[AK5388] AK5388 120dB 24-bit 192kHz 4-Channel ADC GENERAL DESCRIPTION The AK5388 is a 24bit, 216kHz sampling 4-channel A/D converter for high-end audio systems. The modulator in the AK5388 uses AKM’s Enhanced Dual Bit architecture, enabling the AK5388 to realize high accuracy and low cost. The AK5388 achieves 120dB dynamic range and 110dB S/(N+D), and an optional mono mode extends dynamic range to 123dB. The AK5388’s digital filter features a modified FIR architecture that minimizes group delay while maintaining excellent linear phase response. So the device is suitable for professional audio applications including recording, sound reinforcement, effects processing, sound cards, and high-end A/V receivers. The AK5388 is available in 44pin LQFP package. FEATURES Sampling Rate: 8kHz ~ 216kHz Full Differential Inputs S/(N+D): 110dB DR, S/N: 120dB(Mono Mode: 123dB) Short Delay Digital Filter (GD=12.6/fs) • Passband: 0~21.648kHz (@fs=48kHz) • Ripple: 0.01dB • Stopband: 80dB Digital HPF Power Supply: 4.75 ~ 5.25V(Analog), 3.0 ~ 3.6V(Digital) Output format: 24bit MSB justified, I2S or TDM Cascade TDM I/F: 8ch/48kHz, 4ch/96kHz, 4ch/192kHz Master & Slave Mode Overflow Flag Power Dissipation: 575 mW (@fs=48kHz) Package: 44pin LQFP AVDD1 VSS1 AVDD2 VSS6 DVDD1 VSS3 LIN1+ LIN1RIN1+ RIN1LIN2+ LIN2- ΔΣ Modulator Decimation Filter ΔΣ Modulator Decimation Filter ΔΣ Modulator Decimation Filter ΔΣ Modulator Decimation Filter DVDD2 VSS4 VSS5 LRCK BICK SDTO1 SDTO2 Audio Interface TDMIN MSN DIF TDM0 RIN2+ RIN2- TDM1 HPF MONO VCOM1 VCOM2 Voltage Reference Clock Divider VREFP1 VREFL1 VREFP2 VREFL2 OVF MS1096-E-01 PDN MCLK CKS0 CKS2 CKS2 2009/08 -1- [AK5388] ■ Ordering Guide AK5388EQ AKD5388 –10 ~ +70°C 44pin LQFP (0.8mm pitch) Evaluation Board for AK5388 RIN2+ RIN2- VSS6 AVDD2 TEST2 VSS5 VSS4 DVDD2 HPFE MONO DIF 33 32 31 30 29 28 27 26 25 24 23 ■ Pin Layout 34 22 TDM1 VREFL 2 35 21 TDM0 VC OM 2 36 20 TDMIN L IN2+ 37 19 OVF 18 SDTO2 17 SDTO1 16 VSS3 VREFP2 L IN2- 38 TEST3 39 R IN1- 40 AK5388EQ Top Vie w 10 11 9 C KS2 PDN 8 CKS1 MS1096-E-01 M/SN 7 C KS0 5 LIN1+ 6 MCL K VSS2 BICK 12 TEST1 13 4 43 44 AVDD1 VREFL 1 VREFP1 3 LRCK 2 DVDD1 14 LIN1- 15 VSS1 41 42 1 RIN1+ VC OM 1 2009/08 -2- [AK5388] PIN / FUNCTION No. 1 2 3 4 5 6 7 8 9 Pin Name LIN1+ LIN1− VSS1 AVDD1 TEST1 VSS2 CKS0 CKS1 CKS2 I/O I I I 10 PDN I 11 MSN I 12 MCLK I 13 BICK I/O 14 LRCK I/O 15 16 DVDD1 VSS3 - 17 SDTO1 O 18 SDTO2 O 19 OVF O 20 TDMIN I 21 TDM0 I 22 TDM1 I 23 DIF I 24 MONO I 25 HPFE I 26 27 28 DVDD2 VSS4 VSS5 - I I I Function ADC1 Lch Positive Analog Input Pin ADC1 Lch Negative Analog Input Pin Ground Pin Analog Power Supply Pin, 4.75 ∼ 5.25V Test Pin (Connected to VSS1-6) Ground pin Clock Mode Select #0 Pin Clock Mode Select #1 Pin Clock Mode Select #2 Pin Power-Down Mode Pin When “L”, the circuit is in power-down mode. The AK5388should always be reset upon power-up. Master/Slave mode Select Pin “L”: Slave mode, “H”: Master mode Master Clock Input Pin Audio Serial Data Clock Pin “L” Output in Master Mode at Power-down mode. Output Channel Clock Pin “L” Output in Master Mode at Power-down mode. Digital Power Supply Pin, 3.0 ∼ 3.6V Ground Pin ADC1 Audio Serial Data Output Pin “L” Output at Power-down mode. ADC2 Audio Serial Data Output Pin “L” Output at Power-down mode. Analog Input Overflow Detect Pin This pin goes to “H” if any analog inputs overflows. “L” Output at Power-down mode. TDM Data Input Pin TDM I/F Format Enable Pin “L” : Normal Mode, “H” : TDM Mode TDM I/F BICK Frequency Select Pin “L” : Normal Mode, “H” : TDM Mode Audio Interface Format Pin “L”: 24BitMSB justified, “H”: 24BitI2S Compatible Stereo/Mono mode Select Pin “L”: Stereo mode, “H”: Mono mode HPF Enable Pin “L”: Disable, “H” Enable Digital Power Supply Pin, 3.0 ∼ 3.6V Ground Pin Ground pin MS1096-E-01 2009/08 -3- [AK5388] No. Pin Name 29 TEST2 30 AVDD2 31 VSS6 32 RIN2− 33 RIN2+ 34 VREFP2 35 VREFL2 I/O I I I I I 36 VCOM2 O 37 38 39 40 41 LIN2+ LIN2− TEST3 RIN1− RIN1+ I I I I I 42 VCOM1 O 43 44 VREFL1 VREFP1 I I Function Test Pin (Connected to VSS1-6) Analog Power Supply Pin, 4.75 ∼ 5.25V Ground Pin ADC2 Rch Negative Analog Input Pin ADC2 Rch Positive Analog Input Pin ADC2 High Level Voltage Reference Input Pin ADC2 Low Level Voltage Reference Input Pin Common Voltage