LP2950, LP2951, NCV2951 100 mA, Low Power Low Dropout Voltage Regulator The LP2950 and LP2951 are micropower voltage regulators that are specifically designed to maintain proper regulation with an extremely low input−to−output voltage differential. These devices feature a very low quiescent bias current of 75 mA and are capable of supplying output currents in excess of 100 mA. Internal current and thermal limiting protection is provided. The LP2951 has three additional features. The first is the Error Output that can be used to signal external circuitry of an out of regulation condition, or as a microprocessor power−on reset. The second feature allows the output voltage to be preset to 5.0 V, 3.3 V or 3.0 V output (depending on the version) or programmed from 1.25 V to 29 V. It consists of a pinned out resistor divider along with direct access to the Error Amplifier feedback input. The third feature is a Shutdown input that allows a logic level signal to turn−off or turn−on the regulator output. Due to the low input−to−output voltage differential and bias current specifications, these devices are ideally suited for battery powered computer, consumer, and industrial equipment where an extension of useful battery life is desirable. The LP2950 is available in the three pin case 29 and DPAK packages, and the LP2951 is available in the eight pin dual−in−line, SOIC−8 and Micro8 surface mount packages. The ‘A’ suffix devices feature an initial output voltage tolerance 0.5%. Features Low Quiescent Bias Current of 75 mA Low Input−to−Output Voltage Differential of 50 mV at 100 mA and 380 mV at 100 mA 5.0 V, 3.3 V or 3.0 V 0.5% Allows Use as a Regulator or Reference Extremely Tight Line and Load Regulation Requires Only a 1.0 mF Output Capacitor for Stability Internal Current and Thermal Limiting NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free and RoHS Compliant http://onsemi.com TO−92 Z SUFFIX CASE 29 1 12 3 STRAIGHT LEAD BULK PACK 3 BENT LEAD TAPE & REEL AMMO PACK PIN CONNECTIONS 4 1 2 2 Pin: 1. Output 2. Ground 3. Input 3 1 DPAK DT SUFFIX CASE 369C 2 3 Pin: 1. Input 2. Ground 3. Output (Top View) Heatsink surface (shown as terminal 4 in case outline drawing) is connected to Pin 2. SOIC−8 D SUFFIX CASE 751 8 1 PDIP−8 N SUFFIX CASE 626 8 1 Micro8E DM SUFFIX CASE 846A 8 1 PIN CONNECTIONS LP2951 Additional Features Output 1 8 Input Error Output Signals an Out of Regulation Condition Output Programmable from 1.25 V to 29 V Logic Level Shutdown Input Sense 2 7 Feedback Shutdown 3 6 VO Tap GND 4 5 Error Output (See Following Page for Device Information.) (Top View) ORDERING & MARKING INFORMATION See detailed ordering and shipping information in the package dimensions section on pages 14 and 15 of this data sheet. See general marking information in the device marking section on page 17 of this data sheet. Semiconductor Components Industries, LLC, 2013 April, 2013 − Rev. 26 1 Publication Order Number: LP2950/D LP2950, LP2951, NCV2951 DEVICE INFORMATION Output Voltage Package 3.0 V 3.3 V 5.0 V Adjustable Operating Ambient Temperature Range TO−92 Suffix Z LP2950CZ−3.0 LP2950ACZ−3.0 LP2950CZ−3.3 LP2950ACZ−3.3 LP2950CZ−5.0 LP2950ACZ−5.0 Not Available TA = −40 to +125C DPAK Suffix DT LP2950CDT−3.0 LP2950ACDT−3.0 LP2950CDT−3.3 LP2950ACDT−3.3 LP2950CDT−5.0 LP2950ACDT−5.0 Not Available TA = −40 to +125C NCV2951ACD−3.3R2 NCV2951ACDR2 NCV2951CDR2 TA = −40 to +125C − SOIC−8 SOIC−8 Suffix D LP2951CD−3.0 LP2951ACD−3.0 LP2951CD−3.3 LP2951ACD−3.3 LP2951CD LP2951ACD LP2951CD LP2951ACD TA = −40 to +125C Micro8 Suffix DM LP2951CDM−3.0 LP2951ACDM−3.0 LP2951CDM−3.3 LP2951ACDM−3.3 LP2951CDM LP2951ACDM LP2951CDM LP2951ACDM TA = −40 to +125C DIP−8 Suffix N LP2951CN−3.0 LP2951ACN−3.0 LP2951CN−3.3 LP2951ACN−3.3 LP2951CN LP2951ACN LP2951CN LP2951ACN TA = −40 to +125C LP2950Cx−xx / LP2951Cxx−xx LP2950ACx−xx / LP2951ACxx−xx 1% Output Voltage Precision at TA = 25C 0.5% Output Voltage Precision at TA = 25C Input Battery or Unregulated DC Output 182 k Error Amplifier 60 k 1.23 V Reference GND Input Battery or Unregulated DC 5.0 V/100 mA 1.0 mF 1 3 LP2950CZ−5.0 2 8 