LT1013/LT1014 Quad Precision Op Amp (LT1014) Dual Precision Op Amp (LT1013) DESCRIPTIO U FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ Single Supply Operation Input Voltage Range Extends to Ground Output Swings to Ground while Sinking Current Pin Compatible to 1458 and 324 with Precision Specs Guaranteed Offset Voltage: 150μV Max Guaranteed Low Drift: 2μV/°C Max Guaranteed Offset Current: 0.8nA Max Guaranteed High Gain 5mA Load Current: 1.5 Million Min 17mA Load Current: 0.8 Million Min Guaranteed Low Supply Current: 500μA Max Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p Low Current Noise—Better than 0P-07, 0.07pA/√Hz U APPLICATIO S ■ ■ ■ ■ ■ The LT ®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers. The LT1014’s low offset voltage of 50μV, drift of 0.3μV/°C, offset current of 0.15nA, gain of 8 million, common mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configuration. Although supply current is only 350μA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain. Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/ 1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s. Battery-Powered Precision Instrumentation Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers 4mA–20mA Current Loop Transmitters Multiple Limit Threshold Detection Active Filters Multiple Gain Blocks Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifications is provided with ±15V and single 5V supplies. , LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. U TYPICAL APPLICATIO LT1014 Distribution of Offset Voltage 3 Channel Thermocouple Thermometer 1M 4k 700 3k 299k +5V +5V 14 + 12 – 13 YSI 44007 5kΩ AT 25°C 1684Ω 2 – 3 + 4 LT1014 1 OUTPUT A 10mV/°C 11 LT1014 260Ω 1.8k 1M NUMBER OF UNITS LT1004 1.2V VS = ±15V TA = 25°C 425 LT1014s (1700 OP AMPS) 500 TESTED FROM THREE RUNS 400 J PACKAGE 600 300 200 100 4k USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C 60°C. USE 4TH AMPLIFIER FOR OUTPUT C. 6 – LT1014 5 + 7 OUTPUT B 10mV/°C 0 100 –300 –200 –100 0 200 INPUT OFFSET VOLTAGE (μV) 300 1013/14 TA02 10134fc 1 LT1013/LT1014 W W U W ABSOLUTE AXI U RATI GS (Note 1) Supply Voltage ...................................................... ±22V Differential Input Voltage ....................................... ±30V Input Voltage ............... Equal to Positive Supply Voltage ............5V Below Negative Supply Voltage Output Short-Circuit Duration .......................... Indefinite Storage Temperature Range All Grades ......................................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec.)................. 300°C Operating Temperature Range LT1013AM/LT1013M/ LT1014AM/LT1014M ...................... – 55 °C to 125°C LT1013AC/LT1013C/LT1013D LT1014AC/LT1014C/LT1014D ................. 0°C to 70°C LT1013I/ LT1014I ............................... – 40°C to 85°C U W U PACKAGE/ORDER I FOR ATIO TOP VIEW –INA LT1013DS8 LT1013IS8 2 7 OUTA +INB 3 + 6 V+ –INB 4 – 5 OUTB TOP VIEW – B + V– 4 8 V+ 7 OUTPUT B 6 –IN B 5 +IN B N8 PACKAGE 8-LEAD PDIP TJMAX = 150°C, θJA = 130°C/W J8 PACKAGE 8-LEAD CERDIP TJMAX = 150°C, θJA = 100°C/W ORDER PART NUMBER LT1014DSW LT1014ISW 13 V – +IN B 5 12 +IN C –IN B 6 11 –IN C 10 OUTPUT C NC 8 9 NC PART MARKING SW PACKAGE 16-LEAD PLASTIC SO LT1014DSW LT1014ISW TJMAX = 150°C, θJA = 130°C/W ORDER PART NUMBER +IN A 3 14 +IN D V+ 4 1013 1013I TJMAX = 150°C, θJA = 190°C/W – +A 15 –IN D +IN A 3 PART MARKING NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION –IN A 2 –IN A 2 OUTPUT B 7 S8 PACKAGE 8-LEAD PLASTIC SO OUTPUT A 1 16 OUTPUT D TOP VIEW OUTPUT A 1 –IN A 2 +IN A 3 LT1013ACN8 LT1013CN8 LT1013DN8 LT1013IN8 V+ 4 +IN B 5 –IN B 6 OUTPUT B 7 LT1013AMJ8 LT1013MJ8 LT1013ACJ8 LT1013CJ8 14 OUTPUT D – +A D + 8 + V– OUTPUT A 1 – – +INA 1 TOP VIEW ORDER PART NUMBER 13 –IN D LT1014ACN LT1014CN LT1014DN LT1014IN 12 +IN D 11 + B – ORDER PART NUMBER V– + 10 +IN C C – 9 –IN C 8 