IRF IR2109STRPBF Ir2109(4) (s) & (pbf) half-bridge driver Datasheet

Data Sheet No. PD60163-U
IR2109(4) (S) & (PbF)
HALF-BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
High side output in phase with IN input
Logic and power ground +/- 5V offset.
Internal 540ns dead-time, and programmable
up to 5us with one external RDT resistor (IR21094)
Lower di/dt gate driver for better noise immunity
Shut down input turns off both channels.
Available in Lead-Free
Product Summary
VOFFSET
IO+/VOUT
ton/off (typ.)
Dead Time
600V max.
120 mA / 250 mA
10 - 20V
750 & 200 ns
540 ns
(programmable up to 5uS for IR21094)
Packages
14 Lead SOIC
Description
The IR2109(4)(S) are high voltage, high speed power
8 Lead SOIC
MOSFET and IGBT drivers with dependent high and
14 Lead PDIP
low side referenced output channels. Proprietary HVIC
and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is
8 Lead PDIP
compatible with standard CMOS or LSTTL output,
down to 3.3V logic. The output drivers feature a high
pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to
drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Typical Connection
up to 600V
VCC
V CC
VB
IN
IN
HO
SD
SD
VS
COM
LO
TO
LOAD
up to 600V
IR21094
IR2109
(Refer to Lead Assignments for correct
configuration). This/These diagram(s) show
electrical connections only. Please refer to our
Application Notes and DesignTips for proper
circuit board layout.
www.irf.com
HO
V CC
V CC
VB
IN
IN
VS
SD
SD
TO
LOAD
DT
V SS
RDT
V SS
COM
LO
1
IR2109(4) (S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Units
VB
High side floating absolute voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VCC + 0.3
DT
Programmable dead-time pin voltage (IR21094 only)
VSS - 0.3
VIN
Logic input voltage (IN & SD)
VSS - 0.3
VCC + 0.3
VSS
Logic ground (IR21094/IR21894 only)
VCC - 25
VCC + 0.3
dV S/dt
PD
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
—
50
—
1.0
(8 Lead SOIC)
—
0.625
(14 lead PDIP)
—
1.6
—
1.0
(8 Lead PDIP)
(14 lead SOIC)
RthJA
Thermal resistance, junction to ambient
(8 Lead PDIP)
—
125
(8 Lead SOIC)
—
200
(14 lead PDIP)
—
75
(14 lead SOIC)
2
Max.
—
120
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
www.irf.com
IR2109(4) (S) & (PbF)
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and V SS offset rating are tested with all supplies biased at 15V differential.
Symbol
Definition
VB
High side floating supply absolute voltage
VS
High side floating supply offset voltage
Min.
Max.
VS + 10
VS + 20
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (IN & SD)
VSS
VCC
DT
Programmable dead-time pin voltage (IR21094 only)
VSS
VCC
VSS
Logic ground (IR21094 only)
-5
5
Ambient temperature
-40
125
TA
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified.
Symbol
Min.
Typ.
