Microsemi APT15GT120SRG Thunderbolt igbt Datasheet

APT15GT120BR APT15GT120BR_SR(G)
APT15GT120SR
APT15GT120BR(G) APT15GT120SR(G)
1200V
TYPICAL PERFORMANCE CURVES
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
(B)
TO
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 50KHz
• Low Tail Current
• Ultra Low Leakage Current
-2
D3PAK
47
(S)
C
G
G
C
E
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GT120BR_SR(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
36
I C2
Continuous Collector Current @ TC = 110°C
18
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
@ TC = 150°C
UNIT
Volts
Amps
45
Switching Safe Operating Area @ TJ = 150°C
45A @ 960V
Total Power Dissipation
Watts
250
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 1mA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
(VCE = VGE, I C = 0.6mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
4.5
5.5
6.5
2.5
3.0
3.6
Units
Volts
3.8
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
I GES
MAX
1200
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
I CES
TYP
100
2
Gate-Emitter Leakage Current (VGE = ±20V)
TBD
480
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
µA
nA
7-2009
V(BR)CES
MIN
Rev D
Characteristic / Test Conditions
052-6266
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT15GT120BR_SR(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
Eon1
VGE = 0V, VCE = 25V
100
f = 1 MHz
65
Gate Charge
10
VGE = 15V
105
VCE = 600V
10
I C = 15A
60
TJ = 150°C, R G = 5Ω, VGE =
15V, L = 100µH,VCE = 960V
11
Turn-off Delay Time
VGE = 15V
85
I C = 15A
35
RG = 5Ω
585
Turn-on Switching Energy
4
TJ = +25°C
5
Turn-on Delay Time
10
Current Rise Time
VCC = 800V
11
Turn-off Delay Time
VGE = 15V
95
I C = 15A
42
RG = 5Ω
590
Current Fall Time
Turn-on Switching Energy
44
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
V
nC
ns
µJ
260
Inductive Switching (125°C)
Eon2
pF
800
6
UNIT
A
Current Rise Time
Current Fall Time
MAX
45
10
Turn-off Switching Energy
tf
1250
VCC = 800V
Eoff
td(off)
Capacitance
Inductive Switching (25°C)
Turn-on Switching Energy (Diode)
tr
TYP
Turn-on Delay Time
Eon2
td(on)
MIN
55
TJ = +125°C
ns
µJ
1440
6
340
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.50
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
052-6266
Rev D
7-2009
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
Microsemi Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT15GT120BR_SR(G)
60
45
V
GE
15V
= 15V
14V
IC, COLLECTOR CURRENT (A)
35
TJ = -55°C
30
25
TJ = 25°C
20
15
TJ = 125°C
10
50
13V
40
12V
30
11V
20
10V
9V
10
5
8V
0
0
0
1
2
3
4
5
6
7
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
35
30
25
20
TJ = -55°C
15
TJ = 25°C
10
TJ = 125°C
5
0
0
J
VCE = 240V
12
VCE = 600V
10
VCE = 960V
8
6
4
2
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 15A
C
T = 25°C
14
0
20
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC = 30A
4
IC = 15A
3
IC = 7.5A
2
1
0
9
10
11
12
13
14
15
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.00
0.95
0.90
0.85
0.80
0.75
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
6
5
IC = 30A
4
IC = 15A
IC = 7.5A
3
2
1
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
45
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.10
1.05
120
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
40
60
80
100
GATE CHARGE (nC)
40
35
30
25
20
15
10
5
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
7-2009
IC, COLLECTOR CURRENT (A)
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
40
FIGURE 2, Output Characteristics (TJ = 125°C)
16
Rev D
45
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
052-6266
IC, COLLECTOR CURRENT (A)
40
APT15GT120BR_SR(G)
120
12
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
14
VGE = 15V
10
8
6
4
VCE = 600V
2 TJ = 25°C, TJ =125°C
0
RG = 5Ω
L = 100 µH
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
tf, FALL TIME (ns)
tr, RISE TIME (ns)
25
20
15
L = 100 µH
5
RG = 5Ω, L = 100µH, VCE = 800V
30
20
15
10
TJ = 25 or 125°C,VGE = 15V
5
0
0
EOFF, TURN OFF ENERGY LOSS (µJ)
G
3000
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1000
V
= 800V
CE
V
= +15V
GE
R = 5Ω
3500
TJ = 125°C, VGE = 15V
TJ = 25°C, VGE = 15V
25
5
4000
EON2, TURN ON ENERGY LOSS (µJ)
20 VCE = 800V
RG = 5Ω
35
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
TJ = 125°C
2500
2000
1500
1000
500
TJ = 25°C
0
V
= 800V
CE
V
= +15V
GE
R = 5Ω
G
800
TJ = 125°C
600
400
200
TJ = 25°C
0
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
5
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
8000
4000
V
= 800V
CE
V
= +15V
GE
T = 125°C
7000
Eon2,30A
J
6000
5000
4000
3000
2000
Eoff,15A
1000
0
Eoff,30A
Eon2,15A
Eon2,7.5A
0
Eoff,7.5A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
40
40
10
7-2009
VGE =15V,TJ=25°C
60
45
RG = 5Ω, L = 100µH, VCE = 800V
30
Rev D
VGE =15V,TJ=125°C
10
15
20
25
30
35
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
35
052-6266
80
0
5
40
100
V
= 800V
CE
V
= +15V
GE
R = 5Ω
3500
G
Eon2,30A
3000
2500
2000
1500
Eon2,15A
Eoff,30A
1000
Eon2,7.5A
500
0
Eoff,7.5A
0
Eoff,15A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT15GT120BR_SR(G)
2,000
Cies
1,000
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
50
Coes
100
50
Cres
45
40
35
30
25
20
15
10
5
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.50
D = 0.9
0.40
0.7
0.5
Note:
0.3
PDM
0.30
0.20
t1
t2
0.10
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.05
0
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
400
100
50
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 5Ω
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
5
10
15
20
25
30
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Rev D
7-2009
0
052-6266
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
APT15GT120BR_SR(G)
Gate Voltage
APT15DQ120
10%
TJ = 125°C
td(on)
tr
V CE
IC
V CC
Collector Current
90%
10%
5%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
TJ = 125°C
td(off)
tf
Collector Voltage
90%
10% 0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
D PAK Package Outline
e1 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
e3 SAC: Tin, Silver, Copper
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
Emitter
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
052-6266
Rev D
7-2009
13.41 (.528)
13.51(.532)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages