signal path polarity inversion Input 4 Signal path polarity inversion Input 3 Signal path polarity inversion Input 2 Signal path polarity inversion Input 1 Signal path polarity inversion Input 0 Signal path polarity inversion Input 15 Signal path polarity inversion Input 14 Signal path polarity inversion Input 13 Signal path polarity inversion Input 12 Signal path polarity inversion Input 11 Signal path polarity inversion Input 10 Signal path polarity inversion Input 9 Signal path polarity inversion Input 8 Signal path polarity inversion Input 23 Signal path polarity inversion Input 22 Signal path polarity inversion Input 21 Signal path polarity inversion Input 20 Signal path polarity inversion Input 19 Signal path polarity inversion Input 18 Signal path polarity inversion Input 17 Signal path polarity inversion Input 16 Signal path polarity inversion Input 31 Signal path polarity inversion Input 30 Signal path polarity inversion Input 29 Signal path polarity inversion Input 28 Signal path polarity inversion Input 27 Signal path polarity inversion Input 26 Signal path polarity inversion Input 25 Signal path polarity inversion Input 24 Signal path polarity inversion Input 39 Signal path polarity inversion Input 38 Signal path polarity inversion Input 37 Signal path polarity inversion Input 36 Signal path polarity inversion Input 35 Signal path polarity inversion Input 34 Signal path polarity inversion Input 33 Signal path polarity inversion Input 32 Input[19:16] (A Side) termination control 0: termination control enabled 1: termination control disabled RXA_TERM [15:12] Input [15:12] (A side) termination control RXA_TERM [11:8] Input [11:8] (A side) termination control RXA_TERM [7:4] Input [7:4] (A side) termination control RXA_TERM [3:0] Input [3:0] (A side) termination control Rev. 0 | Page 47 of 56 ADN4605 Address: Channel 0xD1 Default 0x0 Register Name Rx Termination Control Bits 4 Bit Name RXB_TERM [39:36] 3 2 1 0 RXB_TERM [35:32] RXB_TERM [31:28] RXB_TERM [27:24] RXB_TERM [23:20] Rev. 0 | Page 48 of 56 Description Input [39:36] (B Side) termination control 0: terminations enabled 1: terminations disabled Input [35:32] (B Side) termination control Input [31:28] (B Side) termination control Input [27:24] (B Side) termination control Input [23:20] (B Side) termination control ADN4605 APPLICATIONS INFORMATION protocols, four ADN4605s are used to create a full 40 × 40 matrix switch. Smaller arrays, such as 10 × 10 and 20 × 20, require one and two ADN4605 devices, respectively. Proper high speed PCB design techniques should be used to maintain the signal integrity of the high data rate signals. It is important to minimize the lane-to-lane skew and crosstalk in these applications. The ADN4605 is an asynchronous and protocol agnostic digital switch and, therefore, is applicable to a wide range of applications including network routing and digital video switching. The ADN4605 supports the data rates and signaling levels of HDMI®, DVI®, DisplayPort and SD-, HD-, and 3G-SDI digital video. The ADN4605 can be used to create matrix switches. An example block diagram of a 40 × 40 matrix switch is shown in Figure 50. Since HDMI, DVI, and DisplayPort are quad lane IN 0 OUT 0 IN 1 OUT 1 SOURCE 1 DISPLAY 1 ADN4605 DISPLAY 2 SOURCE 2 IN 39 OUT 39 IN 0 OUT 0 OUT 1 IN 1 ADN4605 IN 39 OUT 39 IN 0 OUT 0 OUT 1 IN 1 ADN4605 SOURCE 39 IN 39 OUT 39 IN 0 OUT 0 IN 1 OUT 1 DISPLAY 39 SOURCE 40 DISPLAY 40 IN 39 OUT 39 Figure 50. ADN4605 Digital Video (DVI, HDMI, DisplayPort) Matrix Switch Block Diagram Rev. 0 | Page 49 of 56 09796-052 ADN4605 ADN4605 O/E IN 1 O/E IN 2 OUT 1 CDR E/O OUT 2 CDR E/O CDR E/O ADN4605 O/E IN 39 OUT 39 09796-053 40 × 40 CROSSPOINT SWITCH Figure 51. ADN4605 Networking Switch Application Block