[ /Title (CD74 HC221 , CD74 HCT22 1) /Subject (High Speed CMOS Logic Dual Monos table Multi- CD74HC221, CD74HCT221 Data sheet acquired from Harris Semiconductor SCHS166A High Speed CMOS Logic Dual Monostable Multivibrator with Reset November 1997 - Revised April 1999 Features Description • Overriding RESET Terminates Output Pulse The CD74HC221, and CH74HCT221 are dual monostable multivibrators with reset. An external resistor (RX) and an external capacitor (CX) control the timing and the accuracy for the circuit. Adjustment of RX and CX provides a wide range of output pulse widths from the Q and Q terminals. Pulse triggering on the B input occurs at a particular voltage level and is not related to the rise and fall time of the trigger pulse. • Triggering from the Leading or Trailing Edge • Q and Q Buffered Outputs • Separate Resets • Wide Range of Output-Pulse Widths • Schmitt Trigger on B Inputs • Fanout (Over Temperature Range) - Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads - Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads Once triggered, the outputs are independent of further trigger inputs on A and B. The output pulse can be terminated by a LOW level on the Reset (R) pin. Trailing Edge triggering (A) and leading-edge-triggering (B) inputs are provided for triggering from either edge of the input pulse. On power up, the IC is reset. If either Mono is not used each input (on the unused device) must be terminated either high or low. • Wide Operating Temperature Range . . . -55oC to 125oC • Balanced Propagation Delay and Transition Times • Significant Power Reduction Compared to LSTTL Logic ICs The minimum value of external resistance, RX, is typically 500Ω. The minimum value of external capacitance, CX, is 0pF. The calculation for the pulse width is tW = 0.7 RXCX at VCC = 4.5V. • HC Types - 2V to 6V Operation - High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V Ordering Information • HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, VIL= 0.8V (Max), VIH = 2V (Min) - CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH PART NUMBER TEMP. RANGE (oC) PKG. NO. PACKAGE CD74HC221E -55 to 125 16 Ld PDIP E16.3 CD74HCT221E -55 to 125 16 Ld PDIP E16.3 CD74HC221M -55 to 125 16 Ld SOIC M16.15 CD74HCT221M -55 to 125 16 Ld SOIC M16.15 NOTES: 1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel. 2. Wafer or die are available which meets all electrical specifications. Please contact your local sales office or Harris customer service for ordering information. Pinout CD74HC221, CD74HCT221 (PDIP, SOIC) TOP VIEW 1A 1 16 VCC 1B 2 15 1CXRX 1R 3 14 1CX 1Q 4 13 1Q 2Q 5 12 2Q 2CX 6 11 2R 2CXRX 7 10 2B GND 8 9 2A CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © Harris Corporation 1997 1 File Number 1670.1 CD74HC221, CD74HCT221 Functional Diagram 1CX 1RX VCC 14 15 1CX 1CXRX 13 1Q 1A 1 MONO 1 4 1B 1Q 2 1R 2R 3 11 5 9 2Q 2A MONO 2 10 12 2B 2Q 2CX 2CXRX 6 7 VCC 2CX 2RX TRUTH TABLE INPUTS OUTPUTS A B R Q Q H X H L H X L H L H L ↑ H ↓ H H X X L L H L H ↑ (Note 3) (Note 3) NOTE: H = High Voltage Level, L = Low Voltage Level, X = Irrelevant, ↑ = Transition from Low to High Level, ↓ = Transition from High to Low Level, = One High Level Pulse, = One Low Level Pulse 3. For this combination the reset input must be low and the following sequence must be used: pin 1 (or 9) must be set high or pin 2 (or 10) set low; then pin 1 (or 9) must be low and pin 2 (or 10) set high. Now the reset input goes from low-to-high and the device will be triggered. 