Order this document by MC33078/D The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance. The MC33078/9 family offers both dual and quad amplifier versions, tested over the automotive temperature range and available in the plastic DIP and SOIC packages (P and D suffixes). • Dual Supply Operation: ± 5.0 V to ± 18 V • • • • • • • • • • Ǹ DUAL/QUAD LOW NOISE OPERATIONAL AMPLIFIERS DUAL 8 8 1 1 P SUFFIX PLASTIC PACKAGE CASE 626 Low Voltage Noise: 4.5 nV/ Hz D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) PIN CONNECTIONS Low Input Offset Voltage: 0.15 mV Low T.C. of Input Offset Voltage: 2.0 µV/°C 1 Output 1 Low Total Harmonic Distortion: 0.002% 8 VCC – 1 + 2 High Gain Bandwidth Product: 16 MHz Inputs 1 3 High Slew Rate: 7.0 V/µs High Open Loop AC Gain: 800 @ 20 kHz Excellent Frequency Stability 6 – 2 + 4 VEE 7 Output 2 Inputs 2 5 (Dual, Top View) Large Output Voltage Swing: +14.1 V/ –14.6 V QUAD ESD Diodes Provided on the Inputs 14 14 1 1 D SUFFIX PLASTIC PACKAGE CASE 751A (SO–14) P SUFFIX PLASTIC PACKAGE CASE 646 Representative Schematic Diagram (Each Amplifier) PIN CONNECTIONS VCC Output 1 R2 D1 Q3 Inputs 1 Q9 Q5 Q11 D3 Neg J1 Pos C2 Q8 D4 R4 Q7 Q1 R1 C1 R3 Inputs 2 C3 R9 Output 2 6 * ) 12 *1 ) 4 )2 * ) 10 3 *9 4 Output 4 13 11 7 8 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) Q12 R6 ORDERING INFORMATION Q5 Device VEE MC33078D MC33078P MC33079D MC33079P Operating Temperature Range TA = – 40° to +85°C Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA 14 Vout Q10 D2 3 5 Q6 Z1 VCC R7 Q3 Amplifier Biasing Q2 1 2 Q4 Package SO–8 Plastic DIP SO–14 Plastic DIP Rev 0 1 MC33078 MC33079 MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V VIDR (Note 1) V Input Voltage Range VIR (Note 1) V Output Short Circuit Duration (Note 2) tSC Indefinite sec Maximum Junction Temperature TJ +150 °C Storage Temperature Tstg – 60 to +150 °C Maximum Power Dissipation PD (Note 2) mW Supply Voltage (VCC to VEE) Input Differential Voltage Range NOTES: 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1). DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristics Symbol Input Offset Voltage (RS = 10 Ω, VCM = 0 V, VO = 0 V) (MC33078) TA = +25°C TA = –40° to +85°C (MC33079) TA = +25°C TA = –40° to +85°C |VIO| Average Temperature Coefficient of Input Offset Voltage RS = 10 Ω, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh ∆VIO/∆T Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = –40° to +85°C IIB Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = –40° to +85°C IIO Common Mode Input Voltage Range (∆VIO = 5.0 mV, VO = 0 V) VICR Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kΩ) TA = +25°C TA = –40° to +85°C AVOL Min Typ Max — — — — 0.15 — 0.15 — 2.0 3.0 2.5 3.5 — 2.0 — — — 300 — 750 800 — — 25 — 150 175 ±13 ±14 — 90 85 110 — — — Unit mV µV/°C nA nA V dB Output Voltage Swing (VID = ±1.0V) RL = 600 Ω RL = 600 Ω RL = 2.0 kΩ RL = 2.0 kΩ RL = 10 kΩ RL = 10 kΩ VO + VO – VO + VO – VO + VO – — — +13.2 — +13.5 — +10.7 –11.9 +13.8 –13.7 +14.1 –14.6 — — — –13.2 — –14 Common Mode Rejection (Vin = ±13V) CMR 80 100 — dB Power Supply Rejection (Note 3) VCC/VEE = +15 V/ –15 V to +5.0 V/ –5.0 V PSR 80 105 — dB Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink ISC +15 –20 +29 –37 — — — — — — 4.1 — 8.4 — 5.0 5.5 10 11 Power Supply Current (VO = 0 V, All Amplifiers) (MC33078) TA = +25°C (MC33078) TA = –40° to +85°C (MC33079) TA = +25°C (MC33079) TA = –40° to +85°C NOTE: 2 V mA ID mA 3. Measured with VCC and VEE differentially varied simultaneously. MOTOROLA ANALOG IC DEVICE DATA MC33078 MC33079 AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristics Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 100 pF AV = +1.0) Gain Bandwidth Product (f = 100 kHz) Unity Gain Frequency (Open Loop) Symbol Min Typ Max Unit SR 5.0 7.0 — V/µs GBW 10 16 — MHz fU — 9.0 — MHz Gain Margin (RL = 2.0 kΩ) CL = 0 pF CL = 100 pF Am — — –11 – 6.0 — dB Phase Margin (RL = 2.0 kΩ) CL = 0 pF CL = 100 pF φm — — 55 40 — Degree s CS — –120 — dB Power Bandwidth (VO = 27 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%) BWp — 120 — kHz Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD — 0.002 — % Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| — 37 — Ω Differential Input Resistance (VCM = 0 V) RIN — 175 — kΩ Differential Input Capacitance (VCM = 0 V) CIN — 12 — pF Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz) en — 4.5 — nV/ √ Hz Equivalent Input Noise Current (f = 1.0 kHz) in — 0.5 — pA/ √ Hz Channel Separation (f = 20 Hz to 20 kHz) P D , MAXIMUM POWER DISSIPATION (mW) Figure 1. Maximum Power Dissipation versus Temperature Figure 2. Input Bias Current versus Supply Voltage 2400 2000 I IB , INPUT BIAS CURRENT (nA) 800 MC33078P & MC33079P 1600 MC33079D 1200 800 MC33078D 400 0 –55 –40 –20 200 5.0 10 15 VCC, | VEE |, SUPPLY VOLTAGE (V) 20 2.0 VCC = +15 V VEE = –15 V VCM = 0 V V IO, INPUT OFFSET VOLTAGE (mV) I IB , INPUT BIAS CURRENT (nA) 400 Figure 4. Input Offset Voltage versus Temperature 1000 600 400 200 0 –55 600 0 0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (°C) Figure 3. Input Bias Current versus Temperature 800 VCM = 0 V TA = 25°C –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) MOTOROLA ANALOG IC DEVICE DATA 100 125 VCC = +15 V VEE = –15 V RS = 10 Ω 1.0 VCM = 0 V AV = +1 Unit 1 Unit 2 0 Unit 3 –1.0 –2.0 –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 3 Figure 5. Input Bias Current versus Common Mode Voltage I IB, INPUT BIAS CURRENT (nA) 600 VCC = +15 V VEE = –15 V TA = 25°C 500 400 300 200 100 0 –15 –10 – 5.0 0 5.0 10 15 VCM, COMMON MODE VOLTAGE (V) V ICR , INPUT COMMON MODE VOLTAGE RANGE (V) MC33078 MC33079 Figure 6. Input Common Mode Voltage Range versus Temperature VCC –0 VCC –0.5 VCC –1.5 Voltage