Diagram 8 LANE UPLINK PATH Z0 Z0 EQ PE Z0 Z0 8 LANE DOWNLINK PATH Z0 ASIC 2 Z0 PE EQ Z0 Z0 LOSSY CHANNEL LOSSY CHANNEL Figure 52. Multilane Signal Conditioning Application Diagram Rev. 0 | Page 50 of 56 07934-053 ASIC 1 ADN4605 SUPPLY SEQUENCING OUTPUT COMPLIANCE Ideally, all power supplies should be brought up to the appropriate levels simultaneously (power supply requirements are set by the supply limits in Table 1 and the absolute maximum ratings listed in Table 6). If the power supplies to the ADN4605 are brought up separately, the supply power-up sequence is as follows: DVCC powered first, followed by VCC, and, last the termination supplies (VTTIA, VTTIB, VTTOA, and VTTOB). In low voltage applications, users must pay careful attention to both the differential and common-mode signal levels. The choice of output voltage swing, preemphasis setting, supply voltages (VCC and VTTOx), and output coupling (ac or dc) affect peak and settled single-ended voltage swings and the commonmode shift measured across the output termination resistors. These choices also affect output current and, consequently, power consumption. The power-down sequence is reversed with termination supplies being powered off first. The termination supplies contain ESD protection diodes to the VCC power domain. To avoid a sustained high current condition in these devices, the VTTIx and VTTOx supplies should be powered on after VCC and should be powered off before VCC. If the system power supplies have a high impedance in the powered off state, then supply sequencing is not required provided the following limits are observed: • • Since the absolute minimum output voltage specified in Table 1 is relative to VCC, decreasing VCC is required to maintain the output levels within the specified limits when lower output termination voltages are required. VTTOx voltages as low as 1.8 V are allowable for output swings less than or equal to 400 mV (single-ended). Peak current from VTTIxor VTTOx to VCC < 200 mA Sustained current from VTTIx or VTTOx to VCC < 100 mA POWER DISSIPATION The power dissipation of the ADN4605 depends on the supply voltages, I/O coupling type, and device configuration. The input termination resistors dissipate power depending on the differential input swing and common-mode voltage. When accoupled, the common-mode voltage is equal to the termination supply voltage (VTTIx or VTTOx). While the current drawn from the input termination supply is effectively zero, there is still power and heat dissipated in the termination resistors as a result of the differential signal swing. The core supply current and output termination current are strongly dependent on device configuration, such as the number of channels enabled, output level setting, and output preemphasis setting. In high ambient temperature operating conditions, it is important to avoid exceeding the maximum junction temperature of the device. Limiting the total power dissipation can be achieved by the following: • • • • Table 20 shows the change in output common mode (ΔVOCM = VCC − VOCM) with output level and preemphasis setting. Singleended output levels are calculated for VTTOx supplies of 3.3 V and 2.5 V to illustrate practical challenges of reducing the supply voltage. The minimum VL (min VL) cannot be below the absolute minimum level specified in Table 1. Reducing the output swing Reducing the preemphasis level Decreasing the supply voltages within the allowable ranges defined in Table 1 Disabling unused channels Figure 53 illustrates an application where the ADN4605 is used as a dc-coupled level translator to interface a 3.3 V CML driver to an ASIC with 1.8 V I/Os. The diode in series with VCC reduces the voltage at VCC for improved output compliance. TX/XPT