BTS7040-2EPA PROFETTM+2 2x 40 mΩ Smart High-Side Power Switch 1 Package PG-TSDSO-14-22 Marking 7040-2A Overview Potential Applications • Suitable for resistive, inductive and capacitive loads • Replaces electromechanical relays, fuses and discrete circuits • Driving capability suitable for 3.5 A loads and high inrush current loads such as P27W + R5W lamps or LED equivalent VBAT R/L cable T1 CVS DZ2 VDD VS VDD GPIO RIN IN0 GPIO RIN IN1 GPIO GPIO RDEN DEN RDSEL DSEL T ROL R/L cable OUT0 Protection Micro controller RPD Control COUT0 T Diagnosis RAD A/D IN IS RIS_PROT GND R/L cable OUT1 DZ1 RSENSE CSENSE RGND VSS COUT1 RPD App_2CH_LI_INTDIO_Cover.emf Figure 1 Data Sheet BTS7040-2EPA Application Diagram. Further information in Chapter 10 www.infineon.com 1 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Overview Basic Features • High-Side Switch with Diagnosis and Embedded Protection • Part of PROFETTM+2 Family • ReverSave™ for low power dissipation in Reverse Polarity • Switch ON capability while Inverse Current condition (InverseON) • Green Product (RoHS compliant) • Qualified in accordance with AEC Q100 grade 1 Protection Features • Absolute and dynamic temperature limitation with controlled restart • Overcurrent protection (tripping) with Intelligent Restart Control • Undervoltage shutdown • Overvoltage Protection with external components Diagnostic Features • Proportional load current sense • Open Load in ON and OFF state • Short circuit to ground and battery Description The BTS7040-2EPA is a Smart High-Side Power Switch, providing protection functions and diagnosis. The device is integrated in SMART7 technology. Table 1 Product Summary Parameter Symbol Values Minimum Operating voltage (at switch ON) VS(OP) 4.1 V Minimum Operating voltage (cranking) VS(UV) 3.1 V Maximum Operating voltage VS 28 V Minimum Overvoltage protection (TJ = 25 °C) VDS(CLAMP) 35 V Maximum current in Sleep mode (TJ ≤ 85 °C) IVS(SLEEP) 1 µA Maximum operative current IGND(ACTIVE) 4 mA Maximum ON-state resistance (TJ = 150 °C) RDS(ON) 36 mΩ Nominal load current (TA = 85 °C) IL(NOM) 3.5 A Typical current sense ratio at IL = IL(NOM) kILIS 1800 Data Sheet 2 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Block Diagram and Terms 2 Block Diagram and Terms 2.1 Block Diagram VS Supply Voltage Monitoring Overvolt age Protec tion In ternal Power Sup ply In telligent Restart Cont rol IS Channel 1 Channel 0 SENSE output Voltage Sensor Overtemp erat ure DEN ESD Protec tion + In put logic DSEL In ternal Reverse Polarity P rotection OUT1 OUT0 Outp ut Voltage Limitation GND Data Sheet T Load Current Sense Outp ut Voltage Limitation GND c ircu itry Figure 2 T Overvolt age Clamping Overvolt age Clamping Overcurrent Protec tion Overcurrent Protec tion Overtemp erature Gat e Co ntrol + driver Gat eChargepump Co ntrol logic + driver Chargepump ReverSave TM logic In verseO N ReverSave TM In verseO N Load Current Sense IN0 IN1 Voltage Sensor Block_PROFET2ch_REVON.emf Block Diagram of BTS7040-2EPA 3 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Block Diagram and Terms 2.2 Terms Figure 3 shows all terms used in this data sheet, with associated convention for positive values. IVS VSIS IINn VS VDSn INn IDEN VS DEN OUTn IDSEL ILn DSEL VINn IIS VDEN IS VDSEL VOUTn GND VIS IGND Terms_PROFET.emf Figure 3 Data Sheet Voltage and Current Convention 4 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Pin Configuration 3 Pin Configuration 3.1 Pin Assignment GND IN0 DEN IS DSEL IN1 n.c. 1 2 3 4 5 6 7 14 13 12 VS 11 10 9 exposed pad (bottom) 8 OUT0 OUT0 OUT0 n.c. OUT1 OUT1 OUT1 PinOut_PROFET2ch.emf Figure 4 Data Sheet Pin Configuration 5 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Pin Configuration 3.2 Pin Definitions and Functions Table 2 Pin Definition Pin Symbol Function EP VS (exposed pad) Supply Voltage Battery voltage 1 GND Ground Signal ground 2, 6 INn Input Channel n Digital signal to switch ON channel n (“high” active) If not used: connect with a 10 kΩ resistor either to GND pin or to module ground 3 DEN Diagnostic Enable Digital signal to enable device diagnosis (“high” active) and to clear the protection counter of channel selected with DSEL pin If not used: connect with a 10 kΩ resistor either to GND pin or to module ground 4 IS SENSE current output Analog/digital signal for diagnosis If not used: left open 5 DSEL Diagnosis Selection Digital signal to select one channel to perform ON and OFF state diagnosis (“high” active) If not used: connect with a 10 kΩ resistor either to GND pin or to module ground 7, 11 n.c. Not connected, internally not bonded 8-10, 1214 OUTn Output n Protected high-side power output channel n1) 1) All output pins of the channel must be connected together on the PCB. All pins of the output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow Data Sheet 6 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings - General Table 3 Absolute Maximum Ratings1) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Number Test Condition Supply pins Power Supply Voltage VS -0.3 – 28 V – P_4.1.0.1 Load Dump Voltage VBAT(LD) – – 35 V suppressed Load Dump acc. to ISO16750-2 (2010). Ri = 2 Ω P_4.1.0.3 Supply Voltage for Short Circuit VBAT(SC) Protection 0 – 24 V Setup acc. to AEC-Q100-012 P_4.1.0.25 Reverse Polarity Voltage -VBAT(REV) – – 16 V t ≤ 2 min TA = +25 °C Setup as described in Chapter 10 P_4.1.0.5 Current through GND Pin IGND -50 – 50 mA RGND according P_4.1.0.9 to Chapter 10 Logic & control pins (Digital Input = DI) DI = INn, DEN, DSEL Current through DI Pin IDI -1 – 2 mA 2) P_4.1.0.14 Current through DI Pin Reverse Battery condition IDI -1 – 10 mA 2) P_4.1.0.36 Voltage at IS Pin VIS -1.5 – VS Current through IS Pin IIS -25 – IIS(SAT),M mA t ≤ 2 min IS pin V IIS = 10 μA P_4.1.0.16 – P_4.1.0.18 AX Temperatures Junction Temperature TJ -40 – 150 °C – P_4.1.0.19 Storage Temperature TSTG -55 – 150 °C – P_4.1.0.20 ESD Susceptibility Data Sheet 7 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 General Product Characteristics Table 3 Absolute Maximum Ratings1) (continued) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note or Number Test Condition Min. Typ. Max. -2 – 2 kV HBM3) P_4.1.0.21 ESD Susceptibility OUTn vs GND VESD(HBM)_OU -4 and VS connected (HBM) T – 4 kV HBM3) P_4.1.0.22 ESD Susceptibility all Pins (HBM) VESD(HBM) ESD Susceptibility all Pins (CDM) VESD(CDM) -500 – 500 V CDM4) P_4.1.0.23 ESD Susceptibility Corner Pins (CDM) (pins 1, 7, 8, 14) VESD(CDM)_CR -750 – 750 V CDM4) P_4.1.0.24 1) 2) 3) 4) N Not subject to production test - specified by design. Maximum VDI to be considered for Latch-Up tests: 5.5 V ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS001 (1.5 kΩ, 100 pF) ESD susceptibility, Charged Device Model “CDM” according JEDEC JESD22-C101 Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Absolute Maximum Ratings - Power Stages 4.2.1 Power Stage - 40 mΩ Table 4 Absolute Maximum Ratings1) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Maximum Energy Dissipation Single Pulse Data Sheet Symbol EAS Values Min. Typ. Max. – – 36 8 Unit Note or Test Condition Number mJ IL = 2*IL(NOM) TJ(0) = 150 °C VS = 28 V P_4.2.6.1 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 General Product Characteristics Table 4 Absolute Maximum Ratings1) (continued) TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number mJ IL = IL(NOM) TJ(0) = 85 °C VS = 13.5 V 1M cycles P_4.2.6.2 – P_4.2.6.3 Maximum Energy Dissipation Repetitive Pulse EAR – – 13 Load Current |IL| – – IL(OVL),M A AX 1) Not subject to production test - specified by design. 4.3 Functional Range Table 5 Functional Range - Supply Voltage and Temperature1) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. 6 13.5 18 V – P_4.3.0.1 Lower Extended Supply VS(EXT,LOW) Voltage Range for Operation 3.1 – 6 V 2)3) P_4.3.0.2 Upper Extended Supply VS(EXT,UP) Voltage Range for Operation 18 Junction Temperature -40 Supply Voltage Range for Normal Operation VS(NOR) TJ (parameter deviations possible) – 28 V 3) P_4.3.0.3 (parameter deviations possible) – 150 °C – P_4.3.0.5 1) Not subject to production test - specified by design. 