Microsemi APT50GT120LRG Thunderbolt igbt Datasheet

APT50GT120B2R(G)
APT50GT120LR(G)
1200V, 50A, VCE(ON) = 3.2V Typical
Thunderbolt IGBT®
The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using
Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed.
Features
• Low Forward Voltage Drop
• RBSOA and SCSOA Rated
• Low Tail Current
• High Frequency Switching to 50KHz
• RoHS Compliant
• Ultra Low Leakage Current
Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel
IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation.
All Ratings: TC = 25°C unless otherwise specified.
Maximum Ratings
Symbol Parameter
Ratings
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
IC1
Continuous Collector Current @ TC = 25°C
94
IC2
Continuous Collector Current @ TC = 100°C
50
ICM
SSOA
PD
TJ, TSTG
TL
Pulsed Collector Current
Unit
Volts
Amps
150
1
Switching Safe Operating Area @ TJ = 150°C
150A @ 1200V
Total Power Dissipation
625
Operating and Storage Junction Temperature Range
Watts
-55 to 150
Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec.
°C
300
Static Electrical Characteristics
Min
Typ
Max
1200
-
-
Unit
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 3mA)
VGE(TH)
Gate Threshold Voltage (VCE = VGE, IC = 2mA, Tj = 25°C)
4.5
5.5
6.5
Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C)
2.7
3.2
3.7
Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C)
-
4.0
-
-
-
200
μA
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2
-
-
2.0
mA
Gate-Emitter Leakage Current (VGE = ±20V)
-
-
300
nA
VCE(ON)
ICES
IGES
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
Volts
052-6270 Rev D 9-2008
Symbol Characteristic / Test Conditions
Dynamic Characteristics
Symbol
APT50GT120B2R_LR(G)
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
VGE = 0V, VCE = 25V
f = 1MHz
Gate Charge
Min
Typ
Max
-
3300
-
-
500
-
-
220
-
-
10.5
-
Qg
Total Gate Charge
VGE = 15V
-
340
-
Qge
Gate-Emitter Charge
VCE= 600V
-
40
-
IC = 50A
-
210
-
Qgc
SSOA
td(on)
tr
td(off)
tf
Eon1
Gate-Collector Charge
Switching Safe Operating Area
TJ = 150°C, RG = 1.0Ω , VGE = 15V,
L = 100μH, VCE= 1200V
Turn-On Delay Time
-
24
-
Inductive Switching (25°C)
-
53
-
Turn-Off Delay Time
VCC = 800V
230
-
Current Fall Time
VGE = 15V
-
26
-
RG = 4.7Ω
-
TBD
-
TJ = +25°C
-
5330
-
Current Rise Time
IC = 50A
Eon2
Turn-On Switching Energy
Eoff
Turn-Off Switching Energy 6
-
2330
-
td(on)
Turn-On Delay Time
-
24
-
Inductive Switching (125°C)
-
53
-
Turn-Off Delay Time
VCC = 800V
-
255
-
Current Fall Time
VGE = 15V
-
48
-
Turn-On Switching Energy
4
IC = 50A
TBD
-
Turn-On Switching Energy
RG = 4.7Ω
-
5
-
5670
-
Turn-Off Switching Energy
6
-
2850
-
Eon1
Eon2
Eoff
nC
A
5
tf
V
150
Turn-On Switching Energy
td(off)
pF
7
4
tr
Unit
Current Rise Time
TJ = 125°C
ns
μJ
ns
μJ
Thermal and Mechanical Characteristics
Symbol Characteristic / Test Conditions
R
θJC
WT
Min
Typ
Max
Unit
Junction to Case
-
-
0.20
°C/W
Package Weight
-
-
5.9
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to
the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance not including gate driver impedance.