ton
Turn-on propagation delay
—
750
950
VS = 0V
toff
tsd
Turn-off propagation delay
—
200
280
VS = 0V or 600V
Shut-down propagation delay
Delay matching, HS & LS turn-on/off
—
200
280
—
0
70
tr
Turn-on rise time
—
150
220
VS = 0V
tf
Turn-off fall time
—
50
80
VS = 0V
Deadtime: LO turn-off to HO turn-on(DTLO-HO) &
HO turn-off to LO turn-on (DTHO-LO)
400
4
540
5
680
6
Deadtime matching = DTLO - HO - DTHO-LO
—
0
60
—
0
600
MT
DT
MDT
www.irf.com
Definition
Max. Units Test Conditions
nsec
usec
nsec
RDT= 0
RDT = 200k (IR21094)
RDT=0
RDT = 200k (IR21094)
3
IR2109(4) (S) & (PbF)
Static Electrical Characteristics
VBIAS (VCC , VBS) = 15V, VSS = COM, DT= VSS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN
parameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron
parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol
Definition
VIH
Logic “1” input voltage for HO & logic “0” for LO
VIL
Min. Typ. Max. Units Test Conditions
2.9
—
—
VCC = 10V to 20V
Logic “0” input voltage for HO & logic “1” for LO
—
—
0.8
VCC = 10V to 20V
SD input positive going threshold
2.9
—
—
SD input negative going threshold
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
0.8
1.4
IO = 20 mA
VOL
Low level output voltage, VO
—
0.3
0.6
IO = 20 mA
VSD,TH+
VSD,TH-
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
20
75
130
IQCC
Quiescent VCC supply current
0.4
1.0
1.6
IIN+
Logic “1” input bias current
—
5
20
IIN-
Logic “0” input bias current
—
—
2
VCC and VBS supply undervoltage positive going
8.0
8.9
9.8
7.4
8.2
9.0
0.3
0.7
—
V
µA
mA
VCC = 10V to 20V
VCC = 10V to 20V
VB = VS = 600V
VIN = 0V or 5V
VIN = 0V or 5V
RDT = 0
VCCUV+
VBSUV+
VCCUV-
µA
IN = 5V, SD = 0V
IN = 0V, SD = 5V
threshold
VCC and VBS supply undervoltage negative going
VBSUV-
threshold
VCCUVH
Hysteresis
V
VBSUVH
4
IO+
Output high short circuit pulsed vurrent
120
200
—
IO-
Output low short circuit pulsed current
250
350
—
mA
VO = 0V, PW ≤ 10 µs
VO = 15V,PW ≤ 10 µs
www.irf.com
IR2109(4) (S) & (PbF)
Functional Block Diagrams
VB
IR2109
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
IN
HV
LEVEL
SHIFTER
Q
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
VCC
DEADTIME
UV
DETECT
+5V
VSS/COM
LEVEL
SHIFT
SD
LO
DELAY
COM
VB
IR21094
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
IN
HV
LEVEL
SHIFTER
R
PULSE
FILTER
S
VS
PULSE
GENERATOR
VCC
DEADTIME
DT
UV
DETECT
+5V
SD
Q
VSS/COM
LEVEL
SHIFT
DELAY
LO
COM
VSS
www.irf.com
5
IR2109(4) (S) & (PbF)
Lead Definitions
Symbol Description
IN
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM
for IR2109 and VSS for IR21094)
Logic input for shutdown (referenced to COM for IR2109 and VSS for IR21094)
SD
DT
Programmable dead-time lead, referenced to VSS. (IR21094 only)
VSS
Logic Ground (21094 only)
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
VCC
1
8
1
VCC
VB
8
2
IN
HO
7
2
IN
HO
7
3
SD
VS
6
3
SD
VS
6
COM
LO
COM
LO
5
4
1
5
4
8 Lead PDIP
8 Lead SOIC
IR2109
IR2109S
14
VCC
1
14
VCC
IN
VB
13
12
11
IN
VB
13
3
SD
HO
12
3
SD
HO
4
DT
VS
11
4
DT
VS
5
VSS
10
5
VSS
10
6
COM
9
6
COM
9
LO
8
7
LO
8
2
7
6
VB
2
14 Lead PDIP
14 Lead SOIC
IR21094
IR21094S
www.irf.com
IR2109(4) (S) & (PbF)
IN(LO)
IN
50%
50%
SD
IN(HO)
ton
toff
tr
90%
HO
LO
HO
LO
Figure 1. Input/Output Timing Diagram
90%
10%
10%
Figure 2. Switching Time Waveform Definitions
SD
50%
50%
tf
50%
IN
tsd
90%
HO
LO
90%
HO
LO
DT LO-HO
10%
DT HO-LO
90%
Figure 3. Shutdown Waveform Definitions
10%
MDT=
DT LO-HO
- DTHO-LO
Figure 4. Deadtime Waveform Definitions
IN (LO)
50%
50%
IN (HO)
LO
HO
10%
MT
MT
90%
LO
HO
Figure 5. Delay Matching Waveform Definitions
www.irf.com
7
IR2109(4) (S) & (PbF)
1300
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
1300
1100
900
M ax
T yp.
