Rohm BA4560F Low noise operational amplifier Datasheet

Datasheet
Operational Amplifiers
Low Noise Operational Amplifiers
BA4560xxx BA4560Rxxx
BA4564RFV BA4564WFV
General Description
Packages
BA4560xxx for normal grade and BA4560Rxxx,
BA4564RFV, BA4564WFV for high-reliability grade
integrate two or four high voltage gain Op-Amps on a
single chip. Especially, this series is suitable for any
audio applications due to low noise and low distortion
characteristics and they are usable for other many
applications of wide operating supply voltage
range.BA4560Rxxx, BA4564RFV, BA4564WFV are
high-reliability products with extended operating
temperature range.
SOP8
SOP-J8
TSSOP-B8
MSOP8
SOP14
SSOP-B14
Key Specification
 Operating Supply Voltage
(Split Supply):±4V to ±15V
 Temperature Range:
BA4560xxx
-40°C to +85°C
BA4560Rxxx,BA4564RFV,BA4564WFV
-40°C to +105°C
 Slew Rate:
4V/µs(Typ)
 Total Harmonic Distortion:
0.003%(Typ)
 Input Referred Noise Voltage:
8 nV/ Hz (Typ)
 Offset Voltage:
BA4564WFV
2.5mV(Max)
Features
 High Voltage Gain, Low Noise, Low Distortion
 Wide Operating Supply Voltage Range
 Wide Operating Temperature Range
Selection Guide
W(Typ) x D(Typ) x H(Max)
5.00mm x 6.20mm x 1.71mm
4.90mm x 6.00mm x 1.65mm
3.00mm x 6.40mm x 1.20mm
2.90mm x 4.00mm x 0.90mm
8.70mm x 6.20mm x 1.71mm
5.00mm x 6.40mm x 1.35mm
Maximum Operation Temperature
Normal
Dual
Slew Rate
+85°C
4V/µs
BA4560F
BA4560FJ
BA4560FV
BA4560FVT
BA4560FVM
+105°C
Slew Rate
High Reliability
Dual
4V/µs
Quad
4V/µs
Simplified Schematic
BA4560RF
BA4560RFJ
BA4560RFV
BA4560RFVT
BA4560RFVM
BA4564RFV
BA4564WFV
VCC
-IN
VOUT
+IN
VEE
Figure 1. Simplified Schematic
○Product structure:Silicon monolithic integrated circuit
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・14・00
○This product is not designed protection against radioactive rays.
1/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Pin Configuration
BA4560F, BA4560RF
BA4560FJ, BA4560RFJ
BA4560FV, BA4560RFV
BA4560FVT, BA4560RFVT
BA4560FVM, BA4560RFVM
: SOP8
: SOP-J8
: SSOP-B8
: TSSOP-B8
: MSOP8
Pin No.
Pin Name
1
OUT1
2
-IN1
3
+IN1
8 VCC
OUT1 1
CH1
- +
+
-IN1 2
CH2
+ -
+IN1 3
VEE 4
7
OUT2
6
-IN2
5
+IN2
4
VEE
5
+IN2
6
-IN2
7
OUT2
8
VCC
Pin No.
Pin Name
1
OUT1
OUT2
BA4564RFV, BA4564WFV
OUT1
: SSOP-B14
1
-IN1
2
+IN1
3
CH1
-
- +
+
CH4
+
+ -
14 OUT4
2
-IN1
13 -IN4
3
+IN1
4
VCC
5
+IN2
6
-IN2
7
OUT2
8
OUT3
9
-IN3
10
+IN3
11
VEE
12
+IN4
12 +IN4
VCC
4
11 VEE
+IN2
5
10 +IN3
-IN2
6
OUT2
7
- +
+
-
CH2
+
+ -
CH3
9
-IN3
8
OUT3
13
-IN4
14
OUT4
Package
SOP8
SOP-J8
SSOP-B8
TSSOP-B8
MSOP8
SSOP-B14
BA4560F
BA4560RF
BA4560FJ
BA4560RFJ
BA4560FV
BA4560RFV
BA4560FVT
BA4560RFVT
BA4560FVM
BA4560RFVM
BA4564RFV
BA4564WFV
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
2/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Ordering Information
B
A
4
5
6
x
Part Number
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4560WFV
x
x
x
x
-
Package
F
: SOP8
FJ : SOP-J8
FV : SSOP-B8
: SSOP-B14
FVM : MSOP8
FVT : TSSOP-B8
xx
Packaging and forming specification
E2: Embossed tape and reel
(SOP8/SSOP-B8/TSSOP-B8/SOP-J8
SSOP-B14)
TR: Embossed tape and reel
(MSOP8)
Line-up
Operating
Temperature
Range
Operating Supply
Voltage
(Split Supply)
-40°C to +85°C
Supply
Current
(Typ)
Offset
Voltage
(Max)
4mA
6mV
±4.0V to ±15.0V
3mA
-40°C to +105°C
6mA
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
2.5mV
3/48
Orderable
Part Number
Package
SOP8
Reel of 2500
BA4560F-E2
SOP-J8
Reel of 2500
BA4560FJ-E2
SSOP-B8
Reel of 2500
BA4560FV-E2
TSSOP-B8
Reel of 2500
BA4560FVT-E2
MSOP8
Reel of 3000
BA4560FVM-TR
SOP8
Reel of 2500
BA4560RF-E2
SOP-J8
Reel of 2500
BA4560RFJ-E2
SSOP-B8
Reel of 2500
BA4560RFV-E2
TSSOP-B8
Reel of 3000
BA4560RFVT-E2
MSOP8
Reel of 3000
BA4560RFVM-TR
SSOP-B14
Reel of 2500
BA4564RFV-E2
SSOP-B14
Reel of 2500
BA4564WFV-E2
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Absolute Maximum Ratings (TA=25℃)
Parameter
Ratings
Symbol
Supply Voltage
BA4560xxx BA4560Rxxx BA4564RFV BA4564WFV
VCC-VEE
+36
Power Dissipation
PD
0.55
0.69
(Note1,6)
-
-
SOP-J8
0.54
(Note2,6)
0.67
(Note2,6)
-
-
SSOP-B8
0.50
(Note3,6)
0.62
(Note3,6)
-
-
TSSOP-B8
0.50
(Note3,6)
0.62
(Note3,6)
-
-
MSOP8
0.47
(Note4,6)
0.58
(Note4,6)
SSOP-B14
(Note 7)
V
(Note1,6)
SOP8
-
-
Unit
0.87
(Note5,6)
W
0.87
(Note5,6)
Differential Input Voltage
Input Common-mode Voltage
Range
(Note 8)
Input Current
VID
VCC-VEE
+36
V
VICM
VEE to VCC
(VEE-0.3) to VEE+36
V
Operating Supply Voltage Range
Vopr
Operating Temperature Range
Topr
-40 to +85
-40 to +105
℃
Storage Temperature Range
Tstg
-55 to +125
-55 to +150
℃
TJMAX
+125
+150
℃
Maximum Junction Temperature
II
mA
-10
+8 to +30 (±4 to ±15)
V
Note: Absolute maximum rating item indicates the condition which must not be exceeded.
Application of voltage in excess of absolute maximum rating or use out absolute maximum rated temperature environment may cause
deterioration of characteristics.
(Note 1) To use at temperature above TA=25℃ reduce 5.5mW.
(Note 2) To use at temperature above TA=25℃ reduce 5.4mW.
(Note 3) To use at temperature above TA=25℃ reduce 5.0mW.
(Note 4) To use at temperature above TA=25℃ reduce 4.7mW.
(Note 5) To use at temperature above TA=25℃ reduce 7.0mW.
(Note 6) Mounted on a FR4 glass epoxy PCB(70mm×70mm×1.6mm).
(Note 7) The voltage difference between inverting input and non-inverting input is the differential input voltage.
Then input terminal voltage is set to more than VEE.
(Note 8) An excessive input current will flow when input voltages of less than VEE-0.6V are applied.
The input current can be set to less than the rated current by adding a limiting resistor.