052-6270 Rev D 9-2008
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
V
GE
APT50GT120B2R_LR(G)
150
= 15V
125
TJ= 55°C
100
75
TJ= 125°C
50
TJ= 150°C
25
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
100
75
TJ= -55°C
TJ= 25°C
TJ= 125°C
0
6
IC = 100A
4
3
IC = 50A
IC = 25A
2
1
0
8
9
10 11 12 13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
1.10
8V
25
7V
6V
0
10
15
20
25
30
5
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
I = 50A
C
T = 25°C
VCE = 240V
J
14
VCE = 600V
12
10
VCE = 960V
8
6
4
2
0
7
50
100 150 200 250 300
GATE CHARGE (nC)
FIGURE 4, Gate charge
350
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
6
IC = 100A
5
IC = 50A
4
IC = 25A
3
2
1
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
100
1.05
1.00
0.95
0.90
0.85
0.80
0.75
-.50 -.25
0
25
50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
9V
50
0
10
12
14
2
4
6
8
VCE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
5
10V
75
80
60
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6270 Rev D 9-2008
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
125
25
11V
100
16
250μs PULSE
TEST<0.5 % DUTY
CYCLE
50
125
0
0
1
2
3
4
5
6
7
8
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
150
15V
13V
TJ= 25°C
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
150
Typical Performance Curves
APT50GT120B2R_LR(G)
300
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
35
30
VGE = 15V
25
20
15
10
VCE = 800V
TJ = 25°C, or 125°C
RG = 1.0Ω
L = 100μH
5
0
250
VGE =15V,TJ=25°C
150
100
VCE = 800V
RG = 1.0Ω
L = 100μH
50
0
0
20
40
60
80
100 120
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
20
40
60
80
100
120
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
160
VGE =15V,TJ=125°C
200
60
RG = 1.0Ω, L = 100μH, VCE = 800V
140
RG = 1.0Ω, L = 100μH, VCE = 800V
50
100
tr, FALL TIME (ns)
tr, RISE TIME (ns)
120
80
60
40
TJ = 25 or 125°C,VGE = 15V
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
6,000
EOFF, TURN OFF ENERGY LOSS (μJ)
Eon2, TURN ON ENERGY LOSS (μJ)
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
20,000
G
TJ = 125°C
10,000
5,000
TJ = 25°C
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
G
TJ = 125°C
4,000
3,000
2,000
TJ = 25°C
1,000
20,000
V
= 800V
CE
V
= +15V
GE
T = 125°C
50,000
Eon2,100A
J
40,000
30,000
20,000
10,000
Eon2,50A
0
Eoff,100A
Eoff,50A
Eon2,25A
Eoff,25A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
SWITCHING ENERGY LOSSES (μJ)
5,000
10
30
50
70
90
110
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
60,000
052-6270 Rev D 9-2008
V
= 800V
CE
V
= +15V
GE
R = 1.0Ω
0
0
0
TJ = 25°C, VGE = 15V
20
0
0
15,000
30
10
20
V
= 800V
CE
V
= +15V
GE
R = 1.0Ω
TJ = 125°C, VGE = 15V
40
V
= 800V
CE
V
= +15V
GE
R = 1.0Ω
Eon2,100A
G
15,000
10,000
Eon2,50A
5,000
Eoff,100A
Eoff,50A
Eon2,25A
0
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT50GT120B2R_LR(G)
160
5000
140
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
1000
Coes
100
Cres
120
100
80
60
40
20
0
10
0
100
200
300
400
500 600
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0. 2
D = 0.9
0.7
0.15
0. 1
0.5
Note:
0.3
PDM
t1
t2
0.05
t
0.1
0.05
0
10
-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
TC (°C)
0.0487
0.151
Dissipated Power
(Watts)
0.00909
ZEXT
TJ (°C)
0.389
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
120
1.0
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 1.0Ω
100
G
80
60
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
75°C
40
100°C
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
20
0
10
20
30
40
50
60
70
80
90
100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
052-6270 Rev D 9-2008
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT50GT120B2R_LR(G )
10%
Gate Voltage
TJ = 125°C
td(on)
APT30DQ120
90%
Collector Current
tr
IC
V CC
V CE
5%
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
TJ = 125°C
90%
Gate Voltage
td(off)
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
T-MAX® Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
TO-264 Package Outline
4.60 (.181)
5.21 (.205)
1.80 (.071)
2.01 (.079)
15.49 (.610)
16.26 (.640)
19.51 (.768)
20.50 (.807)
3.10 (.122)
3.48 (.137)
20.80 (.819)
21.46 (.845)
0.40 (.016)
0.79 (.031)
4.50
(.177) Max.
052-6270 Rev D 9-2008
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
5.79 (.228)
6.20 (.244)
25.48 (1.003)
26.49 (1.043)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
2.21 (.087)
2.59 (.102)
Collector
Collector
5.38 (.212)
6.20 (.244)
Gate
Collector
Emitter
2.29 (.090)
2.69 (.106)
19.81 (.780)
21.39 (.842)
2.29 (.090)
2.69 (.106)
Gate
Collector
Emitter
0.48 (.019) 0.76 (.030)
0.84 (.033) 1.30 (.051)
2.79 (.110)
2.59 (.102)
3.18 (.125)
3.00 (.118)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages