Minmax MIW3126 5-6w, wide input range dip, single & dual output dc/dc converter Datasheet

MIW3100 Series
5-6W, Wide Input Range DIP, Single & Dual Output DC/DC Converters
Key Features
y
y
y
y
y
y
y
y
y
y
y
Efficiency up to 86%
1500VDC Isolation
MTBF > 1,000,000 Hours
2:1 Wide Input Range
CSA1950 Safety Approval
Low Cost
Temperature Performance -40] to +71]
Short Circuit Protection
Industry Standard Pinout
UL 94V-0 Package Material
Internal SMD Construction
Minmax's MIW3100-Series Power modules are low-profile dc-dc
converters that operate over input voltage ranges of 9-18VDC and
High
Power
Density
18-36VDC which provide precisely regulated output voltages of 3.3V,
5V, 12V, {12V and {15VDC.
The -40] to +71] operating temperature range makes it ideal
More Power
for data communication equipments, mobile battery driven equipments,
distributed power systems, telecommunication equipments, mixed
analog/digital subsystems, process/machine control equipments,
computer peripheral systems and industrial robot systems.
1500
VDC
The modules have a maximum powerrating of 6W and a typical
full-load efficiency of 86%, continuous short circuit, 50mA output
ripple, built-in filtering for both input and output minimize design-in
I/O Isolation
time, cost and eliminate the need for external filtering.
$
2:1
Low Cost
Wide Range
Block Diagram
Single Output
+Vin
Dual Output
+Vo
LC
Filter
+Vin
+Vo
LC
Filter
Com.
-Vo
-Vin
1
PFM
Isolation
Ref.Amp
-Vo
-Vin
MINMAX
PFM
Isolation
Ref.Amp
REV:0 2005/04
MIW3100 Series
Model Selection Guide
Model
Number
Input
Voltage
Output
Voltage
Max.
Min.
@Max. Load
VDC
VDC
mA
mA
mA (Typ.)
3.3
1200
60
429
77
5
1000
50
514
81
12
500
25
595
MIW3126
{12
{250
{12.5
595
84
MIW3127
{15
{200
{10
595
84
MIW3131
3.3
1200
60
209
79
5
1000
50
251
83
12
500
25
291
MIW3136
{12
{250
{12.5
291
86
MIW3137
{15
{200
{10
291
86
MIW3121
MIW3122
MIW3123
12
( 9 ~ 18 )
MIW3132
MIW3133
24
( 18 ~ 36 )
Output Current
Input Current
@No Load
Reflected
Ripple
Current
@Max. Load
mA (Typ.)
mA(Typ.)
% (Typ.)
20
5
25
15
Efficiency
84
86
Notes :
Absolute Maximum Ratings
Parameter
12VDC Input Models
Input Surge Voltage
( 1000 mS )
24VDC Input Models
Lead Temperature (1.5mm from case for 10 Sec.)
Internal Power Dissipation
Min.
-0.7
-0.7
-----
Max.
25
50
260
2,500
Unit
VDC
VDC
]
mW
Exceeding the absolute maximum ratings of the unit could cause damage.
These are not continuous operating ratings.
1. Specifications typical at Ta=+25] resistive load,
nominal input voltage, rated output current unless
otherwise noted.
2. Transient recovery time is measured to within 1%
error band for a step change in output load of 75%
to 100%.
3. Ripple & Noise measurement bandwidth is 0-20
MHz.
4. These power converters require a minimum output
loading to maintain specified regulation.
5. Operation under no-load conditions will not
damage these modules; however, they may not
meet all specifications listed.
6. All DC/DC converters should be externally fused at
the front end for protection.
Environmental Specifications
7. Other input and output voltage may be available,
please contact factory.
Parameter
Operating Temperature
Operating Temperature
Storage Temperature
Humidity
Cooling
REV:0 2005/04
Conditions
Max.
Unit
-40
+71
-40
+90
-40
+125
--95
Free-Air Convection
]
]
]
%
Ambient
Case
Min.
MINMAX
8. Specifications subject to change without notice.
2
MIW3100 Series
Input Specifications
Parameter
Start Voltage
Under Voltage Shutdown
Model
Min.