Output 1 Sense 5.0 V/100 mA 2 182 k 1.0 mF VO Tap 6 60 k 7 From 3 CMOS/TTL Feedback Error Amplifier Shutdown 330 k 60 k 50 k 75 mV/ 60 mV Error Output To CMOS/TTL 5 Error Detection Comparator 1.23 V Reference GND 4 LP2951CD or CN This device contains 34 active transistors. Figure 1. Representative Block Diagrams http://onsemi.com 2 LP2950, LP2951, NCV2951 MAXIMUM RATINGS (TA = 25C, unless otherwise noted.) Rating Input Voltage Symbol Value Unit VCC 30 Vdc ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ Peak Transient Input Voltage (t < 20 ms) VCC 32 Vdc PD Internally Limited W Thermal Resistance, Junction−to−Ambient RqJA 180 C/W Thermal Resistance, Junction−to−Case RqJC 45 C/W Power Dissipation and Thermal Characteristics Maximum Power Dissipation Case 751(SOIC−8) D Suffix Case 369A (DPAK) DT Suffix (Note 1) Thermal Resistance, Junction−to−Ambient RqJA 92 C/W Thermal Resistance, Junction−to−Case RqJC 6.0 C/W Thermal Resistance, Junction−to−Ambient RqJA 160 C/W Thermal Resistance, Junction−to−Case RqJC 83 C/W RqJA 105 C/W Case 29 (TO−226AA/TO−92) Z Suffix Case 626 N Suffix Thermal Resistance, Junction−to−Ambient Case 846A (Micro8) DM Suffix RqJA 240 C/W Feedback Input Voltage Thermal Resistance, Junction−to−Ambient Vfb −1.5 to +30 Vdc Shutdown Input Voltage Vsd −0.3 to +30 Vdc Error Comparator Output Voltage Verr −0.3 to +30 Vdc Operating Ambient Temperature Range TA −40 to +125 C Maximum Die Junction Temperature Range TJ +150 C Storage Temperature Range Tstg −65 to +150 C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. http://onsemi.com 3 LP2950, LP2951, NCV2951 ELECTRICAL CHARACTERISTICS (Vin = VO + 1.0 V, IO = 100 mA, CO = 1.0 mF, TA = 25C [Note 3], unless otherwise noted.) Characteristic Symbol Output Voltage, 5.0 V Versions Min Typ Max VO Unit V Vin = 6.0 V, IO = 100 mA, TA = 25C LP2950C−5.0/LP2951C/NCV2951C* 4.950 5.000 5.050 LP2950AC−5.0/LP2951AC/NCV2951AC* 4.975 5.000 5.025 LP2950C−5.0/LP2951C/NCV2951C* 4.900 − 5.100 LP2950AC−5.0/LP2951AC/NCV2951AC* 4.940 − 5.060 LP2950C−5.0/LP2951C/NCV2951C* 4.880 − 5.120 LP2950AC−5.0/LP2951AC/NCV2951AC* 4.925 − 5.075 TA = − 40 to +125C Vin = 6.0 to 30 V, IO = 100 mA to 100 mA, TA = − 40 to +125C Output Voltage, 3.3 V Versions VO V Vin = 4.3 V, IO = 100 mA, TA = 25C LP2950C−3.3/LP2951C−3.3 3.267 3.300 3.333 LP2950AC−3.3/LP2951AC−3.3/NCV2951AC−3.3* 3.284 3.300 3.317 LP2950C−3.3/LP2951C−3.3 3.234 − 3.366 LP2950AC−3.3/LP2951AC−3.3/NCV2951AC−3.3* 3.260 − 3.340 LP2950C−3.3/LP2951C−3.3 3.221 − 3.379 LP2950AC−3.3/LP2951AC−3.3/NCV2951AC−3.3* 3.254 − 3.346 TA = − 40 to +125C Vin = 4.3 to 30 V, IO = 100 mA to 100 mA, TA = − 40 to +125C Output Voltage, 3.0 V Versions VO V Vin = 4.0 V, IO = 100 mA, TA = 25C LP2950C−3.0/LP2951C−3.0 2.970 3.000 3.030 LP2950AC−3.0/LP2951AC−3.0 2.985 3.000 3.015 LP2950C−3.0/LP2951C−3.0 2.940 − 3.060 LP2950AC−3.0/LP2951AC−3.0 2.964 − 3.036 2.928 − 3.072 TA = − 40 to +125C Vin = 4.0 to 30 V, IO = 100 mA to 100 mA, TA = − 40 to +125C LP2950C−3.0/LP2951C−3.0 LP2950AC−3.0/LP2951AC−3.0 2.958 − 1. The Junction−to−Ambient Thermal Resistance is determined by PCB copper area per Figure 29. 2. This device series contains ESD protection and exceeds the following tests: Human Body Model (HBM), 2000 V, Class 2, JESD22 A114−C Machine Model (MM), 200 V, Class B, JESD22 A115−A Charged Device Model (CDM), 2000 V, Class IV, JESD22 C101−C 3. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible. 4. VO(nom) is the part number voltage option. 5. Noise tests on the LP2951 are made with a 0.01 mF capacitor connected across Pins 7 and 1. *NCV prefix is for automotive and other applications requiring site and change control. http://onsemi.com 4 3.042 LP2950, LP2951, NCV2951 ELECTRICAL CHARACTERISTICS (continued) (Vin = VO + 1.0 V, IO = 100 mA, CO = 1.0 mF, TA = 25C [Note 8], unless otherwise noted.) Characteristic Symbol Min Typ Max − − 0.08 0.04 0.20 0.10 − − 0.13 0.05 0.20 0.10 − − 30 350 80 450 − − 93 4.0 120 12 mA mA ICCdropout − 110 170 mA ILimit − 220 300 mA Regthermal − 0.05 0.20 %/W − − 126 56 − − 1.210 1.220 1.235 1.235 1.260 1.250 1.200 1.200 − − 1.270 1.260 Line Regulation (Vin = VO(nom) +1.0 V to 30 V) (Note 9) LP2950C−XX/LP2951C/LP2951C−XX/NCV2951C* LP2950AC−XX/LP2951AC/LP2951AC−XX/NCV2951AC* Regline Load Regulation (IO = 100 mA to 100 mA) LP2950C−XX/LP2951C/LP2951C−XX/NCV2951C* LP2950AC−XX/LP2951AC/LP2951AC−XX/NCV2951AC* Regload Dropout Voltage IO = 100 mA IO = 100 mA VI − VO Supply Bias Current IO = 100 mA IO = 100 mA ICC Dropout Supply Bias Current (Vin = VO(nom) − 0.5 V, IO = 100 mA) (Note 9) Current Limit (VO Shorted to Ground) Thermal Regulation Output Noise Voltage (10 Hz to 100 kHz) (Note 10) CL = 1.0 mF CL = 100 mF Vn Unit % % mV mVrms LP2951A/LP2951AC Only Reference Voltage (TA = 25C) LP2951C/LP2951C−XX/NCV2951C* LP2951AC/LP2951AC−XX/NCV2951AC* Vref Reference Voltage (TA = − 40 to +125C) LP2951C/LP2951C−XX/NCV2951C* LP2951AC/LP2951AC−XX/NCV2951AC* Vref Reference Voltage (TA = − 40 to +125C) IO = 100 mA to 100 mA, Vin = 23 to 30 V LP2951C/LP2951C−XX/NCV2951C* LP2951AC/LP2951AC−XX/NCV2951AC* Vref Feedback Pin Bias Current V V V 1.185 1.190 − − 1.285 1.270 IFB − 15 40 nA Error Comparator Output Leakage Current (VOH = 30 V) Ilkg − 0.01 1.0 mA Output Low Voltage (Vin = 4.5 V, IOL = 400 mA) VOL − 150 250 mV Upper Threshold Voltage (Vin = 6.0 V) Vthu 40 45 − mV Lower Threshold Voltage (Vin = 6.0 V) Vthl − 60 95 mV Hysteresis (Vin = 6.0 V) Vhy − 15 − mV 0 2.0 − − 0.7 30 − − 35 450 50 600 − 3.0 10 Shutdown Input Input Logic Voltage Logic “0” (Regulator “On”) Logic “1” (Regulator “Off”) Vshtdn Shutdown Pin Input Current Vshtdn = 2.4 V Vshtdn = 30 V Ishtdn Regulator Output Current in Shutdown Mode (Vin = 30 V, Vshtdn = 2.0 V, VO = 0, Pin 6 Connected to Pin 7) Ioff V 6. The Junction−to−Ambient Thermal Resistance is determined by PCB copper area per Figure 29. 7. ESD data available upon request. 8. Low duty pulse techniques are used during test to maintain junction temperature as close to ambient as possible. 9. VO(nom) is the part number voltage option. 10. Noise tests on the LP2951 are made with a 0.01 mF capacitor connected across Pins 7 and 1. *NCV prefix is for automotive and other applications requiring site and change control. http://onsemi.com 5 mA mA LP2950, LP2951, NCV2951 DEFINITIONS Output Noise Voltage − The RMS ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range. Leakage Current − Current drawn through a bipolar transistor collector−base junction, under a specified collector voltage, when the transistor is “off”. Upper Threshold Voltage − Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic “0” to “1”. Lower Threshold Voltage − Voltage applied to the comparator input terminal, below the reference voltage which is applied to the other comparator input terminal, which causes the comparator output to change state from a logic “1” to “0”. Hysteresis − The difference between Lower Threshold voltage and Upper Threshold voltage. Dropout Voltage − The input/output voltage differential at which the regulator output no longer maintains regulation against further reductions in input voltage. Measured when the output drops 100 mV below its nominal value (which is measured at 1.0 V differential), dropout voltage is affected by junction temperature, load current and minimum input supply requirements. Line Regulation − The change in output voltage for a change in input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that average chip temperature is not significantly affected. Load Regulation − The change in output voltage for a change in load current at constant chip temperature. Maximum Power Dissipation − The maximum total device dissipation for which the regulator will operate within specifications. Bias Current − Current which is used to operate the regulator chip and is not delivered to the load. 6.0 LP2951C TA = 25C 5.0 Vout , OUTPUT VOLTAGE (V) LP2950/LP2951 BIAS CURRENT (mA) 10 1.0 0.1 0.01 0.1 1.0 10 4.0 RL = 50 W 3.0 2.0 1.0 0 100 RL = 50 kW 0 1.0 2.0 3.0 4.0 5.0 IL, LOAD CURRENT (mA) Vin, INPUT VOLTAGE (V) Figure 2. Quiescent Current Figure 3. 