Micrel LMC7101AIM5 Low-power operational amplifier Datasheet

LMC7101
Micrel, Inc.
LMC7101
Low-Power Operational Amplifier
Final Information
General Description
Features
The LMC7101 is a high-performance, low-power, operational
amplifier which is pin-for-pin compatible with the National
Semiconductor LMC7101. It features rail-to-rail input and
output performance in Micrel’s IttyBitty™ SOT-23-5 package.
•
•
•
•
•
The LMC7101 is a 500kHz gain bandwidth amplifier designed to operate from 2.7V to 12V single-ended power
supplies with guaranteed performance at supply voltages of
2.7V, 3V, 5V, and 12V.
Small footprint SOT-23-5 package
Guaranteed 2.7V, 3V, 5V, and 12V performance
500kHz gain-bandwidth
0.01% total harmonic distortion at 10kHz (5V, 2kΩ)
0.5mA typical supply current at 5V
Applications
•
•
•
•
This op amp’s input common-mode range includes ground
and extends 300mV beyond the supply rails. For example,
the common-mode range is –0.3V to +5.3V with a 5V supply.
Mobile communications, cellular phones, pagers
Battery-powered instrumentation
PCMCIA, USB
Portable computers and PDAs
Ordering Information
Standard
Part Number
Marking
Pb-Free
Part Number
Marking*
Grade
Temp Range
Package
LMC7101AIM5
A12A
LMC7101AYM5
A12A
Prime
–40°C to +85°C
SOT-23-5
LMC7101BIM5
A12
LMC7101BYM5
A12
Standard
–40°C to +85°C
SOT-23-5
*Under bar symbol (_) may not be to scale.
Pin Configuration
IN+
Functional Configuration
V+ OUT
3
2
1
IN+
Part
Identification
3
V+ OUT
2
1
A12A
4
5
4
5
IN–
V–
IN–
V–
SOT-23-5 (M5)
Pin Description
Pin Number
Pin Name
Pin Function
1
OUT
Amplifier Output
2
V+
Positive Supply
3
IN+
Noninverting Input
4
IN–
Inverting Input
5
V–
Negative Supply: Negative supply for split supply application or ground for
single supply application.
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
February 2005
1
LMC7101
LMC7101
Micrel, Inc.
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 1)
Supply Voltage (VV+ – VV–) ........................................... 15V
Differential Input Voltage (VIN+ – VIN–) ........... ±(VV+ – VV–)
I/O Pin Voltage (VIN, VOUT), Note 2
............................................. VV+ + 0.3V to VV– – 0.3V
Junction Temperature (TJ) ...................................... +150°C
Storage Temperature ............................... –65°C to +150°C
Lead Temperature (soldering, 10 sec.) ..................... 260°C
ESD, Note 5 .................................................................. 2kV
Supply Voltage (VV+ – VV–) .............................. 2.7V to 12V
Ambient Temperature (TA) ......................... –40°C to +85°C
Junction Temperature (TJ) ....................... –40°C to +125°C
Max. Junction Temperature (TJ(max)), Note 3 ......... +125°C
Package Thermal Resistance (θJA), Note 4.......... 325°C/W
Max. Power Dissipation ............................................ Note 3
Electrical Characteristics (2.7V)
V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
LMC7101A
Symbol
Parameter
VOS
Input Offset Voltage
0.11
TCVOS
Input Offset Voltage Average Drift
1.0
IB
Input Bias Current
1.0
64
64
pA
IOS
Input Offset Current
0.5
32
32
pA
RIN
Input Resistance
>1
CMRR
Common-Mode Rejection Ratio
0V ≤ VCM ≤ 2.7V, Note 6
70
VCM
Input Common-Mode Voltage
input low, CMRR ≥ 50dB
–0.3
input high, CMRR ≥ 50dB
3.0
2.7
2.7
V
V+ = 1.35V to 1.65V, V– =
–1.35V to –1.65V, VCM = 0
60
50
45
dB
PSRR
Power Supply Rejection Ratio
CIN
Common-Mode Input Capacitance
VO
Output Swing
Condition
Typ
Min
Max
LMC7101B
Min
6
Max
Units
9
mV
µV/°C
TΩ
50
50
dB
0.0
0.0
3
V
pF
output high, RL = 10k
2.699
2.64
2.64
V
output low, RL = 10k
0.001
output high, RL = 2k
2.692
output low, RL = 2k
0.008
0.1
0.1
V
0.5
0.81
0.95
0.81
0.95
mA
mA
0.06
2.6
0.06
2.6
V
V
IS
Supply Current
SR
Slew Rate
0.4
V/µs
GBW
Gain-Bandwidth Product
0.5
MHz
VOUT = V+/2
Electrical Characteristics (3.0V)
V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
LMC7101A
Symbol
Parameter
VOS
Input Offset Voltage
0.11
TCVOS
Input Offset Voltage Average Drift
1.0
IB
Input Bias Current
1.0
64
64
pA
IOS
Input Offset Current
0.5
32
32
pA
RIN
Input Resistance
>1
LMC7101
Condition
Typ
2
Min
Max
LMC7101B
4
6
Min
Max
Units
7
9
mV
mV
µV/°C
TΩ
February 2005
LMC7101
Micrel, Inc.