OUTPUT C LT1014AMJ LT1014MJ LT1014ACJ LT1014CJ N PACKAGE 14-LEAD PDIP TJMAX = 150°C, θJA = 100°C/W J PACKAGE 14-LEAD CERDIP TJMAX = 150°C, θJA = 100°C/W OBSOLETE PACKAGE OBSOLETE PACKAGE Consider the N or S8 Packages for Alternate Source Consider the N or SW Packages for Alternate Source TOP VIEW ORDER PART NUMBER V+ 8 7 OUTPUT B OUTPUT A 1 OBSOLETE PACKAGE A B + – 6 –IN B –IN A 2 – + Consider the N or S8 (not N8) Packages for Alternate Source +IN A 3 5 +IN B 4 V –(CASE) H PACKAGE 8-LEAD TO-5 METAL CAN LT1013AMH LT1013MH LT1013ACH LT1013CH TJMAX = 150°C, θJA = 150°C/W, θJC = 45°C/W Consult LTC Marketing for parts specified with wider operating temperature ranges. 10134fc 2 LT1013/LT1014 ELECTRICAL CHARACTERISTICS TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted. CONDITIONS LT1013 LT1014 LT1013D/I, LT1014D/I MIN — — — LT1013C/D/I/M LT1014C/D/I/M TYP 60 60 200 MAX 300 300 800 UNITS μV μV μV — 0.5 — μV/Mo. SYMBOL VOS PARAMETER Input Offset Voltage — 0.4 — ISO Long Term Input Offset Voltage Stability Input Offset Current — 0.15 0.8 — 0.2 1.5 nA IB en Input Bias Current Input Noise Voltage 0.1Hz to 10Hz — — 12 0.55 20 — — — 15 0.55 30 — nA μVp-p en Input Noise Voltage Density in Input Noise Current Density fO = 10Hz fO = 1000Hz fO = 10Hz — — — 24 22 0.07 — — — — — — 24 22 0.07 — — — nV/√Hz nV/√Hz pA/√Hz 100 — 400 5 — — 70 — 300 4 — — MΩ GΩ VO = ±10V, RL = 2k VO = ±10V, RL = 600Ω 1.5 0.8 +13.5 – 15.0 8.0 2.5 +13.8 – 15.3 — — — — 1.2 0.5 +13.5 – 15.0 7.0 2.0 +13.8 – 15.3 — — — — V/μV V/μV V V Input Resistance – Differential (Note 2) Common Mode AVOL Large Signal Voltage Gain Input Voltage Range MIN — — — LT1013AM/AC LT1014AM/AC TYP MAX 40 150 50 180 — — CMRR PSRR Common Mode Rejection Ratio Power Supply Rejection Ratio VCM = + 13.5V, – 15.0V VS = ±2V to ±18V 100 103 117 120 — — 97 100 114 117 — — dB dB VOUT Channel Separation Output Voltage Swing VO = ±10V, RL = 2k RL = 2k 123 ±13 140 ±14 — — 120 ±12.5 137 ±14 — — dB V IS Slew Rate Supply Current Per Amplifier 0.2 — 0.4 0.35 — 0.50 0.2 — 0.4 0.35 — 0.55 V/μs mA LT1013C/D/I/M LT1014C/D/I/M MIN TYP MAX UNITS TA = 25°C. V S+ = + 5V, V S– = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted SYMBOL PARAMETER CONDITIONS VOS Input Offset Voltage LT1013 LT1014 LT1013D/I, LT1014D/I IOS Input Offset Current IB AVOL Input Bias Current Large Signal Voltage Gain VO = 5mV to 4V, RL = 500Ω Input Voltage Range VOUT Output Voltage Swing Output Low, No Load Output Low, 600Ω to Ground Output Low, ISINK = 1mA Output High, No Load Output High, 600Ω to Ground IS Supply Current Per Amplifier LT1013AM/AC LT1014AM/AC MIN TYP MAX — — — — 60 70 — 0.2 250 280 — 1.3 — — — — 90 90 250 0.3 450 450 950 2.0 μV μV μV nA — — 15 1.0 35 — — — 18 1.0 50 — nA V/μV + 3.5 0 — — — 4.0 3.4 + 3.8 – 0.3 15 5 220 4.4 4.0 — — 25 10 350 — — +3.5 0 — — — 4.0 3.4 + 3.8 – 0.3 15 5 220 4.4 4.0 — — 25 10 350 — — V V mV mV mV V V — 0.31 0.45 — 0.32 0.50 mA 10134fc 3 LT1013/LT1014 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the temperature range – 55°C ≤ TA ≤ 125°C. V S = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER VOS Input Offset Voltage IOS Input Offset Voltage Drift Input Offset Current CONDITIONS VS = + 5V, 0V; VO = + 1.4V – 55°C ≤ TA ≤ 100°C VCM = 0.1V, TA = 125°C VCM = 0V, TA = 125°C (Note 3) VS = + 5V, 0V; VO = +1.4V IB AVOL CMRR PSRR VOUT IS Input Bias Current Large Signal Voltage Gain Common Mode Rejection Power Supply Rejection Ratio Output Voltage Swing Supply Current Per Amplifier VS = + 5V, 0V; VO = +1.4V VO = ±10V, RL = 2k VCM = +13.0V, – 14.9V VS = ±2V to ±18V RL = 2k VS = +5V, 0V RL = 600Ω to Ground Output Low Output High VS = +5V, 0V; VO = +1.4V LT1013AM MIN TYP MAX ● — 80 300 ● ● — — — — — — — — 0.5 97 100 ● ±12 ±13.8 ● ● ● ● ● ● ● ● ● ● ● — 3.2 — — 80 120 250 0.4 0.3 0.6 15 20 2.0 114 117 6 3.8 0.38 0.34 MIN — LT1014AM TYP MAX 90 350 450 450 900 2.0 2.5 6.0 30 80 — — — — — — — — — — — 0.4 96 100 — ±12 ±13.8 15 — 0.60 0.55 — 3.2 — — 90 150 300 0.4 0.3 0.7 15 25 2.0 114 117 6 3.8 0.38 0.34 480 480 960 2.0 2.8 7.0 30 90 — — — — 15 — 0.60 0.55 LT1013M/LT1014M MIN TYP MAX UNITS — 110 550 μV — — — — — — — — 0.25 94 97 100 200 400 0.5 0.4 0.9 18 28 2.0 113 116 ±11.5 ±13.8 — 3.1 — — 6 3.8 0.38 0.34 750 μV 750 μV 1500 μV 2.5 μV/°C 5.0 nA 10.0 nA 45 nA 120 nA — V/μV — dB — dB — 18 — 0.7 0.65 V mV V mA mA 10134fc 4 LT1013/LT1014 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the temperature range –40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless otherwise noted. SYMBOL PARAMETER VOS Input Offset Voltage IOS Average Input Offset Voltage Drift Input Offset Current CONDITIONS LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V (Note 3) LT1013D/I, LT1014D/I AVOL CMRR PSRR VOUT IS LT1013C/D/I LT1014C/D/I MIN TYP MAX UNITS — 80 400 μV — 230 1000 μV — 110 570 μV ● ● — 0.3 — 0.2 0.4 13 18 5.0 116 — 2.0 — 1.5 3.5 25 55 — — — — — — — — — 1.0 98 — 0.3 — 0.2 0.4 13 20 5.0 116 — 2.0 — 1.7 4.0 25 60 — — — — — — — — — 0.7 94 280 0.4 0.7 0.3 0.5 16 24 4.0 113 VS = ±2V to ±18V ● 101 119 — 101 119 — 97 116 RL = 2k VS = +5V, 0V; RL = 600Ω Output Low Output High ● ±12.5 ±13.9 Input Bias Current Large Signal Voltage Gain Common Mode Rejection Ratio Power Supply Rejection Ratio Output Voltage Swing LT1014AC MIN TYP MAX — 65 270 — — — — 85 380 — — — — — — — 1.0 98 VS = +5V, 0V; VO = 1.4V IB LT1013AC MIN TYP MAX ● — 55 240 ● — — — ● — 75 350 VS = +5V, 0V; VO = 1.4V VO = ±10V, RL = 2k VCM = +13.0V, – 15.0V Supply Current per Amplifier VS = +5V, 0V; VO = 1.4V ● ● ● ● ● ● ● ● ● ● ● — 3.3 — — 6 3.9 0.36 0.32 — 13 — 0.55 0.50 ±12.5 ±13.9 — 3.3 — — 6 3.9 0.36 0.32 — 13 — 0.55 0.50 ±12.0 ±13.9 — 3.2 — — 6 3.9 0.37 0.34 1200 μV 2.5 μV/°C 5.0 μV/°C 2.8 nA 6.0 nA 38 nA 90 nA — V/μV — dB — dB — V 13 — 0.60 0.55 mV V mA mA Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime. Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification. Note 3: This parameter is not 100% tested. 10134fc 5 LT1013/LT1014 U W TYPICAL PERFOR A CE CHARACTERISTICS Offset Voltage Drift with Temperature of Representative Units Warm-Up Drift 10 INPUT OFFSET VOLTAGE (mV) 100 0 –100 5 VS = 5V, 0V, –55°C TO 125°C VS = ±15V, 0V, –55°C TO 125°C 1 VS = 5V, 0V, 25°C 0.1 RS VS = ±15V, 0V, 25°C RS –200 VS = ±15V TA = 25°C CHANGE IN OFFSET VOLTAGE (μV) VS = ±15V 200 INPUT OFFSET VOLTAGE (μV) Offset Voltage vs Balanced Source Resistance + 4 3 LT1013 METAL CAN (H) PACKAGE 2 LT1014 1 0.01 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 1k 5 0.1Hz to 10Hz Noise 120 100 80 VS = 5V, 0V VS = ±15V 60 40 20 0 10 100 1k 10k FREQUENCY (Hz) 100k TA = 25°C VS = ±2V TO ±18V 100 NEGATIVE SUPPLY 80 POSITIVE SUPPLY 60 40 VS = ±15V + 1VP-P SINE WAVE TA = 25°C 20 0 0.1 1M NOISE VOLTAGE (200nV/DIV) TA = 25°C POWER SUPPLY REJECTION RATIO (dB) 1 10 100 1k 10k FREQUENCY (Hz) 1013/14 TPC04 100k 1M 0 1000 TA = 25°C VS = ±2V TO ±18V 160 NUMBER OF UNITS VOLTAGE NOISE 30 140 120 100 80 60 40 20 1/f CORNER 2Hz 0 1 10 100 FREQUENCY (Hz) 1k 1013/14 TPC07 10 Supply Current vs Temperature VS = ±15V TA = 25°C 328 UNITS TESTED FROM THREE RUNS 180 CURRENT NOISE 8 460 200 100 6 4 TIME (SECONDS) 1013/14 TPC06 10Hz Voltage Noise Distribution Noise Spectrum 300 2 1013/14 TPC05 SUPPLY CURRENT PER AMPLIFIER (μA) COMMON MODE REJECTION RATIO (dB) 1 3 4 2 TIME AFTER POWER ON (MINUTES) 1013/14 TPC03 Power Supply Rejection Ratio vs Frequency 120 VOLTAGE NOISE DENSITY (nV/√Hz) CURRENT NOISE DENSITY (fA/√Hz) 0 1013/14 TPC02 Common Mode Rejection Ratio vs Frequency 10 0 3k 10k 30k 100k 300k 1M 3M 10M BALANCED SOURCE RESISTANCE (Ω) 1013/14 TPC01 LT1013 CERDIP (J) PACKAGE – 10 20 40 50 30 VOLTAGE NOISE DENSITY (nV/√Hz) 60 1013/14 TPC08 420 380 VS = ±15V 340 VS = 5V, 0V 300 260 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 1013/14 TPC09 10134fc 6 LT1013/LT1014 U W