5.0 V Dropout Characteristics over Load 6.0 6.0 5.00 4.99 Vout , OUTPUT VOLTAGE (V) Vout , OUTPUT VOLTAGE (V) LP2951C 5.0 4.98 4.97 4.96 4.0 3.0 2.0 25C 1.0 LP2951C 4.95 -50 125C −40C 0 0 50 100 200 150 0 1.0 2.0 3.0 4.0 5.0 TA, AMBIENT TEMPERATURE (C) Vin, INPUT VOLTAGE (V) Figure 4. Output Voltage versus Temperature Figure 5. 5.0 V Dropout Characteristics with RL = 50 W http://onsemi.com 6 6.0 LP2950, LP2951, NCV2951 400 250 350 DROPOUT VOLTAGE (mV) BIAS CURRENT ( A) 200 0.1 mA Load Current 150 100 No Load 50 TA = 25C 300 250 200 150 100 50 0 0.1 0 0 5.0 10 15 20 25 1.0 Figure 6. Input Current 50 45 RL = 50 400 40 35 RL = 50 k 300 -50 0 50 Vout , OUTPUT VOLTAGE (V) 500 DROPOUT VOLTAGE (mV) R L= 50 k DROPOUT VOLTAGE (mV) R L= 50 5.0 55 350 30 150 100 4.0 LP2951C RL = 330 k TA = 25C Vin Decreasing 3.0 Vin Increasing 2.0 1.0 0 4.70 4.74 T, TEMPERATURE (C) 0 Vout 6.5 -2.0 TA = 25C CL = 1.0 mF IL = 1.0 mA VO = 5.0 V 5.5 0 100 200 300 400 -4.0 500 600 700 -6.0 800 SHUTDOWN AND OUTPUT VOLTAGE (V) 2.0 OUTPUT VOLTAGE CHANGE (mV) Vin , INPUT VOLTAGE (V) 7.5 6.0 4.82 4.86 4.90 Figure 9. Error Comparator Output 4.0 Vin 7.0 4.78 Vin, INPUT VOLTAGE (V) Figure 8. Dropout Voltage versus Temperature 8.0 100 Figure 7. Dropout Voltage versus Output Current 550 450 10 IO, OUTPUT CURRENT (mA) Vin, INPUT VOLTAGE (V) 6.0 5.0 CL = 1.0 mF 4.0 CL = 10 mF 3.0 2.0 1.0 Shutdown Input TA = 25C IL = 10 mA Vin = 8.0 V Vout = 5.0 V 0 -1.0 -100 0 100 200 300 t, TIME (ms) t, TIME (ms) Figure 10. Line Transient Response Figure 11. LP2951 Enable Transient http://onsemi.com 7 400 LP2950, LP2951, NCV2951 200 200 Vout 100 0 50 -200 ILoad 0 RIPPLE REJECTION (dB) LOAD CURRENT (mA) 150 400 OUTPUT VOLTAGE CHANGE (mV) 80 CL = 1.0 mF Vout = 5.0 V IL = 400 mA to 75 mA TA = 25C 60 IL= 0.1 mA 40 TA = 25C CL = 1.0 mF Vin = 6.0 V Vout = 5.0 V 20 -400 -50 0 0.5 1 1.5 2 2.5 3 3.5 0 1.0 4 10 CL = 1.0 mF 2.0 CL = 100 mF 10 k Vout , OUTPUT CURRENT (mA) Output “Off" 1.2 Output “On" 1.0 0 20 40 60 80 100 120 140 f, FREQUENCY (Hz) t, TEMPERATURE (C) Figure 14. Output Noise Figure 15. Shutdown Threshold Voltage versus Temperature TA = 25C 80 2.0 TA = 75C 0 60 -2.0 40 -4.0 20 LP2951CN 5.0 1.4 0.8 -40 -20 10 15 20 25 30 35 160 10000 4.0 0 1.6 100 k 100 0 1.8 SHUTDOWN THRESHOLD VOLTAGE (V) IL= 100 mA TA = 25C VO = 5.0 V LP2951C 3.0 1.0 k 100 k Figure 13. Ripple Rejection Vout = 5 V OUTPUT VOLTAGE CHANGE (mV) ESR (ohms) VOLTAGE NOISE ( V/ Hz) 4.0 0 100 10 k f, FREQUENCY (Hz) Figure 12. Load Transient Response 1.0 1.0 k 100 t, TIME (ms) 1000 -6.0 40 Unstable Region 100 Stable Region 10 1 0.1 mF Unstable Region for 0.1 mF capacitor only 0.1 0.01 100 mF Lower unstable region is for 0.1 mF only. 1 mF and 100 mF show no instability with low ESR values. 0 Vin, INPUT VOLTAGE (V) 10 20 30 40 50 60 70 80 90 100 Output Current (mA) Figure 16. Maximum Rated Output Current Figure 17. Output Stability versus Output Capacitor Change http://onsemi.com 8 LP2950, LP2951, NCV2951 APPLICATIONS INFORMATION Introduction to the LP2951 is ramped up and down. The ERROR signal becomes valid (low) at about 1.3 V input. It goes high when the input reaches about 5.0 V (Vout exceeds about 4.75 V). Since the LP2951’s dropout voltage is dependent upon the load current (refer to the curve in the Typical Performance Characteristics), the input voltage trip point will vary with load current. The output voltage trip point does not vary with load. The error comparator output is an open collector which requires an external pullup resistor. This resistor may be returned to the output or some other voltage within the system. The resistance value should be chosen to be consistent with the 400 mA sink capability of the error comparator. A value between 100 k and 1.0 MW is suggested. No pullup resistance is required if this output is unused. When operated in the shutdown mode, the error comparator output will go high if it has been pulled up to an external supply. To avoid this invalid response, the error comparator output should be pulled up to Vout (see Figure 18). The LP2950/LP2951 regulators are designed with internal current limiting and thermal shutdown making them user−friendly. Typical application circuits for the LP2950 and LP2951 are shown in Figures 20 