2) In case of VS voltage decreasing: VS(EXT,LOW),MIN = 3.1 V. In case of VS voltage increasing: VS(EXT,LOW),MIN = 4.1 V 3) Protection functions still operative Note: Data Sheet Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics tables. 9 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 General Product Characteristics 4.4 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Table 6 Thermal Resistance1) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Thermal Characterization Parameter Junction-Top ΨJTOP – 2.4 4.1 K/W 2) P_4.4.0.1 Thermal Resistance Junction-to-Case RthJC – 1.6 2.7 K/W 2) P_4.4.0.2 Thermal Resistance Junction-to-Ambient RthJA – simulated at exposed pad 31.8 – K/W 2) P_4.4.0.3 1) Not subject to production test - specified by design. 2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; the Product (Chip + Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. Simulation done at TA = 105°C, PDISSIPATION = 1 W. 4.4.1 PCB Setup 1,5 mm 70 µm Modeled (traces, cooling area) 70 µm, 5% metalization* *: means percentual Cu metalization on each layer Figure 5 PCB_Zth_1s0p.emf 1s0p PCB Cross Section 70 µm modelled (traces) 1,5 mm 35 µm, 90% metalization* 35 µm, 90% metalization* 70 µm, 5% metalization* *: means percentual Cu metalization on each layer PCB_Zth_2s2p.emf Figure 6 Data Sheet 2s2p PCB Cross Section 10 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 General Product Characteristics PCB 1s0p + 600 mm2 cooling PCB 2s2p / 1s0p footprint PCB_sim _setup_TSDSO14.emf Figure 7 PCB setup for thermal simulations PCB_2s2p_vias_TSDSO14.emf Figure 8 Thermal vias on PCB for 2s2p PCB setup 4.4.2 Thermal Impedance Data Sheet 11 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 General Product Characteristics BTS7040-2EPx 100 ZthJA (K/W) TA = 105°C 10 1 2s2p 1s0p - 600 mm 1s0p - 300 mm 1s0p - footprint 0.1 0.0001 Figure 9 0.001 0.01 0.1 1 Time (s) 10 100 1000 Typical Thermal Impedance. PCB setup according Chapter 4.4.1 BTS7040-EPx 130 1s0p - Ta = 105°C 120 110 100 RthJA (K/W) 90 80 70 60 50 40 30 0 Figure 10 Data Sheet 100 200 300 Cooling area (mm2) 400 500 600 Thermal Resistance on 1s0p PCB with various cooling surfaces 12 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Logic Pins 5 Logic Pins The device has 4 digital pins for direct control. 5.1 Input Pins (INn) The input pins IN0, IN1 activate the corresponding output channel. The input circuitry is compatible with 3.3V and 5V micro controller. The electrical equivalent of the input circuitry is shown in Figure 11. In case the pin is not used, it must be connected with a 10 kΩ resistor either to GND pin or to module ground. VS IN VS(CLAMP ) IDI ESD IDI VDI (CLAMP) V DI IGND RGND GND Input_IN_INTDIO.emf Figure 11 Input circuitry The logic thresholds for “low” and “high” states are defined by parameters VDI(TH) and VDI(HYS). The relationship between these two values is shown in Figure 12. The voltage VIN needed to ensure a “high” state is always higher than the voltage needed to ensure a “low” state. V DI V DI(TH ),M AX V DI(TH) V DI(HYS) V DI(TH ),M IN t Internal channel activation signal 0 x 1 x 0 t Input_VDITH_2.emf Figure 12 Data Sheet Input Threshold voltages and hysteresis 13 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Logic Pins 5.2 Diagnosis Pin The Diagnosis Enable (DEN) pin controls the diagnosis circuitry and the protection circuitry. When DEN pin is set to “high”, the diagnosis is enabled (see Chapter 9.2 for more details). When it is set to “low”, the diagnosis is disabled (IS pin is set to high impedance). The Diagnosis Selection (DSEL) pin selects the channel where diagnosis is performed (see Chapter 9.1.1). The transition from “high” to “low” of DEN pin clears the protection latch of the channel selected with DSEL pin depending on the logic state of IN pin and DEN pulse length (see Chapter 8.3 for more details). The internal structure of diagnosis pins is the same as the one of input pins. See Figure 11 for more details. Data Sheet 14 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Logic Pins 5.3 Electrical Characteristics Logic Pins VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VS = 13.5 V, TJ = 25 °C Digital Input (DI) pins = IN, DEN, DSEL Table 7 Electrical Characteristics: Logic Pins - General Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Digital Input Voltage Threshold VDI(TH) 0.8 1.3 2 V See Figure 11 and P_5.4.0.1 Figure 12 Digital Input Clamping Voltage VDI(CLAMP1) – 7 – V 1) Digital Input Clamping Voltage VDI(CLAMP2) 6.5 7.5 8.5 V IDI = 2 mA P_5.4.0.3 See Figure 11 and Figure 12 Digital Input Hysteresis VDI(HYS) – 0.25 – V 1) IDI 2 10 25 µA VDI = 2 V P_5.4.0.5 See Figure 11 and Figure 12 Digital Input Current (“low”) IDI 2 10 25 µA VDI = 0.8 V P_5.4.0.6 See Figure 11 and Figure 12 Digital Input Current (“high”) P_5.4.0.2 IDI = 1 mA See Figure 11 and Figure 12 P_5.4.0.4 See Figure 11 and Figure 12 1) Not subject to production test - specified by design Data Sheet 15 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Supply 6 Power Supply The BTS7040-2EPA is supplied by VS, which is used for the internal logic as well as supply for the power output stages. VS has an undervoltage detection circuit, which prevents the activation of the power output stages and diagnosis in case the applied voltage is below the undervoltage threshold. 6.1 Operation Modes BTS7040-2EPA has the following operation modes: • Sleep mode • Active mode • Stand-by mode The transition between operation modes is determined according to these variables: • logic level at INn pins • logic level at DEN pin The state diagram including the possible transitions is shown in Figure 13. The behavior of BTS7040-2EPA as well as some parameters may change in dependence from the operation mode of the device. Furthermore, due to the undervoltage detection circuitry which monitors VS supply voltage, some changes within the same operation mode can be seen accordingly. There are three parameters describing each operation mode of BTS7040-2EPA: • status of the output channel • status of the diagnosis • current consumption at VS pin (measured by IVS in Sleep mode, IGND in all other operative modes) Table 8 shows the correlation between operation modes, VS supply voltage, and the state of the most important functions (channel status, diagnosis). Unsupplied Power-up VS > VS(OP) IN = „low“ & DEN = „low“ IN = „high“ Sleep IN = „low“ & DEN = „high“ IN = „low“ & DEN = „low“ Active DEN = „high“ IN = „high“ DEN = „low“ Figure 13 Data Sheet Stand-by IN = „low“ & DEN = „high“ PowerSupply_OpMode_PROFE T.emf Operation Mode State Diagram 16 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Supply Table 8 Device function in relation to operation modes and VS voltage Operative Mode Function VS in undervoltage VS not in undervoltage Sleep Channels OFF OFF Diagnosis OFF OFF Channels OFF available Diagnosis OFF available in OFF and ON states Channels OFF OFF Diagnosis OFF available in OFF state Active Stand-by 6.1.1 Unsupplied In this state, the device is either unsupplied (no voltage applied to VS pin) or the supply voltage is below the undervoltage threshold. 6.1.2 Power-up The Power-up condition is entered when the supply voltage (VS) is applied to the device. The supply is rising until it is above the undervoltage threshold VS(OP) therefore the internal power-on signals are set. 6.1.3 Sleep mode The device is in Sleep mode when all Digital Input pins (INn, DEN, DSEL) are set to “low”. When BTS7040-2EPA is in Sleep mode, all outputs are OFF. The current consumption is minimum (see parameter IVS(SLEEP)). No Overtemperature or Overload protection mechanism is active when the device is in Sleep mode. The device can go in Sleep mode only if the protection is not active (counter = 0, see Chapter 8.3.1 for further details). 6.1.4 Stand-by mode The device is in Stand-by mode as long as DEN pin is set to “high” while input pins are set to “low”. All channels are OFF therefore only Open Load in OFF diagnosis is possible. Depending on the load condition, either a fault current IIS(FAULT) or an Open Load in OFF current IIS(OLOFF) may be present at IS pin. In such situation, the current consumption of the device is increased. 