700
500
-50
-25
0
25
50
75
100
1100
Max.
900
T yp.
700
500
125
10
12
Figure 6A. Turn-on Propagation Delay
vs. Temperature
18
20
500
Turn-of f Propagation Delay (ns)
Turn-of f Propagation Delay (ns)
16
Figure 6B. Turn-on Propagation Delay
vs. Supply Voltage
500
400
300
Max.
200
T yp.
100
400
Max.
300
T yp.
200
100
0
0
-50
-25
0
25
50
75
100
o
Temperature ( C)
Figure 7A. Turn-off Propagation Delay
vs. Temperature
8
14
V BIAS Supply Voltage (V)
Temperature ( oC)
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 7B. Turn-off Propagation Delay
vs. Supply Voltage
www.irf.com
IR2109(4) (S) & (PbF)
500
SD Propagation Delay (ns)
SD Propagation Delay (ns)
500
400
300
Max.
200
T yp.
100
400
Max.
300
T yp.
200
100
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature ( C)
16
18
20
Figure 8B. SD Propagation Delay
vs. Supply Voltage
500
500
400
400
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
Figure 8A. SD Propagation Delay
vs. Temperature
300
200
14
V BIAS Supply Voltage (V)
o
Max.
T yp.
100
300
Max.
T yp.
200
100
0
0
-5 0
-25
0
25
50
75
1 00
Temperature ( oC)
Figure 9A. Turn-on Rise Time
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 9B. Turn-on Rise Time
vs. Supply Voltage
9
IR2109(4) (S) & (PbF)
200
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
200
150
100
Max.
50
150
100
Max.
T yp.
50
T yp.
0
0
-50
-25
0
25
50
75
100
10
125
12
18
20
Figure 10B. Turn-off Fall Time
vs. Supply Voltage
1000
1000
800
800
Deadtime (ns)
Deadtime (ns)
Figure 10A. Turn-off Fall Time
vs. Temperature
Max.
600
T yp.
Min.
600
Max.
T yp.
Min.
400
200
200
-50
-25
0
25
50
75
100
Temperature ( oC)
Figure 11A. Deadtime vs. Temperature
10
16
V BIAS Supply Voltage (V)
Temperature ( oC)
400
14
125
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 11B. Deadtime vs. Supply Volta ge
www.irf.com
IR2109(4) (S) & (PbF)
5
7
Logic "1" Input Voltage (V)
Deadtime ( s)
6
M ax.
5
T yp.
4
M in.
3
2
1
4
Max.
3
2
1
0
0
0
50
100
150
200
-50
-25
0
RDT (KΩ)
50
75
100
125
o
Temperature ( C)
Figure 11C. Deadtime vs. RDT
(IR21094 only)
Figure 12A. Logic “1” Input Voltage
vs. Temperature
5
Logic "0" Input Voltage (V)
5
Logic "1" Input Voltage (V)
25
4
Max.
3
2
1
0
4
3
2
Min.
1
0
10
12
14
16
18
V CC Supply Voltage (V)
Figure 12B. Logic “1” Input Voltage
vs. Supply Voltage
www.irf.com
20
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 13A. Logic “0” Input Voltage
vs. Temperature
11
IR2109(4) (S) & (PbF)
5
SD Positive Going Threshold (V)
Logic "0" Input Voltage (V)
5
4
3
2
Min.
1
4
2
1
0
10
12
14
16
18
Max.
3
0
20
-50
-25
0
V CC Supply Voltage (V)
Figure 13B. Logic “0” Input Current
vs. Supply Voltage
75
100
125
5
SD Negative Going Threshold (V)
SD Positive Going Threshold (V)
50
Figure 14A. SD Positive Going Threshold
vs. Temperature
5
4
Max.
3
2
1
0
4
3
2
Min.
1
0
10
12
14
16
18
20
V CC Supply Voltage (V)
Figure 14B. SD Positive Going Threshold
vs. Supply Voltage
12
25
Temperature (oC)
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 15A. SD Negative Going Threshold
vs. Temperature
www.irf.com
IR2109(4) (S) & (PbF)
4
High Level Output Voltage (V)
SD Negative Going Threshold (V)
5
4
3
2
Min.
1
0
10
12
14
16
18
20
3
2
1
M ax.
T yp.
0
-50
-25
0
V CC Supply Voltage (V)
Figure 15B. SD Negative Going Threshold
vs. Supply Voltage
50
75
100
125
Figure 16A. High Level Output Voltage
vs. Temperature
4
1.5
Low Level Output Voltage (V)
High Level Output Voltage (V)
25
Temperature ( oC)
3
Max.
2
T yp.
1
0
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 16B. High Level Output Voltage
vs. Supply Voltage
www.irf.com
1.2
0.9
0.6
Max.
0.3
T yp.
0
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 17A. Low Level Output Voltage
vs. Temperature
13
IR2109(4) (S) & (PbF)
Offset Supply Leakage Current ( A)
Low Level Output Voltage (V)
1.5
1.2
0.9
Max.
0.6
T yp.
0.3
0
10
12
14
16
18
500
400
300
200
100
Max.
0
-50
20
-25
50
75
100
125
Temperature ( C)
Figure 17B. Low Level Output Voltage
vs. Supply Voltage
Figure 18A. Offset Supply Leakage Current
vs. Temperature
500
400
V BS Supply Current ( A)
Of f set Supply Leakage Current ( A)
25
o
V BIAS Supply Voltage (V)
400
300
200
100
Max.
300
200
Max.
100
T yp.
Min.
0
0
0
100
200
300
400
500
V B Boost Voltage (V)
igure 18B. Offset Supply Leakage Current
vs. Boost Voltage
14
0
600
-50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 19A. VBS Supply Current
vs. Temperature
www.irf.com
IR2109(4) (S) & (PbF)
3.0
Vcc Supply Current (mA)
V B S Supply Current ( A)
400
300
200
Max .
100
T yp.
2.5
2.0
Max.
1.5
T yp.
1.0
Min.
0.5
Min.
0
0.0
10
12
14
16
18
20
-50
-25
0
Figure 19B. VBS Supply Current
vs. Supply Voltage
50
75
100
125
Figure 20A. VCC Supply Current
vs. Temperature
60
Logic "1" Input Current ( A)
3.0
V CC Supply Current (mA)
25
Temperature ( oC)
V BS Supply Voltage (V)
2.5
2.0
1.5
Max.
1.0
T yp.
0.5
Min.
50
40
30
20
10
Max.
T yp.
0
0.0
10
12
14
16
18
V CC Supply Voltage (V)
Figure 20B. VCC Supply Current
vs. VCC Supply Voltage
www.irf.com
20
-50
-25
0
25
50
75
100
125
Temperature (oC)
Fi
21A L
i "1" I
C
Figure 21A. Logic “1” Input Current
vs. Temperature
15
IR2109(4) (S) & (PbF)
5
50
Logic "0" Input Current ( A)
Logic "1" Input Current ( A)
60
40
30
Max.
20
10
T yp.
0
4
3
Max.
2
1
0
10
12
14
16
18
20
-50
-25
0
V CC Supply Voltage (V)
75
100
125
Temperature ( C)
Figure 22A. Logic “0” Input Current
vs. Temperature
12
V CC UVLO Threshold (+) (V)
5
Logic "0" Input Current ( A)
50
o
Figure 21B. Logic “1” Input Current
vs. Supply Voltage
4
3
Max.
2
1
11
10
Max.
9
T yp.
Min.
8
7
0
10
12
14
16
18
V CC Supply Voltage (V)
Figure 22B. Logic “0” Input Currentt
vs. Supply Voltage
16
25
20
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 23. VCC Undervoltage Threshold (+)
vs. Temperature
www.irf.com
IR2109(4) (S) & (PbF)
12
V BS UVLO Threshold (+) (V)
V CC UVLO Threshold (-) (V)
11
10
Max.