LMC7101A
Symbol
Parameter
Condition
CMRR
Common-Mode Rejection Ratio
VCM
Input Common-Mode Voltage
PSRR
Power Supply Rejection Ratio
CIN
Common-Mode Input Capacitance
VOUT
Output Swing
IS
Max
LMC7101B
Typ
Min
Min
Max
0V ≤ VCM ≤ 3.0V, Note 6
74
60
input low, CMRR ≥ 50dB
–0.3
input high, CMRR ≥ 50dB
3.3
3.0
3.0
V
V+ = 1.5V to 6.0V, V– =
–1.5V to –6.0V, VCM = 0
80
68
60
dB
60
0
Units
dB
0
V
3
pF
output high, RL = 2k
2.992
output low, RL = 2k
0.008
output high, RL = 600Ω
2.973
output low, RL = 600Ω
0.027
0.15
0.15
V
0.5
0.81
0.95
0.81
0.95
mA
mA
Supply Current
2.9
2.9
0.1
2.85
V
0.1
V
2.85
V
Electrical Characteristics—DC (5V)
V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
LMC7101A
Condition
Typ
Symbol
Parameter
VOS
Input Offset Voltage
0.11
TCVOS
Input Offset Voltage Average Drift
1.0
IB
Input Bias Current
1.0
64
64
pA
IOS
Input Offset Current
0.5
32
32
pA
RIN
Input Resistance
>1
CMRR
Common-Mode Rejection Ratio
0V ≤ VCM ≤ 5V, Note 6
VCM
Input Common-Mode Voltage
input low, CMRR ≥ 50dB
–0.3
input high, CMRR ≥ 50dB
5.3
5.20
5.00
5.20
5.00
V
V
82
Min
Max
LMC7101B
Min
3
5
Max
Units
7
9
mV
mV
µV/°C
TΩ
60
55
60
55
–0.20
0.00
dB
dB
–0.20
0.00
V
V
+PSRR
Positive Power Supply
Rejection Ratio
V+ = 5V to 12V,
V– = 0V, VOUT = 1.5V
82
70
65
65
62
dB
dB
–PSRR
Negative Power Supply
Rejection Ratio
V+ = 0V, V– = –5V to –12V,
VOUT = –1.5V
82
70
65
65
62
dB
dB
CIN
Common-Mode Input Capacitance
VOUT
Output Swing
3
output high, RL = 2k
4.989
output low, RL = 2k
0.011
output high, RL = 600Ω
4.963
output low, RL = 600Ω
0.037
ISC
Output Short Circuit Current
Note 7
sourcing (VOUT = 0V) or
sinking (VOUT = 5V)
200
IS
Supply Current
VOUT = V+/2
0.5
February 2005
3
pF
4.9
4.85
4.9
4.85
0.1
0.15
4.9
4.8
V
V
0.1
0.15
4.9
4.8
0.1
0.2
120
80
V
V
0.1
0.2
V
V
120
80
0.85
1.0
V
V
mA
mA
0.85
1.0
mA
mA
LMC7101
LMC7101
Micrel, Inc.