Output Pin, (AVDD2)/2 Normally connected to AVSS2 with a 0.1μF ceramic capacitor in parallel with an electrolytic capacitor less than 2.2μF. ADC2 Lch Positive Analog Input Pin ADC2 Lch Negative Analog Input Pin Test Pin (Connected to VSS1-6) ADC1 Rch Negative Analog Input Pin ADC1 Rch Positive Analog Input Pin Common Voltage Output Pin, (AVDD1)/2 Normally connected to AVSS1 with a 0.1μF ceramic capacitor in parallel with an electrolytic capacitor less than 2.2μF. ADC1 Low Level Voltage Reference Input Pin ADC1 High Level Voltage Reference Input Pin Note: All digital input pins should not be left floating. MS1096-E-01 2009/08 -4- [AK5388] ■ Handling of Unused Pin The unused I/O pins should be processed appropriately as below. Classification Analog Digital Pin Name LIN1+/−, RIN1+/− LIN2+/−, RIN+/− OVF TEST1 TEST2 TEST3 Setting These pins should be connected to VSS1-6 These pins should be connected to VSS1-6 This pin should be open. This pin should be connected to VSS1-6 This pin should be connected to VSS1-6 This pin should be connected to VSS1-6 ABSOLUTE MAXIMUM RATINGS (VSS1-6=0V; Note 1) Parameter Power Supplies: Analog Analog Digital Digital Output Buffer Symbol min max Units AVDD1 AVDD2 DVDD1 DVDD2 −0.3 −0.3 −0.3 −0.3 6.0 6.0 6.0 6.0 V V V V IIN VINA VINA VIND VIND Ta Tstg − −0.3 −0.3 −0.3 −0.3 −10 −65 ±10 AVDD1+0.3 AVDD2+0.3 DVDD1+0.3 DVDD2+0.3 70 150 mA Input Current, Any Pin Except Supplies Analog Input Voltage (Note 2) Digital Input Voltage (Note 3) Ambient Temperature (power applied) Storage Temperature V V °C °C Note 1. All voltages with respect to VSS1-6 pins. Note 2. VREFP1, VREFP2, VREFL1, VREFL2, AINL1/2+, AINL1/2-, AINR1/2+ and AINR1/2- pins Note 3. PDN, CKS0, CKS1, CKS2, TDMIN, MCLK, BICK, LRCK, DIF, TDM0, TDM1, HPFE, MONO and TST1/2/3 pins WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. MS1096-E-01 2009/08 -5- [AK5388] RECOMMENDED OPERATING CONDITIONS (VSS1-6=0V; Note 1) Parameter Power Supplies: (Note 4) Voltage Reference (Note 5) Analog Analog Digital “H” voltage Reference “L” voltage reference VREFP1 – VREFL1 VREFP2 – VREFL2 Symbol min typ max Units AVDD1 AVDD2 DVDD1/2 VREFP1 VREFP2 VREFL1 VREFL2 ΔVREF ΔVREF 4.75 4.75 3.0 AVDD1-0.5 AVDD2-0.5 VSS1-6 VSS1-6 AVDD1-0.5 AVDD2-0.5 5.0 5.0 3.3 - 5.25 5.25 3.6 AVDD1 AVDD2 AVDD1 AVDD2 V V V V V V V V V Note 1. All voltages with respect to VSS1-6 pins. Note 4. The power up sequence between AVDD1/2 and DVDD1/2 is not critical. Note 5. VREFL– and VREFR– pins should be connected to VSS1-6 pins. Analog input voltage scales with voltage of {(VREFP) – (VREFL)}. Vin (typ, @ 0dB) = ±2.8 x {(VREF+) – (VREF–)} / 5 [V]. WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS1096-E-01 2009/08 -6- [AK5388] ANALOG CHARACTERISTICS (Ta = 25°C; AVDD1/2=5.0V; DVDD1/2=3.3V; VSS1-6=0V; VREFP1=VREFP2=AVDD, VREFL1 = VREFL2 = VSS1-6; fs=48kHz, 96kHz, 192kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement frequency=10Hz ∼ 20kHz at fs = 48kHz, 40Hz ∼ 40kHz at fs = 96kHz, 40Hz ∼ 40kHz at fs = 192kHz; unless otherwise specified) Parameter min typ max Units Analog Input Characteristics: Resolution 24 Bits Input Voltage (Note 6) ±2.7 ±2.8 ±2.9 Vpp −1dBFS 100 110 dB S/(N+D) fs=48kHz −20dBFS 97 dB BW=20kHz −60dBFS 57 dB −1dBFS 97 107 dB fs=96kHz −20dBFS 90 dB BW=40kHz −60dBFS 50 dB −1dBFS 107 dB fs=192kHz −20dBFS 90 dB BW=40kHz −60dBFS 50 dB Stereo Mode Dynamic Range 114 120 dB Mono Mode (−60dBFS with A-weighted) 123 Stereo Mode S/N 114 120 dB Mono Mode (A-weighted) 123 Input Resistance 3.3 3.7 4.1 kΩ Interchannel Isolation 110 120 dB Interchannel Gain Mismatch 0.1 0.5 dB Power Supply Rejection (Note 7) 60 dB Power Supplies Power Supply Current Normal Operation (PDN pin = “H”) mA 130 105 AVDD1/2 mA 22 15 DVDD (fs=48kHz) mA 39 27 DVDD (fs=96kHz) mA 29 20 DVDD (fs=192kHz) Power down mode (PDN pin = “L”) (Note 8) μA 100 10 AVDD+DVDD Note 6. This value is (LIN+)−(LIN−) and (RIN+)−(RIN−). Input voltage is proportional to VREF voltage. Vin = 0.56 x VREF1/2 (Vpp). Note 7. PSR is applied to AVDD1/2 and DVDD1/2 with 1kHz, 20mVpp. The VREFP1 and VREFP2 pins held a constant voltage. Note 8. All digital input pins are held DVDD1/2 or VSS3/4. MS1096-E-01 2009/08 -7- [AK5388] FILTER CHARACTERISTICS (fs=48kHz) (Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD1/2=3.0 ∼ 3.6V; DFS1 = “L”, DFS0 = “L”) Parameter Symbol min typ ADC Digital Filter (Decimation LPF): Passband (Note 9) −0.01dB PB 0 −0.1dB 22.0 −3.0dB 23.8 −6.0dB 24.4 Stopband SB 27.9 Passband Ripple PR Stopband Attenuation SA 80 Group Delay (Note 10) GD 12.6 Group Delay Distortion ΔGD ±0.01 ADC Digital Filter (HPF): Frequency Response (Note 9) −3dB FR 1.0 −0.1dB 6.5 max Units 21.6 - kHz kHz kHz kHz kHz dB dB 1/fs μs ±0.01 Hz Hz FILTER CHARACTERISTICS (fs=96kHz) (Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD1/2=3.0 ∼ 3.6V; DFS1 = “L”, DFS0 = “H”) Parameter Symbol min typ max Units ADC Digital Filter (Decimation LPF): Passband (Note 9) −0.01dB PB 0 43.3 kHz −0.1dB 44.2 kHz −3.0dB 47.6 kHz −6.0dB 48.9 kHz Stopband SB 55.9 kHz Passband Ripple PR ±0.01 dB Stopband Attenuation SA 80 dB Group Delay (Note 10) GD 12.6 1/fs Group Delay Distortion ΔGD ±0.013 μs ADC Digital Filter (HPF): Frequency Response (Note 9) −3dB FR 1.0 Hz −0.1dB 6.5 Hz Note 9. The passband and stopband frequencies scale with fs. The reference frequency of these responses is 1kHz. Note 10. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the setting of 24bit data both channels to the ADC output register for ADC. MS1096-E-01 2009/08 -8- [AK5388] FILTER CHARACTERISTICS (fs=192kHz) (Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD1/2=3.0 ∼ 3.6V; DFS1 = “H”, DFS0 = “L”) Parameter Symbol min typ ADC Digital Filter (Decimation LPF): Passband (Note 11) −0.08dB PB −0.1dB 83.4 −3.0dB 99.9 −6.0dB 106.5 Stopband SB 141.1 Passband Ripple PR Stopband Attenuation SA 80 Group Delay (Note 12) GD 9.8 Group Delay Distortion ΔGD 0 ADC Digital Filter (HPF): Frequency Response (Note 11) −3dB FR 1.0 −0.1dB 6.5 max Units 83.0 - kHz kHz kHz kHz kHz dB dB 1/fs μs ±0.08 Hz Hz Note 11. The passband and stopband frequencies scale with fs. The reference frequency of these responses is 1kHz. Note 12. The calculated delay time induced by digital filtering. This time is from the input of an analog signal to the setting of 24bit data both channels to the ADC output register for ADC. DC CHARACTERISTICS (Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD1/2=3.0 ∼ 3.6V) Parameter Symbol min 70%DVDD1 VIH High-Level Input Voltage 70%DVDD2 VIL Low-Level Input Voltage High-Level Output Voltage (Iout=−400μA) VOH Low-Level Output Voltage Input Leakage Current (Iout=400μA) VOL Iin MS1096-E-01 DVDD1−0.4 DVDD2−0.4 - typ - Max 30%DVDD1 30%DVDD2 0.4 ±10 Units V V V V V V V μA 2009/08 -9- [AK5388] SWITCHING CHARACTERISTICS (Ta=25°C; AVDD1/2=4.75 ∼ 5.25V; DVDD1/2=3.0 ∼ 3.6V; CL=20pF) Parameter Symbol min Master Clock Timing 1.024 fCLK Master Clock 128fs: 0.4fCLK tCLKL Pulse Width Low 0.4fCLK tCLKH Pulse Width High 1.536 fCLK 192fs: 0.4fCLK tCLKL Pulse Width Low 0.4fCLK tCLKH Pulse Width High 2.048 fCLK 256fs: 0.4fCLK tCLKL Pulse Width Low 0.4fCLK tCLKH Pulse Width High 3.072 fCLK 384fs: 0.4fCLK tCLKL Pulse Width Low 0.4fCLK tCLKH Pulse Width High 4.096 fCLK 512fs: 0.4fCLK tCLKL Pulse Width Low 0.4fCLK tCLKH Pulse Width High 6.144 fCLK 768fs: 0.4fCLK tCLKL Pulse Width Low 0.4fCLK tCLKH Pulse Width High LRCK Timing (Slave Mode) Normal mode (TDM1=“L”, TDM0=“L”) LRCK Frequency fs 8 Duty Cycle Duty 45 TDM256 MODE (TDM1=“L”, TDM0=“H”) 8 fs LRCK Frequency 1/256fs tLRH “H” time 1/256fs tLRL “L” time TDM128 MODE (TDM1=“H”, TDM0=“H”) 8 fs LRCK Frequency 1/128fs tLRH “H” time 1/128fs tLRL “L” time LRCK Timing (Master Mode) Normal mode (TDM1=“L”, TDM0=“L”) LRCK Frequency fs 8 Duty Cycle Duty TDM256 MODE (TDM1=“L”, TDM0=“H”) LRCK Frequency fs 8 “H” time (Note 13) tLRH TDM128 MODE (TDM1=“H”, TDM0=“H”) LRCK Frequency fs 8 “H” time (Note 13) tLRH Note 13. “L” time at I2S format MS1096-E-01 typ max Units 24.576 27.648 36.864 41.472 12.288 27.648 18.432 41.472 24.576 27.648 36.864 41.472 MHz ns ns MHz ns ns MHz ns ns MHz ns ns MHz ns ns MHz ns ns 216 55 kHz % 54 kHz ns ns 216 kHz ns ns 216 kHz % 54 kHz ns 216 kHz ns 50 1/8fs 1/4fs 2009/08 - 10 - [AK5388] Parameter Symbol min Normal mode (TDM1=“L”, TDM0=“L”) BICK Period Normal Speed Mode Double , Quad Speed Mode Duty Cycle LRCK Edge to BICK “↑” (Note 14) BICK “↑” to LRCK Edge (Note 14) LRCK to SDTO1/2 (MSB) (Except I2S mode) BICK “↓” to SDTO1/2 TBCK TBCK Duty tLRB tBLR tLRS tBSD 1/128fs 1/64fs 40 20 20 