MC33501, MC33503 1.0 V, Rail-to-Rail, Single Operational Amplifiers The MC33501/503 operational amplifier provides rail–to–rail operation on both the input and output. The output can swing within 50 mV of each rail. This rail–to–rail operation enables the user to make full use of the entire supply voltage range available. It is designed to work at very low supply voltages (1.0 V and ground), yet can operate with a supply of up to 7.0 V and ground. Output current boosting techniques provide high output current capability while keeping the drain current of the amplifier to a minimum. • Low Voltage, Single Supply Operation (1.0 V and Ground to 7.0 V and Ground) • High Input Impedance: Typically 40 fA Input Bias Current • Typical Unity Gain Bandwidth @ 5.0 V = 4.0 MHz, @ 1.0 V = 3.0 MHz • High Output Current (ISC = 40 mA @ 5.0 V, 13 mA @ 1.0 V) • Output Voltage Swings within 50 mV of Both Rails @ 1.0 V • Input Voltage Range Includes Both Supply Rails • High Voltage Gain: 100 dB Typical @ 1.0 V • No Phase Reversal on the Output for Over–Driven Input Signals • Input Offset Trimmed to 0.5 mV Typical • Low Supply Current (ID = 1.2 mA/per Amplifier, Typical) • 600 Drive Capability • Extended Operating Temperature Range (–40 to 105°C) MARKING DIAGRAM 5 SOT23–5 (TSOP–5, SC59–5) SN SUFFIX CASE 483 1 5 1 PIN CONNECTIONS MC33501 VCC 2 Single Cell NiCd/Ni MH Powered Systems Interface to DSP Portable Communication Devices Low Voltage Active Filters Telephone Circuits Instrumentation Amplifiers Audio Applications Power Supply Monitor and Control Transistor Count: 98 xxxYW xxx = MC33501 AAA MC33503 = AAB Y = Year W = Work Week 5 Output 1 Applications • • • • • • • • • http://onsemi.com Non-Inverting Input 3 + - VEE 4 Inverting Input (Top View) MC33503 5 Output 1 VEE 2 Non-Inverting Input 3 + - VCC 4 Inverting Input (Top View) ORDERING INFORMATION Semiconductor Components Industries, LLC, 2002 October, 2002 – Rev. 7 1 Device Package Shipping MC33501SNT1 SOT23–5 3000 Tape & Reel MC33503SNT1 SOT23–5 3000 Tape & Reel Publication Order Number: MC33501/D MC33501, MC33503 Base Current Boost Input Stage Inputs Offset Voltage Trim Buffer with 0 V Level Shift Saturation Detector Output Stage Outputs Base Current Boost This device contains 98 active transistors per amplifier. Figure 1. Simplified Block Diagram MAXIMUM RATINGS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁ ÁÁÁÁ Rating Symbol Value Unit VS 7.0 V ESD S Protection o ec o Voltage o age at a any a y Pin Human Body Model VESD 2000 000 V Voltage at Any Device Pin VDP VS ±0.3 V Input Differential Voltage Range VIDR VCC to VEE V Common Mode Input Voltage Range VCM VCC to VEE V tS Note 1 s Supply Voltage (VCC to VEE) Output Short Circuit Duration Maximum Junction Temperature TJ 150 °C Storage Temperature Range Tstg –65 to 150 °C Maximum Power Dissipation PD Note 1 mW 1. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. 