6.1.5 Active mode Active mode is the normal operation mode of BTS7040-2EPA. The device enters Active mode as soon as one IN pin is set to “high”. Device current consumption is specified with IGND(ACTIVE) (measured at GND pin because the current at VS pin includes the load current). Overload, Overtemperature and Overvoltage protections are active. Diagnosis is available. 6.2 Undervoltage on VS Between VS(OP) and VS(UV) the undervoltage mechanism is triggered. If the device is operative (in Active mode) and the supply voltage drops below the undervoltage threshold VS(UV), the internal logic switches OFF the output channels. As soon as the supply voltage VS is above the operative threshold VS(OP), the channels having the corresponding input pin set to “high” are switched ON again. The restart is delayed with a time tDELAY(UV) which protects the device in case the undervoltage condition is caused by a short circuit event (according to AEC-Q100-012), as shown in Figure 14. Data Sheet 17 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Supply If the device is in Sleep mode and one input is set to “high”, the corresponding channel is switched ON if VS > VS(OP) without waiting for tDELAY(UV). VS VS(OP) VS(UV) VS(HYS) t Channel activat ion signal t VOUT tDELA Y(UV) t PowerSupply_UVRVS.emf Figure 14 Data Sheet VS undervoltage behavior 18 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Supply 6.3 Electrical Characteristics Power Supply VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): RL = 3.3 Ω Table 9 Electrical Characteristics: Power Supply - General Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Power Supply Undervoltage VS(UV) Shutdown 1.8 2.3 3.1 V VS decreasing IN = “high” From VDS ≤ 0.5 V to VDS = VS See Figure 14 P_6.4.0.1 Power Supply Minimum Operating Voltage 2.0 3.0 4.1 V VS increasing IN = “high” From VDS = VS to VDS ≤ 0.5 V See Figure 14 P_6.4.0.3 Power Supply Undervoltage VS(HYS) Shutdown Hysteresis – 0.7 – V 1) P_6.4.0.6 Power Supply Undervoltage tDELAY(UV) Recovery Time 2.5 5 7.5 ms dVS/dt ≤ 0.5 V/µs VS ≥ -1 V See Figure 14 P_6.4.0.7 Breakdown Voltage -VS(REV) between GND and VS Pins in Reverse Battery 16 – 30 V 1) P_6.4.0.9 VS pin VS(OP) VS(OP) - VS(UV) See Figure 14 IGND(REV) = 7 mA TJ = 150 °C 1) Not subject to production test - specified by design 6.4 Electrical Characteristics Power Supply - product specific 6.4.1 BTS7040-2EPA Data Sheet 19 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Supply Table 10 Electrical Characteristics: Power Supply BTS7040-2EPA Parameter Symbol Power Supply Current IVS(SLEEP)_85 Consumption in Sleep Mode with Loads at TJ ≤ 85 °C Values Min. Typ. Max. – 0.03 0.5 IGND(ACTIVE) Operating Current in Stand- IGND(STBY) by Mode Note or Test Condition Number µA 1) P_6.5.6.1 VS = 18 V VOUT = 0 V IN = DEN = “low” TJ ≤ 85 °C Power Supply Current IVS(SLEEP)_150 – Consumption in Sleep Mode with Loads at TJ = 150 °C Operating Current in Active Mode (all Channels ON) Unit 3.5 14 µA VS = 18 V VOUT = 0 V IN = DEN = “low” TJ = 150 °C P_6.5.6.2 – 3 4 mA VS = 18 V IN = DEN = “high” P_6.5.6.3 – 1.2 1.8 mA VS = 18 V IN = “low” DEN = “high” P_6.5.6.5 1) Not subject to production test - specified by design Data Sheet 20 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages 7 Power Stages The high-side power stages are built using a N-channel vertical Power MOSFET with charge pump. 7.1 Output ON-State Resistance The ON-state resistance RDS(ON) depends mainly on junction temperature TJ. Figure 15 shows the variation of RDS(ON) across the whole TJ range. The value “2” on the y-axis corresponds to the maximum RDS(ON) measured at TJ = 150 °C. RDS(ON) variation over TJ 2.20 Reference value: "2" = RDS(ON),MAX @ 150 °C 2.00 1.80 RDS(ON) variation factor 1.60 1.40 1.20 1.00 0.80 0.60 0.40 Typical 0.20 0.00 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 Junction Temperature (°C) Figure 15 RDS(ON) variation factor The behavior in Reverse Polarity is described in Chapter 8.4.1. 7.2 Switching loads 7.2.1 Switching Resistive Loads When switching resistive loads, the switching times and slew rates shown in Figure 16 can be considered. The switch energy values EON and EOFF are proportional to load resistance and times tON and tOFF. Data Sheet 21 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages IN VIN(TH) VIN(HYS) t VOUT tON 90% of VS tOFF(DELAY) 70% of VS 70% of VS -(dV/dt)OFF (dV/dt)ON 30% of VS tON(DELAY) 10% of VS 30% of VS tOFF t PDMOS EON EOFF t PowerStage_SwitchRes.emf Figure 16 Switching a Resistive Load 7.2.2 Switching Inductive Loads When switching OFF inductive loads with high-side switches, the voltage VOUT drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device due to overvoltage, a voltage clamp mechanism is implemented. The clamping structure limits the negative output voltage so that VDS = VDS(CLAMP). Figure 17 shows a concept drawing of the implementation. The clamping structure protects the device in all operation modes listed in Chapter 6.1. VS High-side Channel VS VIS (CLAMP) VDS VDS(CLAMP) IS IL RSENSE VS(CLAMP) OUTn GND VO UTn L, RL RGN D IL PowerStage_Clamp_INTDIO.emf Figure 17 Data Sheet Output Clamp concept 22 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages During demagnetization of inductive loads, energy has to be dissipated in BTS7040-2EPA. The energy can be calculated with Equation (7.1): RL IL V S – V DS CLAMP L - + I L -----E = V DS CLAMP -------------------------------------------- ln 1 – ------------------------------------------ RL RL V S – V DS CLAMP (7.1) The maximum energy, therefore the maximum inductance for a given current, is limited by the thermal design of the component. 7.2.3 Output Voltage Limitation To increase the current sense accuracy, VDS voltage is monitored. When the output current IL decreases while the channel is diagnosed (DEN pin set to “high”, channel selected with DSEL pins - see Figure 18) bringing VDS equal or lower than VDS(SLC), the output DMOS gate is partially discharged. This increases the output resistance so that VDS = VDS(SLC) even for very small output currents. The VDS increase allows the current sensing circuitry to work more efficiently, providing better kILIS accuracy for output current in the low range. IN t DEN IL tsIS(ON) tsIS(OFF) t t VDS VS VDS(SLC) t PowerStage_GBR_diag.emf Figure 18 Output Voltage Limitation activation during diagnosis 7.3 Advanced Switching Characteristics 7.3.1 Inverse Current behavior When VOUT > VS, a current IINV flows into the power output transistor (see Figure 19). This condition is known as “Inverse Current”. If the channel is in OFF state, the current flows through the intrinsic body diode generating high power losses therefore an increase of overall device temperature. This may lead to a switch OFF of unaffected channels due to Overtemperature. If the channel is in ON state, RDS(INV) can be expected and power dissipation in the output stage is comparable to normal operation in RDS(ON). During Inverse Current condition, the channel remains in ON or OFF state as long as IINV < IL(INV). If one channel has inverse current applied, the neighbor channel is not influenced, meaning that switching ON and OFF timings, protection (Overcurrent, Overtemperature) and current sensing (kILIS) are still within specified limits. Data Sheet 23 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages With InverseON, it is possible to switch ON the channel during Inverse Current condition as long as IINV < IL(INV) (see Figure 20). VBAT VS Gate driver Device logic IINV INV Comp. VINV = VOUT > VS OUT RGND GND PowerStage_Inv Curr_INTDIO.emf Figure 19 Inverse Current Circuitry IN IN CASE 1 : Switch is ON CASE 2 : Switch is OFF OFF ON t IL NORMAL t IL NORMAL NORMAL t INVERSE NORMAL t INVERSE DMOS state DMOS state OFF ON t t CASE 3 : Switch ON into Inverse Current CASE 4 : Switch OFF into Inverse Current IN IN OFF ON IL NORMAL t IL NORMAL NORMAL t INVERSE OFF ON t NORMAL t INVERSE DMOS state DMOS state OFF ON ON OFF t t PowerStage_InvCurr_INVON.emf Figure 20 Data Sheet InverseON - Channel behavior in case of applied Inverse Current 24 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages Note: No protection mechanism like Overtemperature or Overload protection is active during applied Inverse Currents. 7.3.2 Switching Channels in Parallel In case of appearance of a short circuit with connected in parallel to drive a single load, it may happen that the two channels switch OFF asynchronously, therefore bringing an additional thermal stress to the channel that switches OFF last. For this reason it is not recommended to use the device with channels in parallel. 7.3.3 Cross Current robustness with H-Bridge configuration When BTS7040-2EPA is used as high-side switch e.g. in a bridge configuration (therefore paired with a low-side switch as shown in Figure 21), the maximum slew rate applied to the output by the low-side switch must be lower than | dVOUT / dt |. Otherwise the output stage may turn ON in linear mode (not in RDS(ON)) while the lowside switch is commutating. This creates an unprotected over heating situation for the DMOS due to the crossconduction current. VBAT R/L cable VS T T ON (DC) IN1 IN0 OUT1 OUT0 Current through Motor OFF | dVOUT / dt | Cross Current M ON (PWM) OFF PowerSt age_PassiveSlew_PROFET.emf Figure 21 Data Sheet High-Side switch used in Bridge configuration 25 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages 7.4 Electrical Characteristics Power Stages VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): RL = 3.3 Ω Table 11 Electrical Characteristics: Power Stages - General Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Voltages Drain to Source Clamping Voltage at TJ = -40 °C VDS(CLAMP)_-40 33 36.5 42 V IL = 5 mA TJ = -40°C See Figure 17 P_7.4.0.1 Drain to Source Clamping Voltage at TJ ≥ 25 °C VDS(CLAMP)_25 35 38 44 V 1) P_7.4.0.2 IL = 5 mA TJ ≥ 25°C See Figure 17 1) Tested at TJ = 150°C 7.4.1 Electrical Characteristics Power Stages - PROFET Table 12 Electrical Characteristics: Power Stages - PROFET Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Timings Switch-ON Delay tON(DELAY) 10 35 60 μs VS = 13.5 V VOUT = 10% VS See Figure 16 P_7.4.1.1 Switch-OFF Delay tOFF(DELAY) 10 25 50 μs VS = 13.5 V VOUT = 90% VS See Figure 16 P_7.4.1.2 Switch-ON Time tON 30 60 110 μs VS = 13.5 V VOUT = 90% VS See Figure 16 P_7.4.1.3 Switch-OFF Time tOFF 15 50 100 μs VS = 13.5 V VOUT = 10% VS See Figure 16 P_7.4.1.4 Switch-ON/OFF Matching tON - tOFF ΔtSW -20 20 60 μs VS = 13.5 V P_7.4.1.5 Voltage Slope Data Sheet 26 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages Table 12 Electrical Characteristics: Power Stages - PROFET (continued) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Switch-ON Slew Rate (dV/dt)ON 0.3 0.6 0.9 V/μs VS = 13.5 V P_7.4.1.6 VOUT = 30% to 70% of VS See Figure 16 Switch-OFF Slew Rate -(dV/dt)OFF 0.3 0.6 0.9 V/μs VS = 13.5 V P_7.4.1.7 VOUT = 70% to 30% of VS See Figure 16 Slew Rate Matching (dV/dt)ON - (dV/dt)OFF Δ(dV/dt)SW -0.15 0 0.15 V/μs VS = 13.5 V P_7.4.1.8 VDS(SLC) 2 7 18 mV 1) P_7.4.1.9 Voltages Output Voltage Drop Limitation at Small Load Currents DEN = “high” channel selected with DSEL pin IL = IL(OL) = 20 mA See Figure 18 1) Not subject to production test - specified by design 7.5 Electrical Characteristics - Power Output Stages 7.5.1 Power Output Stage - 40 mΩ Table 13 Electrical Characteristics: Power Stages - 40 mΩ Parameter Symbol Values Min. Typ. Max. 19 – Unit Note or Test Condition Number mΩ 1) P_7.5.6.1 Output characteristics ON-State Resistance at TJ = 25 °C RDS(ON)_25 – ON-State Resistance at TJ = 150 °C RDS(ON)_150 – – 36 mΩ TJ = 150 °C IL = 2 A P_7.5.6.2 ON-State Resistance in Cranking RDS(ON)_CRAN – – 45 mΩ TJ = 150 °C VS = 3.1 V IL = 0.75 A P_7.5.6.3 21 – mΩ 1) P_7.5.6.4 K RDS(INV)_25 ON-State Resistance in Inverse Current at TJ = 25 °C Data Sheet TJ = 25 °C – TJ = 25 °C VS = 13.5 V IL = -2 A 27 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Power Stages Table 13 Electrical Characteristics: Power Stages - 40 mΩ (continued) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. ON-State Resistance in RDS(INV)_150 Inverse Current at TJ = 150 °C – – 45 mΩ TJ = 150 °C VS = 13.5 V IL = -2 A P_7.5.6.5 RDS(REV)_25 ON-State Resistance in Reverse Polarity at TJ = 25 °C – 21 – mΩ 1) P_7.5.6.6 TJ = 25 °C VS = -13.5 V IL = -2 A RSENSE = 1.2 kΩ ON-State Resistance in Reverse Polarity at TJ = 150 °C RDS(REV)_150 – – 74 mΩ TJ = 150 °C VS = -13.5 V IL = -2 A RSENSE = 1.2 kΩ P_7.5.6.7 Nominal Load Current per Channel (all Channels Active) IL(NOM) – 3.5 – A 1) P_7.5.6.8 Output Leakage Current at TJ ≤ 85 °C IL(OFF)_85 – Output Leakage Current at TJ = 150 °C IL(OFF)_150 – 1.2 4 μA VOUT = 0 V VIN = “low” TA = 150 °C P_7.5.6.10 Inverse Current Capability IL(INV) – 3.5 – A 1) P_7.5.6.11 TA = 85 °C TJ ≤ 150 °C 0.01 0.5 μA 1) P_7.5.6.9 VOUT = 0 V VIN = “low” TA ≤ 85 °C VS < VOUT IN = “high” Voltage Slope Passive Slew Rate (e.g. for Half Bridge Configuration) |dVOUT / dt | – – 10 V/μs 1) P_7.5.6.12 VS = 13.5 V Voltages Drain Source Diode Voltage |VDS(DIODE)| – 650 700 mV IL = -190 mA TJ = 150 °C P_7.5.6.13 Switch-ON Energy EON – 0.44 – mJ 1) P_7.5.6.14 EOFF – Switch-OFF Energy VS = 18 V 0.55 – mJ 1) P_7.5.6.15 VS = 18 V 1) Not subject to production test - specified by design Data Sheet 28 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection 8 Protection The BTS7040-2EPA is protected against Overtemperature, Overload, Reverse Battery (with ReverSave™) and Overvoltage. Overtemperature and Overload protections are working when the device is not in Sleep mode. Overvoltage protection works in all operation modes. Reverse Battery protection works when the GND and VS pins are reverse supplied. 8.1 Overtemperature Protection The device incorporates both an absolute (TJ(ABS)) and a dynamic (TJ(DYN)) temperature protection circuitry for each channel. An increase of junction temperature TJ above either one of the two thresholds (TJ(ABS) or TJ(DYN)) switches OFF the overheated channel to prevent destruction. The channel remains switched OFF until junction temperature has reached the “Restart” condition described in Table 14. The behavior is shown in Figure 22 (absolute Overtemperature Protection) and Figure 23 (dynamic Overtemperature Protection). TJ(REF) is the reference temperature used for dynamic temperature protection. IN t DEN t IL IL(OVL) t THYS(ABS) TJ TJ(ABS) IIS t tIS(FAUL T)_D IIS(SA T) IIS(FAUL T) IL / kILIS t In ternal count er 1 0 t Protection_PROFET_OT_IRC.emf Figure 22 Data Sheet Overtemperature Protection (Absolute) 29 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection IN t DEN t IL IL(OVL) t TJ(DYN) TJ TJ(ABS) TJ(REF) t tIS(FAUL T)_D IIS IIS(FAUL T) IL / kILIS t In ter nal count er 0 1 2 t Protection_PROFET_dT_IRC.emf Figure 23 Overtemperature Protection (Dynamic) When the Overtemperature protection circuitry allows the channel to be switched ON again, the retry strategy described in Chapter 8.3 is followed. 8.2 Overload Protection The BTS7040-2EPA is protected in case of Overload or short circuit to ground. Two Overload thresholds are defined (see Figure 24) and selected automatically depending on the voltage VDS across the power DMOS: • IL(OVL0) when VDS < 13 V • IL(OVL1) when VDS > 22 V Data Sheet 30 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection Overload threshold variation ("1" = IL(OVL) typ @ VDS = 5 V) 1.1 IL(OVL0) 1 0.9 0.8 0.7 0.6 IL(OVL1) 0.5 0.4 0.3 0.2 0.1 0 4 6 8 10 12 14 16 18 20 22 24 26 28 Drain Source Voltage (V) Figure 24 Overload Current Thresholds variation with VDS In order to allow a higher load inrush at low ambient temperature, Overload threshold is maximum at low temperature and decreases when TJ increases (see Figure 25). IL(OVL0) typical value remains constant up to a junction temperature of +75 °C. IL(OVL0) variation over TJ 1.3 1.2 1.1 IL(OVL0) variation factor 1.0 0.9 0.8 0.7 reference value "1" = IL(OVL0) typ @ -40 °C 0.6 0.5 0.4 0.3 0.2 0.1 Typ 0.0 -40 -20 0 20 40 60 80 100 120 140 160 Junction Temperature (°C) Figure 25 Data Sheet Overload Current Thresholds variation with TJ 31 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection Power supply voltage VS can increase above 18 V for short time, for instance in Load Dump or in Jump Start condition. Whenever VS ≥ VS(JS), the overload detection current is set to IL(OVL_JS) as shown in Figure 26. I L(OVL ) IL(OVL_ JS) VS V S(JS) Protection_JS.emf Figure 26 Overload Detection Current variation with VS voltage When IL ≥ IL(OVL) (either IL(OVL0) or IL(OVL1)), the channel is switched OFF. The channel is allowed to restart according to the retry strategy described in Chapter 8.3. 