9
T yp.
8
Min.
7
6
-50
-25
0
25
50
75
100
11
Max.
10
T yp.
9
Min.
8
7
125
-50
-25
0
Temperature ( oC)
75
100
125
Temperature ( C)
Figure 25. VBS Undervoltage Threshold (+)
vs. Temperature
500
Output Source Current ( A)
11
V BS UVLO Threshold (-) (V)
50
o
Figure 24. VCC Undervoltage Threshold (-)
vs. Temperature
10
9
25
Max.
T yp.
8
Min.
7
400
300
T yp.
200
Min.
100
0
6
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 26. VBS Undervoltage Threshold (-)
vs. Temperature
www.irf.com
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 27A. Output Source Current
vs. Temperature
17
IR2109(4) (S) & (PbF)
600
Output Sink Current ( A)
Output Source Current ( A)
500
400
300
200
T yp.
100
500
T yp.
400
Min.
300
200
100
Min.
0
0
10
12
14
16
18
-50
20
-25
50
75
100
125
Temperature ( C)
Figure 27B. Output Source Current
vs. Supply Voltage
Figure 28A. Output Sink Current
vs. Temperature
0
V S Offset Supply Voltage (V)
600
Output Sink Current ( A)
25
o
V BIAS Supply Voltage (V)
500
400
300
T yp.
200
Min.
100
-2
T yp.
-4
-6
-8
-10
0
10
12
14
16
18
20
V BIAS Supply Voltage (V)
Figure 28B. Output Sink Currentt
vs. Supply Voltage
18
0
10
12
14
16
18
20
V BS Flouting Supply Voltage (V)
Figure 29. Maximum VS Negative Offset
vs. Supply Voltage
www.irf.com
140
140
120
120
100
80
140V
70V
60
0V
Temperature (oC)
Temprature (oC)
IR2109(4) (S) & (PbF)
40
100
140V
80
70V
60
0V
40
20
20
1
10
100
1
1000
140
140
120
120
140V
70V
0V
60
1000
Figure 31. IR2109 vs Frequency (IRFBC30)
Rgate = 22W, VCC = 15V
40
Temperature (oC)
Temperature (oC)
Figure 30. IR2109 vs Frequency (IRFBC20)
Rgate = 33W, VCC = 15V
80
100
Frequency (KHz)
Frequency (KHz)
100
10
140V 70V
0V
100
80
60
40
20
20
1
10
100
1000
Frequency (KHz)
Figure 32. IR2109 vs Frequency (IRFBC40)
Rgate = 15W, VCC = 15V
www.irf.com
1
10
100
1000
Frequency (KHz)
Figure 33. IR2109 vs Frequency (IRFPE50)
Rgate = 10W, VCC = 15V
19
140
140
120
120
100
80
60
140V
70V
40
Temperature (oC)
Temperature (oC)
IR2109(4) (S) & (PbF)
100
80
140V
60
70V
40
0V
0V
20
20
1
10
100
1000
1
Figure 34. IR21094 vs. Frequency (IRFBC20),
Rgate=33 , V CC=15V
1000
Figure 35. IR21094 vs. Frequency (IRFBC30),
Rgate=22 , V CC=15V
:
:
140
140
120
120
100
140V
80
70V
60
0V
40
Temperature (oC)
Temperature (oC)
100
Frequency (KHz)
Frequency (KHz)
140V
70V
100
0V
80
60
40
20
20
1
10
100
1000
Frequency (KHz)
Figure 36. IR21094 vs. Frequency (IRFBC40),
Rgate=15 , V CC=15V
:
20
10
1
10
100
1000
Frequency (KHz)
Figure 37. IR21094 vs. Frequency (IRFPE50),
Rgate=10 , V CC=15V
:
www.irf.com
140
140
120
120
100
80
140V
70V
60
0V
40
Temperature (oC)
Temperature (oC)
IR2109(4) (S) & (PbF)
140V
100
70V
80
0V
60
40
20
20
1
10
100
1
1000
1000
Figure 39. IR2109S vs. Frequency (IRFBC30),
Rgate=22 , V CC=15V