2. ESD data available upon request. http://onsemi.com 2 MC33501, MC33503 DC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Characteristic Symbol Input Offset Voltage (VCM = 0 to VCC) VCC = 1.0 V TA = 25°C TA = –40° to 105°C VCC = 3.0 V TA = 25°C TA = –40° to 105°C VCC = 5.0 V TA = 25°C TA = –40° to 105°C Min Typ Max VIO Unit mV –5.0 –7.0 0.5 – 5.0 7.0 –5.0 –7.0 0.5 – 5.0 7.0 –5.0 –7.0 0.5 – 5.0 7.0 VIO/T – 8.0 – V/°C Input Bias Current (VCC = 1.0 to 5.0 V) I IIB I – 0.00004 1.0 nA Common Mode Input Voltage Range VICR VEE – VCC V Large Signal Voltage Gain VCC = 1.0 V (TA = 25°C) RL = 10 k RL = 1.0 k VCC = 3.0 V (TA = 25°C) RL = 10 k RL = 1.0 k VCC = 5.0 V (TA = 25°C) RL = 10 k RL = 1.0 k AVOL Output Voltage Swing, High (VID = ±0.2 V) VCC = 1.0 V (TA = 25°C) RL = 10 k RL = 600 VCC = 1.0 V (TA = –40° to 105°C) RL = 10 k RL = 600 VCC = 3.0 V (TA = 25°C) RL = 10 k RL = 600 VCC = 3.0 V (TA = –40° to 105°C) RL = 10 k RL = 600 VCC = 5.0 V (TA = 25°C) RL = 10 k RL = 600 VCC = 5.0 V (TA = –40° to 105°C) RL = 10 k RL = 600 VOH ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Input Offset Voltage Temperature Coefficient (RS = 50 ) TA = –40° to 105°C kV/V 25 5.0 100 50 – – 50 25 500 100 – – 50 25 500 200 – – ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ http://onsemi.com 3 V 0.9 0.85 0.95 0.88 – – 0.85 0.8 – – – – 2.9 2.8 2.93 2.84 – – 2.85 2.75 – – – – 4.9 4.75 4.92 4.81 – – 4.85 4.7 – – – – MC33501, MC33503 DC ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Characteristic Symbol Output Voltage Swing, Low (VID = ±0.2 V) VCC = 1.0 V (TA = 25°C) RL = 10 k RL = 600 VCC = 1.0 V (TA = –40° to 105°C) RL = 10 k RL = 600 VCC = 3.0 V (TA = 25°C) RL = 10 k RL = 600 VCC = 3.0 V (TA = –40° to 105°C) RL = 10 k RL = 600 VCC = 5.0 V (TA = 25°C) RL = 10 k RL = 600 VCC = 5.0 V (TA = –40° to 105°C) RL = 10 k RL = 600 VOL Common Mode Rejection (Vin = 0 to 5.0 V) Power Supply Rejection VCC/VEE = 5.0 V/Ground to 3.0 V/Ground Min Typ Max Unit V 0.05 0.1 0.02 0.05 – – 0.1 0.15 – – – – 0.05 0.1 0.02 0.08 – – 0.1 0.15 – – – – 0.05 0.15 0.02 0.1 – – 0.1 0.2 – – – – CMR 60 75 – dB PSR 60 75 – dB ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Output Short Circuit Current (Vin Diff = ±1.0 V) VCC = 1.0 V Source Sink VCC = 3.0 V Source Sink VCC = 5.0 V Source Sink ISC Power Supply Current (Per Amplifier, VO = 0 V) VCC = 1.0 V VCC = 3.0 V VCC = 5.0 V VCC = 1.0 V (TA = –40 to 105°C) VCC = 3.0 V (TA = –40 to 105°C) VCC = 5.0 V (TA = –40 to 105°C) ID mA 6.0 10 13 13 26 26 15 40 32 64 60 140 20 40 40 70 140 140 – – – – – – 1.2 1.5 1.65 – – – 1.75 2.0 2.25 2.0 2.25 2.5 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ http://onsemi.com 4 mA MC33501, MC33503 AC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Characteristic Symbol Slew Rate (VS = ±2.5 V, VO = –2.0 to 2.0 V, RL = 2.0 k, AV = 1.0) Positive Slope Negative Slope Min Typ Max 1.8 1.8 3.0 3.0 6.0 6.0 2.0 2.5 3.0 3.0 3.5 4.0 6.0 7.0 8.0 SR Gain Bandwidth Product (f = 100 kHz) VCC = 0.5 V, VEE = –0.5 V VCC = 1.5 V, VEE = –1.5 V VCC = 2.5 V, VEE = –2.5 V Unit V/s GBW MHz Gain Margin (RL =10 k, CL = 0 pF) Am – 6.5 – dB Phase Margin (RL = 10 k, CL = 0 pF) m – 60 – Deg Channel Separation (f = 1.0 Hz to 20 kHz, RL = 600 ) CS – 120 – dB Power Bandwidth (VO = 4.0 Vpp, RL = 1.0 k, THD ≤1.0%) BWP – 200 – kHz Total Harmonic Distortion (VO = 4.5 Vpp, RL = 600 , AV = 1.0) f = 1.0 kHz f = 10 kHz THD – – 0.004 0.01 – – % Differential Input Resistance (VCM = 0 V) Rin – >1.0 – Differential Input Capacitance (VCM = 0 V) Cin – 2.0 – Equivalent