Electrical Characteristics—DC (12V)
V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
LMC7101A
Condition
Typ
Symbol
Parameter
VOS
Input Offset Voltage
0.11
TCVOS
Input Offset Voltage Average Drift
1.0
IB
Input Bias Current
1.0
64
64
pA
IOS
Input Offset Current
0.5
32
32
pA
RIN
Input Resistance
>1
CMRR
Common-Mode Rejection Ratio
0V ≤ VCM ≤ 12V, Note 6
VCM
Input Common-Mode Voltage
input low, V+ = 12V,
CMRR ≥ 50dB
–0.3
input high, V+ = 12V,
CMRR ≥ 50dB
12.3
12.2
12.0
12.2
12.0
V
V
82
Min
Max
LMC7101B
Min
6
Max
Units
9
mV
µV/°C
TΩ
65
60
65
60
–0.20
0.00
dB
dB
–0.20
0.00
V
V
+PSRR
Positive Power Supply
Rejection Ratio
V+ = 5V to 12V,
V– = 0V, VOUT = 1.5V
82
70
65
65
62
dB
dB
–PSRR
Negative Power Supply
Rejection Ratio
V+ = 0V, V– = –5V to
–12V, VOUT = –1.5V
82
70
65
65
62
dB
dB
AV
Large Signal Voltage Gain
sourcing or sinking,
RL = 2k, Note 9
340
80
40
80
40
V/mV
V/mV
sourcing or sinking,
RL = 600Ω, Note 9
300
15
10
15
10
V/mV
V/mV
CIN
Common-Mode Input Capacitance
VOUT
Output Swing
3
output high, V+ = 12V,
RL = 2k
11.98
output low, V+ = 12V,
RL = 2k,
0.02
output high, V+ = 12V,
RL = 600Ω
11.93
output low, V+ = 12V,
RL = 600Ω
0.07
ISC
Output Short Circuit Current
sourcing (VOUT = 0V) or
sinking (VOUT = 12V),
Notes 7, 8
300
IS
Supply Current
VOUT = V+/2
0.8
LMC7101
4
pF
11.9
11.87
11.9
11.87
0.10
0.13
11.73
11.65
V
V
0.10
0.13
11.73
11.65
0.27
0.35
200
120
V
V
0.27
0.35
200
120
1.5
1.71
V
V
V
V
mA
mA
1.5
1.71
mA
mA
February 2005
LMC7101
Micrel, Inc.
Electrical Characteristics—AC (5V)
V+ = 5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
LMC7101A
Min
Max
LMC7101B
Symbol
Parameter
Condition
Typ
Min
Max
Units
THD
Total Harmonic Distortion
f = 10kHz, AV = –2,
RL = 2kΩ, VOUT = 4.0 VPP
0.01
%
SR
Slew Rate
0.3
V/µs
GBW
Gain-Bandwidth Product
0.5
MHz
Electrical Characteristics—AC (12V)
V+ = 12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
LMC7101A
Min
Max
LMC7101B
Symbol
Parameter
Condition
Typ
Min
Max
Units
THD
Total Harmonic Distortion
f = 10kHz, AV = –2,
RL = 2k, VOUT = 8.5 VPP
0.01
SR
Slew Rate
V+ = 12V, Note 10
0.3
GBW
Gain-Bandwidth Product
0.5
MHz
φm
Phase Margin
45
°
Gm
Gain Margin
10
dB
en
Input-Referred Voltage Noise
f = 1kHz, VCM = 1V
37
nV/ Hz
in
Input-Referred Current Noise
f = 1kHz
1.5
fA/ Hz
%
0.19
0.15
0.19
0.15
V/µs
V/µs
General Notes: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis.
Note 1.
Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when
operating the device outside its recommended operating ratings.
Note 2.
I/O Pin Voltage is any external voltage to which an input or output is referenced.
Note 3.
The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the junction-to-ambient thermal
resistance, θJA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using:
PD = (TJ(max) – TA) ÷ θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature.
Note 4.
Thermal resistance, θJA, applies to a part soldered on a printed-circuit board.
Note 5.
Human body model, 1.5k in series with 100pF.
Note 6.
Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails.
Note 7.
Continuous short circuit may exceed absolute maximum TJ under some conditions.
Note 8.
Shorting OUT to V+ when V+ > 12V may damage the device.
Note 9.
RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V.
Note 10. Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower.
February 2005
5
LMC7101
LMC7101
Micrel, Inc.
Typical Characteristics
Supply Current
vs. Supply Voltage
Input Current vs.
Junction Temperature
10000
85°C
400
200
100
2
4
6
8
10
SUPPLY VOLTAGE (V)
60
0
1x101
2.7V
60
40
TA = 25°C
20
1x102 1x103 1x104
FREQUENCY (Hz)
0.8
1x102 1x103 1x104
FREQUENCY (Hz)
1x105
0.5
-40°C
0.4
+25°C
0.3
0.2
+85°C
0.1
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
-40°C
0.5
0.4
+25°C
0.3
0.2
+85°C
0.1
0
0
12
PHASE MARGIN (°)
100
2
4
6
8
10
SUPPLY VOLTAGE (V)
12
1x105
Sink / Source Currents
vs. Output Voltage
TA = 25°C
10
1
0.1
0.01
0.001
800
0.6
1x102 1x103 1x104
FREQUENCY (Hz)
100
∆ OFFSET VOLTAGE (µV)
0.6
1000
Rising Slew Rate vs.