8.3 Protection and Diagnosis in case of Fault Any event that triggers a protection mechanism (either Overtemperature or Overload) has 2 consequences: • the affected channel switches OFF and the internal counter is incremented • if the diagnosis is active for the affected channel, a current IIS(FAULT) is provided by IS pin (see Chapter 9.2.2 for further details) The channel can be switched ON again if all the protection mechanisms fulfill the “restart” conditions described in Table 14. Furthermore, the device has an internal retry counter (one for each channel) to maximize the robustness in case of fault. Table 14 Protection “Restart” Condition Fault condition Switch OFF event “Restart” Condition Overtemperature TJ ≥ TJ(ABS) or (TJ - TJ(REF)) ≥ TJ(DYN) TJ < TJ(ABS) and (TJ - TJ(REF)) < TJ(DYN) (including hysteresis) Overload IL ≥ IL(OVL) IL < 50 mA TJ within TJ(ABS) and TJ(DYN) ranges (including hysteresis) 8.3.1 Retry Strategy When IN is set to “high”, the channel is switched ON. In case of fault condition the output stage is switched OFF. The channel can be allowed to restart only if the “restart” conditions for the protection mechanisms are fulfilled (see Table 14). Data Sheet 32 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection The channel is allowed to switch ON for nRETRY(CR) times before switching OFF. After a time tRETRY, if the input pin is set to “high”, the channel switches ON again for nRETRY(NT) times before switching OFF again (“retry” cycle). After nRETRY(CYC) consecutive “retry” cycles, the channel latches OFF. It is necessary to set the input pin to “low” for a time longer than tDELAY(CR) to de-latch the channel (“counter reset delay” time) and to reset the internal counter to the default value. During the “counter reset delay” time, if the input is set to “high” the channel remains switched OFF and the timer counting tDELAY(CR) is reset, starting to count again as soon as the input pin is set to “low” again. If the input pin remains “low” for a time longer than tDELAY(CR) the internal retry counter is reset to the default value, allowing nRETRY(CR) retries at the next channel activation. The retry strategy is shown in Figure 29 (flowchart), Figure 27 (timing diagram - input pin always “high”) and Figure 28 (timing diagram - channel controlled in PWM). IN t Short c ircu it to ground t nRETR Y(CYC) "retry" cycle nRETRY(CR) IL In ternal counter 0 nR ETR Y(NT) 1 nRETR Y(NT) tR ETR Y tRETRY nR ETR Y(C R) nRETR Y(CR) + nR ETRY(NT) t tDELA Y(CR) nR ETRY(C R) + (nRETRY(CYC) * nRETR Y(NT)) 0 t DEN t IIS(FAUL T) IL / kILIS IIS IL / kILIS t Protection_PROFET_time_noPWM.emf Figure 27 Retry Strategy Timing Diagram IN t Short c ircu it to ground t nRETR Y(CYC) "retry" cy cle nR ETR Y(C R) IL In ter nal count er 0 1 nR ETR Y(NT) nRETRY(NT) tRETRY tR ETRY nRETR Y(CR) nRETRY(CR) + nR ETR Y(NT) t tDELA Y(CR) nRETR Y(CR) + (nR ETR Y(C YC) * nR ETR Y(NT)) 0 t Protect ion_PROFET_Timings.emf Figure 28 Data Sheet Retry Strategy Timing Diagram - Channel operated in PWM 33 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection START Channel remains OFF IN is "high" no yes yes "Retry" cycles = nRETRY(CYC) no no ALL "Restart" conditions fulfilled Switch channel OFF yes no Switch channel ON IN is "high" yes Channel remains ON Fault (Overtemperature or Overload) no yes Switch channel OFF Counter++ "Retry" cycles++ yes Counter < nRETRY(CR) Wait for tRETRY no "Retry" cycles = nRETRY(CYC) no yes Wait until IN is "low" then start counting for tDELAY(CR) IN is "low" no yes Continue counting for tDELAY(CR) tDELAY(CR) elapsed no yes Counter = 0 "Retry" cycles = 0 Protection_PROFET_Flow.emf Figure 29 Data Sheet Retry Strategy Flowchart 34 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection It is possible to “force” a reset of the internal counter without waiting for tDELAY(CR) by applying a pulse (rising edge followed by a falling edge) to the DEN pin while IN pin is “low”. The pulse applied to DEN pin must have a duration longer than tDEN(CR) to ensure a reset of the internal counter. The DSEL pin must select the channel that has to be de-latched and keep the same logic value while DEN pin toggles twice (rising edge followed by a falling edge). The timings are shown in Figure 30. IN t Short c ircu it to ground t nRETRY(CR) IL nRETRY(CR) t In ternal count er 0 1 nRETRY(CR) 0 1 nRETRY(CR) 0 t DEN tDEN(CR) tDEN(CR) tDEN(CR) t Protection_PROFET_DENforce_time2.emf Figure 30 Retry Strategy Timing Diagram with Forced Reset 8.4 Additional protections 8.4.1 Reverse Polarity Protection In Reverse Polarity condition (also known as Reverse Battery), the output stages are switched ON (see parameter RDS(REV)) because of ReverSave™ feature which limits the power dissipation in the output stages. Each ESD diode of the logic contributes to total power dissipation. The reverse current through the output stages must be limited by the connected loads. The current through digital input pins has to be limited as well by an external resistor (please refer to the Absolute Maximum Ratings listed in Chapter 4.1 and to Application Information in Chapter 10). Figure 31 shows a typical application including a device with ReverSave™. A current flowing into GND pin (IGND) during Reverse Polarity condition is necessary to activate ReverSave™, therefore a resistive path between module ground and device GND pin must be present. Data Sheet 35 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection -V BAT(REV) High-side Channel Micro controller DO VS IDI RDI DI ReverSave TM OUTn -IL IS GND R GND -IIS RSE NSE GND L, C, R -I GND Protection_RevBatt.emf Figure 31 Reverse Battery Protection (application example) 8.4.2 Overvoltage Protection In the case of supply voltages between VS(EXT,UP) and VBAT(LD), the output transistors are still operational and follow the input pin. In addition to the output clamp for inductive loads as described in Chapter 7.2.2, there is a clamp mechanism available for Overvoltage protection for the logic and the output channels, monitoring the voltage between VS and GND pins (VS(CLAMP)). 8.5 Protection against loss of connection 8.5.1 Loss of Battery and Loss of Load The loss of connection to battery or to the load has no influence on device robustness when load and wire harness are purely resistive. In case of driving an inductive load, the energy stored in the inductance must be handled. PROFETTM+2 devices can handle the inductivity of the wire harness up to 10 µH with IL(NOM). In case of applications where currents and/or the aforementioned inductivity are exceeded, an external suppressor diode (like diode DZ2 shown in Chapter 10) is recommended to handle the energy and to provide a welldefined path to the load current. 8.5.2 Loss of Ground In case of loss of module ground with the load remaining connected to ground, the device protects itself by automatically switching OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pins. In case of loss of device ground, it is recommended to have a resistor connected between any Digital Input pin and the micro controller to ensure a channel switch OFF (as described in Chapter 10). Data Sheet 36 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection 8.6 Electrical Characteristics Protection VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): RL = 3.3 Ω Table 15 Electrical Characteristics: Protection - General Parameter Symbol Values Min. Typ. Max. 175 200 Thermal Shutdown Temperature (Absolute) TJ(ABS) 150 Thermal Shutdown Hysteresis (Absolute) THYS(ABS) – Thermal Shutdown Temperature (Dynamic) TJ(DYN) – Power Supply Clamping Voltage at TJ = -40 °C VS(CLAMP)_-40 33 Power Supply Clamping Voltage at TJ ≥ 25 °C VS(CLAMP)_25 Power Supply Voltage VS(JS) Threshold for Overcurrent Threshold Reduction in case of Short Circuit Unit Note or Test Condition Number °C 1)2) P_8.6.0.1 See Figure 22 30 – K 3) P_8.6.0.2 See Figure 22 80 – K 3) P_8.6.0.3 See Figure 23 35 36.5 42 V IVS = 5 mA TJ = -40 °C See Figure 17 P_8.6.0.6 38 44 V 2) P_8.6.0.7 IVS = 5 mA TJ ≥ 25 °C See Figure 17 20.5 22.5 24.5 V 3) P_8.6.0.8 