Caution: Operating the IC over the absolute maximum ratings may damage the IC. In addition, it is impossible to predict all destructive situations such as
short-circuit modes, open circuit modes, etc. Therefore, it is important to consider circuit protection measures, like adding a fuse, in case the IC is
operated in a special mode exceeding the absolute maximum ratings.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
4/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Electrical Characteristics
○BA4560xxx (Unless otherwise specified VCC=+15V, VEE=-15V)
Parameter
Limits
Symbol
Temperature
Range
Min
Typ
Max
Unit
Condition
Input Offset Voltage
(Note 9)
VIO
25℃
-
0.5
6
mV
VOUT=0V
Input Offset Current
(Note 9)
IIO
25℃
-
5
200
nA
VOUT=0V
IB
25℃
-
50
500
nA
VOUT=0V
Supply Current
ICC
25℃
-
4
7.5
mA
RL=∞, All Op-Amps,
VIN+=0V
Maximum Output Voltage
VOM
25℃
±12
±14
-
25℃
±10
±13
-
Large Signal Voltage Gain
AV
25℃
86
100
-
dB
VICM
25℃
±12
±14
-
V
Common-mode Rejection Ratio
CMRR
25℃
70
90
-
dB
VICM=-12V~+12V
Power Supply Rejection Ratio
PSRR
25℃
76.3
90
-
dB
RI≤ 10kΩ
SR
25℃
-
4
-
V/μs
fT
25℃
-
4
-
MHz RL=2kΩ
GBW
25℃
-
10
-
MHz f=10kHz
THD+N
25℃
-
0.003
-
%
-
8
-
nV/ Hz
RS=100Ω, VI=0V
f=1kHz
-
-
2.2
μVrms
RS=2.2Ω, RIAA
BW=10kHz to 30kHz
Input Bias Current
(Note 10)
Input Common-mode Voltage Range
Slew Rate
Unity Gain Frequency
Gain Band Width
Total Harmonic Distortion+Noise
Input Referred Noise Voltage
VN
RL≥ 10kΩ
V
RL≥ 2kΩ
RL≥ 2kΩ, VOUT=±10V
VICM=0V
-
AV=0dB, RL=2kΩ
CL=100pF
AV=20dB, RL=2kΩ
VIN=0.05Vrms, f=1kHz
25℃
(Note 9) Absolute value
(Note 10) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
5/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4560Rxxx (Unless otherwise specified VCC=+15V, VEE=-15V, Full range -40℃ to +105℃)
Limits
Temperature
Parameter
Symbol
Unit
Range
Min
Typ
Max
Input Offset Voltage
(Note 11)
Input Offset Current
(Note 11)
Input Bias Current
(Note 12)
VIO
IIO
IB
Supply Current
ICC
Maximum Output Voltage
VOM
Large Signal Voltage Gain
Input Common-mode Voltage Range
AV
VICM
25℃
-
0.5
6
Full range
-
-
7
25℃
-
5
200
Full range
-
-
200
25℃
-
50
500
Full range
-
-
800
25℃
-
3
7
Full range
-
-
7.5
25℃
±12
±14
-
Full range
±10
±11.5
-
25℃
86
100
-
Full range
83
-
-
25℃
±12
±14
-
Full range
±12
-
-
Condition
mV
VOUT=0V
nA
VOUT=0V
nA
VOUT=0V
mA
RL=∞, All Op-Amps
VIN+=0V
RL≥ 2kΩ
V
IO=25mA
dB
RL≥ 2kΩ, VOUT=±10V
VICM=0V
V
-
Common-mode Rejection Ratio
CMRR
25℃
70
90
-
dB
VICM=-12V~+12V
Power Supply Rejection Ratio
PSRR
25℃
76.5
90
-
dB
RI≤ 10kΩ
Channel Separation
CS
25℃
-
105
-
dB
R1=100Ω,f=1kHz
Slew Rate
SR
25℃
-
4
-
V/μs
AV=0dB, RL=2kΩ
CL=100pF
fT
25℃
-
4
-
MHz RL=2kΩ
THD+N
25℃
-
0.003
-
%
-
8
-
nV/ Hz
-
1.0
-
μVrms DIN-AUDIO
Unity Gain Frequency
Total Harmonic Distortion+Noise
Input Referred Noise Voltage
VN
25℃
AV=20dB, RL=2kΩ
VIN=0.05Vrms, f=1kHz
RS=100Ω, VI=0V
f=1kHz
(Note 11) Absolute value
(Note 12) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
6/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4564RFV (Unless otherwise specified VCC=+15V, VEE=-15V, Full range -40℃ to +105℃)
Limits
Temperature
Parameter
Symbol
Unit
Range
Min
Typ
Max
Input Offset Voltage
(Note 13)
Input Offset Current
(Note 13)
Input Bias Current
(Note 14)
VIO
IIO
IB
Supply Current
ICC
Maximum Output Voltage
VOM
Large Signal Voltage Gain
Input Common-mode Voltage Range
AV
VICM
25℃
-
0.5
6
Full range
-
-
7
25℃
-
5
200
Full range
-
-
200
25℃
-
50
500
Full range
-
-
800
25℃
-
6
14
Full range
-
-
15
25℃
±12
±14
-
Full range
±10
±11.5
-
25℃
86
100
-
Full range
83
-
-
25℃
±12
±14
-
Full range
±12
-
-
Condition
mV
VOUT=0V
nA
VOUT=0V
nA
VOUT=0V
mA
RL=∞, All Op-Amps
VIN+=0V
RL≥ 2kΩ
V
IO=25mA
dB
RL≥ 2kΩ, VOUT=±10V
VICM=0V
V
-
Common-mode Rejection Ratio
CMRR
25℃
70
90
-
dB
VICM=-12V~+12V
Power Supply Rejection Ratio
PSRR
25℃
76.5
90
-
dB
RI≤ 10kΩ
Channel Separation
CS
25℃
-
105
-
dB
R1=100Ω, f=1kHz
Slew Rate
SR
25℃
-
4
-
V/μs
AV=0dB, RL=2kΩ
CL=100pF
fT
25℃
-
4
-
MHz RL=2kΩ
THD+N
25℃
-
0.003
-
%
-
8
-
nV/ Hz
-
1.0
-
μVrms DIN-AUDIO
Unity Gain Frequency
Total Harmonic Distortion+Noise
Input Referred Noise Voltage
VN
25℃
AV=20dB, RL=2kΩ
VIN=0.05Vrms, f=1kHz
RS=100Ω, VI=0V
f=1kHz
(Note 13) Absolute value
(Note 14) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
7/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4564WFV (Unless otherwise specified VCC=+15V, VEE=-15V, Full range -40℃ to +105℃)
Limits
Temperature
Parameter
Symbol
BA4564WFV
Unit
Range
Min
Typ
Max
Input Offset Voltage
(Note 15)
Input Offset Current
(Note 15)
Input Bias Current
(Note 16)
VIO
IIO
IB
Supply Current
ICC
Maximum Output Voltage
VOM
Large Signal Voltage Gain
AV
Input Common-mode Voltage Range
VICM
25℃
-
0.5
2.5
Full range
-
-
4
25℃
-
5
200
Full range
-
-
200
25℃
-
50
300
Full range
-
-
500
25℃
-
6
11
Full range
-
-
13
25℃
±12
±14
-
Full range
±10
±11.5
-
25℃
86
100
-
Full range
83
-
-
25℃
±12
±14
-
Full range
±12
-
-
Condition
mV
VOUT=0V
nA
VOUT=0V
nA
VOUT=0V
mA
RL=∞, All Op-Amps
VIN+=0V
RL≥ 2kΩ
V
IO=25mA
dB
RL≥ 2kΩ, VOUT=±10V
VICM=0V
V
-
Common-mode Rejection Ratio
CMRR
25℃
70
90
-
dB
VICM=-12V~+12V
Power Supply Rejection Ratio
PSRR
25℃
76.5
90
-
dB
RI≤ 10kΩ
Channel Separation
CS
25℃
-
105
-
dB
R1=100Ω, f=1kHz
Slew Rate
SR
25℃
-
4
-
V/μs
AV=0dB, RL=2kΩ
CL=100pF
fT
25℃
-
4
-
MHz RL=2kΩ
THD+N
25℃
-
0.003
-
%
-
8
-
nV/ Hz
-
1.0
-
μVrms DIN-AUDIO
Unity Gain Frequency
Total Harmonic Distortion+Noise
Input Referred Noise Voltage
VN
25℃
AV=20dB, RL=2kΩ
VIN=0.05Vrms, f=1kHz
RS=100Ω, VI=0V
f=1kHz
(Note 15) Absolute value
(Note 16) Current direction: Since first input stage is composed with PNP transistor, input bias current flows out of IC.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
8/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Description of electrical characteristics
Described here are the terms of electric characteristics used in this datasheet. Items and symbols used are also shown.