vs. Supply Voltage
0.7
SLEW RATE (V/µs)
SLEW RATE (V/µs)
TA = 25°C
0
1x101
1x105
0.7
0
5V
80
Falling Slew Rate vs.
vs. Supply Voltage
0.8
2.7V
100
40
20
12V
120
12V
TA = 25°C
-20
1x101
CMRR
vs. Frequency
140
CMRR (dB)
+PSRR (dB)
80
20
1
-40
0
40
80
120 160
JUNCTION TEMPERATURE (°C)
12
5V
100
40
0
+PSRR
vs. Frequency
120
2.7V
5V
10
0
0
12V
60
-PSRR (dB)
600
80
1000
CURRENT SINK / SOURCE (mA)
25°C
−PSRR
vs. Frequency
100
–40°C
800
INPUT CURRENT (pA)
SUPPLY CURRENT (µA)
1000
0.01
0.1
1
OUTPUT VOLTAGE (V)
10
Offset Voltage
vs. Supply Voltage
600
85°C
400
25°C
-40°C
200
0
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
12
Phase Margin
vs. Capacitive Load
12V
80
5V
60
3V
40
2.7V
20
TA = 25°C
AV = 1
0
100
LMC7101
1000
200 300
500
LOAD CAPACITANCE (pF)
6
February 2005
LMC7101
Micrel, Inc.
20
TA = 25°C
60
40
GAIN (dB)
60
RL = 2k
12V Open-Loop
Frequency Response
80
60
RL = 1M
GAIN (dB)
GAIN (dB)
80
40
5V Open-Loop
Frequency Response
80
1MΩ
2k
20
1M
40
20
600Ω
2k
TA = 25°C
TA = 25°C
GAIN (dB)
75
100pF (°)
500pF (°)
50
25
0
500pF
(dB) 0
TA = 25°C
RL = 1MΩ
-25
1x102
1x103
100pF (dB)
1x104
1x105
FREQUENCY (Hz)
February 2005
90
45
-45
-90
1x106
5V Open-Loop
Gain and Phase
100
135
0
1x102
1x105
120
120
90
100
100pF (°)
80
60
1000pF (°)
40
20
60
500pF (°)
TA = 25°C
RL = 1MΩ
0
100pF (dB)
500pF (dB)
1000pF (dB)
0
-20
1x102
1x103
30
1x104
-30
1x105
-60
1x106
COMMON-MODE VOLTAGE (V)
7
1x103
1x104
FREQUENCY (Hz)
1x105
12V Open-Loop Gain
and Phase
TA = 25°C
RL = 1MΩ
150
100pF (°)
500pF (°)
120
80
GAIN (dB)
100
1x103
1x104
FREQUENCY (Hz)
PHASE (°)
2.7V Open-Loop Gain
and Phase
0
1x102
1x105
OFFSET VOLTAGE (µV)
1x103
1x104
FREQUENCY (Hz)
PHASE (°)
0
1x102
600Ω
90
60
40
60
1000pF (°)
20
0
-20
1x102
30
PHASE (°)
2.7V Open-Loop
Frequency Response
100
0
100pF (dB)
500pF (dB)
1000pF (dB)
1x103 1x104 1x105
FREQUENCY (Hz)
-30
-60
1x106
LMC7101
LMC7101
Micrel, Inc.
Functional Characteristics
Inverting Small-Signal
Pulse Response
OUTPUT
OUTPUT
INPUT
INPUT
Inverting Large-Signal
Pulse Response
Noninverting Large-Signal
Pulse Response
OUTPUT
OUTPUT
INPUT
INPUT
Noninverting Small-Signal
Pulse Response
Input Voltage Noise vs. Frequency
LMC7101
8
February 2005
LMC7101
Micrel, Inc.
Application Information
0.011V
= 8.8 ≈ 9Ω
0.001245A
Driving Capacitive Loads
ROUT =
Input Common-Mode Voltage
Some amplifiers exhibit undesirable or unpredictable performance when the inputs are driven beyond the common-mode
voltage range, for example, phase inversion of the output
signal. The LMC7101 tolerates input overdrive by at least
200mV beyond either rail without producing phase inversion.
Driving a capacitive load introduces phase-lag into the output
signal, and this in turn reduces op-amp system phase margin.
The application that is least forgiving of reduced phase
margin is a unity gain amplifier. The LMC7101 can typically
drive a 100pF capacitive load connected directly to the output
when configured as a unity-gain amplifier.
If the absolute maximum input voltage (700mV beyond either
rail) is exceeded, the input current should be limited to ±5mA
maximum to prevent reducing reliability. A 10kΩ series input
resistor, used as a current limiter, will protect the input
structure from voltages as large as 50V above the supply or
below ground. See Figure 1.