Setup acc. to AECQ100-012 1) Functional test only 2) Tested at TJ = 150°C only 3) Not subject to production test - specified by design 8.6.1 Electrical Characteristics Protection Table 16 Electrical Characteristics: Protection Parameter Symbol Values Unit Min. Typ. Max. Automatic Retries in Case of nRETRY(CR) Fault after a Counter Reset – 5 – Automatic Retries in Case of nRETRY(NT) Fault after the First tRETRY Activation – nRETRY(CYC) – Maximum “Retry” Cycles allowed before Channel Latch OFF Data Sheet Note or Test Condition Number 1) P_8.6.1.1 See Figure 27 and Figure 28 1 – 1) P_8.6.1.3 See Figure 27 and Figure 28 2 – 1) P_8.6.1.4 See Figure 27 and Figure 28 37 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Protection Table 16 Electrical Characteristics: Protection (continued) Parameter Symbol Values Min. Typ. Max. 70 100 Auto Retry Time after Fault Condition tRETRY 40 Counter Reset Delay Time after Fault Condition tDELAY(CR) 40 Minimum DEN Pulse Duration for Counter Reset tDEN(CR) 50 Unit Note or Test Condition Number ms 1) P_8.6.1.5 See Figure 27 and Figure 28 70 100 ms 1) P_8.6.1.6 See Figure 27 and Figure 28 100 150 µs 2) P_8.6.1.7 See Figure 30 1) Functional test only 2) Not subject to production test - specified by design 8.7 Electrical Characteristics Protection - Power Output Stages 8.7.1 Protection Power Output Stage - 40 mΩ Table 17 Electrical Characteristics: Protection - 40 mΩ Parameter Symbol Values Min. Typ. Max. Overload Detection Current IL(OVL0)_-40 at TJ = -40 °C 42 47 52 Overload Detection Current IL(OVL0)_25 at TJ = 25 °C 40 Overload Detection Current IL(OVL0)_150 at TJ = 150 °C 34 Overload Detection Current IL(OVL1) at High VDS – Overload Detection Current IL(OVL_JS) Jump Start Condition – Unit Note or Test Condition Number A 1) P_8.7.6.1 TJ = -40 °C dI/dt = 0.2 A/µs see Figure 24 46 52 A 2) P_8.7.6.7 TJ = 25 °C dI/dt = 0.2 A/µs see Figure 24 39 45 A 2) P_8.7.6.8 TJ = 150 °C dI/dt = 0.2 A/µs see Figure 24 26 – A 2) P_8.7.6.5 dI/dt = 0.2 A/µs see Figure 24 26 – A 2) P_8.7.6.6 VS > VS(JS) dI/dt = 0.2 A/µs 1) Functional test only 2) Not subject to production test - specified by design Data Sheet 38 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis 9 Diagnosis For diagnosis purpose, the BTS7040-2EPA provides a combination of digital and analog signals at pin IS. These signals are generically named SENSE and written IIS. In case of disabled diagnostic (DEN pin set to “low”), IS pin becomes high impedance. A sense resistor RSENSE must be connected between IS pin and module ground if the current sense diagnosis is used. RSENSE value has to be higher than 820 Ω (or 400 Ω when a central Reverse Battery protection is present on the battery feed) to limit the power losses in the sense circuitry. A typical value is RSENSE = 1.2 kΩ. Due to the internal connection between IS pin and VS supply voltage, it is not recommended to connect the IS pin to the sense current output of other devices, if they are supplied by a different battery feed. See Figure 32 for details as an overview. VS Channel 1 Channel 0 T Overtemperature Internal Counters INn OUT1 IS pin control logic OUT0 DEN IL / kILIS DSEL MUX +V IIS(FAULT) DS(OLOFF) MUX IIS(OLOFF) MUX IS RSENSE Diagnosis_PROFET_2CH.emf Figure 32 Diagnosis Block Diagram 9.1 Overview Table 18 gives a quick reference for the state of the IS pin during BTS7040-2EPA operation. Data Sheet 39 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis Table 18 SENSE Signal, Function of Application Condition Application Condition Input level DEN level VOUT Diagnostic Output Normal operation “low” ~ GND Z IIS(FAULT) if counter > 0 Short circuit to GND ~ GND Z IIS(FAULT) if counter > 0 Overtemperature Z IIS(FAULT) Short circuit to VS VS IIS(OLOFF) (IIS(FAULT) if counter > 0) Open Load < VS - VDS(OLOFF) > VS - VDS(OLOFF)1) Z IIS(OLOFF) (in both cases IIS(FAULT) if counter > 0) Inverse current ~ VINV = VOUT > VS IIS(OLOFF) (IIS(FAULT) if counter > 0) ~ VS IIS = IL / kILIS Overcurrent < VS IIS(FAULT) Short circuit to GND ~ GND IIS(FAULT) Overtemperature Z IIS(FAULT) Short circuit to VS VS Normal operation “high” “high” IIS < IL / kILIS ~ VS 2) IIS = IIS(EN) Under load (e.g. Output Voltage Limitation condition) ~ VS 3) IIS(EN) < IIS < IL(NOM) / kILIS Inverse current ~ VINV = VOUT > VS IIS = IIS(EN) n.a. Z Open Load All conditions n.a. “low” 1) With additional pull-up resistor 2) The output current has to be smaller than IL(OL) 3) The output current has to be higher than IL(OL) 9.1.1 SENSE signal truth table In case DEN is set to “high”, the SENSE for the selected channel is enabled or disabled using DSEL pin. Table 19 gives the truth table. Table 19 Diagnostic Truth Table DEN DSEL IS “low” not relevant Z “high” “low” SENSE output 0 “high” “high” SENSE output 1 9.2 Diagnosis in ON state A current proportional to the load current (ratio kILIS = IL / IIS) is provided at pin IS when the following conditions are fulfilled: Data Sheet 40 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis • the power output stage is switched ON with VDS < 2 V • the diagnosis is enabled for that channel • no fault (as described in Chapter 8.3) is present or was present and not cleared yet (see Chapter 9.2.2 for further details) If a “hard” failure mode is present or was present and not cleared yet a current IIS(FAULT) is provided at IS pin. 9.2.1 Current Sense (kILIS) The accuracy of the sense current depends on temperature and load current. IIS increases linearly with IL output current until it reaches the saturation current IIS(SAT). In case of Open Load at the output stage (IL close to 0 A), the maximum sense current IIS(EN) (no load, diagnosis enabled) is specified. This condition is shown in Figure 34. The blue line represents the ideal kILIS line, while the red lines show the behavior of a typical product. An external RC filter between IS pin and micro controller ADC input pin is recommended to reduce signal ripple and oscillations (a minimum time constant of 1 µs for the RC filter is recommended). The kILIS factor is specified with limits that take into account effects due to temperature, supply voltage and manufacturing process. Tighter limits are possible (within a defined current window) with calibration: • a well-defined and precise current (IL(CAL)) is applied at the output during End of Line test at customer side • the corresponding current at IS pin is measured and the kILIS is calculated (kILIS @ IL(CAL)) • within the current range going from IL(CAL)_L to IL(CAL)_H the kILIS is equal to kILIS @ IL(CAL) with limits defined by ΔkILIS The derating of kILIS after calibration is calculated using the formulas in Figure 33 and it is specified by ΔkILIS Diagnosis_dKILIS.emf Figure 33 ΔkILIS calculation formulas The calibration is intended to be performed at TA(CAL) = 25°C. The parameter ΔkILIS includes the drift over temperature as well as the drift over the current range from IL(CAL)_L to IL(CAL)_H. IIS I IS(OL) IIS(EN) I L(OL) IL Diagnosis_OLON_adv .emf Figure 34 Data Sheet Current Sense Ratio in Open Load at ON condition 41 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis 9.2.2 Fault Current (IIS(FAULT)) As soon a protection event occurs, changing the value of the internal retry counter (see Chapter 8.3 for more details) from its reset state, a current IIS(FAULT) is provided by pin IS when DEN is set to “high” and the affected channel is selected. The following 3 situations may occur: • if the channel is ON and the number of retries is lower than “nRETRY(CR) + nRETRY(CYC) * nRETRY(NT)”, the current IIS(FAULT) is provided for a time tIS(FAULT)_D after the channel is allowed to restart, after which IIS = IL / kILIS (as shown in Figure 35). During a retry cycle (while timer tRETRY is running) the current IIS(FAULT) is provided each time the channel diagnosis is checked • if the channel is ON and the number of retries is equal than “nRETRY(CR) + nRETRY(CYC) * nRETRY(NT)”, the current IIS(FAULT) is provided until the internal counter is reset (either by expiring of tDELAY(CR) time or by DEN pin pulse, as described in Chapter 8.3.1) • if the channel is OFF and the internal counter is not in the reset state, the current IIS(FAULT) is provided each time