HEADROOM The Tx Headroom and XPT Headroom registers are provided to improve the output compliance range of the ADN4605 when the core supply voltage (VCC) is greater than 2.7 V. Enabling the XPT Headroom and Tx Headroom registers allows the transmitter an extra 300 mV of output compliance. The headroom circuitry should not be enabled when the core supply voltage (VCC) is less than or equal to 2.7 V. When set to 1, the XPT Headroom (Address 0x7D) and Tx Headroom (Address 0xBB) registers are enabled for all transmitter outputs. A value of 0 disables the headroom generating circuitry. Note that both registers (XPT Headroom and Tx Headroom) must be set for the headroom circuitry to function properly. Alternatively, the thermal resistance can be reduced by • • Adding an external heat sink Increasing the airflow Refer to the Printed Circuit Board (PCB) Layout Guidelines section for recommendations for proper thermal stencil layout and fabrication. Rev. 0 | Page 51 of 56 ADN4605 Example: VCC = 3.3 V, VTTOx = 2.5 V In a typical application, the user can select a default output level of 200 mV single-ended (400 mVp-p differential) and may want the option to choose preemphasis settings of 0 dB and 9.5 dB. With preemphasis disabled, a dc-coupled transmitter causes a 100 mV common-mode shift across the termination resistors, whereas an ac-coupled transmitter causes twice the commonmode shift. When dc-coupled, the single-ended output voltage swings between 2.5 V and 2.3 V and between 2.4 V and 2.2 V when ac-coupled. In both cases, these levels are greater than the minimum VL limit of 1.9 V (VL = VCC − 1.4 V). With a PE setting of 9.5 dB, the ac-coupled transmitter has single-ended swings from 2.2 V and 1.6 V, whereas the dccoupled transmitter outputs swing between 2.5 V and 1.9 V. The minimum single-ended output voltage (VL-PE) of the ac-coupled transmitter case exceeds the minimum VL limit of 1.9 V by 300 mV, violating the device specification. Enabling the TX_HDROOM and XPT_HDROOM bit lowers the minimum VL limit by approximately 300 mV to 1.6 V. This transmitter configuration now complies with the output voltage range specification. Rev. 0 | Page 52 of 56 ADN4605 3.3V 3.3V 1.8V VTTIx VCC VTTOx 1.8V ASIC 3.3V Z0 Z0 CML Rx CML Z0 09796-055 ADN4605 Z0 VEE Figure 53. DC-Coupled Level Translator Application Circuit Table 20. Output Voltage Range and Output Common-Mode Shift vs. Output Level and PE Setting Single-Ended Output Levels and PE Boost VSW-DC 1 (mV) 100 100 100 150 150 200 200 200 250 250 300 300 300 350 350 400 400 400 450 450 500 500 550 600 1 VSW-PE1 (mV) 100 300 500 250 450 200 400 600 350 550 300 500 700 450 650 400 600 800 550 750 500 700 650 600 PE Boost % 0.00 200.00 400.00 66.67 200.00 0.00 100.00 200.00 40.00 200.00 0.00 66.67 133.33 28.57 85.71 0.00 50.00 100.00 22.22 66.67 0.00 40.00 18.18 0.00 PE (dB) 0.00 9.54 13.98 4.44 9.54 0.00 6.02 9.54 2.92 6.85 0.00 4.44 7.36 2.18 5.38 0.00 3.52 6.02 1.74 4.44 0.00 2.92 1.45 0.00 Tx Lane Control Register Settings OLEV [2:0] 0x01 0x02 0x03 0x02 0x03 0x02 0x03 0x04 0x03 0x04 0x03 0x04 0x05 0x04 0x05 0x04 0x05 0x06 0x05 0x06 0x05 0x06 0x06 0x06 PE [2:0] 0x00 0x03 0x07 0x01 0x05 0x00 0x03 0x07 0x01 0x05 0x00 0x03 0x07 0x01 0x05 0x00 0x03 0x07 0x01 0x05 0x00 0x03 0x01 0x00 AC-Coupled Outputs VCC = VTTO = VCC = VTTO = 3.3 V 2.5 V Output Current ITTO1 (mA) 4 12 20 10 18 8 16 24 14 22 12 20 28 18 26 16 24 32 22 30 20 28 26 24 ∆VOCM1 (mV) 100 300 500 250 450 200 400 600 350 550 300 500 700 450 650 400 600 800 550 750 500 700 650 600 VH-PE1 (V) 3.25 3.15 3.05 3.175 3.075 3.2 3.1 3 3.125 3.025 3.15 3.05 2.95 3.075 2.975 3.1 3.0 2.9 3.025 2.925 3.05 2.95 2.975 3.0 Symbol definitions are shown in Table 15. Rev. 0 | Page 53 of 56 VL-PE1 (V) 3.15 2.85 2.55 