TDM256 mode (TDM1=“L”, TDM0=“H”) BICK Period Duty Cycle LRCK Edge to BICK “↑” (Note 14) BICK “↑” to LRCK Edge (Note 14) BICK “↓” to SDTO1/2 (Note 15) TDMIN Setup time tBCK Duty tLRB tBLR tBSD tTDMS 1/256fs 40 20 20 tBCK Duty tLRB tBLR tBSD 1/128fs 40 20 20 tBCK Duty tLRB tBLR tBSS tBSH 1/128fs 40 10 10 10 5 typ max Units Audio Interface Timing (Slave mode) TDM128 mode (TDM1=“H”, TDM0=“H”) (8KHz ≤ fs < 108KHz) BICK Period Duty Cycle LRCK Edge to BICK “↑” (Note 14) BICK “↑” to LRCK Edge (Note 14) BICK “↓” to SDTO1 (Note 15) TDM128 mode (TDM1=“H”, TDM0=“H”) (108KHz < fs ≤ 216KHz) BICK Period Duty Cycle LRCK Edge to BICK “↑” (Note 14) BICK “↑” to LRCK Edge (Note 14) SDTO1 Setup time BICK “↑ “ (Note 15) SDTO1 Hold time BICK “↑ “ (Note 15) MS1096-E-01 60 20 60 20 16 60 20 60 ns ns % ns ns ns ns ns % ns ns ns ns ns % ns ns ns ns % ns ns ns ns 2009/08 - 11 - [AK5388] Parameter Symbol min typ max Units Audio Interface Timing (Master mode) Normal mode (TDM1=“L”, TDM0=“L”) Hz 64fs fBCK BICK Frequency % 50 dBCK BICK Duty ns 20 −20 tMBLR BICK “↓” to LRCK ns 20 −20 tBSD BICK “↓” to SDTO1/2 TDM256 mode (TDM1=“L”, TDM0=“H”) Hz 256fs fBCK BICK Frequency % 50 dBCK BICK Duty (Note 16) ns 12 −12 tMBLR BICK “↓” to LRCK ns 20 −20 tBSD BICK “↓” to SDTO1 (Note 15) TDM128 mode (TDM1=“H”, TDM0=“H”) (8KHz ≤ fs < 108KHz) Hz 128fs BICK Frequency fBCK % 50 BICK Duty dBCK ns 12 −12 BICK “↓” to LRCK tMBLR ns 20 −20 BICK “↓” to SDTO1 (Note 15) tBSD TDM128 mode (TDM1=“H”, TDM0=“H”) (108KHz < fs ≤ 216KHz) Hz 128fs fBCK BICK Frequency % 50 dBCK BICK Duty ns 6 −6 tMBLR BICK “↓” to LRCK ns 10 −10 tBSD BICK “↓” to SDTO1 Power-Down & Reset Timing PDN Pulse Width (Note 17) tPD 150 ns PDN “↑” to SDTO1/2 valid (Note 18) tPDV 516 1/fs Note 14. BICK rising edge must not occur at the same time as LRCK edge. Note 15. SDTO2 output is fixed to “L”. Note 16. This value is MCLK=512fs. Duty cycle is not guaranteed when MCLK=256fs/384fs. Note 17. The AK5388 can be reset by bringing the PDN pin = “L”. Note 18. This cycle is the number of LRCK rising edges from the PDN pin = “H”. The value is when the AK5388 is in master mode. In case of in slave mode, the value will be 1LRCK clock cycle (1/fs) longer. MS1096-E-01 2009/08 - 12 - [AK5388] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKL tCLKH Figure 1. MCLK Timing (TDM0 pin = “L” or “H”) 1/fs VIH LRCK VIL tLRH tLRL Figure 2. LRCK Timing (TDM0 pin = “L” or “H”) tBCK VIH BICK VIL tBCKH tBCKL Duty = tBCKH/tBCK, tBCKL/tBCK Figure 3.BICK Timing (TDM0 pin = “L” or “H”) MS1096-E-01 2009/08 - 13 - [AK5388] VIH LRCK VIL tBLR tLRB VIH BICK VIL tLRS tBSD SDTO 50%DVDD Figure 4. Audio Interface Timing (Slave mode, TDM0 pin = “L”) Note: SDTO shows SDTO1 and SDTO2. VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSD SDTO1 50%DVDD tTDMS VIH TDMIN VIL Figure 5. Audio Interface Timing (Slave mode, TDM0 pin = “H”) MS1096-E-01 2009/08 - 14 - [AK5388] VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSD SDTO1 50%DVDD Figure 6. Audio Interface Timing (Slave mode, TDM0 pin = “H”, TDM1 pin = “H”, 8KHz ≤ fs < 108KHz) VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSS SDTO1 tBSH DATA 50%DVDD Figure 7. Audio Interface Timing (Slave mode, TDM0 pin = “H”, TDM1 pin = “H”, 108KHz < fs ≤ 216KHz) MS1096-E-01 2009/08 - 15 - [AK5388] 50%DVDD LRCK tMBLR dBCK BICK 50%DVDD tBSD SDTO 50%DVDD Figure 8. Audio Interface Timing (Master mode) VIH PDN VIL tPDV tPD SDTO 50%DVDD Figure 9. Power Down & Reset Timing Note: SDTO shows SDTO1 and SDTO2. MS1096-E-01 2009/08 - 16 - [AK5388] OPERATION OVERVIEW ■ System Clock MCLK (128fs/192fs/256fs/384fs/512fs/768fs), BICK (48fs∼) and LRCK (fs) clocks are required in slave mode. The LRCK clock input must be synchronized with MCLK, however the phase is not critical. Table 1, Table 2 and Table 3 show the relationship of typical sampling frequency and the system clock frequency. MCLK frequency is selected by CKS1-0 pins as shown in Table 4. Since the AK5388 includes a phase detection circuit for LRCK, the AK5388 is reset automatically when the synchronization is out of phase after changing the clock frequencies. All external clocks (MCLK, BICK and LRCK) must be present unless the PDN pin = “L”. If these clocks are not provided, the AK5388 may draw excess current due to its use