the channel diagnosis is checked IN t IL IL(OVL) t In ternal count er 0 1 2 0 t DEN tIS(FAUL T)_D IIS t IIS(FAUL T) IL / kILIS IIS(FAUL T) t Diagnosis_PROFET_IISFAULT_load.emf Figure 35 IIS(FAULT) at Load Switching Figure 36 adds the behavior of SENSE signal to the timing diagram seen in Figure 28, while Figure 37 shows the relation between IIS = IL / kILIS, IIS(SAT) and IIS(FAULT). Data Sheet 42 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis IN t Short circu it to ground t nRETRY(CYC) "retry" cycle nRETRY(CR) IL In ternal count er 0 nRETRY(NT) 1 nRETRY(NT) tRETRY tRETRY nRETRY(CR) nRETRY(CR) + nRETRY(NT) t tDELA Y(CR) nRETRY(CR) + (nRETRY(CYC) * nRETRY(NT)) 0 t DEN IIS(FAUL T) IIS(FAUL T) t IIS(FAUL T) IL / kILIS IIS t Diagnosis_PROFET_IISFAULT.emf Figure 36 SENSE behavior in Fault condition IIS IIS(SA T),max IIS(SA T) IIS(FAUL T),max IIS(FAUL T) IIS(SA T),mi n = IIS(FAUL T),min IL / kILIS IL(OVL) IL Diagnosis_PROFET_IISFAULT_IISSAT.emf Figure 37 SENSE behavior - overview 9.3 Diagnosis in OFF state When a power output stage is in OFF state, the BTS7040-2EPA can measure the output voltage and compare it with a threshold voltage. In this way, using some additional external components (a pull-down resistor and a switchable pull-up current source), it is possible to detect if the load is missing or if there is a short circuit to battery. If a Fault condition was detected by the device (the internal counter has a value different from the reset value, as described in Chapter 9.2.2) a current IIS(FAULT) is provided by IS pin each time the channel diagnosis is checked also in OFF state. Data Sheet 43 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis 9.3.1 Open Load current (IIS(OLOFF)) In OFF state, when DEN pin is set to “high” and a channel is selected using DSEL pin, the VDS voltage is compared with a threshold voltage VDS(OLOFF). If the load is properly connected and there is no short circuit to battery, VDS ~ VS therefore VDS > VDS(OLOFF). When the diagnosis is active and VDS ≤ VDS(OLOFF), a current IIS(OLOFF) is provided by IS pin. Figure 38 shows the relationship between IIS(OLOFF) and IIS(FAULT) as functions of VDS. The two currents do not overlap making always possible to differentiate between Open Load in OFF and Fault condition. IIS IIS(FAUL T) IIS(OLOFF) VDS VDS(OLOFF) Diagnosis_PROFET_IISOLOFF.emf Figure 38 IIS in OFF State It is necessary to wait a time tIS(OLOFF)_D between the falling edge of the input pin and the sensing at pin IS for Open Load in OFF diagnosis to allow the internal comparator to settle. In Figure 39 the timings for an Open Load detection are shown - the load is always disconnected. IN t DEN VOUT tIS(OLOFF)_D t ~ VS VDS(OLOFF) Load conn ect ed t IIS IIS(OLOFF) IIS(OL) t Diagnosis_PROFET_OLOFF_time.emf Figure 39 Data Sheet Open Load in OFF Timings - load disconnected 44 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis 9.4 SENSE Timings Figure 40 and Figure 42 show the timing during settling tsIS(ON) and disabling tsIS(OFF) of the SENSE (including the case of load change). As a proper signal cannot be established before the load current is stable (therefore before tON), tsIS(DIAG) = tsIS(ON) + tON. IN OFF OFF ON t DEN t tO FF IL tsIS (L C) tsIS (O FF) tsIS (ON) t tsIS (O FF) tsIS (DI AG) IIS t Diagnose_PROFET_SENSE_timings.emf Figure 40 SENSE Settling / Disabling Timing IN OFF OFF ON t DEN t IL tsIS(ON)_SLC tsIS(ON) t tsIS(LC)_SLC IIS t Diagnose_PROFET_SENSE_timings_SLC.emf Figure 41 Data Sheet SENSE Timing with Small Load Current 45 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis DEN t DSEL t IL0 IL(CAL) t IL1 IL(CAL)_L IL(CAL)_O L tsI S(CC) tsIS (O FF) tsIS (ON) tsI S(CC)_SLC t IIS t Diagnose_PROFET_SENSE_timings_CC.emf Figure 42 Data Sheet SENSE Settling Timing - Channel Change 46 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis 9.5 Electrical Characteristics Diagnosis VS = 6 V to 18 V, TJ = -40 °C to +150 °C Typical values: VS = 13.5 V, TJ = 25 °C Typical resistive loads connected to the outputs for testing (unless otherwise specified): RL = 3.3 Ω Table 20 Electrical Characteristics: Diagnosis - General Parameter Symbol Values Unit Note or Test Condition Number mA 1) P_9.6.0.13 Min. Typ. Max. IIS(SAT) 4.4 – 15 IIS(SAT) 4.1 SENSE Leakage Current when Disabled IIS(OFF) – 0.01 0.5 µA DEN = “low” IL ≥ IL(NOM) VIS = 0 V P_9.6.0.2 SENSE Leakage Current when Enabled at TJ ≤ 85 °C IIS(EN)_85 – 0.2 1 µA 1) P_9.6.0.3 SENSE Saturation Current SENSE Saturation Current IIS(EN)_150 SENSE Leakage Current when Enabled at TJ = 150 °C SENSE Operative Range for kILIS Operation (VS - VIS) VSIS_k SENSE Operative Range for VSIS_OL Open Load at OFF Diagnosis (VS - VIS) SENSE Operative Range for Fault Diagnosis (VS - VIS) Data Sheet VSIS_F VS = 8 V to 18 V RSENSE = 1.2 kΩ See Figure 37 – 15 mA 1) P_9.6.0.14 VS = 6 V to 18 V RSENSE = 1.2 kΩ See Figure 37 TJ ≤ 85 °C DEN = “high” IL = 0 A See Figure 34 – 0.2 1 µA TJ = 150 °C DEN = “high” IL = 0 A See Figure 34 P_9.6.0.4 – 0.5 1 V 1) P_9.6.0.6 VS = 6 V IN = DEN = “high” IL ≤ 1.2 * IL(NOM) – 0.5 1 V 1) P_9.6.0.7 VS = 6 V IN = “low” DEN = “high” – 0.5 1 V 1) P_9.6.0.8 VS = 6 V IN = “low” DEN = “high” counter > 0 47 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis Table 20 Electrical Characteristics: Diagnosis - General (continued) Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. 33 36.5 42 V IIS = 1 mA TJ = -40 °C See Figure 17 P_9.6.0.9 38 44 V 2) P_9.6.0.10 Power Supply to IS Pin Clamping Voltage at TJ = -40 °C VSIS(CLAMP)_- Power Supply to IS Pin Clamping Voltage at TJ ≥ 25 °C VSIS(CLAMP)_25 35 40 IIS = 1 mA TJ ≥ 25 °C See Figure 17 1) Not subject to production test - specified by design 2) Tested at TJ = 150°C 9.5.1 Electrical Characteristics Diagnosis Table 21 Electrical Characteristics: Diagnosis Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number SENSE Fault Current IIS(FAULT) 4.4 5.5 10 mA See Figure 37 and P_9.6.1.1 Figure 38 SENSE Open Load in OFF Current IIS(OLOFF) 1.9 2.5 3.5 mA See Figure 37 and P_9.6.1.2 Figure 38 SENSE Delay Time at Channel Switch ON after Last Fault Condition tIS(FAULT)_D – 500 – µs 1) SENSE Open Load in OFF Delay Time tIS(OLOFF)_D 30 70 120 µs VDS < VOL(OFF) from IN falling edge to IIS = IS(OLOFF),MIN * 0.9 DEN = “high” counter = 0 See Figure 39 P_9.6.1.4 Open Load VDS Detection Threshold in OFF State VDS(OLOFF) 1.3 1.8 2.3 V See Figure 38 P_9.6.1.5 SENSE Settling Time with Nominal Load Current Stable tsIS(ON) – 5 20 µs IL = IL(CAL) from DEN rising edge to IIS = IL / (kILIS,MAX @ IL) * 0.9 See Figure 40 P_9.6.1.6 SENSE Settling Time with Small Load Current Stable tsIS(ON)_SLC – – 60 µs 1) P_9.6.1.13 Data Sheet P_9.6.1.3 See Figure 35 IL = IL(CAL)_OL from DEN rising edge to IIS = IL / (kILIS,MAX @ IL) * 0.9 48 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis Table 21 Electrical Characteristics: Diagnosis (continued) Parameter Symbol Values Min. Typ. Max. tsIS(OFF) – 5 20 SENSE Settling Time after Load Change tsIS(LC) – SENSE Settling Time after Load Change with Small Load Current tsIS(LC)_SLC – SENSE Settling Time after Channel Change tsIS(CC) – SENSE Disable Time SENSE Settling Time after tsIS(CC)_SLC Channel Change with Small Load Current Unit Note or Test Condition Number µs 1) P_9.6.1.8 From DEN falling edge to IIS = IIS(OFF) See Figure 40 5 20 µs 1) P_9.6.1.9 from IL = IL(CAL)_L to IL = IL(CAL) (see ΔkILIS(NOM)) See Figure 40 250 400 µs 1) P_9.6.1.14 DEN = “high” from Load Change to IIS = IL / (kILIS @ IL) from IL(CAL) to IL(CAL)_OL 5 20 µs 1) P_9.6.1.10 Start channel: IL = IL(CAL) End channel: IL = IL(CAL)_L (see ΔkILIS(NOM)) See Figure 42 – – 60 µs 1) P_9.6.1.15 DEN = “high” from DSEL toggling to IIS = IL / (kILIS,MIN @ IL) * 1.1 Start channel: IL = IL(CAL) End Channel: IL = IL(CAL)_OL (see ΔkILIS(NOM) and ΔkILIS(OL)) 1) Not subject to production test - specified by design 9.6 Electrical Characteristics Diagnosis - Power Output Stages 9.6.1 Diagnosis Power Output Stage - 40 mΩ Data Sheet 49 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Diagnosis Table 22 Electrical Characteristics: Diagnosis - 40 mΩ Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number mA IIS = IIS(OL) = 4 µA P_9.7.6.1 Open Load Output Current at IIS = 4 µA IL(OL)_4u 1 6 11 Current Sense Ratio at IL = IL02 kILIS02 -40% 1800 +40% IL02 = 20 mA P_9.7.6.6 Current Sense Ratio at IL = IL04 kILIS04 -35% 1800 +35% IL04 = 50 mA P_9.7.6.8 Current Sense Ratio at IL = IL05 kILIS05 -30% 1800 +30% IL05 = 100 mA P_9.7.6.9 Current Sense Ratio at IL = IL08 kILIS08 -26% 1800 +26% IL08 = 250 mA P_9.7.6.12 Current Sense Ratio at IL = IL11 kILIS11 -11% 1800 +11% IL11 = 1 A P_9.7.6.15 Current Sense Ratio at IL = IL13 kILIS13 -6% 1800 +6% IL13 = 2 A P_9.7.6.17 Current Sense Ratio at IL = IL15 kILIS15 -5% 1800 +5% IL15 = 4 A P_9.7.6.19 SENSE Current Derating with Low Current Calibration ΔkILIS(OL) -30 0 +30 1) P_9.7.6.27 SENSE Current Derating with Nominal Current Calibration ΔkILIS(NOM) -4 % IL(CAL)_OL = IL04 IL(CAL)_OL_H = IL05 IL(CAL)_OL_L = IL02 TA(CAL) = 25 °C 0 +4 % 1) P_9.7.6.29 IL(CAL) = IL13 IL(CAL)_H = IL15 IL(CAL)_L = IL11 TA(CAL) = 25 °C 1) Not subject to production test - specified by design Data Sheet 50 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Application Information 10 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. 