2.925 2.625 3.0 2.7 2.4 2.775 2.475 2.85 2.55 2.25 2.625 2.325 2.7 2.4 2.1 2.475 2.175 2.55 2.25 2.325 2.4 VH-PE1 (V) 2.45 2.35 2.25 2.375 2.275 2.40 2.30 2.20 2.325 2.225 2.35 2.25 2.15 2.275 2.175 2.3 2.2 2.1 2.225 2.125 2.25 2.15 2.175 2.2 VL-PE1 (V) 2.35 2.05 1.75 2.125 1.825 2.20 1.90 1.60 1.975 1.675 2.05 1.75 1.45 1.825 1.525 1.9 1.6 1.3 1.675 1.375 1.75 1.45 1.525 1.6 DC-Coupled Outputs ∆VOCM1 (mV) 50 150 250 125 225 100 200 300 175 275 150 250 350 225 325 200 300 400 275 375 250 350 325 300 VCC = VTTO = 3.3 V VCC = VTTO = 2.5 V VH-PE1 (V) 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 VH-PE1 (V) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 VL-PE1 (V) 3.2 3.0 2.8 3.15 2.85 3.1 2.9 2.7 2.95 2.75 3.0 2.8 2.6 2.85 2.65 2.9 2.7 2.5 2.75 2.55 2.8 2.6 2.65 2.7 VL-PE1 (V) 2.4 2.2 2.0 2.25 2.05 2.3 2.1 1.9 2.15 1.95 2.2 2.0 1.8 2.05 1.85 2.1 1.9 1.7 1.95 1.75 2.0 1.8 1.85 1.9 ADN4605 PRINTED CIRCUIT BOARD (PCB) LAYOUT GUIDELINES The high speed differential inputs and outputs should be routed with 100 Ω controlled impedance differential transmission lines. The transmission lines, either microstrip or stripline, should be referenced to a solid low impedance reference plane. An example of a PCB cross-section is shown in Figure 54. The trace width (W), differential spacing (S), height above reference plane (H), and dielectric constant of the PCB material determine the characteristic impedance. Adjacent channels should be kept apart by a distance greater than 3 W to minimize crosstalk. W S W Large voids in the thermal paddle area should be avoided. To control voids in the thermal paddle area, solder masking may be required for thermal vias to prevent solder wicking inside the via during reflow, thus displacing the solder away from the interface between the package thermal paddle and thermal paddle land on the PCB. There are several methods employed for this purpose, such as via tenting (top or bottom side), using dry film solder mask; via plugging with liquid photo-imagible (LPI) solder mask from the bottom side; or via encroaching. These options are depicted in Figure 55. In case of via tenting, the solder mask diameter should be 100 microns larger than the via diameter. SOLDER MASK COPPER PLATING VIA SOLDERMASK SIGNAL (MICROSTRIP) H PCB DIELECTRIC REFERENCE PLANE SIGNAL (STRIPLINE) (A) PCB DIELECTRIC (B) (C) (D) 09796-101 PCB DIELECTRIC Figure 55. Solder Mask Options for Thermal Vias: (A) Via Tenting from the Top; (B) Via Tenting from the Bottom; (C) Via Plugging, Bottom; and (D) Via Encroaching, Bottom REFERENCE PLANE W S W 09796-100 PCB DIELECTRIC Figure 54. Example of a PCB Cross-Section Rev. 0 | Page 54 of 56 ADN4605 OUTLINE DIMENSIONS A1 CORNER INDEX AREA 35.10 35.00 SQ 34.90 26 25 23 21 19 17 15 13 11 9 7 5 3 1 6 24 22 20 18 16 14 12 10 8 4 2 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF BALL A1 INDICATOR 31.85 31.75 SQ 31.65 TOP VIEW BOTTOM VIEW 1.27 BSC DETAIL A DETAIL A 1.70 MAX 1.00 0.80 0.60 0.70 0.60 0.50 0.20 MIN COPLANARITY 0.35 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-192-BAL-2 022206-A 0.25 MIN (4 ) 0.90 0.75 0.60 BALL DIAMETER Figure 56. 352-Ball Grid Array, Thermally Enhanced [BGA_ED] (BP-352) Dimensions shown in millimeters ORDERING GUIDE Model1 ADN4605ABPZ ADN4605-EVALZ 1 Temperature Range −40°C to +85°C Package Description 352-Ball Ball Grid Array, Thermally Enhanced [BGA_ED] Evaluation Board Z = RoHS Compliant Part. Rev. 0 | Page 55 of 56 Package Option BP-352 ADN4605 NOTES I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors). HDMI, the HDMI Logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC in the United States and other countries. ©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09796-0-6/11(0) Rev. 0 | Page 56 of 56