2 CD74HC221, CD74HCT221 Logic Diagram VCC 16 C P RX N A B 1 (9) R 3 (11) 2 (10) P VCC R D RESET FF S C Q R P OP AMP R2 RXCX C VCC MIRROR VOLTAGE QM 15 (7) + QM R3 PP CX R MASK FF S Q MAIN FF R1 R4 Q N VCC 14 (6) PULLDOWN FF D CX Q N 8 C 4 (12) C (13) 5 Q GND R Q Q + OP AMP 3 CD74HC221, CD74HCT221 Absolute Maximum Ratings Thermal Information DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V DC Input Diode Current, IIK For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA DC Output Diode Current, IOK For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA DC Drain Current, per Output, IO For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±25mA DC Output Source or Sink Current per Output Pin, IO For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA Thermal Resistance (Typical, Note 4) θJA (oC/W) θJC (oC/W) PDIP Package . . . . . . . . . . . . . . . . . . . 100 N/A SOIC Package . . . . . . . . . . . . . . . . . . . 180 N/A Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Supply Voltage Range, VCC HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC Input Rise and Fall Time, tr, tf on Inputs A and R 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max) 4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max) 6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max) Input Rise and Fall Time, tr, tf on Input B 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited ns (Max) 4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited ns (Max) 6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited ns (Max) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 4. θJA is measured with the component mounted on an evaluation PC board in free air. DC Electrical Specifications TEST CONDITIONS SYMBOL VI (V) IO (mA) High Level Input Voltage VIH - - Low Level Input Voltage VIL High Level Output Voltage CMOS Loads VOH PARAMETER VCC (V) 25oC MIN TYP -40oC TO 85oC -55oC TO 125oC MAX MIN MAX MIN MAX UNITS HC TYPES - VIH or VIL High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads Low Level Output Voltage TTL Loads VOL VIH or VIL - 2 1.5 - - 1.5 - 1.5 - V 4.5 3.15 - - 3.15 - 3.15 - V 6 4.2 - - 4.2 - 4.2 - V 2 - - 0.5 - 0.5 - 0.5 V 4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V -0.02 2 1.9 - - 1.9 - 1.9 - V -0.02 4.5 4.4 - - 4.4 - 4.4 - V -0.02 6 5.9 - - 5.9 - 5.9 - V - - - - - - - - - V -4 4.5 3.98 - - 3.84 - 3.7 - V -5.2 6 5.48 - - 5.34 - 5.2 - V 0.02 2 - - 0.1 - 0.1 - 0.1 V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 0.02 6 - - 0.1 - 0.1 - 0.1 V - - - - - - - - - V 4 4.5 - - 0.26 - 0.33 - 0.4 V 5.2 6 - - 0.26 - 0.33 - 0.4 V 4 CD74HC221, CD74HCT221 DC Electrical Specifications (Continued) TEST CONDITIONS 25oC -40oC TO 85oC -55oC TO 125oC SYMBOL VI (V) IO (mA) VCC (V) II VCC or GND - 6 - - ±0.1 - ±1 - ±1 µA ICC VCC or GND 0 6 - - 8 - 80 - 160 µA High Level Input Voltage VIH - - 4.5 to 5.5 2 - - 2 - 2 - V Low Level Input Voltage VIL - - 4.5 to 5.5 - - 0.8 - 0.8 - 0.8 V High Level Output Voltage CMOS Loads VOH VIH or VIL -0.02 4.5 4.4 - - 4.4 - 4.4 - V -4 4.5 3.98 - - 3.84 - 3.7 - V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 4 4.5 - - 0.26 - 0.33 - 0.4 V ±0.1 - ±1 - ±1 µA PARAMETER Input Leakage Current Quiescent Device Current MIN TYP MAX MIN MAX MIN MAX UNITS HCT TYPES High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads Input Leakage Current Quiescent Device Current Additional Quiescent Device Current Per Input Pin: 1 Unit Load II VCC and GND 0 5.5 - ICC VCC or GND 0 5.5 - - 8 - 80 - 160 µA ∆ICC VCC -2.1 - 4.5 to 5.5 - 100 360 - 450 - 490 µA NOTE: For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA. HCT Input Loading Table INPUT UNIT LOADS All Inputs 0.3 NOTE: Unit Load is ∆ICC limit specified in DC Electrical Table, e.g., 360µA max at 25oC. Prerequisite For Switching Function 25oC PARAMETER -40oC TO 85oC -55oC TO 125oC SYMBOL VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS tWL 2 70 - - 90 - 105 - ns HC TYPES Input Pulse Width A Input Pulse Width B tWH 4.5 14 - - 18 - 21 - ns 6 12 - - 15 - 18 - ns 2 70 - - 90 - 105 - ns 4.5 14 - - 18 - 21 - ns 6 12 - - 15 - 18 - ns 5 CD74HC221, CD74HCT221 Prerequisite For Switching Function (Continued) 25oC PARAMETER Input Pulse Width Reset -40oC TO 85oC -55oC TO 125oC SYMBOL VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS tWL 2 70 - - 90 - 105 - ns 4.5 14 - - 18 - 21 - ns 6 12 - - 15 - 18 - ns 2 0 - - 0 - 0 - ns 4.5 0 - - 0 - 0 - ns Recovery Time R to A or B tSU 6 0 - - 0 - 0 - ns Output Pulse Width Q or Q CX = 0.1µF RX = 10kΩ tW 5 630 - 770 602 798 595 805 µs Output Pulse Width Q or Q CX = 28pF, RX = 2kΩ tW 4.5 - 140 - - - - - ns CX = 1000pF, RX = 2kΩ tW 4.5 - 1.5 - - - - - µs CX = 1000pF, RX = 10kΩ tW 4.5 - 7 - - - - - µs Input Pulse Width A tWL 4.5 14 - - 18 - 21 - ns Input Pulse Width B tWH 4.5 14 - - 18 - 21 - ns Input Pulse Width Reset tWL 4.5 18 - - 23 - 27 - ns Recovery Time R to A or B tSU 4.5 0 - - 0 - 0 - ns Output Pulse Width Q or Q CX = 0.1µF RX = 10kΩ tW 5 630 - 770 602 798 595 805 µs Output Pulse Width Q or Q CX = 28pF, RX = 2kΩ tW 4.5 - 140 - - - - - ns CX = 1000pF, RX = 2kΩ tW 4.5 - 1.5 - - - - - µs CX = 1000pF, RX = 10kΩ tW 4.5 - 7 - - - - - µs HCT TYPES Switching Specifications Input tr, tf = 6ns PARAMETER -40oC TO 85oC 25oC -55oC TO 125oC SYMBOL TEST CONDITIONS VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS tPLH CL = 50pF 2 - - 210 - 265 - 315 ns CL = 50pF 4.5 - - 42 - 53 - 63 ns CL = 50pF 6 - - 36 - 45 - 54 ns CL = 15pF 5 - 18 - - - - - ns CL = 50pF 2 - - 170 - 215 - 255 ns CL = 50pF 4.5 - - 34 - 43 - 51 ns CL = 50pF 6 - - 29 - 37 - 43 ns CL = 15pF 5 - 14 - - - - - ns HC TYPES Propagation Delay, Trigger A, B, R to Q Propagation Delay, Trigger A, B, R to Q tPHL 6 CD74HC221, CD74HCT221 Switching Specifications Input tr, tf = 6ns (Continued) -40oC TO 85oC 25oC -55oC TO 125oC SYMBOL TEST CONDITIONS VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS tPLH CL = 50pF 2 - - 160 - 200 - 240 ns 4.5 - - 32 - 40 - 48 ns 6 - - 27 - 34 - 41 ns 2 - - 180 - 225 - 270 ns 4.5 - - 36 - 45 - 54 ns 6 - - 31 - 38 - 46 ns 2 - - 75 - 95 - 110 ns 4.5 - - 15 - 19 - 22 ns 6 - - 13 - 16 - 19 ns - - - - 10 - 10 - 10 pF - 4.5 to 5.5 - ±2 - - - - - % CPD - 5 - 166 - - - - - pF Propagation Delay, Trigger A, B, R to Q tPLH CL = 50pF 4.5 - - 42 - - - 63 ns CL = 15pF 5 - 18 - - - - - ns Propagation Delay, Trigger A, B, R to Q tPHL CL = 50pF 4.5 - - 34 - 43 - 51 ns