of internal dynamically refreshed logic. If the external clocks are not present, place the AK5388 in power-down mode (PDN pin = “L”). In master mode, the master clock (MCLK) must be provided unless the PDN pin = “L”. In case of using two or more devices, the AK5388 should be reset by the PDN pin when changing clocks, changing clock modes and switching digital interfaces for a synchronization. Clock or mode changes should be made during the reset, and a stable clock is needed after the reset. fs 32kHz 48kHz 96kHz 192kHz 128fs N/A N/A N/A 24.576MHz 192fs N/A N/A N/A 36.864MHz MCLK 256fs 384fs 8.192MHz 12.288MHz 12.288MHz 18.432MHz 24.576MHz N/A N/A N/A 512fs 768fs 16.384MHz 24.576MHz 24.576MHz 36.864MHz N/A N/A N/A N/A (N/A: Not available) Table 1. System Clock Example (Slave Mode) fs 32kHz 48kHz 96kHz 192kHz 128fs N/A N/A N/A 24.576MHz 192fs N/A N/A N/A 36.864MHz MCLK 256fs 384fs 8.192MHz 12.288MHz 12.288MHz 18.432MHz 24.576MHz 36.864MHz N/A N/A 512fs 768fs 16.384MHz 24.576MHz 24.576MHz 36.864MHz N/A N/A N/A N/A (N/A: Not available) Table 2. System Clock Example (Master Mode) fs 32kHz 48kHz 96kHz 192kHz 128fs N/A N/A N/A 24.576MHz 192fs N/A N/A N/A 36.864MHz MCLK 256fs 384fs N/A N/A N/A N/A 24.576MHz 36.864MHz N/A N/A 512fs 768fs 16.384MHz 24.576MHz 24.576MHz 36.864MHz N/A N/A N/A N/A (N/A: Not available) Table 3. System Clock Example (Auto Mode) MS1096-E-01 2009/08 - 17 - [AK5388] CKS2 pin CKS1 pin CKS0 pin L L L L L H L H L L H H H L L H L H H H L H H H M/S Pin L H L H L H L H L H L H L H L MCLK Frequency Double Speed Mode 128fs (108KHz < fs ≤ 216KHz) Quad Speed Mode 192fs (108KHz < fs ≤ 216KHz) Normal Speed Mode 256fs (8KHz ≤ fs ≤ 54KHz) Double Speed Mode 256fs (54KHz < fs ≤ 108KHz) Auto (8KHz ≤ fs ≤ 216KHz) Double Speed Mode 384fs (54KHz < fs ≤ 108KHz) Normal Speed Mode 384fs (8KHz ≤ fs ≤ 54KHz) Normal Speed Mode 512fs (8KHz < fs ≤ 54KHz) Normal Speed Mode 768fs (8KHz ≤ fs ≤ 54KHz) Table 4. MCLK Frequency When changing MCLK frequency in master/slave mode, the AK5388 should reset by PDN pin = “L”. (ex. 12.288MHz(@fs=48kHz) at CKS1 pin = CKS0 pin = “L”. ■ Audio Interface Format 12 different audio data interface formats can be selected using the TDM1-0, M/S and DIF pins as shown in Table 5. The audio data format can be selected by the DIF pin. In all formats the serial data is MSB-first, 2's compliment format. The SDTO1/2 is clocked out on the falling edge of BICK. In normal mode, Mode 0-1 are the slave mode, and BICK is available up to 128fs at fs=48kHz. BICK outputs 64fs clock in Mode 2-3. In TDM256 mode, all of the ADC’s serial data (four channels) is output from the SDTO1 pins. The SDTO2 output is fixed to “L”. BICK should be fixed to 256fs. In slave mode, “H” time and “L” time of LRCK should be at least 1/256fs. In master mode, “H” time (“L” time at I2S mode) of LRCK is 1/8fs (typ). TDM256 mode only supports 48kHz sampling. In TDM128 mode, all of the ADC’s serial data (four channels) is output from the SDTO1 pin. The SDTO2 output is fixed to “L”. BICK should be fixed to 128fs. In the slave mode, “H” time and “L” time of LRCK should be at least 1/128fs. In master mode, “H” time (“L” time at I2S mode) of LRCK is 1/4fs (typ). TDM128 mode supports up to 192kHz sampling. MS1096-E-01 2009/08 - 18 - [AK5388] Mode 0 1 2 3 4 5 6 7 8 9 10 11 12 LRCK I/O L 24bit, MSB justified H/L I L 2 H 24bit, I S Compatible L/H I L L 24bit, MSB justified H/L O H H 24bit, I2S Compatible L/H O L 24bit, MSB justified I ↑ L H 24bit, I2S Compatible I ↓ H L 24bit, MSB justified O ↑ H H 24bit, I2S Compatible O ↓ L 24bit, MSB justified I ↑ L 2 H 24bit, I S Compatible I ↓ H L 24bit, MSB justified O ↑ H H 24bit, I2S Compatible O ↓ L N/A N/A N/A N/A N/A Table 5. Audio Interface Formats (N/A: Not available) TDM1 Normal L TDM256 L TDM128 H N/A H TDM0 M/S DIF BICK SDTO I/O I I O O I I O O I I O O N/A 48-128fs 48-128fs 64fs 64fs 256fs 256fs 256fs 256fs 128fs 128fs 128fs 128fs N/A LRCK 0 1 2 12 13 14 24 25 31 0 1 2 12 13 14 24 25 31 0 1 BICK(64fs) SDTO1/2(o) 23 22 12 11 10 23:MSB, 0:LSB 0 23 22 12 11 10 Lch Data 0 23 Rch Data Figure 10. Mode 0/2 Timing (Normal mode, MSB justified) LRCK 0 1 2 3 23 24 25 26 29 30 31 0 1 2 3 23 24 25 26 29 30 31 0 1 BICK(64fs) SDTO1/2(o) 23 22 2 1 23:MSB, 0:LSB 0 23 22 Lch Data 2 1 0 Rch