APT50GT120B2R(G) APT50GT120LR(G) 1200V, 50A, VCE(ON) = 3.2V Typical Thunderbolt IGBT® The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. Features • Low Forward Voltage Drop • RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 50KHz • RoHS Compliant • Ultra Low Leakage Current Unless stated otherwise, Microsemi discrete IGBTs contain a single IGBT die. This device is made with two parallel IGBT die. It is intended for switch-mode operation. It is not suitable for linear mode operation. All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings Symbol Parameter Ratings VCES Collector-Emitter Voltage 1200 VGE Gate-Emitter Voltage ±30 IC1 Continuous Collector Current @ TC = 25°C 94 IC2 Continuous Collector Current @ TC = 100°C 50 ICM SSOA PD TJ, TSTG TL Pulsed Collector Current Unit Volts Amps 150 1 Switching Safe Operating Area @ TJ = 150°C 150A @ 1200V Total Power Dissipation 625 Operating and Storage Junction Temperature Range Watts -55 to 150 Max. Lead Temp. for Soldering: 0.063” from Case for 10 Sec. °C 300 Static Electrical Characteristics Min Typ Max 1200 - - Unit V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 3mA) VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 2mA, Tj = 25°C) 4.5 5.5 6.5 Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C) 2.7 3.2 3.7 Collector Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C) - 4.0 - - - 200 μA Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C) 2 - - 2.0 mA Gate-Emitter Leakage Current (VGE = ±20V) - - 300 nA VCE(ON) ICES IGES Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C) 2 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Volts 052-6270 Rev D 9-2008 Symbol Characteristic / Test Conditions Dynamic Characteristics Symbol APT50GT120B2R_LR(G) Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage VGE = 0V, VCE = 25V f = 1MHz Gate Charge Min Typ Max - 3300 - - 500 - - 220 - - 10.5 - Qg Total Gate Charge VGE = 15V - 340 - Qge Gate-Emitter Charge VCE= 600V - 40 - IC = 50A - 210 - Qgc SSOA td(on) tr td(off) tf Eon1 Gate-Collector Charge Switching Safe Operating Area TJ = 150°C, RG = 1.0Ω , VGE = 15V, L = 100μH, VCE= 1200V Turn-On Delay Time - 24 - Inductive Switching (25°C) - 53 - Turn-Off Delay Time VCC = 800V 230 - Current Fall Time VGE = 15V - 26 - RG = 4.7Ω - TBD - TJ = +25°C - 5330 - Current Rise Time IC = 50A Eon2 Turn-On Switching Energy Eoff Turn-Off Switching Energy 6 - 2330 - td(on) Turn-On Delay Time - 24 - Inductive Switching (125°C) - 53 - Turn-Off Delay Time VCC = 800V - 255 - Current Fall Time VGE = 15V - 48 - Turn-On Switching Energy 4 IC = 50A TBD - Turn-On Switching Energy RG = 4.7Ω - 5 - 5670 - Turn-Off Switching Energy 6 - 2850 - Eon1 Eon2 Eoff nC A 5 tf V 150 Turn-On Switching Energy td(off) pF 7 4 tr Unit Current Rise Time TJ = 125°C ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions R θJC WT Min Typ Max Unit Junction to Case - - 0.20 °C/W Package Weight - - 5.9 gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. 052-6270 Rev D 9-2008 Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves V GE APT50GT120B2R_LR(G) 150 = 15V 125 TJ= 55°C 100 75 TJ= 125°C 50 TJ= 150°C 25 0 VGE, GATE-TO-EMITTER VOLTAGE (V) 100 75 TJ= -55°C TJ= 25°C TJ= 125°C 0 6 IC = 100A 4 3 IC = 50A IC = 25A 2 1 0 8 9 10 11 12 13 14 15 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage 1.10 8V 25 7V 6V 0 10 15 20 25 30 5 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 25°C) I = 50A C T = 25°C VCE = 240V J 14 VCE = 600V 12 10 VCE = 960V 8 6 4 2 0 7 50 100 150 200 250 300 GATE CHARGE (nC) FIGURE 4, Gate charge 350 VGE = 15V. 250μs PULSE TEST <0.5 % DUTY CYCLE 6 IC = 100A 5 IC = 50A 4 IC = 25A 3 2 1 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 100 1.05 1.00 0.95 0.90 0.85 0.80 0.75 -.50 -.25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE FIGURE 7, Threshold Voltage vs Junction Temperature IC, DC COLLECTOR CURRENT (A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 9V 50 0 10 12 14 2 4 6 8 VCE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics TJ = 25°C. 250μs PULSE TEST <0.5 % DUTY CYCLE 5 10V 75 80 60 40 20 0 25 50 75 100 125 150 