CL = 15pF 5 - 14 - - - - - ns Propagation Delay, R to Q tPLH CL = 50pF 4.5 - - 38 - - - 57 ns Propagation Delay, R to Q tPHL CL = 50pF 4.5 - - 37 - - - 56 ns tTLH, tTHL CL = 50pF 2 - - 75 - 95 - 110 ns 4.5 - - 15 - 19 - 22 ns 6 - - 13 - 16 - 19 ns - - - - 10 - 10 - 10 pF - 4.5 to 5.5 - ±2 - - - - - % - 5 - 166 - - - - - pF PARAMETER Propagation Delay, R to Q Propagation Delay, R to Q Output Transition Time Input Capacitance tPHL tTLH, tTHL CIN Pulse Width Match Between Circuits in the Same Package CX = 1000pF, RX = 10kΩ Power Dissipation Capacitance (Notes 5, 6) CL = 50pF CL = 50pF HCT TYPES Output Transition Time Input Capacitance CIN Pulse Width Match Between Circuits in the Same Package CX = 1000pF, RX = 10kΩ Power Dissipation Capacitance (Notes 5, 6) CPD NOTES: 5. CPD is used to determine the dynamic power consumption, per multivibrator. 6. PD = (CPD + CL) VCC2 fi + Σ where fi = input frequency, fo = output frequency, CL = output load capacitance, VCC = supply voltage. 7 CD74HC221, CD74HCT221 Test Circuits and Waveforms tfCL trCL CLOCK tWL + tWH = 90% 10% I fCL CLOCK 50% 50% 1.3V 0.3V FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH tf = 6ns tf = 6ns tr = 6ns VCC 90% 50% 10% GND tTLH GND tTHL 90% 50% 10% INVERTING OUTPUT 3V 2.7V 1.3V 0.3V INPUT tTHL GND tWH NOTE: Outputs should be switching from 10% VCC to 90% VCC in accordance with device truth table. For fMAX, input duty cycle = 50%. FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH tr = 6ns 1.3V 1.3V tWL tWH NOTE: Outputs should be switching from 10% VCC to 90% VCC in accordance with device truth table. For fMAX, input duty cycle = 50%. tPHL 2.7V 0.3V GND tWL INPUT tfCL = 6ns I fCL 3V VCC 50% 10% tWL + tWH = trCL = 6ns tTLH 90% 1.3V 10% INVERTING OUTPUT tPHL tPLH FIGURE 3. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC tPLH FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC 8 CD74HC221, CD74HCT221 Typical Performance Curves RX = 10K RX = 10K VCC = 5V TA = 25oC 680 0.9 K FACTOR tW, PULSE WIDTH (µs) 685 CX = 1µF 675 670 HCT 0.8 0.7 665 -75 -50 -25 0 25 50 75 100 125 150 0.6 175 0 2 4 6 VCC, SUPPLY VOLTAGE (V) TA, AMBIENT TEMPERATURE (oC) FIGURE 5. HC/HCT221 OUTPUT PULSE WIDTH vs TEMPERATURE 10 FIGURE 6. HC/HCT221 K FACTOR vs SUPPLY VOLTAGE 106 106 VCC = 4.5V VCC = 2V 105 tW, PULSE WIDTH (µs) 105 tW, PULSE WIDTH (µs) 8 104 103 RX = 100K 102 RX = 50K 10 RX = 10K RX = 2K 1 104 103 102 RX = 100K 10 RX = 10K RX = 50K RX = 2K 1 0.1 0.1 10 102 103 104 105 106 107 108 10 CX, TIMING CAPACITANCE (pF) 102 103 104 105 106 107 CX, TIMING CAPACITANCE (pF) FIGURE 7. HC221 OUTPUT PULSE WIDTH vs CX FIGURE 8. HC/HCT221 OUTPUT PULSE WIDTH vs CX 9 108 Typical Performance Curves (Continued) RX = 10K RX = 10K VCC = 5V TA = 25oC 680 0.9 K FACTOR tW, PULSE WIDTH (µs) 685 CX = 1µF 675 670 HCT 0.8 0.7 665 -75 -50 -25 0 25 50 75 100 125 150 0.6 175 0 2 TA, AMBIENT TEMPERATURE (oC) FIGURE 5. HC/HCT221 OUTPUT PULSE WIDTH vs TEMPERATURE 4 6 VCC, SUPPLY VOLTAGE (V) FIGURE 6. HC/HCT221 K FACTOR vs SUPPLY VOLTAGE 106 VCC = 6V tW, PULSE WIDTH (µs) 105 104 103 102 RX = 100K RX = 50K 10 RX = 10K RX = 2K 1 0.1 10 102 8 103 104 105 106 107 CX, TIMING CAPACITANCE (pF) FIGURE 9. HC221 OUTPUT PULSE WIDTH vs CX 10 108 10 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1999, Texas Instruments Incorporated