Input Noise Voltage (VCC = 1.0 V, VCM = 0 V, VEE = Gnd, RS = 100 ) f = 1.0 kHz en – 30 – IN+ Offset Voltage Trim VCC VCC Output Voltage Saturation Detector Body Bias Figure 2. Representative Block Diagram http://onsemi.com 5 pF nV/√Hz VCC IN- terra VCC Clamp Out MC33501, MC33503 Output Stage General Information The MC33501/503 dual operational amplifier is unique in its ability to provide 1.0 V rail–to–rail performance on both the input and output by using a SMARTMOS process. The amplifier output swings within 50 mV of both rails and is able to provide 50 mA of output drive current with a 5.0 V supply, and 10 mA with a 1.0 V supply. A 5.0 MHz bandwidth and a slew rate of 3.0 V/s is achieved with high speed depletion mode NMOS (DNMOS) and vertical PNP transistors. This device is characterized over a temperature range of –40°C to 105°C. An additional feature of this device is an “on demand” base current cancellation amplifier. This feature provides base drive to the output power devices by making use of a buffer amplifier to perform a voltage–to–current conversion. This is done in direct proportion to the load conditions. This “on demand” feature allows these amplifiers to consume only a few micro–amps of current when the output stage is in its quiescent mode. Yet it provides high output current when required by the load. The rail–to–rail output stage current boost circuit provides 50 mA of output current with a 5.0 V supply (For a 1.0 V supply output stage will do 10 mA) enabling the operational amplifier to drive a 600 load. A buffer is necessary to isolate the load current effects in the output stage from the input stage. Because of the low voltage conditions, a DNMOS follower is used to provide an essentially zero voltage level shift. This buffer isolates any load current changes on the output stage from loading the input stage. A high speed vertical PNP transistor provides excellent frequency performance while sourcing current. The operational amplifier is also internally compensated to provide a phase margin of 60 degrees. It has a unity gain of 5.0 MHz with a 5.0 V supply and 4.0 MHz with a 1.0 V supply. Circuit Information Input Stage One volt rail–to–rail performance is achieved in the MC33501/503 at the input by using a single pair of depletion mode NMOS devices (DNMOS) to form a differential amplifier with a very low input current of 40 fA. The normal input common mode range of a DNMOS device, with an ion implanted negative threshold, includes ground and relies on the body effect to dynamically shift the threshold to a positive value as the gates are moved from ground towards the positive supply. Because the device is manufactured in a p–well process, the body effect coefficient is sufficiently large to ensure that the input stage will remain substantially saturated when the inputs are at the positive rail. This also applies at very low supply voltages. The 1.0 V rail–to–rail input stage consists of a DNMOS differential amplifier, a folded cascode, and a low voltage balanced mirror. The low voltage cascaded balanced mirror provides high 1st stage gain and base current cancellation without sacrificing signal integrity. Also, the input offset voltage is trimmed