Input Bias Current vs Common Mode Voltage 4 10 3 5 VS = ±15V 2 0 VS = 5V, 0V 1 –5 0 –10 –1 0 –5 –25 –10 –15 –20 INPUT BIAS CURRENT (nA) –15 –30 1.0 –30 VCM = 0V VCM = 0V –25 0.8 0.6 0.4 VS = 5V, 0V =± V 2.5 0 –50 –25 50 25 0 75 TEMPERATURE (°C) –20 VS = 5V, 0V –15 .5V VS = ± 2 VS = ±15V –10 –5 VS = ±15V 100 125 0 –50 –25 50 25 75 0 TEMPERATURE (°C) 1013/14 TPC11 Output Saturation vs Sink Current vs Temperature 100 125 1013/14 TPC12 Large Signal Transient Response, VS = ±15V Small Signal Transient Response, VS = ±15V V + = 5V TO 30V V – = 0V ISINK = 10mA 1 ISINK = 5mA 5V/DIV 20mV/DIV SATURATION VOLTAGE (V) VS 0.2 1013/14 TPC10 10 Input Bias Current vs Temperature INPUT BIAS CURRENT (nA) 15 TA = 25°C INPUT OFFSET CURRENT (nA) 5 Input Offset Current vs Temperature COMMON MODE INPUT VOLTAGE, VS = ±15V (V) COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V) TYPICAL PERFOR A CE CHARACTERISTICS ISINK = 1mA 0.1 ISINK = 100μA ISINK = 10μA AV = +1 2μs/DIV AV = +1 1013/14 TPC14 50μs/DIV 1013/14 TPC15 ISINK = 0 0.01 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125 1013/14 TPC13 Large Signal Transient Response, VS = 5V, 0V Small Signal Transient Response, VS = 5V, 0V Large Signal Transient Response, VS = 5V, 0V 4V 4V 100mV 2V 2V 0V 50mV 0V 0 AV = +1 20μs/DIV RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE 1013/14 TPC16 AV = +1 10μs/DIV RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE 1013/14 TPC17 AV = +1 10μs/DIV NO LOAD INPUT = 0V TO 4V PULSE 1013/14 TPC18 10134fc 7 LT1013/LT1014 U W TYPICAL PERFOR A CE CHARACTERISTICS Output Short-Circuit Current vs Time 40 125°C TA = 125°C, VS = ±15V 10 0 125°C –10 –20 25°C –30 –55°C TA = –55°C, VS = 5V, 0V TA = 25°C, VS = 5V, 0V 1M TA = 125°C, VS = 5V, 0V 100 80 1 2 0 3 TIME FROM OUTPUT SHORT TO GROUND (MINUTES) 100k 100 1k LOAD RESISTANCE TO GROUND (Ω) 40 0 140 160 5V, 0V 180 5V, 0V 200 CHANNEL SEPARATION (dB) 120 ±15V 0 VS = ±15V TA = 25°C VIN = 20Vp-p to 5kHz RL = 2k 140 LIMITED BY THERMAL INTERACTION 120 0.3 1 3 FREQUENCY (MHz) RS = 100Ω RS = 1kΩ 100 LIMITED BY PIN TO PIN CAPACITANCE 80 –10 0.1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 1013/14 TPC21 160 PHASE SHIFT (DEGREES) VOLTAGE GAIN (dB) 80 TA = 25°C VCM = 0V 100 CL = 100pF ±15V GAIN 1 Channel Separation vs Frequency Gain, Phase vs Frequency 10 –20 0.01 0.1 10k 1013/14 TPC20 1013/14 TPC19 PHASE VS = ±15V 20 VO = ±10V WITH VS = ±15V –40 VS = 5V, 0V 60 VO = 20mV TO 3.5V WITH VS = 5V, 0V 20 TA = 25°C CL = 100pF 120 VOLTAGE GAIN (dB) 20 Voltage Gain vs Frequency 140 TA = 25°C, VS = ±15V TA = –55°C, VS = ±15V VOLTAGE GAIN (V/V) SHORT-CIRCUIT CURRENT (mA) SINKING SOURCING 25°C 10M VS = ±15V –55°C 30 Voltage Gain vs Load Resistance 60 10 10 1013/14 TPC22 100 10k 1k FREQUENCY (Hz) 100k 1M 1013/14 TPC23 U W U U APPLICATIO S I FOR ATIO Single Supply Operation The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems. At the input, the driving signal can fall below 0V— inadvertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct prob- lems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420: a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/ LT1014, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground. 10134fc 8 LT1013/LT1014 U W U U APPLICATIO S I FOR ATIO b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/ LT1014’s outputs do not reverse, as illustrated below, even when the inputs are at –1.5V. There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output. Phase reversal protection does not work on amplifier: A when D’s output is in negative saturation. B’s and C’s outputs have no effect. B when C’s output is in negative saturation. A’s and D’s outputs have no effect. C when B’s output is in negative saturation. A’s and D’s outputs have no effect. D when A’s output is negative saturation. B’s and C’s outputs have no effect. At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated. In