Typ.
Max.
12V Input Models
4.5
6
8
24V Input Models
8
12
16
12V Input Models
---
---
8
24V Input Models
---
---
16
---
---
1
A
---
1000
3000
mW
Reverse Polarity Input Current
Short Circuit Input Power
Unit
All Models
Input Filter
VDC
Pi Filter
Output Specifications
Parameter
Conditions
Min.
Typ.
Max.
Unit
---
{ 0.5
{ 1.0
%
Dual Output, Balanced Loads
---
{ 0.5
{ 2.0
%
Line Regulation
Vin=Min. to Max.
---
{ 0.1
{ 0.3
%
Load Regulation
Io=20% to 100%
---
{ 0.3
{ 1.0
%
---
50
75
mV P-P
Over Line, Load & Temp.
---
---
100
mV P-P
Ripple & Noise (20MHz)
---
---
15
mV rms
Over Power Protection
120
---
---
%
---
150
300
uS
---
{2
{6
%
---
{ 0.01
{ 0.02
%/]
Output Voltage Accuracy
Output Voltage Balance
Ripple & Noise (20MHz)
Ripple & Noise (20MHz)
Transient Recovery Time
Transient Response Deviation
25% Load Step Change
Temperature Coefficient
Output Short Circuit
Continuous
General Specifications
Parameter
Conditions
Min.
Typ.
Max.
Unit
Isolation Voltage Rated
60 Seconds
1500
---
---
VDC
Flash Tested for 1 Second
1650
---
---
VDC
Isolation Resistance
500VDC
1000
---
---
M[
Isolation Capacitance
100KHz,1V
---
380
500
pF
---
300
---
KHz
1,000
---
---
K Hours
Isolation Voltage Test
Switching Frequency
MTBF
MIL-HDBK-217F @ 25 ] ,Ground Benign
Capacitive Load
Models by Vout
Maximum Capacitive Load
3.3V
5V
12V
{12V #
{15V #
Unit
6800
6800
6800
1000
1000
uF
# For each output
3
MINMAX
REV:0 2005/04
MIW3100 Series
Input Fuse Selection Guide
12V Input Models
24V Input Models
1500mA Slow - Blow Type
700mA Slow - Blow Type
Input Voltage Transient Rating
150
140
130
120
110
Vin ( VDC )
100
90
80
70
24VDC Input Models
60
50
40
12VDC Input Models
30
20
10
0
10uS
REV:0 2005/04
100uS
1mS
MINMAX
10mS
100mS
4
MIW3100 Series
90
90
Efficiency (%)
100
Efficiency (%)
100
80
70
70
60
60
50
80
50
Low
Nom
High
Low
Nom
Input Voltage (V)
Efficiency vs Input Voltage ( Single Output )
Efficiency vs Input Voltage ( Dual Output )
90
80
80
70
70
Efficiency (%)
90
Efficiency (%)
High
Input Voltage (V)
60
50
60
50
40
40
30
30
20
20
10
20
40
60
80
10
100
Load Current (%)
20
40
60
80
100
Load Current (%)
Efficiency vs Output Load ( Single Output )
Efficiency vs Output Load ( Dual Output )
100
100LFM
400LFM
Natural
convection
200LFM
Output Power (%)
80
60
40
20
0
〜
-40
50
60
70
80
Ambient Temperature
90
100
110
]
Derating Curve
5
MINMAX
REV:0 2005/04
MIW3100 Series
Test Configurations
Overcurrent Protection
Input Reflected-Ripple Current Test Setup
To provide protection in a fault (output overload) condition,
the unit is equipped with internal current limiting circuitry and
can endure current limiting for an unlimited duration. At the
point of current-limit inception, the unit shifts from voltage
control to current control. The unit operates normally once the
output current is brought back into its specified range.
Input reflected-ripple current is measured with a inductor
Lin (4.7uH) and Cin (220uF, ESR < 1.0[ at 100 KHz) to
simulate source impedance.
Capacitor Cin, offsets possible battery impedance.
Current ripple is measured at the input terminals of the
module, measurement bandwidth is 0-500 KHz.