Note that item name and symbol and their meaning may differ from those on another manufacture’s document or general document.
1. Absolute maximum ratings
Absolute maximum rating item indicates the condition which must not be exceeded. Application of voltage in excess of
absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of
characteristics.
1.1 Power supply voltage (VCC-VEE)
Indicates the maximum voltage that can be applied between the positive power supply terminal and negative power
supply terminal without deterioration or destruction of characteristics of internal circuit.
1.2 Differential input voltage (VID)
Indicates the maximum voltage that can be applied between non-inverting terminal and inverting terminal without
deterioration and destruction of characteristics of IC.
1.3 Input common-mode voltage range (VICM)
Indicates the maximum voltage that can be applied to non-inverting terminal and inverting terminal without
deterioration or destruction of characteristics. Input common-mode voltage range of the maximum ratings not assure
normal operation of IC. When normal operation of IC is desired, the input common-mode voltage of characteristics
item must be followed.
1.4 Power dissipation (PD)
Indicates the power that can be consumed by specified mounted board at the ambient temperature 25℃(normal temperature).
As for package product, PD is determined by the temperature that can be permitted by IC chip in the package
(maximum junction temperature)and thermal resistance of the package.
2. Electrical characteristics item
2.1 Input offset voltage (VIO)
Indicates the voltage difference between non-inverting terminal and inverting terminal. It can be translated into the
input voltage difference required for setting the output voltage at 0 V .
2.2 Input offset current (IIO)
Indicates the difference of input bias current between non-inverting terminal and inverting terminal.
2.3 Input bias current (IB)
Indicates the current that flows into or out of the input terminal. It is defined by the average of input bias current at
non-inverting terminal and input bias current at inverting terminal.
2.4 Input common-mode voltage range(VICM)
Indicates the input voltage range where IC operates normally.
2.5 Large signal voltage gain (AV)
Indicates the amplifying rate (gain) of output voltage against the voltage difference between non-inverting terminal
and Inverting terminal. It is normally the amplifying rate (gain) with reference to DC voltage.
AV = (Output voltage fluctuation) / (Input offset fluctuation)
2.6 Circuit current (ICC)
Indicates the IC current that flows under specified conditions and no-load steady status.
2.7 Output saturation voltage (VOM)
Signifies the voltage range that can be output under specific output conditions.
2.8 Common-mode rejection ratio (CMRR)
Indicates the ratio of fluctuation of input offset voltage when in-phase input voltage is changed. It is normally the
fluctuation of DC.
CMRR = (Change of Input common-mode voltage) / (Input offset fluctuation)
2.9 Power supply rejection ratio (PSRR)
Indicates the ratio of fluctuation of input offset voltage when supply voltage is changed. It is normally the fluctuation
of DC.
PSRR = (Change of power supply voltage) / (Input offset fluctuation)
2.10 Unity gain frequency (ft)
Indicates a frequency where the voltage gain of operational amplifier is 1.
2.11 Slew Rate (SR)
SR is a parameter that shows movement speed of operational amplifier. It indicates rate of variable output voltage
as unit time.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
9/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
2.12 Gain Band Width (GBW)
Indicates to multiply by the frequency and the gain where the voltage gain decreases 6dB/octave.
2.13 Total harmonic distortion + Noise (THD+N)
Indicates the fluctuation of input offset voltage or that of output voltage with reference to the change of output voltage
of driven channel.
2.14 Input referred noise voltage (VN)
Indicates a noise voltage generated inside the operational amplifier equivalent by ideal voltage source connected in
series with input terminal.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
10/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Typical Performance Curves
○BA4560xxx
8.0
0.8
SUPPLY CURRENT [mA]
POWER DISSIPATION [W] .
.
1
BA4560F
BA4560FJ
0.6
BA4560FV/FVT
BA4560FVM
0.4
0.2
-40℃
6.0
25℃
4.0
85℃
2.0
0.0
0
0
25
50
75
100
0
125
AMBIENT TEMPERTURE [℃] .
Figure 2.
Derating Curve
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
SUPPLY CURRENT [mA]
6.0
±15V
4.0
±4 V
2.0
0.0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Figure 3.
Supply Current - Supply Voltage
8.0
±7.5 V
5
100
30
25
20
15
10
5
0
0.1
1
10
LOAD RESISTANCE [kΩ ]
Figure 4.
Supply Current - Ambient Temperature
Figure 5.
Maximum Output Voltage Swing
- Load Resistance
(VCC/VEE=+15V/-15V,TA=25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
11/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
20
20
15
15
10
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
○BA4560xxx
VOH
5
0
-5
VOL
-10
VOH
5
0
-5
-10
VOL
-15
-15
-20
-20
0.1
1
LOAD RESISTANCE [kΩ ]
±2
10
±4
±6 ±8 ±10 ±12 ±14 ±16 ±18
SUPPLY VOLTAGE [V]
Figure 7.
Maximum Output Voltage
- Supply Voltage
(RL=2kΩ, TA =25℃)
20
20
15
15
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
Figure 6.
Maximum Output Voltage
- Load Resistance
(VCC/VEE=+15V/-15V, TA =25℃)
VOH
5
0
-5
VOL
-10
-15
-20
-50
10
VOH
5
0
-5
VOL
-10
-15
-20
-25
0
25
50
75
100
0
AMBIENT TEMPERATURE [℃]
5
10
15
20
25
OUTPUT CURRENT [mA]
Figure 9.
Maximum Output Voltage
- Output Current
(VCC/VEE=+15V/-15V, TA =25℃)
Figure 8.
Maximum Output Voltage
- Ambient Temperature
(VCC/VEE=+15V/-15V, RL=2kΩ)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
12/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4560xxx
6
4
-40℃
INPUT OFFSET VOLTAGE [mV]
INPUT OFFSET VOLTAGE [mV]
6
25℃
2
0
-2
85℃
-4
-6
4
±4V
±7.5V
2
0
±15V
-2
-4
-6
±2
±4
±6
±8
±10
±12
±14
±16
-50
-25
0
25
50
75
100
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Figure 10.
Input Offset Voltage - Supply Voltage
(VICM=0V, VOUT=0V)
Figure 11.
Input Offset Voltage - Ambient Temperature
(VICM=0V, VOUT=0V)
60
.
80
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
70
60
-40℃
50
25℃
40
30
20
85℃
10
50
±4V
40
30
±7.5V
±15V
20
10
0
0
±0
±2
±4
±6
±8
-50
±10 ±12 ±14 ±16
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
SUPPLY VOLTAGE [V]
Figure 13.
Input Bias Current - Ambient Temperature
(VICM=0V, VOUT=0V)
Figure 12.
Input Bias Current - Supply Voltage
(VICM=0V, VOUT=0V)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
13/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
20
30
INPUT OFFSET CURRENT [nA]
.
30
INPUT OFFSET CURRENT [nA]
○BA4560xxx
-40℃
10
25℃
0
-10
85℃
-20
20
10
±7.5V
0
±15V
-10
-20
-30
-30
±0
±2
-50
±4 ±6 ±8 ±10 ±12 ±14 ±16
SUPPLY VOLTAGE [V]
COMMON MODE REJECTION RATIO [dB]
5
4
85℃
3
2
25℃
1
-40℃
0
-1
-2
-3
-4
-5
0
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Figure 15.
Input Offset Current - Ambient Temperature
(VICM=0V, VOUT=0V)
Figure 14.
Input Offset Current - Supply Voltage
(VICM=0V, VOUT=0V)
INPUT OFFSET VOLTAGE [mV]
±4V
2
4
6
8
COMMON MODE INPUT VOLTAGE [V]
150
125
100
75
50
25
0
-50
Figure 16.
Input Offset Voltage
-Common Mode Input Voltage
(VCC=8V, VOUT=4V)
-25
0
25
50
75
AMBIENT TEMPERATURE [°C]
100
Figure 17.
