PD - 95953A IRFR2607ZPbF IRFU2607ZPbF Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free HEXFET® Power MOSFET D VDSS = 75V RDS(on) = 22mΩ G Description ID = 42A S This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. I-Pak D-Pak IRFR2607ZPbF IRFU2607ZPbF Absolute Maximum Ratings Parameter Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 45 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current IDM 42 32 180 110 W Linear Derating Factor Gate-to-Source Voltage 0.72 ± 20 W/°C V 96 mJ d EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) c IAR Avalanche Current EAR TJ Repetitive Avalanche Energy TSTG Storage Temperature Range h 96 See Fig.12a, 12b, 15, 16 g Operating Junction and -55 to + 175 °C Mounting Torque, 6-32 or M3 screw 300 (1.6mm from case ) y j Parameter Junction-to-Case RθJA Junction-to-Ambient (PCB mount) RθJA Junction-to-Ambient j ij y 10 lbf in (1.1N m) Thermal Resistance RθJC A mJ Soldering Temperature, for 10 seconds www.irf.com A c PD @TC = 25°C Power Dissipation VGS Units Typ. Max. ––– 1.38 ––– 40 ––– 110 Units °C/W 1 09/16/10 IRFR/U2607ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ RDS(on) Min. Typ. Max. Units V Conditions 75 ––– ––– VGS = 0V, ID = 250µA Breakdown Voltage Temp. Coefficient ––– 0.074 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 17.6 22 mΩ VGS = 10V, ID = 30A VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V gfs Forward Transconductance 36 ––– ––– S VDS = 25V, ID = 30A IDSS Drain-to-Source Leakage Current ––– ––– 20 µA VDS = 75V, VGS = 0V ––– ––– 250 e VDS = VGS, ID = 50µA VDS = 75V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Qg Total Gate Charge ––– 34 51 Qgs Gate-to-Source Charge ––– 8.9 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 14 ––– td(on) Turn-On Delay Time ––– 14 ––– VDD = 38V tr Rise Time ––– 59 ––– ID = 30A td(off) Turn-Off Delay Time ––– 39 ––– tf Fall Time ––– 28 ––– VGS = 10V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Input Capacitance ––– 1440 ––– and center of die contact VGS = 0V Coss Output Capacitance ––– 190 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 110 ––– Coss Output Capacitance ––– 720 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 130 ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 230 ––– VGS = 0V, VDS = 0V to 60V IGSS nA VGS = 20V VGS = -20V ID = 30A nC VDS = 60V VGS = 10V ns nH pF RG = 15 Ω e e ƒ = 1.0MHz f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 45 ISM (Body Diode) Pulsed Source Current ––– ––– 180 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 30A, VGS = 0V trr Reverse Recovery Time ––– 30 45 ns TJ = 25°C, IF = 30A, VDD = 38V Qrr Reverse Recovery Charge ––– 28 42 nC di/dt = 100A/µs ton Forward Turn-On Time 2 c MOSFET symbol A showing the integral reverse e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U2607ZPbF 1000 1000 100 BOTTOM TOP 10 1 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM 4.5V 10 ≤ 60µs PULSE WIDTH Tj = 175°C 0.1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 60 Gfs, Forward Transconductance (S) 1000.0 ID, Drain-to-Source Current(Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100.0 TJ = 175°C 10.0 TJ = 25°C 1.0 VDS = 20V ≤ 60µs PULSE WIDTH 0.1 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10.0 TJ = 25°C 50 40 TJ = 175°C 30 20 10 VDS = 10V 380µs PULSE WIDTH 0 0 10 20 30 40 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFR/U2607ZPbF 2400 VGS, Gate-to-Source Voltage (V) 2000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 1600 Ciss 1200 800 400 Coss Crss VDS = 60V VDS= 30V VDS= 12V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 ID= 30A 10 0 100 1000 ID, Drain-to-Source Current (A) 1000.0 ISD, Reverse Drain Current (A) 30 40 50 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100.0 TJ = 175°C 10.0 TJ = 25°C OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100µsec 10 1 10msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1msec DC 0.1 0.1 0.0 0.4 0.8 1.2 1.6 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 20 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 1.0 10 2.4 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U2607ZPbF 50 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 LIMITED BY PACKAGE ID , Drain Current (A) 40 30 20 10 0 25 50 75 100 125 150 ID = 30A VGS = 10V 2.0 1.5 1.0 0.5 175 -60 -40 -20 TC , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( ZthJC ) 10 1 D = 0.50 0.20 0.10 0.1 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ2 τ Ri (°C/W) τi (sec) 0.71826 0.000423 0.66173 0.004503 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V DRIVER L VDS D.U.T RG 20V VGS + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) IRFR/U2607ZPbF 400 I D 3.5A 4.8A BOTTOM 30A TOP 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 5.0 VGS(th) Gate threshold Voltage (V) 10 V VG Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K ID = 1.0A ID = 1.0mA ID = 250µA ID = 50µA 4.5 4.0 3.5 3.0 2.5 VCC 2.0 -75 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRFR/U2607ZPbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 100 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 30A 80 60 40 20 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U2607ZPbF D.U.T Driver Gate Drive + • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U2607ZPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH AS SEMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 2001 IN THE ASS EMBLY LINE "A" PART NUMBER INTERNATIONAL RECTIFIER LOGO Note: "P" in assembly line position indicates "Lead-Free" IRFR120 12 116A 34 AS SEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 16 LINE A "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level OR INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFR120 12 ASS EMBLY LOT CODE 34 DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) P = DESIGNATES LEAD-FREE PRODUCT QUALIFIED TO THE CONSUMER LEVEL (OPTIONAL) YEAR 1 = 2001 WEEK 16 A = AS SEMBLY S ITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFR/U2607ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRF U120 WIT H AS SEMBLY LOT CODE 5678 AS SEMBLED ON WW 19, 2001 IN THE ASS EMB LY LINE "A" INT ERNATIONAL RECTIF IER LOGO PART NUMBER IRFU120 119A 56 78 ASS EMBLY LOT CODE Note: "P" in ass embly line pos ition indicates Lead-Free" DAT E CODE YEAR 1 = 2001 WEEK 19 LINE A OR INT ERNATIONAL RECTIFIER LOGO PART NUMB ER IRFU120 56 ASSEMBLY LOT CODE 78 DAT E CODE P = DESIGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 1 = 2001 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRFR/U2607ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.21mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 30A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Rθ is measured at TJ approximately 90°C Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2010 www.irf.com 11