through 28. These regulators are not internally compensated and thus require a 1.0 mF (or greater) capacitance between the LP2950/LP2951 output terminal and ground for stability. Most types of aluminum, tantalum or multilayer ceramic will perform adequately. Solid tantalums or appropriate multilayer ceramic capacitors are recommended for operation below 25C. At lower values of output current, less output capacitance is required for output stability. The capacitor can be reduced to 0.33 mF for currents less than 10 mA, or 0.1 mF for currents below 1.0 mA. Using the 8 pin versions at voltages less than 5.0 V operates the error amplifier at lower values of gain, so that more output capacitance is needed for stability. For the worst case operating condition of a 100 mA load at 1.23 V output (output Pin 1 connected to the feedback Pin 7) a minimum capacitance of 3.3 mF is recommended. The LP2950 will remain stable and in regulation when operated with no output load. When setting the output voltage of the LP2951 with external resistors, the resistance values should be chosen to draw a minimum of 1.0 mA. A bypass capacitor is recommended across the LP2950/LP2951 input to ground if more than 4 inches of wire connects the input to either a battery or power supply filter capacitor. Input capacitance at the LP2951 Feedback Pin 7 can create a pole, causing instability if high value external resistors are used to set the output voltage. Adding a 100 pF capacitor between the Output Pin 1 and the Feedback Pin 7 and increasing the output filter capacitor to at least 3.3 mF will stabilize the feedback loop. 5.0 V 4.75 V Output Voltage ERROR Not Valid Not Valid 4.75 V + Vdropout Input Voltage 4.70 V 1.3 V Pullup to Ext Pullup to Vout 4.70 V + Vdropout 1.3 V Error Detection Comparator The comparator switches to a positive logic low whenever the LP2951 output voltage falls more than approximately 5.0% out of regulation. This value is the comparator’s designed−in offset voltage of 60 mV divided by the 1.235 V internal reference. As shown in the representative block diagram. This trip level remains 5.0% below normal regardless of the value of regulated output voltage. For example, the error flag trip level is 4.75 V for a normal 5.0 V regulated output, or 9.50 V for a 10 V output voltage. Figure 2 is a timing diagram which shows the ERROR signal and the regulated output voltage as the input voltage Figure 18. ERROR Output Timing Programming the Output Voltage (LP2951) The LP2951CX may be pin−strapped for the nominal fixed output voltage using its internal voltage divider by tying Pin 1 (output) to Pin 2 (sense) and Pin 7 (feedback) to Pin 6 (5.0 V tap). Alternatively, it may be programmed for any output voltage between its 1.235 reference voltage and its 30 V maximum rating. An external pair of resistors is required, as shown in Figure 19. http://onsemi.com 9 LP2950, LP2951, NCV2951 for reducing noise on the 3 lead LP2950. However, increasing the capacitor from 1.0 mF to 220 mF only decreases the noise from 430 mV to 160 mVrms for a 100 kHz bandwidth at the 5.0 V output. Noise can be reduced fourfold by a bypass capacitor across R1, since it reduces the high frequency gain from 4 to unity. Pick Vin 100 k Error Output 5 8 Vin Vout Error SNS Shutdown Input 3 SD VO T 1 2 Vout 1.23 to 30 V NC 6 NC R1 0.01 mF C 3.3 mF R2 Figure 19. Adjustable Regulator 1 2pR1 x 200 Hz Unregulated Input The complete equation for the output voltage is: V + V (1 ) R1ńR2) ) I R1 ref [ or about 0.01 mF. When doing this, the output capacitor must be increased to 3.3 mF to maintain stability. These changes reduce the output noise from 430 mV to 126 mVrms for a 100 kHz bandwidth at 5.0 V output. With bypass capacitor added, noise no longer scales with output voltage so that improvements are more dramatic at higher output voltages. GND FB 4 7 out Bypass MTB23P06E 1.0 mF FB where Vref is the nominal 1.235 V reference voltage and IFB is the feedback pin bias current, nominally − 20 nA. The minimum recommended load current of 1.0 mA forces an upper limit of 1.2 MW on the value of R2, if