Common Mode Rejection Ratio
- Ambient Temperature
(VCC/VEE=+15V/-15V, VICM=-12V to +12V)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
14/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
.
○BA4560xxx
.
6
125
SLEW RATE [V/µs]
POWER SUPPLY REJECTION RATIO [dB]
150
100
75
50
5
4
3
2
25
1
0
0
-50
-25
0
25
50
75
AMBIENT TEMPERATURE [℃]
±2
100
±6
±8
±10 ±12
SUPPLY VOLTAGE [V]
±14
±16
Figure 19.
Slew Rate - Supply Voltage
(CL=100pF, RL=2kΩ, TA =25℃)
Figure 18.
Power Supply Rejection Ratio
- Ambient Temperature
(VCC/VEE=+4V/-4V to +15V/-15V)
80
1
TOTAL HARMONIC DISTORTION [%]
INPUT REFERRED NOISE VOLTAGE
[nV/√Hz]
±4
60
40
20
0
1
10
100
1000
FREQUENCY [Hz]
10000
Figure 20.
Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15V/-15V, RS=100Ω, TA =25℃)
0.1
20kHz
0.01
1kHz
0.001
20Hz
0.0001
0.1
1
OUTPUT VOLTAGE [Vrms]
10
Figure 21.
Total Harmonic Distortion - Output Voltage
(VCC/VEE=+15V/-15V, AV=20dB,
RL=2kΩ, 80kHz-LPF, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
15/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
50
200
PHASE
25
20
15
10
40
160
140
30
20
GAIN
.
120
100
80
60
10
5
180
PHASE [deg]
30
VOLTAGE GAIN[dB]
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
○BA4560xxx
40
20
0
10
1
3
4
5
10
10
10
100
FREQUENCY [KHz]
0
0
2
3
4
5
6
7
10
10
10
10
10
10
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
SUPPLY VOLTAGE [V]
6
10
1000
Figure 22.
Maximum Output Voltage Swing – Frequency
(VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃)
Figure 23.
Voltage Gain - Frequency
(VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
16/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4560Rxxx
1
-40℃
0.8
SUPPLY CURRENT [mA]
POWER DISSIPATION [W] .
.
5.0
BA4560RF
BA4560RFJ
BA4560RFV/FVT
0.6
BA4560RFVM
0.4
0.2
0
4.0
3.0
2.0
105℃
1.0
0.0
0
25
50
75
100
0
125
AMBIENT TEMPERTURE [℃] .
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
5.0
±15V
4.0
3.0
±4 V
2.0
±7.5 V
1.0
0.0
-50
-25
0
25
50
75 100
AMBIENT TEMPERATURE [℃]
5
10
15
20
25
SUPPLY VOLTAGE [V]
30
35
Figure 25.
Supply Current - Supply Voltage
Figure 24.
Derating Curve
SUPPLY CURRENT [mA]
25℃
125
30
25
20
15
10
5
0
0.1
1
10
LOAD RESISTANCE [kΩ]
Figure 27.
Maximum Output Voltage Swing
- Load Resistance
(VCC/VEE=+15V/-15V, TA =25℃)
Figure 26.
Supply Current - Ambient Temperature
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
17/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4560Rxxx
20
20
15
15
10
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
VOH
VOH
5
0
-5
VOL
-10
5
0
-5
-10
VOL
-15
-15
-20
-20
0.1
1
10
±4
±6
±8
±10
±12
±14
SUPPLY VOLTAGE [V]
LOAD RESISTANCE [kΩ]
Figure 29.
Maximum Output Voltage
- Supply Voltage
(RL=2kΩ, TA =25℃)
20
20
15
15
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
Figure 28.
Maximum Output Voltage
- Load Resistance
(VCC/VEE=+15V/-15V, TA =25℃)
VOH
5
0
-5
VOL
-10
10
VOH
5
0
-5
VOL
-10
-15
-15
-20
-50
±16
-20
-25
0
25
50
75
100
0
125
5
10
15
20
AMBIENT TEMPERATURE [℃]
OUTPUT CURRENT [mA]
Figure 30.
Maximum Output Voltage
- Ambient Temperature
(VCC/VEE=+15V/-15V, RL=2kΩ)
Figure 31.
Maximum Output Voltage
- Output Current
(VCC/VEE=+15V/-15V, TA =25℃)
25
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
18/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
6
6
4
4
2
-40℃
INPUT OFFSET VOLTAGE [mV]
INPUT OFFSET VOLTAGE [mV]
○BA4560Rxxx
25℃
0
105℃
-2
-4
±4V
2
±7.5V
0
-2
±15V
-4
-6
-6
±2
±4
±6
±8
±10
±12
±14
-50
±16
0
25
50
75
100
125
AMBIENT TEMPERATURE [℃]
SUPPLY VOLTAGE [V]
Figure 33.
Input Offset Voltage - Ambient Temperature
(VICM=0V, V VOUT =0V)
Figure 32.
Input Offset Voltage - Supply Voltage
(VICM=0V, VOUT=0V)
.
.
200
180
200
180
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
-25
160
140
120
25℃
100
-40℃
80
60
40
105℃
160
140
120
±4V
±7.5V
100
80
60
40
±15V
20
20
0
0
±2
±4
±6
±8
±10
±12
±14
±2
±16
±4
±6
±8
±10
±12
±14
±16
SUPPLY VOLTAGE [V]
SUPPLY VOLTAGE [V]
Figure 35.
Input Bias Current - Ambient Temperature
(VICM=0V, VOUT =0V)
Figure 34.
Input Bias Current - Supply Voltage
(VICM=0V, VOUT =0V)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
19/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
.
○BA4560Rxxx
60
INPUT OFFSET CURRENT [nA]
INPUT OFFSET CURRENT [nA]
60
40
-40℃
105℃
20
0
-20
25℃
-40
40
±4V
20
±15V
0
±7.5V
-20
-40
-60
-60
±0
±2
±4
±6
±8
-50
±10 ±12 ±14 ±16
SUPPLY VOLTAGE [V]
Figure 36.
Input Offset Current - Supply Voltage
(VICM=0V, VOUT =0V)
COMMON MODE REJECTION RATIO [dB]
INPUT OFFSET VOLTAGE [mV]
4
3
2
1
0
-40℃
-2
25℃
-3
105℃
-4
-5
0
125
Figure 37.
Input Offset Current - Ambient Temperature
(VICM=0V, VOUT =0V)
5
-1
-25
0
25
50
75
100
AMBIENT TEMPERATURE [°C]
150
125
100
75
50
25
0
COMMON MODE INPUT VOLTAGE [V]
-25
0
25
50
75 100
AMBIENT TEMPERATURE [°C]
Figure 38.
Input Offset Voltage
-Common Mode Input Voltage
(VCC=8V, VOUT =4V)
Figure 39.
Common Mode Rejection Ratio
- Ambient Temperature
(VCC/VEE=+15V/-15V, VICM=-12V to +12V)
2
4
6
-50
8
125
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
20/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
5.0
.
150
125
4.0
SLEW RATE [V/µs]
POWER SUPPLY REJECTION RATIO [dB]
.
○BA4560Rxxx
100
75
50
3.0
2.0
1.0
25
0
0.0
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
125
±2
±6
±8
±10 ±12
SUPPLY VOLTAGE [V]
±14
±16
Figure 41.
Slew Rate - Supply Voltage
(CL=100pF, RL=2kΩ, TA =25℃)
Figure 40.
Power Supply Rejection Ratio
- Ambient Temperature
(VCC/VEE=+4V/-4V to +15V/-15V)
1
TOTAL HARMONIC DISTORTION [%]
80
INPUT REFERRED NOISE VOLTAGE
[nV/√Hz] .
±4
60
40
20
10
100
1000
FREQUENCY [Hz]
0.01
1kHz
0.001
20Hz
0.0001
0.1
0
1
20kHz
0.1
10000
1
OUTPUT VOLTAGE [Vrms]
10
Figure 43.
Total Harmonic Distortion - Output Voltage
(VCC/VEE=+15V/-15V, AV=20dB,
RL=2kΩ, 80kHz-LPF, TA =25℃)
Figure 42.
Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15V/-15V, RS=100Ω, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
21/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
30
60
25
50
0
-30
20
15
10
5
10
10
100
10
3
4
5
30
-60
GAIN
-90
20
-120
10
-150
0
-180
2
3
4
5
6
7
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
10
10
10
10
10
10
FREQUENCY [Hz]
0
2
40
PHASE [deg]
PHASE
VOLTAGE GAIN [dB]
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
○BA4560Rxxx
6
1000
10000
100000
1000000
10
10
10
10
FREQUENCY [Hz]
Figure 45.
Voltage Gain - Frequency (VCC/VEE=+15V/-15V,
AV=40dB, RL=2kΩ, TA =25℃)
Figure 44.
Maximum Output Voltage Swing - Frequency
(VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
22/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4564RFV
1
BA4564RFV
0.8
SUPPLY CURRENT [mA]
SUPPLY CURRENT [mA]
.
12.0
0.6
0.4
0.2
10.0
-40℃
8.0
25℃
6.0
4.0
105℃
2.0
0
0.0
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
125
0
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
SUPPLY CURRENT [mA]
10.0
±15V
6.0
±4V
±7.5V
2.0
0.0
-50
-25
0
25
50
75 100
AMBIENT TEMPERATURE [℃]
15
20
25
30
35
Figure 47.
Supply Current - Supply Voltage
12.0
4.0
10
SUPPLY VOLTAGE [V]
Figure 46.
Derating Curve
8.0
5
125
30
25
20
15
10
5
0
0.1
1
10
LOAD RESISTANCE [kΩ]
Figure 49.
Maximum Output Voltage Swing
- Load Resistance
(VCC/VEE=+15V/-15V, TA =25℃)
Figure 48.
Supply Current - Ambient Temperature
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
23/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
20
20
15
15
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
○BA4564RFV
VOH
5
0
-5
VOL
-10
-15
VOH
10
5
0
-5
-10
VOL
-15
-20
-20
0.1
1
±4
10
±6
±8
±10
±12
±14
SUPPLY VOLTAGE [V]
LOAD RESISTANCE [kΩ]
Figure 51.
Maximum Output Voltage
-Supply Voltage
(RL=2kΩ, TA =25℃)
20
20
15
15
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
Figure 50.
Maximum Output Voltage
-Load Resistance
(VCC/VEE=+15V/-15V, TA =25℃)
VOH
5
0
-5
VOL
-10
-15
-20
-50
±16
10
VOH
5
0
-5
VOL
-10
-15
-20
-25
0
25
50
75
100
125
0
5
10
15
20
AMBIENT TEMPERATURE [℃]
OUTPUT CURRENT [mA]
Figure 52.
Maximum Output Voltage
- Ambient Temperature
(VCC/VEE=+15V/-15V, RL=2kΩ)
Figure 53.
Maximum Output Voltage
- Output Current
(VCC/VEE=+15V/-15V, TA =25℃)
25
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
24/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
6
6
4
4
INPUT OFFSET VOLTAGE [mV]
INPUT OFFSET VOLTAGE [mV]
○BA4564RFV
-40℃
25℃
2
0
105℃
-2
-4
±4V
±7.5V
2
0
±15V
-2
-4
-6
-6
±2
±4
±6
±8
±10
±12
±14
-50
±16
-25
0
25
50
75
100
125
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Figure 54.
Input Offset Voltage - Supply Voltage
(VICM=0V, VOUT =0V)
Figure 55.
Input Offset Voltage - Ambient Temperature
(VICM=0V, VOUT =0V)
200
180
180
160
160
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
.
200
140
-40℃
120
25℃
100
80
60
105℃
40
20
140
±7.5V
±4V
120
100
80
60
±15V
40
20
0
0
±2
±4
±6
±8
±10
±12
±14
±16
-50
-25
SUPPLY VOLTAGE [V]
0
25
50
75
100
125
AMBIENT TEMPERATURE [℃]
Figure 56.
Input Bias Current - Supply Voltage
(VICM=0V, VOUT =0V)
Figure 57.
Input Bias Current - Ambient Temperature
(VICM=0V, VOUT =0V)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
25/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4564RFV
60
INPUT OFFSET CURRENT [nA]
INPUT OFFSET CURRENT [nA]
60
40
-40℃
20
105℃
0
-20
25℃
-40
40
±15V
0
±7.5V
-20
-40
-60
-60
±0
±2
-50
±4 ±6 ±8 ±10 ±12 ±14 ±16
SUPPLY VOLTAGE [V]
5
4
-40℃
3
25℃
2
105℃
1
0
-1
-2
-3
-4
-5
0
-25
0
25
50
75
100
AMBIENT TEMPERATURE [°C]
125
Figure 59.
Input Offset Current - Ambient Temperature
(VICM=0V, VOUT =0V)
COMMON MODE REJECTION RATIO [dB]
Figure 58.
Input Offset Current - Supply Voltage
(VICM=0V, VOUT =0V)
INPUT OFFSET VOLTAGE [mV]
±4V
20
150
125
100
75
50
25
0
-50
2
4
6
8
COMMON MODE INPUT VOLTAGE [V]
-25
0
25
50
75 100
AMBIENT TEMPERATURE [°C]
125
Figure 61.
Common Mode Rejection Ratio
- Ambient Temperature
(VCC/VEE=+15V/-15V, VICM=-12V to +12V)
Figure 60.
Input Offset Voltage
- Common Mode Input Voltage
(VCC=8V, VOUT =4V)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
26/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
150
5.0
.
125
4.0
SLEW RATE [V/µs]
POWER SUPPLY REJECTION RATIO [dB]
.
○BA4564RFV
100
75
50
3.0
2.0
1.0
25
0
0.0
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
125
±2
±6
±8
±10 ±12
SUPPLY VOLTAGE [V]
±14
±16
Figure 63.
Slew Rate - Supply Voltage
(CL=100pF, RL=2kΩ, TA =25℃)
Figure 62.
Power Supply Rejection Ratio
- Ambient Temperature
(VCC/VEE=+4V/-4V to +15V/-15V)
80
1
TOTAL HARMONIC DISTORTION [%]
INPUT REFERRED NOISE VOLTAGE
[nV/√Hz] .
±4
60
40
20
10
100
1000
FREQUENCY [Hz]
20kHz
1kHz
0.01
0.001
20Hz
0.0001
0.1
0
1
0.1
10000
Figure 64.
Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15V/-15V, RS=100Ω, TA =25℃)
1
OUTPUT VOLTAGE [Vrms]
10
Figure 65.
Total Harmonic Distortion - Output Voltage
(VCC/VEE=+15V/-15V, AV=20dB,
RL=2kΩ, 80kHz-LPF, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
27/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
60
25
50
20
15
10
-200
PHASE
-140
40
30
-170
-110
GAIN
-80
20
PHASE [deg]
30
VOLTAGE GAIN [dB]
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
○BA4564RFV
-50
10
5
-20
0
2
3
4
5
6
10
10
10
10
10
10
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
FREQUENCY [Hz]
Figure 66.
Maximum Output Voltage Swing – Frequency
(VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃)
0
2
3
4
5
6
7
10
10
10
10
10
10
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
FREQUENCY [Hz]
Figure 67.
Voltage Gain - Frequency
(VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
28/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4564WFV
12.0
0.8
SUPPLY CURRENT [mA]
[W]
POWER
CURRENT [mA]
SUPPLY DISSIPATION
.
1
BA4564WFV
0.6
0.4
0.2
10.0
25℃
6.0
4.0
105℃
2.0
0
0.0
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
Figure 68.
Derating Curve
125
0
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
±15V
6.0
±4V
4.0
±7.5V
2.0
0.0
-50
-25
0
25
50
75 100
AMBIENT TEMPERATURE [℃]
10
15
20
25
30
35
Figure 69.
Supply Current - Supply Voltage
10.0
8.0
5
SUPPLY VOLTAGE [V]
12.0
SUPPLY CURRENT [mA]
-40℃
8.0
125
30
25
20
15
10
5
0
0.1
1
10
LOAD RESISTANCE [kΩ]
Figure 71.
Maximum Output Voltage Swing
- Load Resistance
(VCC/VEE=+15V/-15V, TA =25℃)
Figure 70.