Data Figure 11. Mode 1/3 Timing (Normal mode, I2S Compatible) 256 BICK LRCK (Mode 6) LRCK (Mode 4) BICK (256fs) SDTO1 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 12. Mode 4/6 Timing (TDM256 mode, MSB justified) MS1096-E-01 2009/08 - 19 - [AK5388] 256 BICK LRCK (Mode 7) LRCK (Mode5) BICK (256fs) SDTO1 23 0 23 0 23 0 23 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 Figure 13. Mode 5/7 Timing (TDM256 mode, I2S Compatible) 128 BICK LRCK (Mode 10) LRCK (Mode 8) BICK (128fs) SDTO1 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 14. Mode 8/10 Timing (TDM128 mode, MSB justified) 128 BICK LRCK (Mode 11) LRCK (Mode 9) BICK (128fs) SDTO1 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 2 Figure 15. Mode 9/11 Timing (TDM128 mode, I S Compatible) MS1096-E-01 2009/08 - 20 - [AK5388] ■ Digital High Pass Filter (HPF) The ADC has a digital high pass filter for DC offset cancellation. The HPF is controlled by the HPFE pin. If the HPF setting (ON/OFF) is changed during operation, a click noise occurs due to the change in DC offset. The HPF setting should only be changed when the PDN pin = “L”. ■ Overflow Detection The AK5388 has an overflow detect function for the analog input. The OVF pin goes to “H” if either channel overflows (more than −0.3dBFS). OVF output for overflowed analog input has the same group delay as the ADC (GD=13/fs=0.27ms@fs=48kHz). OVF is “L” for 516/fs (=10.75ms@fs=48kHz) after the PDN pin = “↑”, and then overflow detection is enabled. ■ Power Down and Reset The AK5388 is placed in the power-down mode by bringing PDN pin “L” and the digital filter is also reset at the same time. This reset should always be done after power-up. In the power-down mode, the VCOM is AGND level. An analog initialization cycle starts after exiting the power-down mode. The output data SDTO is valid after 516 cycles of LRCK clock in master mode (517 cycles in slave mode). During initialization, the ADC digital data outputs of both channels are forced to “0”. The ADC outputs settle to data correspondent to the input signals after the end of initialization (Settling takes approximately the group delay time). The AK5388 should be reset once by bringing the PDN pin “L” after power-up. The internal timing starts clocking by the rising edge (falling edge at Mode 1) of LRCK after exiting from reset and power down state by MCLK. (1) PDN Internal State Normal Operation Power-down Initialize Normal Operation GD (2) GD A/D In (Analog) A/D Out (Digital) Clock In MCLK,LRCK,SCLK (3) “0”data Idle Noise “0”data Idle Noise (4) Notes: (1) 517/fs in slave mode and 516/fs in master mode. (2) Digital output corresponding to analog input has group delay (GD). (3) A/D output is “0” data in power-down state. (4) When the external clocks (MCLK, SCLK, LRCK) are stopped, the AK5388 should be in the power-down state. Figure 16. Power-down/up sequence example MS1096-E-01 2009/08 - 21 - [AK5388] ■ Cascade TDM Mode The AK5388 supports cascading of up to two devices in a daisy chain configuration in TDM256 mode. In this mode, SDTO1 pin of device #1 is connected to TDMIN pin of device #2. The SDTO1 pin of device #2 can output 8-chnnels of TDM data multiplexed with 4-chnnel of TDM data from device #1 and 4-channel of TDM data from device #2. Figure 17 shows a connection example of a daisy chain. When using two AK5388’s in slave mode by cascade connection, the internal timing between device #1 and #2 may differ for 1MCLK clock cycle. BICK falling edge must me more than ±10ns from a MICK rising edge to prevent this phase difference between two devices. (Table 6) BICK must be divided by two on a MCLK falling edge (Figure 19) when MCLK=2 x BICK (Normal speed 512fs mode or Double speed 256fs mode), and BICK must be in-phase signal to MCLK (Figure 20) when MCLK = BICK (Normal speed 256fs mode or Quad speed 128fs mode) to achieve this internal timing synchronization. AK5388 #1 MCLK 256fs or 512fs LRCK 48kHz BICK 256fs TDMIN SDTO1 GND SDTO2 MCLK AK5388 #2 LRCK BICK TDMIN 8ch TDM SDTO1 SDTO2 Figure 17. Cascade TDM Connection Diagram 256 BICK LRCK BICK(256fs) #1 SDTO1(o) #1 SDTO2(o) #2 TDMIN(i) #2 SDTO1(o) 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 23 22 0 23 22 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L1-#1 