RIN
Using Large-Value Feedback Resistors
A large-value feedback resistor (> 500kΩ) can reduce the
phase margin of a system. This occurs when the feedback
resistor acts in conjunction with input capacitance to create
phase lag in the fedback signal. Input capacitance is usually
a combination of input circuit components and other parasitic
capacitance, such as amplifier input capacitance and stray
printed circuit board capacitance.
VOUT
Figure 2 illustrates a method of compensating phase lag
caused by using a large-value feedback resistor. Feedback
capacitor CFB introduces sufficient phase lead to overcome
the phase lag caused by feedback resistor RFB and input
capacitance CIN. The value of CFB is determined by first
estimating CIN and then applying the following formula:
VIN
10kΩ
Figure 1. Input Current-Limit Protection
Output Voltage Swing
Sink and source output resistances of the LMC7101 are
equal. Maximum output voltage swing is determined by the
load and the approximate output resistance. The output
resistance is:
ROUT =
RIN × CIN ≤ RFB × CFB
CFB
RFB
VDROP
ILOAD
VIN
RIN
VOUT
VDROP is the voltage dropped within the amplifier output
stage. VDROP and ILOAD can be determined from the VO
(output swing) portion of the appropriate Electrical Characteristics table. ILOAD is equal to the typical output high voltage
minus V+/2 and divided by RLOAD. For example, using the
Electrical Characteristics DC (5V) table, the typical output
high voltage using a 2kΩ load (connected to V+/2) is 4.989V,
which produces an ILOAD of
CIN
Figure 2. Cancelling Feedback Phase Lag
Since a significant percentage of CIN may be caused by board
layout, it is important to note that the correct value of CFB may
change when changing from a breadboard to the final circuit
layout.
 4.989V – 2.5V 
1.245mA 
 = 1.245mA .


2kΩ
Voltage drop in the amplifier output stage is:
VDROP = 5.0V – 4.989V
VDROP = 0.011V
Because of output stage symmetry, the corresponding typical
output low voltage (0.011V) also equals VDROP. Then:
February 2005
9
LMC7101
LMC7101
Micrel, Inc.
Typical Circuits
Some single-supply, rail-to-rail applications for which the
LMC7101 is well suited are shown in the circuit diagrams of
Figures 3 through 7.
VS
0.5V to Q1 VCEO(sus)
V+
3
VIN
LMC7101
2
1
V+
0V to
AV
VOUT
0V to V+
4
5
3
VIN
0V to 2V
2
VOUT
0V to V+
Load
V+
LMC7101
IOUT
1
Q1
VCEO = 40V
2N3904
IC(max) = 200mA
4
{
5
RS
10Ω
1⁄2W
R2
Change Q1 and RS
for higher current
and/or different gain.
900k
R1
100k
V
IOUT = IN = 100mA/V as shown
RS
Figure 3a. Noninverting Amplifier
Figure 5. Voltage-Controlled Current Sink
R4
100
V+
100k
V+
VOUT (V)
C1
0.001µF
AV = 1 +
R2
≈ 10
R1
LMC7101
2
4
1
VOUT
3
0
0
5
100
VIN (V)
Figure 3b. Noninverting Amplifier Behavior
V+
R2
R4
100k
100k
V+
VIN
0V to V+
3
2
R3
100k
LMC7101
1
4
V+
0V
Figure 6. Square Wave Oscillator
VOUT
0V to V+
CIN
5
VOUT = VIN
R1
R2
33k
330k
V+
Figure 4. Voltage Follower
2
4
LMC7101
COUT
1
3
RL
5
V+
R3
R4
330k
330k
C1
1µF
AV = −
VOUT
0V
R2 330k
=
= −10
R1 33k
Figure 7. AC-Coupled Inverting Amplifier
LMC7101
10
February 2005
LMC7101
Micrel, Inc.
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
1.75 (0.069)
1.50 (0.059)
3.00 (0.118)
2.60 (0.102)
DIMENSIONS:
MM (INCH)
3.02 (0.119)
2.80 (0.110)
0.50 (0.020)
0.35 (0.014)
1.30 (0.051)
0.90 (0.035)
0.20 (0.008)
0.09 (0.004)
10°
0°
0.15 (0.006)
0.00 (0.000)
0.60 (0.024)
0.10 (0.004)
SOT-23-5 (M5)
February 2005
11
LMC7101
LMC7101
Micrel, Inc.
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 474-1000
WEB
http://www.micrel.com
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 1999 Micrel Incorporated
LMC7101
12
February 2005
Similar pages