10.1 Application Setup VBAT R/L cable T1 CVS DZ2 VDD ROL VS VDD GPIO RIN IN0 GPIO RIN IN1 GPIO RDEN DEN GPIO RDSEL DSEL R/L cable OUT0 RPD COUT0 Micro controller R/L cable OUT1 RAD A/D IN IS RIS_PROT GND DZ1 RSENSE CSENSE RGND VSS COUT1 RPD App_2CH_LI_INTDIO.emf Figure 43 BTS7040-2EPA Application Diagram Note: This is a very simplified example of an application circuit. The function must be verified in the real application. Table 23 Loads considered for Reverse Polarity setup (see P_4.1.0.5) Output RDS(ON),max @ TJ = 150 °C Load connected 40 mΩ 36 mΩ P27W + R5W Data Sheet 51 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Application Information 10.2 External Components Table 24 Suggested Component values Reference Value Purpose RIN 4.7 kΩ Protection of the micro controller during Overvoltage and Reverse Polarity. Necessary to switch OFF BTS7040-2EPA output during Loss of Ground RDEN 4.7 kΩ Protection of the micro controller during Overvoltage and Reverse Polarity. Necessary to switch OFF BTS7040-2EPA output during Loss of Ground RPD 47 kΩ Output polarization (pull-down). Improves BTS7040-2EPA immunity to electromagnetic noise ROL 1.5 kΩ Output polarization (pull-up). Ensure polarization of BTS7040-2EPA output during Open Load in OFF diagnosis COUT 10 nF Protection of BTS7040-2EPA output during ESD events and BCI T1 BC 807 Switch the battery voltage for Open Load in OFF diagnosis CVS 68 nF Filtering of voltage spikes on the battery line DZ2 33 V Z-Diode Suppressor diode Protection during Overvoltage and in case of Loss of Battery while driving an inductive load RSENSE 1.2 kΩ SENSE resistor RIS_PROT 4.7 kΩ Protection during Overvoltage, Reverse Polarity, Loss of Ground. Value to be tuned according to micro controller specifications. DZ1 7 V Z-Diode Protection of micro controller during Overvoltage RA/D 4.7 kΩ Protection of micro controller ADC input during Overvoltage, Reverse Polarity, Loss of Ground. Value to be tuned according to micro controller specifications. CSENSE 220 pF Sense signal filtering A time constant (RA/D * CSENSE) longer than 1 µs is recommended. RGND 47 Ω (1/16 W) Protection in case of Overvoltage and Loss of Battery while driving inductive loads 10.3 Further Application Information • Please contact us for information regarding the Pin FMEA • For further information you may contact http://www.infineon.com/ Data Sheet 52 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Package Outlines [ & & [ 6($7,1* &23/$1$5,7< 3/$1( s s ' [ $% & [ %27720 9,(: $ ,1'(; 0$5.,1* % s s [ s ' *$8*( 3/$1( s rr 0$; s 67$1'2)) Package Outlines 11 s ' $% '2(6 127 ,1&/8'( 3/$67,& 25 0(7$/ 3527586,21 2) 0$; 3(5 6,'( '$0%$5 352786,21 6+$// %( 0$;,080 00 727$/ ,1 (;&(66 2) /($' :,'7+ $// ',0(16,216 $5( ,1 81,76 00 7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 352-(&7,21 0(7+2' > @ Figure 44 PG-TSDSO-14-22 (Thin (Slim) Dual Small Outline 14 pins) Package Outline FRSSHU VROGHU PDVN VWHQFLO DSHUWXUHV $// ',0(16,216 $5( ,1 81,76 00 Figure 45 PG-TSDSO-14-22 (Thin (Slim) Dual Small Outline 14 pins) Package pads and stencil Data Sheet 53 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Package Outlines Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 54 Dimensions in mm Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Revision History 12 Revision History Table 25 BTS7040-2EPA - List of changes Revision Changes 1.00, 2017-08-24 Data Sheet available Data Sheet 55 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2.1 2.2 Block Diagram and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 4.1 4.2 4.2.1 4.3 4.4 4.4.1 4.4.2 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings - Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power Stage - 40 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PCB Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 5 5.1 5.2 5.3 Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Pins (INn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Logic Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 15 6 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.2 6.3 6.4 6.4.1 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unsupplied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stand-by mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage on VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Supply - product specific . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTS7040-2EPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 17 17 17 17 17 17 19 19 19 7 7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.3.3 7.4 7.4.1 7.5 7.5.1 Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output Voltage Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Advanced Switching Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Current behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Channels in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cross Current robustness with H-Bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stages - PROFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Output Stage - 40 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 21 22 23 23 23 25 25 26 26 27 27 Data Sheet 56 Rev. 1.00 2017-08-24 BTS7040-2EPA PROFETTM+2 Table of Contents 8 8.1 8.2 8.3 8.3.1 8.4 8.4.1 8.4.2 8.5 8.5.1 8.5.2 8.6 8.6.1 8.7 8.7.1 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overtemperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection and Diagnosis in case of Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Retry Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection against loss of connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Battery and Loss of Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loss of Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Protection - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection Power Output Stage - 40 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 29 30 32 32 35 35 36 36 36 36 37 37 38 38 9 9.1 9.1.1 9.2 9.2.1 9.2.2 9.3 9.3.1 9.4 9.5 9.5.1 9.6 9.6.1 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE signal truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis in ON state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Sense (kILIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault Current (IIS(FAULT)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis in OFF state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Open Load current (IIS(OLOFF)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SENSE Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Diagnosis - Power Output Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diagnosis Power Output Stage - 40 mΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 39 40 40 41 42 43 44 45 47 48 49 49 10 10.1 10.2 10.3 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 51 52 52 11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Data Sheet 57 Rev. 1.00 2017-08-24 Please read the Important Notice and Warnings at the end of this document Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2017-08-24 Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.