Figure 38. IR2109S vs. Frequency (IRFBC20),
Rgate=33 , V CC=15V
:
:
140V70V
140V 70V 0V
140
120
0V
100
80
60
Tempreture (oC)
120
Temperature (oC)
100
Frequency (KHz)
Frequency (KHz)
140
10
100
80
60
40
40
20
20
1
10
100
1000
Frequency (KHz)
Figure 40. IR2109S vs. Frequency (IRFBC40),
Rgate=15 , V CC=15V
:
www.irf.com
1
10
100
1000
Frequency (KHz)
Figure 41. IR2109S vs. Frequency
(IRFPE50), Rgate=10 , V CC=15V
:
21
140
140
120
120
100
80
60
140V
70V
0V
40
Temperature (oC)
Temperature (oC)
IR2109(4) (S) & (PbF)
100
80
140V
70V
60
0V
40
20
20
1
10
100
1
1000
Figure 42. IR21094S vs. Frequency (IRFBC20),
Rgate=33 , V CC=15V
120
120
140V
70V
0V
Temperature (oC)
Temperature (oC)
140
60
20
20
100
1000
0V
80
40
10
140V 70V
100
40
1
1
10
100
1000
Frequency (KHz)
Frequency (KHz)
Figure 44. IR21094S vs. Frequency (IRFBC40),
Rgate=15 , V CC=15V
Figure 45. IR21094S vs. Frequency (IRFPE50),
Rgate=10 , V CC=15V
:
22
:
140
60
1000
Figure 43. IR21094S vs. Frequency (IRFBC30),
Rgate=22 , V CC=15V
:
80
100
Frequency (KHz)
Frequency (KHz)
100
10
:
www.irf.com
IR2109(4) (S) & (PbF)
Case Outlines
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
D
DIM
B
5
A
F OOT PRINT
8
6
7
6
5
H
E
1
2
3
0.25 [.010]
4
A
6.46 [.255]
MIN
.0532
.0688
1.35
1.75
A1 .0040
e
3X 1.27 [.050]
e1
8X b
0.25 [.010]
A1
A
8X 1.78 [.070]
0.25
.0098
0.10
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
1.27 BAS IC
.025 BAS IC
0.635 BAS IC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
C
y
0.10 [.004]
8X L
8X c
7
C A B
NOT ES :
1. DIMENSIONING & TOLE RANCING PER AS ME Y14.5M-1994.
2. CONT ROLLING DIMENSION: MILLIME TER
3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHE S].
4. OUTLINE CONFORMS T O JEDEC OUT LINE MS-012AA.
8 Lead SOIC
www.irf.com
MAX
b
e1
6X
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS.
MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS.
MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010].
7 DIMENS ION IS T HE LE NGT H OF LEAD FOR SOLDERING T O
A SUBS TRAT E.
01-6027
01-0021 11 (MS-012AA)
23
IR2109(4) (S) & (PbF)
14 Lead PDIP
14 Lead SOIC (narrow body)
01-6010
01-3002 03 (MS-001AC)
01-6019
01-3063 00 (MS-012AB)
Data and specifications subject to change without notice. 7/11/2003
24
www.irf.com
IR2109(4) (S) & (PbF)
Basic Part (Non-Lead Free)
8-Lead PDIP IR2109
8-Lead SOIC IR2109S
14-Lead PDIP IR21094
14-Lead SOICIR21094S
order
order
order
order
Lead-Free Part
IR2109
IR2109S
IR21094
IR21094S
8-Lead PDIP IR2109
8-Lead SOIC IR2109S
14-Lead PDIP IR21094
14-Lead SOIC IR21094S
order
order
order
order
IR2109PbF
IR2109SPbF
IR21094PbF
IR21094SPbF
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Website.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/08/04
www.irf.com
25
Similar pages