R1-#1 L2-#1 R2-#1 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 22 Figure 18. Cascade TDM Timing MS1096-E-01 2009/08 - 22 - [AK5388] Parameter MCLK “↑” to BICK “↓” BICK “↓” to MCLK“↑” Symbol min tMCB tBIM 10 10 typ max Units ns ns Table 6 TDM Mode Clock Timing VIH MCLK VIL tMCB tBIM VIH B ICK VIL Figure 19. Audio Interface timing (Slave mode, TDM0 Mode MCLK=2 x BICK) VIH MCLK VIL tMCB tBIM VIH B ICK VIL Figure 20. Audio Interface Timing (Slave mode, TDM0 Mode MCLK=BICK) ■ Mono mode When the MONO pin is set to “H”, the AK5388 is in Mono mode. In this mode, dynamic range and S/N can be improved by approximately 3dB when the same analog signal is inputted to LIN1 and RIN1, LIN2 and RIN2. The LIN1 and RIN1 data are summed and the amplitude is attenuated into half to be output from the SDTO1 pin. The LIN2 and RIN2 data are summed and the amplitude is attenuated into half to be output from the SDTO2 pin. MONO pin SDTO1/2 Output Data L Stereo Mode H Mono Mode Table 7. Setup of MONO mode MS1096-E-01 2009/08 - 23 - [AK5388] SYSTEM DESIGN 10u + LIN2+ LIN2- 2.2u + 0. 1u + 0.1u LIN1+ 2 LIN1- 3 VSS1 4 AVDD1 10u + MicroController 0.1u 5 TEST1 6 VSS2 7 CKS0 8 CKS1 9 CKS2 LIN2+ 37 VCOM2 36 LIN2- 38 TEST3 39 RIN1- 40 RIN1+ 41 VCOM1 42 VREFL2 35 1 VREFL1 43 LIN1+ 0.1u VREFP1 44 0.1u LIN1- AK5388 RIN20.1u 10u + TEST2 29 VSS5 28 VSS4 27 Top View DVDD2 26 HPFE 25 0.1u 10u + Digital3.3v 22 TDM1 21 TDM0 20 TDMIN DIF 23 19 OVF 18 SDTO2 17 SDTO1 16 VSS3 13 BICK 14 LRCK 15 DVDD1 M ON O 24 M_SN 0.1u Analog Electrolytic Capacitor Ceramic Capacitor 10 u fs 64fs + + RIN2+ RIN2 - 32 VSS6 31 12 MCLK Digital RIN 2+ 33 AVDD2 30 10 PDN 11 Analog5.0V 2.2u 10u + + VREFP2 34 Analog5.0V RIN1+ RIN1- Figure 21 and Figure 22 show the system connection diagram. The evaluation board demonstrates application circuits, the optimum layout, power supply arrangements and measurement results. MicroController Digital3.3v Digital Note: - VSS1-6 should be distributed separately from the ground of external digital devices (MPU, DSP etc.). - All digital input pins should not be left floating. Figure 21. Typical Connection Diagram MS1096-E-01 2009/08 - 24 - [AK5388] System LIN1- 3 VSS1 4 AVDD1 5 TEST1 6 VSS2 7 CKS0 8 CKS1 9 CKS2 VREFP2 34 VCOM2 36 LIN2- 38 LIN2+ 37 RIN1- 40 TEST3 39 RIN1+ 41 VCOM1 42 VREFL2 35 LIN1+ 2 RIN2+ 33 RIN2- 32 VSS6 31 AK5388EQ Controller 1 VREFL1 43 Analog Ground VREFP1 44 Digital Ground AVDD2 30 TEST2 29 VSS5 28 VSS4 27 DVDD2 26 HPFE 25 MONO 24 22 TDM1 21 TDM0 20 TDMIN DIF 23 19 OVF 18 SDTO2 17 SDTO1 16 VSS3 14 LRCK 12 MCLK 13 BICK 11 M/SN 15 DVDD1 10 PDN Figure 22. Ground Layout Note: VSS1-6 must be connected to the same analog ground plane. 1. Grounding and Power Supply Decoupling The AK5388 requires careful attention to power supply and grounding arrangements. AVDD1/2 and DVDD1/2 are usually supplied from the system’s analog supply. Alternatively if AVDD1/2 and DVDD1/2 are supplied separately, the power up sequence is not critical. VSS1-6 of the AK5388 must be connected to the analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK5388 as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference Inputs The reference voltage for A/D converter is supplied from VREFP1/2 pins at VREFL1/2 reference. VREFL1/2 pins are connected to analog ground and an electrolytic capacitor over 10μF parallel with a 0.1μF ceramic capacitor between the VREFP1/2 pins and the VREFL1/2 pins eliminate the effects of high frequency noise. It is important that a ceramic capacitor should be as near to the pins as possible. All digital signals, especially clocks, should be kept away from the VREFP1/2 pins in order to avoid unwanted coupling into the AK5388. VCOM1/2 is a signal ground for this device. An electrolytic capacitor (2.2µF typical) attached to the VCOM1/2 pins eliminates the effects of high frequency noise. It is important that a ceramic capacitor should be as near to the pins as possible. No load current may be drawn from the VCOM1/2 pins. All signals, especially clocks, should be kept away from the VCOM1/2 pins in order to avoid unwanted coupling into the AK5388. 