the regulator must work with no load. IFB will produce a 2% typical error in Vout which may be eliminated at room temperature by adjusting R1. For better accuracy, choosing R2 = 100 k reduces this error to 0.17% while increasing the resistor program current to 12 mA. Since the LP2951 typically draws 75 mA at no load with Pin 2 open circuited, the extra 12 mA of current drawn is often a worthwhile tradeoff for eliminating the need to set output voltage in test. Error Output 10 k 5 Error 0.01 mF Vout 5.0 V 1.0% 0 to 1.0 A 8 Vin Vout SNS LP2951CN Shutdown Input 3 SD VO T 1 2 6 220 mF GND FB 4 7 0.002 mF 1.0 M Output Noise In many applications it is desirable to reduce the noise present at the output. Reducing the regulator bandwidth by increasing the size of the output capacitor is the only method 2.0 k Figure 20. 1.0 A Regulator with 1.2 V Dropout http://onsemi.com 10 LP2950, LP2951, NCV2951 TYPICAL APPLICATIONS +V = 2.0 to 30 V IL IL = 1.23/R Load Unregulated Input 6.0 to 10 Vdc 8 Vin 8 NC 5 Error Vin Vout 1N4001 1 2 NC SNS 0.1 mF LP2951CN 3 6 NC SD VO T 330 pF GND FB 4 7 2.2 mF Error Output 4.2 V 0.025 V 2.0 M 1.0% 806 k 1.0% Shutdown Input 5 0.1 mF Vout Error 1 2 SNS LP2951CN 3 6 SD VO T GND FB 4 7 Lithium Ion Rechargeable Cell 50 k 1.0 mF R GND Figure 21. Lithium Ion Battery Cell Charger Figure 22. Low Drift Current Sink +Vin +Vin 8 Vin 470 k 2N3906 5 470 k Reset Normally Closed Error Vout SNS LP2951CN 3 SD CMOS Gate *Sleep Input VO T 1 2 Vout NC 6 NC Error Output R1 GND FB 4 7 1.0 mF 5 470 k 8 Vin 47 k Error Vout SNS LP2951CN Shutdown Input 3 SD GND 4 R2 Error flag occurs when Vin is too low to maintain Vout, or if Vout is reduced by excessive load current. 2 Vout 2N3906 1 NC 200 k 3.3 mF 6 NC VO T 100 k 100 pF FB 7 100 k Figure 23. Latch Off When Error Flag Occurs Figure 24. 5.0 V Regulator with 2.5 V Sleep Function http://onsemi.com 11 LP2950, LP2951, NCV2951 +Vin 5 NC 8 Vin Vout Error D2 1 2 SNS LP2951CN #1 3 6 SD VO T D1 Memory V+ 1.0 mF 20 3.6 V NiCad GND FB 4 7 Early Warning 27 k All diodes are 1N4148. D3 Reset 2.7 M Q1 Early Warning flag on low input voltage. mP D4 Main output latches off at lower input voltages. VDD 2N3906 5 Battery backup on auxiliary output. 8 Vin 330 k Vout Error 1 2 SNS LP2951CN #2 3 6 SD VO T GND 4 Operation: Regulator #1’s Vout is programmed one diode drop above 5.0 V. Its error flag becomes active when Vin < 5.7 V. When Vin drops below 5.3 V, the error flag of regulator #2 becomes active and via Q1 latches the main output “off”. When Vin again exceeds 5.7 V, regulator #1 is back in regulation and the early warning signal rises, unlatching regulator #2 via D3. Main Output 1.0 mF FB 7 Figure 25. Regulator with Early Warning and Auxiliary Output +Vin Current Limit Section 0.05 470 680 2N3906 1000 mF 2N3906 MJE2955 .33 mF 10 k 4.7 M Error Flag 5 220 8 Vin Error Vout SNS LP2951CN 3 SD VO T GND FB 4 7 20 k 1 2 NC 6 NC .01 mF Vout @ 2.0 A 47 4.7 mF Tant 100 mF R1 R2 0.033 mF Vout = 1.25V (1.0 + R1/R2) For 5.0 V output, use internal resistors. Wire Pin 6 to 7, and wire Pin 2 to +Vout Bus. Figure 26. 2.0 A Low Dropout Regulator http://onsemi.com 12 LP2950, LP2951, NCV2951 + 5.0 V 4.7 k Output* 1 4 20 mA 5 NC 8 Vin Vout Error SNS LP2951CN 3 NC 1N4001 5 0.1 mF SD VO T Gnd 4 2 1 2 4 NC 6 * High for IL < 3.5 mA NC FB 7 1N457 360 1N457 1N457 Figure 27. Open Circuit Detector for 4.0 to 20 mA Current Loop 31.6 k 100 k 2 NC 1 5 8 Vin Error Vout SNS LP2951CN 3 3 SD VO T Gnd 4 1 Main V+ 2 Memory V+ 1.0 mF 6 20 NC NiCad Backup Battery FB 7 NC Figure 28. Low Battery Disconnect JUNCTION‐TO‐AIR (C/W) R JA, THERMAL RESISTANCE 100 2.4 PD(max) for TA = 50C Free Air Mounted Vertically 90 2.0 80 Minimum Size Pad 70 60 50 ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ 2.0 oz. Copper L 1.6 L 1.2 0.8 0.4 RqJA 40 0 0 5.0 10 15 20 25 30 L, LENGTH OF COPPER (mm) Figure 29. DPAK Thermal Resistance and Maximum Power Dissipation versus PCB Copper Length http://onsemi.com 13 PD, MAXIMUM POWER DISSIPATION (W) MC34164P−5 6.0 V Lead-Acid Battery 2N3906 LP2950, LP2951, NCV2951 ORDERING INFORMATION (LP2950) Output Voltage (Volts) Tolerance (%) Package Shipping† LP2950CZ−3.0G 3.0 1.0 TO−92 (Pb−Free) 2000 Units / Bag LP2950CZ−3.0RAG 3.0 1.0 TO−92 (Pb−Free) 2000 Units / Tape & Reel LP2950ACZ−3.0G 3.0 0.5 TO−92 (Pb−Free) 2000 Units / Bag LP2950ACZ−3.0RAG 3.0 0.5 TO−92 (Pb−Free) 2000 Units / Tape & Reel LP2950CZ−3.3G 3.3 1.0 TO−92 (Pb−Free) 2000 Units / Bag LP2950CZ−3.3RAG 3.3 1.0 TO−92 (Pb−Free) 2000 Units / Tape & Reel LP2950ACZ−3.3G 3.3 0.5 TO−92 (Pb−Free) 2000 Units / Bag LP2950ACZ−3.3RAG 3.3 0.5 TO−92 (Pb−Free) 2000 Units / Tape & Reel LP2950CZ−5.0G 5.0 1.0 TO−92 (Pb−Free) 2000 Units / Bag LP2950CZ−5.0RAG 5.0 1.0 TO−92 (Pb−Free) 2000 Units / Tape & Reel LP2950CZ−5.0RPG 5.0 1.0 TO−92 (Pb−Free) 2000 Units / Ammo Pack LP2950ACZ−5.0G 5.0 0.5 TO−92 (Pb−Free) 2000 Units / Bag LP2950ACZ−5.0RAG 5.0 0.5 TO−92 (Pb−Free) 2000 Units / Tape & Reel LP2950CDT−3.0G 3.0 1.0 DPAK (Pb−Free) 75 Units / Rail LP2950CDT−3.0RKG 3.0 1.0 DPAK (Pb−Free) 2500 Units / Tape & Reel LP2950ACDT−3.0G 3.0 0.5 DPAK (Pb−Free) 75 Units / Rail LP2950ACDT−3RKG 3.0 0.5 DPAK (Pb−Free) 2500 Units / Tape & Reel LP2950CDT−3.3G 3.3 1.0 DPAK (Pb−Free) 75 Units / Rail LP2950CDT−3.3RKG 3.3 1.0 DPAK (Pb−Free) 2500 Units / Tape & Reel LP2950ACDT−3.3RG 3.3 0.5 DPAK (Pb−Free) 2500 Units / Tape & Reel LP2950CDT−5.0G 5.0 1.0 DPAK (Pb−Free) 75 Units / Rail LP2950CDT−5.0RKG 5.0 1.0 DPAK (Pb−Free) 2500 Units / Tape & Reel LP2950ACDT−5.0G 5.0 0.5 DPAK (Pb−Free) 75 Units / Rail LP2950ACDT−5RKG 5.0 0.5 DPAK (Pb−Free) 2500 Units / Tape & Reel Part Number †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 14 LP2950, LP2951, NCV2951 ORDERING INFORMATION (LP2951) Output Voltage (Volts) Tolerance (%) Package Shipping† LP2951CD−3.0G 3.0 1.0 SOIC−8 (Pb−Free) 98 Units / Rail LP2951CD−3.0R2G 3.0 1.0 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel LP2951ACD−3.0G 3.0 0.5 SOIC−8 (Pb−Free) 98 Units / Rail LP2951ACD−3.0R2G 3.0 0.5 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel LP2951CD−3.3G 3.3 1.0 SOIC−8 (Pb−Free) 98 Units / Rail LP2951CD−3.3R2G 3.3 1.0 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel LP2951ACD−3.3G 3.3 0.5 SOIC−8 (Pb−Free) 98 Units / Rail LP2951ACD−3.3R2G 3.3 0.5 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel LP2951CDG 5.0 or Adj. 1.0 SOIC−8 (Pb−Free) 98 Units / Rail LP2951CDR2G 5.0 or Adj. 1.0 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel LP2951ACDG 5.0 or Adj. 0.5 SOIC−8 (Pb−Free) 98 Units / Rail LP2951ACDR2G 5.0 or Adj. 0.5 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel LP2951CDM−3.0R2G 3.0 1.0 Micro8 (Pb−Free) 4000 Units / Tape & Reel LP2951ACDM−3.0RG 3.0 0.5 Micro8 (Pb−Free) 4000 Units / Tape & Reel LP2951CDM−3.3R2G 3.3 1.0 Micro8 (Pb−Free) 4000 Units / Tape & Reel LP2951ACDM−3.3RG 3.3 0.5 Micro8 (Pb−Free) 4000 Units / Tape & Reel LP2951CDMR2G 5.0 or Adj. 1.0 Micro8 (Pb−Free) 4000 Units / Tape & Reel LP2951ACDMR2G 5.0 or Adj. 0.5 Micro8 (Pb−Free) 4000 Units / Tape & Reel LP2951ACN−3.0G 3.0 0.5 PDIP−8 (Pb−Free) 50 Units / Rail LP2951CN−3.3G 3.3 1.0 PDIP−8 (Pb−Free) 50 Units / Rail LP2951ACN−3.3G 3.3 0.5 PDIP−8 (Pb−Free) 50 Units / Rail LP2951CNG 5.0 or Adj. 1.0 PDIP−8 (Pb−Free) 50 Units / Rail LP2951ACNG 5.0 or Adj. 0.5 PDIP−8 (Pb−Free) 50 Units / Rail Part Number †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 15 LP2950, LP2951, NCV2951 ORDERING INFORMATION (NCV2951) Output Voltage (Volts) Tolerance (%) Package Shipping† 3.3 0.5 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel NCV2951ACDR2G* 5.0 or Adj. 0.5 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel NCV2951CDR2G* 5.0 or Adj. 1.0 SOIC−8 (Pb−Free) 2500 Units / Tape & Reel Part Number NCV2951ACD3.3R2G* †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. http://onsemi.com 16 LP2950, LP2951, NCV2951 MARKING DIAGRAMS DPAK DT SUFFIX CASE 369C TO−92 Z SUFFIX CASE 029 2950 CZ−xx ALYWWG G 2950A CZ−xx ALYWWG G 50−yG ALYWW 50−yyG ALYWW 50AyyG ALYWW 50A−yG ALYWW SOIC−8 D SUFFIX CASE 751 8 1 8 51z ALYW G * 1 8 51z−33 ALYW G * 1 51z−3 ALYW G Micro8 DM SUFFIX CASE 846A PDIP−8 N SUFFIX CASE 626 8 8 51CN AWL YYWWG 1 8 51ACN AWL YYWWG 1 1 8 8 51CN−xx AWL YYWWG 51ACN−xx AWL YYWWG 1 xx = 3.0, 