Supply Current - Ambient Temperature
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
29/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
20
20
15
15
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
○BA4564WFV
VOH
5
0
-5
VOL
-10
-15
VOH
10
5
0
-5
-10
VOL
-15
-20
0.1
-20
1
LOAD RESISTANCE [kΩ]
10
±4
±6
±8
±10
±12
±14
SUPPLY VOLTAGE [V]
Figure 73.
Maximum Output Voltage
-Supply Voltage
(RL=2kΩ, TA =25℃)
20
20
15
15
10
OUTPUT VOLTAGE [V]
OUTPUT VOLTAGE [V]
Figure 72.
Maximum Output Voltage
-Load Resistance
(VCC/VEE=+15V/-15V, TA =25℃)
VOH
5
0
-5
VOL
-10
-15
-20
-50
±16
10
VOH
5
0
-5
VOL
-10
-15
-20
-25
0
25
50
75
100
125
0
5
10
15
20
AMBIENT TEMPERATURE [℃]
OUTPUT CURRENT [mA]
Figure 74.
Maximum Output Voltage
- Ambient Temperature
(VCC/VEE=+15V/-15V, RL=2kΩ)
Figure 75.
Maximum Output Voltage
- Output Current
(VCC/VEE=+15V/-15V, TA =25℃)
25
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
30/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
6
6
4
4
INPUT OFFSET VOLTAGE [mV]
INPUT OFFSET VOLTAGE [mV]
○BA4564WFV
-40℃
25℃
2
0
105℃
-2
-4
±4V
±7.5V
2
0
±15V
-2
-4
-6
-6
±2
±4
±6
±8
±10
±12
±14
-50
±16
-25
0
25
50
75
100
125
SUPPLY VOLTAGE [V]
AMBIENT TEMPERATURE [℃]
Figure 76.
Input Offset Voltage - Supply Voltage
(VICM=0V, VOUT =0V)
Figure 77.
Input Offset Voltage - Ambient Temperature
(VICM=0V, VOUT =0V)
200
180
180
160
160
INPUT BIAS CURRENT [nA]
INPUT BIAS CURRENT [nA]
.
200
140
-40℃
120
25℃
100
80
60
105℃
40
20
140
±7.5V
±4V
120
100
80
60
±15V
40
20
0
0
±2
±4
±6
±8
±10
±12
±14
±16
-50
-25
SUPPLY VOLTAGE [V]
0
25
50
75
100
125
AMBIENT TEMPERATURE [℃]
Figure 78.
Input Bias Current - Supply Voltage
(VICM=0V, VOUT =0V)
Figure 79.
Input Bias Current - Ambient Temperature
(VICM=0V, VOUT =0V)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
31/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
○BA4564WFV
60
INPUT OFFSET CURRENT [nA]
INPUT OFFSET CURRENT [nA]
60
40
-40℃
20
105℃
0
-20
25℃
-40
40
±15V
0
±7.5V
-20
-40
-60
-60
±0
±2
-50
±4 ±6 ±8 ±10 ±12 ±14 ±16
SUPPLY VOLTAGE [V]
5
4
-40℃
3
25℃
2
105℃
1
0
-1
-2
-3
-4
-5
0
-25
0
25
50
75
100
AMBIENT TEMPERATURE [°C]
125
Figure 81.
Input Offset Current - Ambient Temperature
(VICM=0V, VOUT =0V)
COMMON MODE REJECTION RATIO [dB]
Figure 80.
Input Offset Current - Supply Voltage
(VICM=0V, VOUT =0V)
INPUT OFFSET VOLTAGE [mV]
±4V
20
150
125
100
75
50
25
0
-50
2
4
6
8
COMMON MODE INPUT VOLTAGE [V]
-25
0
25
50
75 100
AMBIENT TEMPERATURE [°C]
125
Figure 83.
Common Mode Rejection Ratio
- Ambient Temperature
(VCC/VEE=+15V/-15V, VICM=-12V to +12V)
Figure 82.
Input Offset Voltage
- Common Mode Input Voltage
(VCC=8V, VOUT =4V)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
32/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
150
5.0
.
125
4.0
SLEW RATE [V/µs]
POWER SUPPLY REJECTION RATIO [dB]
.
○BA4564WFV
100
75
50
3.0
2.0
1.0
25
0
0.0
-50
-25
0
25
50
75
100
AMBIENT TEMPERATURE [℃]
125
±2
±6
±8
±10 ±12
SUPPLY VOLTAGE [V]
±14
±16
Figure 85.
Slew Rate - Supply Voltage
(CL=100pF, RL=2kΩ, TA =25℃)
Figure 84.
Power Supply Rejection Ratio
- Ambient Temperature
(VCC/VEE=+4V/-4V to +15V/-15V)
80
1
TOTAL HARMONIC DISTORTION [%]
INPUT REFERRED NOISE VOLTAGE
[nV/√Hz] .
±4
60
40
20
10
100
1000
FREQUENCY [Hz]
20kHz
1kHz
0.01
0.001
20Hz
0.0001
0.1
0
1
0.1
10000
Figure 86.
Equivalent Input Noise Voltage - Frequency
(VCC/VEE=+15V/-15V,RS=100Ω, TA =25℃)
1
OUTPUT VOLTAGE [Vrms]
10
Figure 87.
Total Harmonic Distortion - Output Voltage
(VCC/VEE=+15V/-15V, AV=20dB,
RL=2kΩ,80kHz-LPF, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
33/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
60
25
50
20
15
10
-200
PHASE
-140
40
30
-170
-110
GAIN
-80
20
PHASE [deg]
30
VOLTAGE GAIN [dB]
MAXIMUM OUTPUT VOLTAGE SWING [VP-P]
○BA4564WFV
-50
10
5
-20
0
2
3
4
5
6
10
10
10
10
10
10
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
FREQUENCY [Hz]
Figure 88.
Maximum Output Voltage Swing – Frequency
(VCC/VEE=+15V/-15V, RL=2kΩ, TA =25℃)
0
33
44
55
66
77
22
10
10
10
10
10
1.E+02
1.E+03
1.E+04
1.E+06
1.E+07
10
10
10 1.E+05
10
10
10
FREQUENCY [Hz]
Figure 89.
Voltage Gain - Frequency
(VCC/VEE=+15V/-15V, AV=40dB, RL=2kΩ, TA =25℃)
(*)The above data is measurement value of typical sample, it is not guaranteed.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
34/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Application Information
Test Circuit1 NULL method
VCC, VEE, EK, VICM Unit: V
Parameter
VF
S1
S2
S3
VCC
VEE
EK
VICM
Calculation
Input Offset Voltage
VF1
ON
ON
OFF
15
-15
0
0
1
Input Offset Current
VF2
OFF
OFF
OFF
15
-15
0
0
2
VF3
OFF
ON
OFF
-15
0
ON
15
0
VF4
OFF
0
0
ON
ON
ON
15
-15
0
0
15
-15
0
0
ON
ON
OFF
ON
ON
OFF
Input Bias Current
VF5
Large Signal Voltage Gain
VF6
Common-mode Rejection Ratio
(Input common-mode Voltage Range)
VF7
Power Supply
Rejection Ratio
VF9
VF8
VF10
3
-27
-12
0
27
-3
12
0
4
-4
0
0
15
-15
0
0
-Calculation1. Input Offset Voltage (VIO)
VIO =
|VF1|
1+RF/RS
4
5
6
0.1µF
[V]
RF=50kΩ
|VF2-VF1|
RI ×(1+RF/RS)
0.1µF
500kΩ
SW1
2. Input Offset Current (IIO)
IIO =
3
VCC
+15V
EK
RS=50Ω
RI=10kΩ
[A]
500kΩ
DUT
3. Input Bias Current (IB)
NULL
SW3
|VF4-VF3|
1000pF
RI=10kΩ
RS=50Ω
VF
RL
[A]
IB =
2 × RI ×(1+RF/RS)
SW2
50kΩ
-15V
VEE
4. Large Signal Voltage Gain (AV)
AV = 20Log ΔEK × (1+RF/RS)
|VF5-VF6|
[dB]
Figure 90. Test Circuit1 (one channel only)
5. Common-mode Rejection Ration (CMRR)
CMRR = 20Log ΔVICM × (1+RF/RS) [dB]
|VF8-VF7|
6. Power supply rejection ratio (PSRR)
PSRR = 20Log ΔVCC × (1+ RF/RS) [dB]
|VF10 – VF9|
Test Circuit 2 Switch Condition
SW No.
SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14
Supply Current
OFF
OFF OFF
ON
OFF
ON
OFF
OFF
OFF OFF
OFF OFF
OFF
OFF
High Level Output Voltage
OFF
OFF
ON
OFF OFF
ON
OFF
OFF
ON
OFF
OFF OFF
ON
OFF
Low Level Output Voltage
OFF
OFF
ON
OFF OFF
ON
OFF
OFF
OFF OFF
OFF OFF
ON
OFF
Slew Rate
OFF
OFF OFF
ON
OFF
OFF OFF
ON
ON
ON
OFF OFF
OFF
OFF
Unity Gain Frequency
OFF
ON
OFF
OFF
ON
ON
OFF
OFF
ON
ON
ON
OFF
OFF
OFF
Total Harmonic Distortion
ON
OFF OFF
OFF
ON
OFF
ON
OFF
ON
ON
ON
OFF
OFF
OFF
Input Referred Noise Voltage
ON
OFF OFF
OFF
ON
ON
OFF
OFF
OFF OFF
ON
OFF
OFF
OFF
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
35/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Input voltage
SW4
R2
SW5
VH
●
VCC
VL
-
SW1
SW2
SW3
SW6
RS
SW7
SW9
SW8
Output voltage
SW10 SW11 SW12 SW13 SW14
R1
VIN-
90% SR=ΔV/Δt
VH
VEE
C
t
Input wave
+
RL
VIN+
CL
ΔV
10%
VOUT
VRL
VL
Δt
Figure 91. Test Circuit 2 (each Op-Amp)
Figure 92. Slew Rate Input/Output Waveform
VCC
VCC
R1//R2
R1//R2
OTHER
CH
VEE
R1
VIN
R2
t
Output wave
VEE
VOUT1
V VOUT1
R1
R2
V
=0.5Vrms
=0.5[Vrms]
CS=20×log
VOUT2
VOUT2
100×VOUT1
VOUT2
Figure 93. Test Circuit 3(Channel Separation)
(VCC=+15V, VEE=-15V, R1=1kΩ, R2=100kΩ)
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
36/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Power Dissipation
Power dissipation(total loss) indicates the power that can be consumed by IC at TA =25℃(normal temperature). IC is
heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The
temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable
power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and
thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the
maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin
or lead
frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called
thermal resistance, represented by the symbol θJA℃/W. The temperature of IC inside the package can be estimated by this
thermal resistance. Figure 94.(a) shows the model of thermal resistance of the package. Thermal resistance θJA, ambient
temperature TA, junction temperature TJMAX, and power dissipation PD can be calculated by the equation below:
θJA = (TJMAX - TA) / PD
℃/W
Derating curve in Figure 94. (b) indicates power that can be consumed by IC with reference to ambient temperature. Power
that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate
at certain ambient temperature. This gradient is determined by thermal resistance θJA. Thermal resistance θJA depends on
chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same of
package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Figure 95.(c), to ,
(e) show a derating curve for an example of BA4560xxx, BA4560Rxxx, BA4564RFV, BA4564WFV.
θJA=(TJmax-TA)/ PD
Power Dissipation of LSI [W]
PD(max)
°C/W
P2
θJA2 < θJA1
Ambient Temperature TA [ °C ]
θ’JA2 θ
JA2
P1
TJ’max
θ’JA1
0
Chip Surface Temperature TJ [ °C ]
25
50
TJmax
θJA1
75
100
125
150
Ambient Temperature TA [ °C ]
(a) Thermal Resistance
(b) Derating Curve
Figure 94. Thermal Resistance and Derating Curve
1
BA4560F(Note 17)
0.6
BA4560FJ(Note 18)
BA4560FV/FVT(Note 19)
BA4560FVM(Note 20)
0.4
0.2
1
BA4560F(Note 17)
0.8
BA4560FJ(Note 18)
BA4560FV/FVT(Note 19)
0.6
BA4560FVM(Note 20)
0.4
0.2
0
0
0
25
50
75
100
125
(Note 19)
5.0
25
50
75
100
AMBIENT
TA [℃]
AMBIENTTEMPERATURE
TEMPERTURE [℃]
.
(d)BA4560Rxxx
(c)BA4560xxx
(Note 18)
5.4
0.8
BA4564RFV/WFV(Note 21)
0.6
0.4
0.2
0
0
AMBIENT
[℃]
.
AMBIENT TEMPERTURE
TEMPERATURE
TA[℃]
(Note 17)
5.5
POWER DISSIPATION PD [W] .
0.8
DISSIPATION
POWER
PD[W]
[W] .
DISSIPATION
POWER
DISSIPATION
POWER
PD[W] .
DISSIPATION
POWER
1
(Note 20)
4.7
(Note 21)
7.0
125
0
25
50
75
100
125
AMBIENT TEMPERATURE TA [℃] .
(e)BA4564RFV/BA4564WFV
Unit
mW/℃
When using the unit above TA=25℃, subtract the value above per degree℃. Permissible dissipation is the value.
Permissible dissipation is the value when FR4 glass epoxy board 70mm ×70mm ×1.6mm (cooper foil area below 3%) is mounted.
Figure 95. Derating Curve
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
37/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Examples of Circuit
○Voltage Follower
Voltage gain is 0dB.
Using this circuit, the output voltage (OUT) is
configured to be equal to the input voltage (IN). This
circuit also stabilizes the output voltage (OUT) due to
high input impedance and low output impedance.
Computation for output voltage (OUT) is shown below.
OUT=IN
VCC
OUT
IN
VEE
Figure 96. Voltage Follower Circuit
○Inverting Amplifier
R2
For inverting amplifier, input voltage (IN) is amplified
by a voltage gain and depends on the ratio of R1 and
R2. The out-of-phase output voltage is shown in the
next expression
OUT=-(R2/R1)・IN
This circuit has input impedance equal to R1.
VCC
IN
R1
OUT
R1//R2
VEE
Figure 97. Inverting Amplifier Circuit
○Non-inverting Amplifier
R1
R2
VCC
OUT
IN
For non-inverting amplifier, input voltage (IN) is
amplified by a voltage gain, which depends on the ratio
of R1 and R2. The output voltage (OUT) is in-phase
with the input voltage (IN) and is shown in the next
expression.
OUT=(1 + R2/R1)・IN
Effectively, this circuit has high input impedance since
its input side is the same as that of the operational
amplifier.
VEE
Figure 98. Non-inverting Amplifier
Circuit
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
38/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Operational Notes
1.
Reverse Connection of Power Supply
Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when
connecting the power supply, such as mounting an external diode between the power supply and the IC’s power
supply pins.
2.
Power Supply Lines
Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the
digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog
block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and
aging on the capacitance value when using electrolytic capacitors.
3.
Ground Voltage
Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4.
Ground Wiring Pattern
When using both small-signal and large-current ground traces, the two ground traces should be routed separately but
connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal
ground caused by large currents. Also ensure that the ground traces of external components do not cause variations
on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.
5.
Thermal Consideration
Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in
deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when
the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum
rating, increase the board size and copper area to prevent exceeding the PD rating.
6.
Recommended Operating Conditions
These conditions represent a range within which the expected characteristics of the IC can be approximately
obtained. The electrical characteristics are guaranteed under the conditions of each parameter.
7.
Inrush Current
When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush
current may flow instantaneously due to the internal powering sequence and delays, especially if the IC
has more than one power supply. Therefore, give special consideration to power coupling capacitance,
power wiring, width of ground wiring, and routing of connections.
8.
Operation Under Strong Electromagnetic Field
Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
9.
Testing on Application Boards
When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may
subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply
should always be turned off completely before connecting or removing it from the test setup during the inspection
process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during
transport and storage.
10. Inter-pin Short and Mounting Errors
Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in
damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin.
Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment)
and unintentional solder bridge deposited in between pins during assembly to name a few.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
39/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Operational Notes – continued
11. Regarding the Input Pin of the IC
This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them
isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a
parasitic diode or transistor. For example (refer to figure below):
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual
interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to
operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should
be avoided.