TC, Case Temperature (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6270 Rev D 9-2008 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 125 25 11V 100 16 250μs PULSE TEST<0.5 % DUTY CYCLE 50 125 0 0 1 2 3 4 5 6 7 8 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics (TJ = 25°C) 150 15V 13V TJ= 25°C IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 150 Typical Performance Curves APT50GT120B2R_LR(G) 300 td(OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 35 30 VGE = 15V 25 20 15 10 VCE = 800V TJ = 25°C, or 125°C RG = 1.0Ω L = 100μH 5 0 250 VGE =15V,TJ=25°C 150 100 VCE = 800V RG = 1.0Ω L = 100μH 50 0 0 20 40 60 80 100 120 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 20 40 60 80 100 120 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 160 VGE =15V,TJ=125°C 200 60 RG = 1.0Ω, L = 100μH, VCE = 800V 140 RG = 1.0Ω, L = 100μH, VCE = 800V 50 100 tr, FALL TIME (ns) tr, RISE TIME (ns) 120 80 60 40 TJ = 25 or 125°C,VGE = 15V 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 6,000 EOFF, TURN OFF ENERGY LOSS (μJ) Eon2, TURN ON ENERGY LOSS (μJ) 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 20,000 G TJ = 125°C 10,000 5,000 TJ = 25°C 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current G TJ = 125°C 4,000 3,000 2,000 TJ = 25°C 1,000 20,000 V = 800V CE V = +15V GE T = 125°C 50,000 Eon2,100A J 40,000 30,000 20,000 10,000 Eon2,50A 0 Eoff,100A Eoff,50A Eon2,25A Eoff,25A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs Gate Resistance SWITCHING ENERGY LOSSES (μJ) SWITCHING ENERGY LOSSES (μJ) 5,000 10 30 50 70 90 110 ICE, COLLECTOR-TO-EMITTER CURRENT (A) FIGURE 14, Turn-Off Energy Loss vs Collector Current 60,000 052-6270 Rev D 9-2008 V = 800V CE V = +15V GE R = 1.0Ω 0 0 0 TJ = 25°C, VGE = 15V 20 0 0 15,000 30 10 20 V = 800V CE V = +15V GE R = 1.0Ω TJ = 125°C, VGE = 15V 40 V = 800V CE V = +15V GE R = 1.0Ω Eon2,100A G 15,000 10,000 Eon2,50A 5,000 Eoff,100A Eoff,50A Eon2,25A 0 Eoff,25A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT50GT120B2R_LR(G) 160 5000 140 IC, COLLECTOR CURRENT (A) C, CAPACITANCE (pF) Cies 1000 Coes 100 Cres 120 100 80 60 40 20 0 10 0 100 200 300 400 500 600 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) FIGURE 17, Capacitance vs Collector-To-Emitter Voltage 0 200 400 600 800 1000 1200 1400 VCE, COLLECTOR-TO-EMITTER VOLTAGE FIGURE 18, Minimum Switching Safe Operating Area 0. 2 D = 0.9 0.7 0.15 0. 1 0.5 Note: 0.3 PDM t1 t2 0.05 t 0.1 0.05 0 10 -5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TC (°C) 0.0487 0.151 Dissipated Power (Watts) 0.00909 ZEXT TJ (°C) 0.389 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL FMAX, OPERATING FREQUENCY (kHz) 120 1.0 T = 125°C J T = 75°C C D = 50 % V = 800V CE R = 1.0Ω 100 G 80 60 F max = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf 75°C 40 100°C f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC 20 0 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6270 Rev D 9-2008 ZθJC, THERMAL IMPEDANCE (°C/W) 0.25 APT50GT120B2R_LR(G ) 10% Gate Voltage TJ = 125°C td(on) APT30DQ120 90% Collector Current tr IC V CC V CE 5% 10% 5% Collector Voltage Switching Energy A D.U.T. Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% TJ = 125°C 90% Gate Voltage td(off) Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions T-MAX® Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) TO-264 Package Outline 4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 15.49 (.610) 16.26 (.640) 19.51 (.768) 20.50 (.807) 3.10 (.122) 3.48 (.137) 20.80 (.819) 21.46 (.845) 0.40 (.016) 0.79 (.031) 4.50 (.177) Max. 052-6270 Rev D 9-2008 1.01 (.040) 1.40 (.055) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) 5.79 (.228) 6.20 (.244) 25.48 (1.003) 26.49 (1.043) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 2.21 (.087) 2.59 (.102) Collector Collector 5.38 (.212) 6.20 (.244) Gate Collector Emitter 2.29 (.090) 2.69 (.106) 19.81 (.780) 21.39 (.842) 2.29 (.090) 2.69 (.106) Gate Collector Emitter 0.48 (.019) 0.76 (.030) 0.84 (.033) 1.30 (.051) 2.79 (.110) 2.59 (.102) 3.18 (.125) 3.00 (.118) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.