3. Analog Inputs The Analog input signal is differentially supplied into the modulator via the LIN+ (RIN+) and the LIN− (RIN−) pins. The input voltage is the difference between the LIN+ (RIN+) and LIN− (RIN−) pins. The full scale signal on each pin is nominally ±2.8Vpp(typ). The AK5388 can accept input voltages from VSS1-6 to AVDD1/2. The ADC output data format is two’s complement. The internal HPF removes DC offset. The AK5388 samples the analog inputs at 128fs (6.144MHz@fs=48kHz, Normal Speed Mode). The digital filter rejects noise above the stop band except for multiples of 128fs. The AK5388 includes an anti-aliasing filter (RC filter) to attenuate a noise around 128fs. The AK5388 requires a +5V analog supply voltage. Any voltage which exceeds the upper limit of AVDD1/2+0.3V and lower limit of VSS1-6 − 0.3V and any current beyond 10mA for the analog input pins (LIN+/−, RIN+/−) should be avoided. Excessive currents to the input pins may damage the device. Hence input pins must be protected from signals at or beyond these limits. Use caution especially when using ±15V for other analog circuits in the system. MS1096-E-01 2009/08 - 25 - [AK5388] 4. External Analog Circuit Examples Figure 23 shows an input buffer circuit example 1. (1st order HPF; fc=0.70Hz, 2nd order LPF; fc=351kHz, gain=-14.5dB). The analog signal is able to input through XLR or BNC connectors. (short JP1 and JP2 for BNC input, open JP1 and JP2 for XLR input). The input level of this circuit is +/-15.0Vpp (AK5388: +/-2.8Vpp Typ.). When using this circuit, analog characteristics at fs=48kHz is DR=120dB, S/(N+D)=110dB. 620 4.7k 4.7k Analog In JP1 VP+ Vin+ 68µ + 15.4Vpp Bias VP- 1n 3.3k 91 + 2.9Vpp AK5388 AIN+ NJM5534 NJM5534 XLR 2.2n VA+ 620 10k Bias 10k JP2 1n 3.3k - + 10µ 68µ Vin- 91 AK5388 AIN- + 0.1µ NJM5534 Bias VA=+5 VP=±15 2.9Vpp Figure 23.Input Buffer example1 fin 1Hz 10Hz Frequency Response −1.77dB −0.02dB Table 8. Frequency Response of HPF fin 20kHz 40kHz 80kHz Frequency Response 0.00dB 0.00dB 0.00dB Table 9. Frequency Response of LPF MS1096-E-01 6.144MHz −49.68dB 2009/08 - 26 - [AK5388] Figure 24 shows an input buffer circuit example in Mono mode. (1st order HPF; fc=0.70Hz, 2nd order LPF; fc=351kHz, gain=-14.5dB). 4.7k 4.7k Analog In 620 JP1 VP+ Vin+ 68µ + 15.0Vpp 1n 3.3k Bias VP- 11 + 2.8Vpp AK5388 LIN+ NJM5534 NJM5534 15n AK5388 LINXLR VA+ 620 10k JP2 Bias 68µ + 11k 10µ AK5388 RIN+ 15n 1n 3.3k Vin- - 11 + 0.1 µ NJM5534 Bias VA=+5V AK5388 RIN2.8Vpp VP=±15V Figure 24 External Analog Circuit Examples fin 1Hz 10Hz Frequency Response −1.77dB −0.02dB Table 10. Frequency Response of HPF fin 20kHz 40kHz 80kHz Frequency Response 0.00dB 0.00dB 0.00dB Table 11. Frequency Response of LPF MS1096-E-01 6.144MHz −49.68dB 2009/08 - 27 - [AK5388] 5. Performance Plot Figure 25 shows a FFT measurement result. [Conditions] Ta=25ºC; AVDD1/2=5.0V; VREFP1/2=5.0V, VREFL1/2=0V, DVDD=3.3V; VSS1=VSS2=VSS3=VSS4=0V; fs=48kHz; Signal Frequency =1kHz, -1dBFS, Measured by Audio Precision, System Two. +0 -10 -20 -30 -40 -50 -60 -70 d B F S -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 20 50 100 200 500 1k 2k 5k 10k 20k Hz Figure 25. FFT (Blue: Left Channel, Red: Right Channel) MS1096-E-01 2009/08 - 28 - [AK5388] PACKAGE 44pin LQFP (Unit: mm) 1.70max 12.8±0.3 1.40 0.10±0.10 10.0 23 33 0.8 12.8±0.3 22 10.0 34 12 44 1 11 0.37±0.08 0.20 M 0.17±0.05 0°∼10° 0.6±0.20 0.10 ■ Material & Lead finish Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy Cu Solder (Pb free) plate MS1096-E-01 2009/08 - 29 - [AK5388] MARKING AK5388EQ XXXXXXX AKM 1 1) Pin #1 indication 2) Audio 4 pro Logo 3) Date Code: XXXXXXX(7 digits) 4) Marking Code: AK5388 5) AKM Logo REVISION HISTORY Date (YY/MM/DD) 09/07/09 09/08/xx Revision 00 01 Reason First Edition Error Correct Page Contents 1 Pin names of block diagram were changed. VRP1 →VREFP1, VRL1 →VREFL1 VRP2 →VREFP2, VRL2 →VREFL2 ■ Cascade TDM Mode Figure 17 and description were corrected. SDTO2 is connected to TDMIN → SDTO1 is connected to TDMIN Figure 23 A resistor value was corrected. 3.3 → 3.3k [Conditions] VREFL1/2=5.0V → =0V 22 26 28 MS1096-E-01 2009/08 - 30 - [AK5388] IMPORTANT NOTICE z These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. z AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein. z Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. z AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. MS1096-E-01 2009/08 - 31 -