to less than 1.0 mV because of the limited available supply voltage. The body voltage of the input DNMOS differential pair is internally trimmed to minimize the input offset voltage. A common mode feedback path is also employed to enable the offset voltage to track over the input common mode voltage. The total operational amplifier quiescent current drop is 1.3 mA/amp. Low Voltage Operation The MC33501/503 will operate at supply voltages from 0.9 to 7.0 V and ground. When using the MC33501/503 at supply voltages of less than 1.2 V, input offset voltage may increase slightly as the input signal swings within approximately 50 mV of the positive supply rail. This effect occurs only for supply voltages below 1.2 V, due to the input depletion mode MOSFETs starting to transition between the saturated to linear region, and should be considered when designing high side dc sensing applications operating at the positive supply rail. Since the device is rail–to–rail on both input and output, high dynamic range single battery cell applications are now possible. http://onsemi.com 6 MC33501, MC33503 0 0 200 Vsat, OUTPUT SATURATION VOLTAGE (V) 600 600 VCC = 5.0 V VEE = 0 V RL to VCC/2 400 200 0 100 1.0 k 10 k VEE 100 k 1.0 M Source Saturation -1.0 0.5 0 10 M TA = 25°C TA = -55°C VCC - VEE = 5.0 V 0 4.0 8.0 TA = 25°C TA = 125°C VEE 12 16 20 24 IO, OUTPUT CURRENT (mA) Figure 4. Drive Output Source/Sink Saturation Voltage versus Load Current Figure 3. Output Saturation versus Load Resistance 1000 100 100 1.0 0.1 0.01 25 50 75 100 45 Phase Margin = 60° 40 VCC = 2.5 V VEE = -2.5 V RL = 10 k 10 100 180 1.0 k 10 k 100 k 1.0 M 10 M TA, AMBIENT TEMPERATURE (°C) f, FREQUENCY (Hz) Figure 5. Input Current versus Temperature Figure 6. Gain and Phase versus Frequency 1.0 V/DIV (mV) 20 mV/DIV VCC = 0.5 V VEE = -0.5 V ACL = 1.0 CL = 10 pF RL = 10 k TA = 25°C VCC = 2.5 V VEE = -2.5 V ACL = 1.0 CL = 10 pF RL = 600 TA = 25°C t, TIME (500 s/DIV) t, TIME (1.0 s/DIV) Figure 7. Transient Response Figure 8. Slew Rate http://onsemi.com 7 90 135 0 1.0 125 Phase 60 20 0.001 0 Gain 80 10 AVOL, GAIN (dB) IIB, INPUT CURRENT (pA) TA = 125°C Sink Saturation 1.0 RL, LOAD RESISTANCE () 0 VCC φ m, EXCESS PHASE (DEGREES) Vsat, OUTPUT SATURATION VOLTAGE (mV) 400 TA = -55°C -0.5 VCC 120 1600 1400 ∆AVOL , OPEN LOOP GAIN (dB) PDmax, MAXIMUM POWER DISSIPATION (mW) MC33501, MC33503 1200 SO-8 Pkg 1000 DIP Pkg 800 600 400 200 0 -55 -25 0 25 50 75 100 110 100 90 80 70 60 50 40 30 20 -55 125 VCC = 2.5 V VEE = -2.5 V RL = 600 -25 TA, AMBIENT TEMPERATURE (°C) Figure 9. Maximum Power Dissipation versus Temperature CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp) 7.0 6.0 5.0 3.0 2.0 1.0 0 10 VCC = 2.5 V VEE = -2.5 V AV = 1.0 RL = 600 TA = 25°C 100 1.0 k 10 k 100 k 1.0 M IISCI, OUTPUT SHORT CIRCUIT CURRENT (mA) PSR, POWER SUPPLY REJECTION (dB) VCC = 2.5 V VEE = -2.5 V 80 0 VCC = 0.5 V VEE = -0.5 V Either VCC or VEE TA = 25°C 10 100 1.0 k 125 80 60 40 VCC = 2.5 V VEE = -2.5 V TA = 25°C 20 0 10 100 1.0 k 10 k 100 k 1.0 M Figure 12. Common Mode Rejection versus Frequency 120 20 100 f, FREQUENCY (Hz) 140 40 75 100 Figure 11. Output Voltage versus Frequency 60 50 120 f, FREQUENCY (Hz) 100 25 Figure 10. Open Loop Voltage Gain