3.3, or 5.0 y = 3 or 5 yy = 30, 33, or 50 z = A or C A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G = Pb−Free Package G = Pb−Free Package (Note: Microdot may be in either location) *This marking diagram also applies to NCV2951. http://onsemi.com 17 8 PAyy AYWG G 1 P−yy AYWG G 1 LP2950, LP2951, NCV2951 PACKAGE DIMENSIONS TO−226AA/TO−92 Z SUFFIX CASE 29−11 ISSUE AM A B STRAIGHT LEAD BULK PACK R P L SEATING PLANE K D X X G J H V C SECTION X−X N 1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. DIM A B C D G H J K L N P R V INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 --0.250 --0.080 0.105 --0.100 0.115 --0.135 --- MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 --6.35 --2.04 2.66 --2.54 2.93 --3.43 --- N A R BENT LEAD TAPE & REEL AMMO PACK B P T SEATING PLANE G K D X X J V 1 C N SECTION X−X http://onsemi.com 18 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. DIM A B C D G J K N P R V MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.40 0.54 2.40 2.80 0.39 0.50 12.70 --2.04 2.66 1.50 4.00 2.93 --3.43 --- LP2950, LP2951, NCV2951 PACKAGE DIMENSIONS DPAK DT SUFFIX CASE 369C ISSUE D A E b3 c2 B Z D 1 L4 A 4 L3 b2 e 2 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE. 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY. 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. C H DETAIL A 3 DIM A A1 b b2 b3 c c2 D E e H L L1 L2 L3 L4 Z c b 0.005 (0.13) M H C L2 GAUGE PLANE C L SEATING PLANE A1 L1 DETAIL A ROTATED 905 CW INCHES MIN MAX 0.086 0.094 0.000 0.005 0.025 0.035 0.030 0.045 0.180 0.215 0.018 0.024 0.018 0.024 0.235 0.245 0.250 0.265 0.090 BSC 0.370 0.410 0.055 0.070 0.108 REF 0.020 BSC 0.035 0.050 −−− 0.040 0.155 −−− SOLDERING FOOTPRINT* 6.20 0.244 2.58 0.102 5.80 0.228 3.00 0.118 1.60 0.063 6.17 0.243 SCALE 3:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 19 MILLIMETERS MIN MAX 2.18 2.38 0.00 0.13 0.63 0.89 0.76 1.14 4.57 5.46 0.46 0.61 0.46 0.61 5.97 6.22 6.35 6.73 2.29 BSC 9.40 10.41 1.40 1.78 2.74 REF 0.51 BSC 0.89 1.27 −−− 1.01 3.93 −−− LP2950, LP2951, NCV2951 PACKAGE DIMENSIONS SOIC−8 NB D SUFFIX CASE 751−07 ISSUE AK −X− NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE −Z− 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 20 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 LP2950, LP2951, NCV2951 PACKAGE DIMENSIONS PDIP−8 N SUFFIX CASE 626−05 ISSUE M D A D1 E 8 5 E1 1 4 NOTE 5 F c E2 END VIEW TOP VIEW NOTE 3 e/2 A L A1 C SEATING PLANE E3 e 8X SIDE VIEW b 0.010 M C A END VIEW http://onsemi.com 21 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION E IS MEASURED WITH THE LEADS RESTRAINED PARALLEL AT WIDTH E2. 4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. DIM A A1 b C D D1 E E1 E2 E3 e L INCHES NOM MAX −−−− 0.210 −−−− −−−− 0.018 0.022 0.010 0.014 0.365 0.400 −−−− −−−− 0.310 0.325 0.250 0.280 0.300 BSC −−−− −−−− 0.430 0.100 BSC 0.115 0.130 0.150 MIN −−−− 0.015 0.014 0.008 0.355 0.005 0.300 0.240 MILLIMETERS MIN NOM MAX −−−− −−−− 5.33 0.38 −−−− −−−− 0.35 0.46 0.56 0.20 0.25 0.36 9.02 9.27 10.02 0.13 −−−− −−−− 7.62 7.87 8.26 6.10 6.35 7.11 7.62 BSC −−−− −−−− 10.92 2.54 BSC 2.92 3.30 3.81 LP2950, LP2951, NCV2951 PACKAGE DIMENSIONS Micro8E DM SUFFIX CASE 846A−02 ISSUE H D HE PIN 1 ID NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02. E e b 8 PL 0.08 (0.003) T B M S A DIM A A1 b c D E e L HE S SEATING −T− PLANE 0.038 (0.0015) A A1 MILLIMETERS NOM MAX −− 1.10 0.08 0.15 0.33 0.40 0.18 0.23 3.00 3.10 3.00 3.10 0.65 BSC 0.40 0.55 0.70 4.75 4.90 5.05 MIN −− 0.05 0.25 0.13 2.90 2.90 INCHES NOM −− 0.003 0.013 0.007 0.118 0.118 0.026 BSC 0.021 0.016 0.187 0.193 MIN −− 0.002 0.010 0.005 0.114 0.114 MAX 0.043 0.006 0.016 0.009 0.122 0.122 0.028 0.199 L c SOLDERING FOOTPRINT* 1.04 8X 0.041 0.38 0.015 3.20 0.126 6X 8X 4.24 0.167 0.65 0.0256 5.28 0.208 SCALE 8:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. SENSEFET is a trademark of Semiconductor Components Industries, LLC. Micro8 is a trademark of International Rectifier. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 22 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative LP2950/D