To Oscilloscope
+
+
Battery
+Vin
Lin
Cin
-Vin
The power module should be connected to a low
ac-impedance input source. Highly inductive source
impedances can affect the stability of the power module.
In applications where power is supplied over long lines and
output loading is high, it may be necessary to use a capacitor
at the input to ensure startup.
+Out
DC / DC
Converter
Current
Probe
Load
-Out
Peak-to-Peak Output Noise Measurement Test
Use a Cout 0.47uF ceramic capacitor.
Scope measurement should be made by using a BNC
socket, measurement bandwidth is 0-20 MHz. Position the
load between 50 mm and 75 mm from the DC/DC Converter.
+Vin
+Out
Single Output
DC / DC
Converter
-Vin
+Vin
Capacitor mounted close to the power module helps
ensure stability of the unit, it is recommended to use a good
quality low Equivalent Series Resistance (ESR < 1.0[at 100
KHz) capacitor of a 3.3uF for the 12V input devices and a
2.2uF for the 24V devices.
+
DC Power
Source
Copper Strip
Cout
Input Source Impedance
Scope
+Vin
+
DC / DC
Converter
Load
Cin
-
Resistive
Load
+Out
-Vin
-Out
-Out
Output Ripple Reduction
+Out
A good quality low ESR capacitor placed as close as
practicable across the load will give the best ripple and noise
performance.
To reduce output ripple, it is recommended to use 3.3uF
capacitors at the output.
Dual Output
DC / DC
Converter
Com.
-Vin
-Out
Copper Strip
Cout
Scope
Cout
Scope
Resistive
Load
+
+Vin
DC Power
Source
Design & Feature Considerations
+Out
Single Output
DC / DC
Converter
Cout
-
-Vin
-Out
+
+Vin
+Out
Load
Maximum Capacitive Load
MIW3100 series have limitation of maximum connected
capacitance at the output.
The power module may be operated in current limiting
mode during start-up, affecting the ramp-up and the startup
time.
For optimum performance we recommend 1000uF
maximum capacitive load for dual outputs and 6800uF
capacitive load for single outputs.
The maximum capacitance can be found in the data sheet.
REV:0 2005/04
Dual Output
DC / DC Com.
Converter
DC Power
Source
MINMAX
-
-Vin
-Out
Cout
Load
6
MIW3100 Series
Thermal Considerations
Many conditions affect the thermal performance of the
power module, such as orientation, airflow over the module
and board spacing. To avoid exceeding the maximum
temperature rating of the components inside the power
module, the case temperature must be kept below 90].
The derating curves are determined from measurements
obtained in an experimental apparatus.
Position of air velocity
probe and thermocouple
15mm / 0.6in
7
50mm / 2in
Air Flow
DUT
MINMAX
REV:0 2005/04
MIW3100 Series
Mechanical Dimensions
Connecting Pin Patterns
Top View ( 2.54 mm / 0.1 inch grids )
Single Output
10.2 [0.40]
Side
4.5 [0.18]
2 3
9
11
16
14
Bottom
23 22
Tolerance
Pin
Millimeters
Inches
X.X{0.25
X.XX{0.01
X.XX{0.13
{0.05
X.XXX{0.005
{0.002
Dual Output
20.3 [0.80]
2.54 [0.100]
2.5 [0.10]
0.50 [0.020]
15.22 [0.600]
4.1 [0.16]
31.8 [1.25]
Pin Connections
Physical Characteristics
Pin
Single Output
Dual Output
2
-Vin
-Vin
3
-Vin
-Vin
9
No Pin
Common
11
NC
-Vout
14
+Vout
+Vout
16
-Vout
Common
22
+Vin
+Vin
23
+Vin
+Vin
Case Size
:
31.8*20.3*10.2 mm
1.25*0.8*0.4 inches
Case Material : Non-Conductive Black Plastic
Weight
: 16.9g
Flammability : UL94V-0
NC: No Connection
The MIW3100 converter is encapsulated in a low thermal resistance molding compound that has excellent resistance/electrical
characteristics over a wide temperature range or in high humidity environments.
The encapsulant and unit case are both rated to UL 94V-0 flammability specifications.
Leads are tin plated for improved solderability.
REV:0 2005/04
MINMAX
8
Similar pages