versus Temperature 8.0 4.0 0 TA, AMBIENT TEMPERATURE (°C) 10 k 100 k 100 VCC = 2.5 V VEE = -2.5 V TA = 25°C 80 Sink 60 40 Source 20 0 0 f, FREQUENCY (Hz) 0.5 1.0 1.5 2.0 |VS| - |VO| (V) Figure 13. Power Supply Rejection versus Frequency Figure 14. Output Short Circuit Current versus Output Voltage http://onsemi.com 8 2.5 100 Sink 80 60 VCC = 2.5 V VEE = -2.5 V 40 20 Source 0 -55 -25 0 25 50 75 100 2.5 ICC, SUPPLY CURRENT PER AMPLIFIER (mA) IISCI, OUTPUT SHORT CIRCUIT CURRENT (mA) MC33501, MC33503 125 2.0 1.5 TA = 125°C 1.0 TA = 25°C 0.5 0 0 ±0.5 Figure 15. Output Short Circuit Current versus Temperature 50 30 PERCENTAGE OF AMPLIFIERS (%) VCC = 3.0 V VO = 1.5 V VEE = 0 V 60 Amplifiers Tested from 2 Wafer Lots 40 20 10 0 -50 -40 -30 -20 -10 0 10 20 30 40 40 30 VCC = 3.0 V VO = 1.5 V VEE = 0 V TA = 25°C 60 Amplifiers Tested from 2 Wafer Lots 20 10 0 -5.0 -4.0 -3.0 -2.0 50 TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (V/°C) THD, TOTAL HARMONIC DISTORTION (%) AV = 1000 AV = 100 AV = 10 0.1 AV = 1.0 0.01 Vout = 0.5 Vpp RL = 600 10 100 VCC - VEE = 1.0 V 1.0 k 10 k 0 1.0 2.0 3.0 4.0 5.0 Figure 18. Input Offset Voltage Distribution 10 1.0 -1.0 INPUT OFFSET VOLTAGE (mV) Figure 17. Input Offset Voltage Temperature Coefficient Distribution THD, TOTAL HARMONIC DISTORTION (%) ±2.5 ±2.0 Figure 16. Supply Current per Amplifier versus Supply Voltage with No Load 50 0.001 ±1.5 VCC, |VEE|, SUPPLY VOLTAGE (V) TA, AMBIENT TEMPERATURE (°C) PERCENTAGE OF AMPLIFIERS (%) ±1.0 TA = -55°C 100 k 10 Vout = 4.0 Vpp RL = 600 1.0 AV = 1000 AV = 100 0.1 AV = 10 0.01 AV = 1.0 0.001 10 f, FREQUENCY (Hz) 100 VCC - VEE = 5.0 V 1.0 k 10 k f, FREQUENCY (Hz) Figure 19. Total Harmonic Distortion versus Frequency with 1.0 V Supply Figure 20. Total Harmonic Distortion versus Frequency with 5.0 V Supply http://onsemi.com 9 100 k VCC - VEE = 5.0 V + Slew Rate 3.0 2.0 VCC - VEE = 5.0 V - Slew Rate VCC - VEE = 1.0 V - Slew Rate 1.0 0 -55 -25 0 25 50 75 100 3.0 2.0 VCC - VEE = 5.0 V f = 100 kHz 1.0 0 -55 -25 100 100 m, PHASE MARGIN (°) VCC - VEE = 5.0 V VCC - VEE = 1.0 V VCC - VEE = 5.0 V VCC - VEE = 1.0 V RL = 600 CL = 0 TA = 25°C 100 k 1.0 M 80 40 20 -25 0 25 50 75 0 125 100 Figure 24. Gain and Phase Margin versus Temperature 60 60 50 VCC - VEE = 5.0 V RL = 600 CL = 100 pF TA = 25°C 40 30 20 20 Gain Margin VCC - VEE = 5.0 V RL = 600 TA = 25°C Phase Margin 50 50 40 40 30 30 20 20 Gain Margin 10 10 10 0 3.0 0 1.0 M 100 k 60 AV GAIN MARGIN (dB) m, PHASE MARGIN (°) Phase Margin 10 k 20 Gain Margin TA, AMBIENT TEMPERATURE (°C) 60 1.0 k 60 Phase Margin 0 -55 70 100 80 40 10 M 70 10 100 60 Figure 23. Voltage Gain and Phase versus Frequency 50 125 VCC - VEE = 5.0 V RL = 600 CL = 100 pF f, FREQUENCY (Hz) m, PHASE MARGIN (°) 75 Figure 22. Gain Bandwidth Product versus Temperature -40 10 k 0 10 50 Figure 21. Slew Rate versus Temperature 0 30 25 TA, AMBIENT TEMPERATURE (°C) 20 40 0 TA, AMBIENT TEMPERATURE (°C) 40 AVOL, GAIN (dB) 4.0 125 60 -20 5.0 AV , GAIN MARGIN (dB) VCC - VEE = 1.0 V + Slew Rate 10 RT, DIFFERENTIAL SOURCE RESISTANCE () 30 100 300 1000 0 3000 CL, CAPACITIVE LOAD (pF) Figure 25. Gain and Phase Margin versus Differential Source Resistance Figure 26. Feedback Loop Gain and Phase versus Capacitive