dual supply operations, the output stage is crossover distortion-free. Comparator Applications The single supply operation of the LT1013/LT1014 lends itself to its use as a precision comparator with TTL compatible output: In systems using both op amps and comparators, the LT1013/LT1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators. Voltage Follower with Input Exceeding the Negative Common Mode Range 4V 2V 4V 4V 2V 2V 0V 0V 0V 6Vp-p INPUT, – 1.5V TO 4.5V LM324, LM358, OP-20 EXHIBIT OUTPUT PHASE REVERSAL LT1013/LT1014 NO PHASE REVERSAL Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives OUTPUT (V) OUTPUT (V) Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives 4 2 INPUT (mV) INPUT (mV) 2 4 0 0 – 100 0 100 0 VS = 5V, 0V 50μs/DIV VS = 5V, 0V 50μs/DIV 10134fc 9 LT1013/LT1014 U U W U APPLICATIO S I FOR ATIO Test Circuit for Offset Voltage and Offset Drift with Temperature Low Supply Operation The minimum supply voltage for proper operation of the LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290μA, therefore power dissipation is only one milliwatt per amplifier. 50k* +15V – 100Ω* Noise Testing LT1013 OR LT1014 50k* For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet. VO + –15V *RESISTOR MUST HAVE LOW THERMOELECTRIC POTENTIAL. **THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION, WITH SUPPLY VOLTAGES INCREASED TO ±20V. VO = 1000VOS LT1013/14 F06 U TYPICAL APPLICATIO S 5V Single Supply Dual Instrumentation Amplifier 50MHz Thermal rms to DC Converter 100k* +5V +5V 30k* 2 – 3 + 30k* +INPUT LT1014 10k 1μF 1/2 LTC1043 0.01 1 10k* 6 5 5 10k* – 5 + 300Ω* 100k* 10k* 2 +5V 4 7 4 7 OUTPUT A – R2 1μF 1μF LT1014 8 1/2 LT1013 6 6 + 3 R1 11 10k* –INPUT 18 +INPUT 7 15 0.01 0.01 T1A GRN – 12 + LT1014 10k INPUT 300mV– 10VRMS BRN 13 14 1/2 LTC1043 3 8 2 10 RED T1B RED T2B GRN BRN + 1/2 LT1013 1μF 20k FULLSCALE TRIM 10k 11 + 8 1μF 0V–4V OUTPUT 10k* 10k* –INPUT 13 14 16 2% ACCURACY, DC–50MHz. 100:1 CREST FACTOR CAPABILITY. * 0.1% RESISTOR. T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018. ENCLOSE T1 AND T2 IN STYROFOAM. 7.5mW DISSIPATION. 1μF 12 – T2A OUTPUT B – R2 LT1014 9 1 0.01 R1 OFFSET = 150μV GAIN = R2 + 1. R1 CMRR = 120dB. COMMON-MODE RANGE IS 0V TO 5V. 1013/14 TA04 1013/14 TA03 10134fc 10 LT1013/LT1014 U TYPICAL APPLICATIO S Hot Wire Anemometer +15V 500pF Q1 2N6533 Q2–Q5 CA3046 PIN 3 TO –15V Q2 2k Q5 Q3 220 150k* 0.01μF 10k* 27Ω 1W 33k – 2 #328 6 A2 LT1014 Q4 2k 7 150k* + 12k 1 1k ZERO FLOW + 2k* 500k –15V – 12 + A4 LT1014 10M RESPONSE TIME ADJUST 2M FULLSCALE FLOW 3.3k 11 13 1μF +15V 4 A1 LT1014 3 5 1000pF – 14 0V–10V = 0–1000 FEET/MINUTE 100k –15V REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE. * 1% RESISTOR. 9 – 10 + 1μF A3 LT1014 8 1013/14 TA05 Liquid Flowmeter 3.2k** 1M* +15V 15Ω DALE HL-25 3.2k* 1M* 2 1M* 6.25k** 3 10M RESPONSE TIME – 1 A1 LT1014 + 6 – 5 +LT1014 A2 100k 7 6.98k* 5k FLOW CALIB 6.25k** 1μF 1M* 1k* T1 T2 +15V 4.7k 1N4148 100k 2N4391 300pF 0.1 LT1004 –1.2 383k* 9 2.7k 10 – 8 A3 LT1014 100k 12 + 100k –15V 13 + OUTPUT 0Hz 300Hz = 0 300ML/MIN +15V 4 14 A4 LT1014 – 11 –15V T1 FLOW 15Ω HEATER RESISTOR T2 FLOW PIPE * 1% FILM RESISTOR. ** SUPPLIED WITH YSI THERMISTOR NETWORK. T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED 1013/14 TA06 FREQUENCY OUTPUT. 10134fc 11 LT1013/LT1014 U TYPICAL APPLICATIO S 5V Powered Precision Instrumentation Amplifier – 8 9 LT1014 + TO INPUT CABLE SHIELDS 10 200k* 2 +5V –INPUT 3 10k* 10k* 1 LT1014 † 20k – + +5V 10k † 13 – 12 + 4 RG (TYP 2k) 14 LT1014 1μF 200k* † 6 20k 5 10k* 7 LT1014 +INPUT 11 10k – OUTPUT 10k* + † * 1% FILM RESISTOR. MATCH 10k's 0.05% 400,000 GAIN EQUATION: A = + 1. RG † FOR HIGH SOURCE IMPEDANCES, USE 2N2222 AS DIODES. +5V 1013/14 TA07 9V Battery Powered Strain Gauge Signal Conditioner 15k +9V +9V 2 – 0.068 3 + 1N4148 4 LT1014 11 22M 47μF 4.7k 1 330Ω 2N2219 100k 0.01 TO A/D RATIO REFERENCE 100k 100k 100k +9V +9V 1 15k 15 350Ω STRAIN GAUGE BRIDGE 13 6 5 – + LT1014 7 499 0.068 14 – 12 + LT1014 14 TO A/D 499 7 74C221 3k 13 9 – 0.068 6 9 10 + 100k LT1014 8 5 TO A/D CONVERT COMMAND SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650μA. 4.7k–0.01μF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO 1013/14 TA08 HIGH ΔV/ΔT STEPS. 10134fc 12 LT1013/LT1014 U TYPICAL APPLICATIO S 5V Powered Motor Speed Controller No Tachometer Required +5V 100k 2 3 47 1k 82Ω – A1 1/2 LT1013 0.47 330k + 2k 1 Q3 2N5023 Q1 2N3904 + 1N4001 1M 2k 6.8M 0.068 1/4 CD4016 5V 8 – 7 1N4001 1N4148 3.3M 6 0.068 1N4148 A2 1/2 LT1013 0.47 2k 5 MOTOR = CANON–FN30–R13N1B. A1 DUTY CYCLE MODULATES MOTOR. A2 SAMPLES MOTORS BACK EMF. Q2 + 4 EIN 0V–3V 1013/14 TA09 5V Powered EEPROM Pulse Generator +5V DALE #TC-10-04 1N4148 1N4148 1N4148 2N2222 10Ω +5V 0.05 0.1 2N2222 2N2222 4.7k 20k 0.33 1N4148 820 270Ω 100k 100Ω 820 2 1N4148 TTL INPUT MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED. SUITABLE FOR BATTERY POWERED USE (600μA QUIESCENT CURRENT). *1% METAL FILM. 4.7M – LT1013 3 + 1 1N4148 6 – 8 LT1013 0.005 5 7 1k 2N2222 + 4 120k OUTPUT 100K* LT1004 1.2V 21V 600μs RC 6.19K 1013/14 TA10 10134fc 13 LT1013/LT1014 U TYPICAL APPLICATIO S Methane Concentration Detector with Linearized Output +5V 1 * 1% METAL FILM RESISTOR SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813 14 LT1004 1.2V –5V 0.033 390k* 2.7k 9 10 1N4148 (4) CD4016 – A3 LT1014 + 100k* 8 13 11 12 5 8 LTC1044 – 74C04 A4 LT1014 14 + 74C04 +5V –5V 4 2 10μF 3 470pF + + 10μF 470pF 10k +5V 1 74C04 14 SENSOR CA3046 Q2 2 5k 1000ppm TRIM 3 1N4148 OUTPUT 500ppm-10,000ppm 50Hz 1kHz Q3 1000pF +5V 4 – –5V Q4 Q1 2k A1 LT1014 1 100k* 6 – A2 LT1014 + 5 7 2k 150k* + 12k* 1013/14 TA11 Low Power 9V to 5V Converter +9V INPUT L 2N2905 + 1N4148 10k 5V 20mA 2N5434 47 390k 1% HP5082-2811 VD = 200mV – +9V 10k 100μA 1 LT1013 8 + + 7 5 330k LT1013 – 4 2 3 120k 1% +9V 6 47k L = DALE TE-3/Q3/TA. SHORT CIRCUIT CURRENT = 30mA. ≈ 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV. LT1004 1.2V 1013/14 TA12 10134fc 14 LT1013/LT1014 U TYPICAL APPLICATIO S 5V Powered 4mA–20mA Current Loop Transmitter† +5V Q3 2N2905 820Ω 74C04 (6) 10μF T1 Q1 2N2905 68Ω 1N4002 (4) 10μF + + 0.002 Q2 2N2905 820Ω 10k 10k 0.33 100k +5V 8 A1 1/2 LT1013 1 + 100pF 4k* 3 4 10k* 20mA TRIM 10k* 1k 4mA TRIM 4.3k +5V 7 A2 1/2 LT1013 + † 12-BIT ACCURACY. * 1% FILM. T1 = PICO-31080. 100Ω* 80k* – – 2k Q4 2N2222 10k* 2 LT1004 1.2V 6 4mA-20mA OUT TO LOAD 2.2kΩ MAXIMUM 5 INPUT 0 TO 4V 1013/14 TA13 Fully Floating Modification to 4mA-20mA Current Loop† T1 0.1Ω +5V A1 1/2 LT1013 + 7 100k A2 1/2 LT1013 1 68k* 5 + – TO INVERTER DRIVE 6 – 8 + 3 1N4002 (4) 10μF 2 4mA-20mA OUT FULLY FLOATING 4 4k* 10k* 301Ω* 1k 20mA TRIM 4.3k † 8-BIT ACCURACY. +5V LT1004 1.2V 2k 4mA TRIM INPUT 0V–4V 1013/14 TA14 10134fc 15 LT1013/LT1014 U TYPICAL APPLICATIO S 5V Powered, Linearized Platinum RTD Signal Conditioner 2M 9 499Ω 167Ω Q1 200k 2 – A2 1/4 LT1014 Q2 200k 3 2N4250 (2) + 1 A4 1/4 LT1014 150Ω 10 5k LINEARITY 8 + OUTPUT 0V–4V = 0°C–400°C ±0.05°C GAIN TRIM 1k 2M 3.01k SENSOR – 1.5k – ROSEMOUNT 118MF 7 A3 1/4 LT1014 6 8.25k 50k ZERO TRIM 5 2.4k 5% + 274k +5V 4 – A1 1/4 LT1014 + 14 +5V 11 13 LT1009 2.5V 10k 12 250k ALL RESISTORS ARE TRW-MAR-6 METAL FILM. RATIO MATCH 2M–200K ± 0.01%. TRIM SEQUENCE: SET SENSOR TO 0° VALUE. ADJUST ZERO FOR 0V OUT. SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT. SET SENSOR TO 400°C. ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED. 1013/14 TA15 Strain Gauge Bridge Signal Conditioner +5V 220 +5V 8 1 + 2 100μF 301k 39k 100k 3 4 E LTC1044 4 10k ZERO TRIM VREF 2 1/2 LT1013 8 + LT1004 1.2V – 0.1 1.2VOUT REFERENCE TO A/D CONVERTER FOR RATIOMETRIC OPERATION 1mA MAXIMUM LOAD D PRESSURE TRANSDUCER 350Ω V ≈ –VREF 5 + 7 A 0.33 1/2 LT1013 6 OUTPUT – 0V–3.5V 0psi–350psi 0.047 C 5 100μF 2k GAIN TRIM + * 1% FILM RESISTOR. PRESSURE TRANSDUCER–BLH/DHF–350. CIRCLED LETTER IS PIN NUMBER. 