Resistor
Transistor (NPN)
Pin A
Pin B
C
E
Pin A
N
P+
P
N
N
P+
N
Parasitic
Elements
N
P+
N P
N
P+
B
N
C
E
Parasitic
Elements
P Substrate
P Substrate
Parasitic
Elements
Pin B
B
GND
Parasitic
Elements
GND
GND
N Region
close-by
GND
Figure 99. Example of monolithic IC structure
12. Unused Circuits
It is recommended to apply the connection (see Figure 100.) and set the
non-inverting input terminal at a potential within the Input Common-mode
Voltage Range (VICM) for any unused circuit.
Keep this potential
in VICM
13. Input Voltage
Applying VEE +36V to the input terminal is possible without causing
deterioration of the electrical characteristics or destruction, regardless of
the supply voltage. However, this does not ensure normal circuit operation.
Please note that the circuit operates normally only when the input voltage
is within the common mode input voltage range of the electric
characteristics.
VCC
VICM
VEE
Figure 100. Example of Application Circuit
for Unused Op-amp
14. Power Supply(single/dual)
The operational amplifier operates when the voltage supplied is between VCC and VEE. Therefore, the single supply
operational amplifier can be used as dual supply operational amplifier as well.
15. IC Handling
When pressure is applied to the IC through warp on the printed circuit board, the characteristics may fluctuate due to
the piezo effect. Be careful with the warp on the printed circuit board.
16. The IC Destruction Caused by Capacitive Load
The IC may be damaged when VCC terminal and VEE terminal is shorted with the charged output terminal capacitor.
When IC is used as an operational amplifier or as an application circuit where oscillation is not activated by an output
capacitor, output capacitor must be kept below 0.1μF in order to prevent the damage mentioned above.
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
40/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Physical Dimension, Tape and Reel Information
Package Name
SOP8
(Max 5.35 (include.BURR))
(UNIT : mm)
PKG : SOP8
Drawing No. : EX112-5001-1
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
41/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Physical Dimension, Tape and Reel Information
Package Name
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
SSOP-B8
42/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Physical Dimension, Tape and Reel Information
Package Name
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
SOP-J8
43/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Physical Dimension, Tape and Reel Information
Package Name
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
MSOP8
44/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Physical Dimension, Tape and Reel Information
Package Name
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
TSSOP-B8
45/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Physical Dimension, Tape and Reel Information
Package Name
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
SSOP-B14
46/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Marking Diagrams
SOP8(TOP VIEW)
SSOP-B8(TOP VIEW)
Part Number Marking
Part Number Marking
LOT Number
LOT Number
1PIN MARK
1PIN MARK
MSOP8(TOP VIEW)
TSSOP-B8(TOP VIEW)
Part Number Marking
Part Number Marking
LOT Number
LOT Number
1PIN MARK
1PIN MARK
SOP-J8(TOP VIEW)
SSOP-B14(TOP VIEW)
Part Number Marking
Part Number Marking
LOT Number
LOT Number
1PIN MARK
1PIN MARK
Product Name
BA4560
BA4560R
Package Type
F
SOP8
FJ
SOP-J8
FV
SSOP-B8
FVT
TSSOP-B8
FVM
MSOP8
FJ
SOP-J8
F
SOP8
FJ
SOP-J8
FV
SSOP-B8
Marking
4560
4560R
FVT
TSSOP-B8
FVM
MSOP8
FJ
SOP-J8
BA4564R
FV
SSOP-B14
4564R
BA4564W
FV
SSOP-B14
4564W
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
47/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
BA4560xxx
BA4560Rxxx
BA4564RFV
BA4564WFV
Datasheet
Revision History
Date
Revision
10/May/2012
07/Sep/2012
19/Nov/2014
001
002
003
Changes
New Release
Added Line-up
Page.3 Absolute Maximum Ratings : Added Input Current
www.rohm.com
© 2012 ROHM Co., Ltd. All rights reserved.
TSZ22111・15・00
48/48
TSZ02201-0RAR1G200020-1-2
19.Nov.2014 Rev.003
Notice
Precaution on using ROHM Products
1.
Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment,
OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you
(Note 1)
intend to use our Products in devices requiring extremely high reliability (such as medical equipment
, transport
equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car
accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or
serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance.
Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any
damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific
Applications.
(Note1) Medical Equipment Classification of the Specific Applications
JAPAN
USA
EU
CHINA
CLASSⅢ
CLASSⅡb
CLASSⅢ
CLASSⅢ
CLASSⅣ
CLASSⅢ
2.
ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor
products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate
safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which
a failure or malfunction of our Products may cause. The following are examples of safety measures:
[a] Installation of protection circuits or other protective devices to improve system safety
[b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
3.
Our Products are designed and manufactured for use under standard conditions and not under any special or
extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way
responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any
special or extraordinary environments or conditions. If you intend to use our Products under any special or
extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of
product performance, reliability, etc, prior to use, must be necessary:
[a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
[b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
[c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2,
H2S, NH3, SO2, and NO2
[d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
[e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
[f] Sealing or coating our Products with resin or other coating materials
[g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of
flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning
residue after soldering
[h] Use of the Products in places subject to dew condensation
4.
The Products are not subject to radiation-proof design.
5.
Please verify and confirm characteristics of the final or mounted products in using the Products.
6.
In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied,
confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power
exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect
product performance and reliability.
7.
De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual
ambient temperature.
8.
Confirm that operation temperature is within the specified range described in the product specification.
9.
ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in
this document.
Precaution for Mounting / Circuit board design
1.
When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product
performance and reliability.
2.
In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must
be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products,
please consult with the ROHM representative in advance.
For details, please refer to ROHM Mounting specification
Notice-GE
© 2013 ROHM Co., Ltd. All rights reserved.
Rev.003
Precautions Regarding Application Examples and External Circuits
1.
If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the
characteristics of the Products and external components, including transient characteristics, as well as static
characteristics.
2.
You agree that application notes, reference designs, and associated data and information contained in this document
are presented only as guidance for Products use. Therefore, in case you use such information, you are solely
responsible for it and you must exercise your own independent verification and judgment in the use of such information
contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses
incurred by you or third parties arising from the use of such information.
Precaution for Electrostatic
This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper
caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be
applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron,
isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).
Precaution for Storage / Transportation
1.
Product performance and soldered connections may deteriorate if the Products are stored in the places where:
[a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
[b] the temperature or humidity exceeds those recommended by ROHM
[c] the Products are exposed to direct sunshine or condensation
[d] the Products are exposed to high Electrostatic
2.
Even under ROHM recommended storage condition, solderability of products out of recommended storage time period
may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is
exceeding the recommended storage time period.
3.
Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads
may occur due to excessive stress applied when dropping of a carton.
4.
Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of
which storage time is exceeding the recommended storage time period.
Precaution for Product Label
QR code printed on ROHM Products label is for ROHM’s internal use only.
Precaution for Disposition
When disposing Products please dispose them properly using an authorized industry waste company.
Precaution for Foreign Exchange and Foreign Trade act
Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act,
please consult with ROHM representative in case of export.
Precaution Regarding Intellectual Property Rights
1.
All information and data including but not limited to application example contained in this document is for reference
only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any
other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable
for infringement of any intellectual property rights or other damages arising from use of such information or data.:
2.
No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any
third parties with respect to the information contained in this document.
Other Precaution
1.
This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
2.
The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written
consent of ROHM.
3.
In no event shall you use in any way whatsoever the Products and the related technical information contained in the
Products or this document for any military purposes, including but not limited to, the development of mass-destruction
weapons.
4.
The proper names of companies or products described in this document are trademarks or registered trademarks of
ROHM, its affiliated companies or third parties.
Notice-GE
© 2013 ROHM Co., Ltd. All rights reserved.
Rev.003
Datasheet
General Precaution
1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents.
ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny
ROHM’s Products against warning, caution or note contained in this document.
2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior
notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s
representative.
3.
The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all
information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or
liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or
concerning such information.
Notice – WE
© 2014 ROHM Co., Ltd. All rights reserved.
Rev.001
Datasheet
BA4560F - Web Page
Buy
Distribution Inventory
Part Number
Package
Unit Quantity
Minimum Package Quantity
Packing Type
Constitution Materials List
RoHS
BA4560F
SOP8
2500
2500
Taping
inquiry
Yes
Similar pages