Load http://onsemi.com 10 AV , GAIN MARGIN (dB) SR, SLEW RATE (V/ µs) 4.0 GBW, GAIN BANDWIDTH PRODUCT (MHz) MC33501, MC33503 MC33501, MC33503 VO, OUTPUT VOLTAGE (Vpp) AV = 10 80 60 40 20 VCC - VEE = 5.0 V RL = 600 VO = 4.0 Vpp TA = 25°C 100 300 10 k 30 k 100 k RL= 600 TA = 25°C 6.0 4.0 2.0 0 300 k ±0.5 0 ±2.0 ±2.5 ±3.0 Figure 27. Channel Separation versus Frequency Figure 28. Output Voltage Swing versus Supply Voltage ±3.5 100 VCC - VEE = 5.0 V TA = 25°C 60 50 40 30 20 10 0 10 100 10 k 1.0 k 100 RL = 600 CL = 0 TA = 25°C 80 80 Phase Margin 60 60 40 40 20 0 100 k 20 Gain Margin 0 1 2 3 4 5 6 7 0 VCC - VEE, SUPPLY VOLTAGE (V) f, FREQUENCY (Hz) Figure 29. Equivalent Input Noise Voltage versus Frequency Figure 30. Gain and Phase Margin versus Supply Voltage 120 1.6 AVOL ≥ 10 dB RL = 600 1.2 AVOL, OPEN LOOP GAIN (dB) VCC-VEE, USEABLE SUPPLY VOLTAGE (V) ±1.5 VCC, |VEE|, SUPPLY VOLTAGE (V) 70 0.8 0.4 0 -55 ±1.0 f, FREQUENCY (Hz) AV, GAIN MARGIN (dB) 100 0 30 en, EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) 8.0 AV = 100 m, PHASE MARGIN (°) CS, CHANNEL SEPARATION (dB) 120 -25 0 25 50 75 100 100 80 60 40 0 125 RL = 600 TA = 25°C 20 0 1.0 2.0 3.0 4.0 TA, AMBIENT TEMPERATURE (°C) VCC - VEE, SUPPLY VOLTAGE (V) Figure 31. Useable Supply Voltage versus Temperature Figure 32. Open Loop Gain versus Supply Voltage http://onsemi.com 11 5.0 6.0 MC33501, MC33503 RT 470 k 1.0 V CT 1.0 nF 1.0 Vpp - fO 1.0 kHz + R1a 470 k f O R C In T T VCC R2 470 k R1b 470 k 1 2 (R 1a R R2 1b ) Figure 33. 1.0 V Oscillator Af Cf 400 pF Rf 100 k fL fH 0.5 V R2 10 k C1 80 nF 1 f 200 Hz L 2R C 1 1 + VO 1 4.0 kHz f H 2RC f f R1 10 k –0.5 V R A 1 f 11 f R2 Figure 34. 1.0 V Voiceband Filter http://onsemi.com 12 MC33501, MC33503 5.0 V Vref 15 V 15 13 2 16 4 3 1 FB 11 Output A 14 Output B MC34025 22 k 5 4.7 4.7 8 12 6 0.1 10 470 pF 7 9 From Current Sense 100 k 1.0 k + - MC33502 3320 Provides current sense amplification and eliminates leading edge spike. 1.0 k Figure 35. Power Supply Application IO 1.0 V VO Rsense R3 1.0 k IO IL 435 mA 463 A 212 mA 492 A IO/IL R4 R1 1.0 k + - 1.0 k –120 x 10–6 R5 VL 2.4 k RL 75 IL For best performance, use low tolerance resistors. R2 3.3 k Figure 36. 1.0 V Current Pump http://onsemi.com 13 MC33501, MC33503 PACKAGE DIMENSIONS SOT23–5 (TSOP–5, SC59–5) SN SUFFIX CASE 483–01 ISSUE B NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. D S 5 4 1 2 3 B L G A J C 0.05 (0.002) H M K http://onsemi.com 14 DIM A B C D G H J K L M S MILLIMETERS MIN MAX 2.90 3.10 1.30 1.70 0.90 1.10 0.25 0.50 0.85 1.05 0.013 0.100 0.10 0.26 0.20 0.60 1.25 1.55 0 10 2.50 3.00 INCHES MIN MAX 0.1142 0.1220 0.0512 0.0669 0.0354 0.0433 0.0098 0.0197 0.0335 0.0413 0.0005 0.0040 0.0040 0.0102 0.0079 0.0236 0.0493 0.0610 0 10 0.0985 0.1181 MC33501, MC33503 Notes http://onsemi.com 15 MC33501, MC33503 SMARTMOS is a trademark of Motorola, Inc. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATION Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: [email protected] JAPAN: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 Email: [email protected] ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative. N. American Technical Support: 800–282–9855 Toll Free USA/Canada http://onsemi.com 16 MC33501/D