46k* 100Ω* 1013/14 TA16 10134fc 16 LT1013/LT1014 U TYPICAL APPLICATIO S LVDT Signal Conditioner 7 0.005 30k 0.005 30k 8 FREQUENCY = 1.5kHz +5V 5 + 7 LT1013 6 YEL-BLK 11 LVDT RDBLUE – BLUE –5V GRN 10k 4.7k YEL-RD 1N914 BLK 12 LT1004 1.2V 2N4338 100k 1.2k + 10μF 13 7.5k LT1013 2 1/2 LTC1043 1 – OUT 0V–3V 200k +5V 2 + 8 1k 7 LT1011 100k PHASE TRIM + 1μF 100k LVDT = SCHAEVITZ E-100. 3 14 0.01 3 – 10k TO PIN 16, LT1043 4 1 1013/14 TA17 Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation 3 –INPUT + 1/4 LT1014 2 – R1 R3 2R 10M RG 6 – 5 + 12 + 13 – 7 2R 10M – R2 10 + 8 1/4 LT1014 OUTPUT R3 ( V+ R 5M 9 R1 1/4 LT1014 +INPUT R2 1 ) GAIN = 1 + 2R1 R3 RG R2 4 1/4 LT1014 11 10pF 14 INPUT BIAS CURRENT TYPICALLY <1nA INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN NEGATIVE COMMON-MODE LIMIT = V – + IB × 2R + 30mV = 150mV for V – = 0V IB = 12nA 100k V– 1013/14 TA18 10134fc 17 LT1013/LT1014 U TYPICAL APPLICATIO S Low Dropout Regulator for 6V Battery +12 OUTPUT 1N914 100Ω 3 2 4 + + 8 LTC1044 10 5 10 VBATT 6V 2N2219 100k 5V OUTPUT 100Ω 0.01Ω 0.003μF 1.2k 6 5 1M 3 LT1004 1.2V 2 + 1 LT1013 – 4 – A2 LT1013 120k 8 7 1N914 + 30k 0.009V DROPOUT AT 5mA OUTPUT. 0.108V DROPOUT AT 100mA OUTPUT. IQUIESCENT = 850μA. 50k OUTPUT ADJUST 1013/14 TA19 Voltage Controlled Current Source with Ground Referred Input and Output +5V 0V–2V 3 + 8 1/2 LT1013 2 1 – 4 0.68μF 1k 1/2 LTC1043 7 8 11 1μF 1μF 100Ω 12 13 14 IOUT = 0mA TO 15mA VIN 100Ω FOR BIPOLAR OPERATION, RUN BOTH ICs FROM A BIPOLAR SUPPLY. IOUT = 1013/14 TA20 10134fc 18 LT1013/LT1014 U TYPICAL APPLICATIO S 6V to ±15V Regulating Converter +6V 1μF + +6V 15pF 10k 22k 10k 2N3906 Q1 D2 2N4391 74C00 Q2 L1 1MHY Q2 +16V 22k 1 2N3904 10 2 15pF 200k VOUT ADJ +6V 3 100k 4 10k 1.4M 0.005 LT1013 + 10k +15VOUT +16V 8 10 + CLK 1 74C74 D1 –16V CLK 2 + –16V LT1004 1.2V 82k 6 + 7 – 100kHz INPUT Q1 – +V 5 LT1013 L1 = 24-104 AIE VERNITRON 0.005 = 1N4148 1M 2N5114 ±5mA OUTPUT 75% EFFICIENCY –15VOUT 1013/14 TA21 Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)† +5V 3 8 + 1/2 LT1013 2 1 OSCILLATOR SUPPLY STABILIZATION 1M* – 4 5M* 3.4k* 4.3k +5V LT1009 2.5V RT1 3.2k 2.16k* 4.22M* TEMPERATURE COMPENSATION GENERATOR RT2 6.25k YSI 44201 RT 1M* 1M* 6 20k – 1/2 LT1013 5 +5V + 7 3.5MHz XTAL 100Ω 100k 100k 2N2222 OSCILLATOR MV-209 510pF 560k 4.22M* 510pF * 1% FILM 3.5MHz XTAL = AT CUT – 35°20' MOUNT RT NEAR XTAL 3mA POWER DRAIN † THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO MINIMIZE OVERALL OSCILLATOR DRIFT 3.5MHz OUTPUT 0.03ppm/°C, 0°C–70°C 680Ω 1013/14 TA22 10134fc 19 LT1013/LT1014 W W SCHE ATIC DIAGRA 1/2 LT1013, 1/4 LT1014 V+ 9k 9k 1.6k Q13 Q6 Q5 1.6k 1.6k Q16 100Ω 1k 800Ω Q14 Q36 Q15 Q32 Q30 Q35 Q3 J1 Q4 Q37 Q25 – Q1 Q33 21pF 3.9k Q27 Q26 2.4k 2.5pF 400Ω 18Ω Q38 IN + Q21 OUTPUT Q2 Q41 14k Q28 400Ω Q39 IN Q22 Q18 4pF Q12 Q29 Q10 Q31 2k Q11 Q9 75pF V– 10pF Q7 Q8 5k 5k Q40 Q19 Q34 100pF Q17 2k 42k 600Ω Q23 Q24 Q20 1.3k 2k 30Ω 1013/14 SD 10134fc 20 LT1013/LT1014 U PACKAGE DESCRIPTIO H Package 8-Lead TO-5 Metal Can (.200 Inch PCD) (Reference LTC DWG # 05-08-1320) 0.335 – 0.370 (8.509 – 9.398) DIA 0.305 – 0.335 (7.747 – 8.509) 0.027 – 0.045 (0.686 – 1.143) 45°TYP PIN 1 0.028 – 0.034 (0.711 – 0.864) 0.040 (1.016) MAX 0.050 (1.270) MAX SEATING PLANE 0.200 (5.080) TYP 0.165 – 0.185 (4.191 – 4.699) GAUGE PLANE 0.010 – 0.045* (0.254 – 1.143) REFERENCE PLANE 0.500 – 0.750 (12.700 – 19.050) 0.110 – 0.160 (2.794 – 4.064) INSULATING STANDOFF 0.016 – 0.021** (0.406 – 0.533) *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE 0.016 – 0.024 **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS (0.406 – 0.610) H8(TO-5) 0.200 PCD 1197 J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) CORNER LEADS OPTION (4 PLCS) 0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.045 – 0.068 (1.143 – 1.727) FULL LEAD OPTION 0.300 BSC (0.762 BSC) 0.015 – 0.060 (0.381 – 1.524) 0.008 – 0.018 (0.203 – 0.457) 0.405 (10.287) MAX 0.005 (0.127) MIN 0.200 (5.080) MAX 8 6 7 5 0.025 (0.635) RAD TYP 0.220 – 0.310 (5.588 – 7.874) 0° – 15° 1 NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS 0.045 – 0.065 (1.143 – 1.651) 0.014 – 0.026 (0.360 – 0.660) 0.100 (2.54) BSC 2 3 4 0.125 3.175 MIN J8 1298 J Package 14-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) 0.200 (5.080) MAX 0.300 BSC (0.762 BSC) 0.015 – 0.060 (0.381 – 1.524) 0.008 – 0.018 (0.203 – 0.457) 0.005 (0.127) MIN 0.785 (19.939) MAX 14 13 12 11 10 9 8 0.220 – 0.310 (5.588 – 7.874) 0.025 (0.635) RAD TYP 0° – 15° 1 0.045 – 0.065 (1.143 – 1.651) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS 0.014 – 0.026 (0.360 – 0.660) 0.100 (2.54) BSC 2 3 4 5 6 7 0.125 (3.175) MIN J14 1298 OBSOLETE PACKAGES 10134fc 21 LT1013/LT1014 U PACKAGE DESCRIPTIO N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .400* (10.160) MAX 8 7 6 5 1 2 3 4 .255 ± .015* (6.477 ± 0.381) .300 – .325 (7.620 – 8.255) .065 (1.651) TYP .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 8.255 +0.889 –0.381 .130 ± .005 (3.302 ± 0.127) .045 – .065 (1.143 – 1.651) ) .120 (3.048) .020 MIN (0.508) MIN .018 ± .003 .100 (2.54) BSC (0.457 ± 0.076) N8 1002 NOTE: 1. DIMENSIONS ARE INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .770* (19.558) MAX 14 13 12 11 10 9 8 1 2 3 4 5 6 7 .255 ± .015* (6.477 ± 0.381) .130 ± .005 (3.302 ± 0.127) .300 – .325 (7.620 – 8.255) .045 – .065 (1.143 – 1.651) .020 (0.508) MIN .065 (1.651) TYP .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 +0.889 8.255 –0.381 NOTE: 1. DIMENSIONS ARE ) .120 (3.048) MIN .005 (0.127) .100 MIN (2.54) BSC .018 ± .003 (0.457 ± 0.076) N14 1103 INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) 10134fc 22 LT1013/LT1014 U PACKAGE DESCRIPTIO S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .045 ±.005 .050 BSC .245 MIN .189 – .197 (4.801 – 5.004) NOTE 3 .160 ±.005 7 8 .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) 5 6 .030 ±.005 TYP 0°– 8° TYP RECOMMENDED SOLDER PAD LAYOUT .053 – .069 (1.346 – 1.752) .016 – .050 (0.406 – 1.270) .150 – .157 (3.810 – 3.988) NOTE 3 .228 – .244 (5.791 – 6.197) .004 – .010 (0.101 – 0.254) 1 NOTE: 1. DIMENSIONS IN 3 2 4 .050 (1.270) BSC .014 – .019 (0.355 – 0.483) TYP INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) SO8 0303 SW Package 16-Lead Plastic Small Outline (Wide .300 Inch) (Reference LTC DWG # 05-08-1620) .050 BSC .045 ±.005 .030 ±.005 TYP N .005 (0.127) RAD MIN .009 – .013 (0.229 – 0.330) .325 ±.005 .420 MIN .291 – .299 (7.391 – 7.595) NOTE 4 .010 – .029 × 45° (0.254 – 0.737) 0° – 8° TYP 2 3 15 14 13 12 11 10 9 N/2 RECOMMENDED SOLDER PAD LAYOUT .093 – .104 (2.362 – 2.642) .394 – .419 (10.007 – 10.643) NOTE 3 .037 – .045 (0.940 – 1.143) .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN 16 N 1 NOTE 3 .398 – .413 (10.109 – 10.490) NOTE 4 N/2 1 .050 (1.270) BSC 2 3 4 5 6 7 8 .004 – .012 (0.102 – 0.305) .014 – .019 INCHES (0.356 – 0.482) (MILLIMETERS) TYP 2. DRAWING NOT TO SCALE 3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS 4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) S16 (WIDE) 0502 10134fc Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 23 LT1013/LT1014 U TYPICAL APPLICATIO Step-Up Switching Regulator for 6V Battery INPUT +6V 22k 2N2222 OUTPUT +15V 50mA + 2.2 LT1004 1.2V L1 1MHY 200k 5 220pF 1N5821 1M 220k 0.001 3 + LT1013 2 1 2N5262 8 LT1013 130k 6 7 – 4 + 300Ω + 100 5.6k – 0.1 5.6k LT = AIE–VERNITRON 24–104 78% EFFICIENCY 1013/14 TA23 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LT2078/LT2079 Dual/Quad 50μA Single Supply Precision Amplifier 50μA Max IS, 70μV Max VOS LT2178/LT2179 Dual/Quad 17μA Single Supply Precision Amplifier 17μA Max IS, 70μV Max VOS 10134fc 24 Linear Technology Corporation LT 0807 REV C • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 1990