Range VEE +1.5 VEE +1.0 VCC –3.0 25°C VCC –5.0 125°C 125°C 25°C VEE +5.0 VEE +3.0 VEE +1.0 VCC = +15 V VEE = –15 V –55°C 0 1.0 2.0 3.0 4.0 –VCM VEE +0.5 VEE +0 – 55 – 25 0 ±5.0 V 6.0 4.0 MC33079 ±15 V 4 MC33078 ±5.0 V 2.0 0 – 55 ±10 V Supply Voltages – 25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 VCC = +15 V VEE = –15 V RL < 100 Ω VID = 1.0 V Sink 40 Source 30 20 10 – 55 – 25 0 25 50 75 100 125 Figure 10. Common Mode Rejection versus Frequency CMR, COMMON MODE REJECTION (dB) I CC , SUPPLY CURRENT (mA) 8.0 100 TA, AMBIENT TEMPERATURE (°C) VCM = 0 V RL = ∞ VO = 0 V ±10 V 75 50 Figure 9. Supply Current versus Temperature ±15 V 50 Figure 8. Output Short Circuit Current versus Temperature RL, LOAD RESISTANCE TO GROUND (kΩ) 10 25 TA, AMBIENT TEMPERATURE (°C) | I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA) Vsat , OUTPUT SATURATION VOLTAGE (V) –55°C VCC = +3.0 V to +15 V VEE = –3.0 V to –15 V ∆VIO = 5.0 mV VO = 0 V VCC –1.0 Figure 7. Output Saturation Voltage versus Load Resistance to Ground VCC –1.0 +VCM 125 160 ∆ VCM 140 120 CMR = 20Log 100 80 60 40 20 100 – ADM + VCM VO ∆ VO × ADM VCC = +15 V VEE = –15 V VCM = 0 V ∆VCM = ±1.5 V TA = 25°C 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 10 M MOTOROLA ANALOG IC DEVICE DATA MC33078 MC33079 PSR, POWER SUPPLY REJECTION (dB) 140 ∆VO/ADM +PSR = 20Log 120 ∆VO/ADM –PSR = 20Log ∆VCC ∆VCC ∆VCC +PSR 100 – ADM + 80 Figure 12. Gain Bandwidth Product versus Supply Voltage –PSR ∆VO VEE 60 40 20 VCC = +15 V VEE = –15 V TA = 25°C 0 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) GWB, GAIN BANDWIDTH PRODUCT (MHz) Figure 11. Power Supply Rejection versus Frequency 30 20 10 0 5.0 10 M 1.0 M RL = 10 kΩ CL = 0 pF f = 100 kHz TA = 25°C 20 20 20 15 15 10 VCC = +15 V VEE = –15 V f = 100 kHz RL = 10 kΩ CL = 0 pF 5.0 0 –55 –25 0 25 50 75 100 –5.0 RL = 2.0 kΩ –10 RL = 10 kΩ 10 VO – 15 Figure 15. Output Voltage versus Frequency Figure 16. Open Loop Voltage Gain versus Supply Voltage A VOL, OPEN LOOP VOLTAGE GAIN (dB) VCC = +15 V VCC = –15 V RL = 2.0 kΩ AV = +1.0 THD ≤ 1.0% TA = 25°C 10 0 VCC |VEE| , SUPPLY VOLTAGE (V) 20 5.0 RL = 2.0 kΩ 5.0 TA, AMBIENT TEMPERATURE (°C) 25 10 VO + RL = 10 kΩ 10 –20 5.0 125 30 15 TA = 25°C –15 35 VO, OUTPUT VOLTAGE (Vpp ) 15 Figure 14. Maximum Output Voltage versus Supply Voltage VO , OUTPUT VOLTAGE (Vp) GWB, GAIN BANDWIDTH PRODUCT (MHz) Figure 13. Gain Bandwidth Product versus Temperature 0 10 VCC |VEE| , SUPPLY VOLTAGE (V) 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 1.0 M 10 M 20 110 100 RL = 2.0 kΩ f ≤ 10 Hz ∆VO = 2/3 (VCC –VEE) TA = 25°C 90 80 5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V) 20 5 MC33078 MC33079 110 50 105 | Z O |, OUTPUT IMPEDANCE ( Ω ) VCC = +15 V VEE = –15 V RL = 2.0 kΩ f ≤ 10 Hz ∆VO = –10 V to +10 V 100 95 90 –55 –25 0 25 50 75 10 kΩ – VOM + 100 Ω Measurement Channel 100 10 AV = 1000 0 1.0 k 125 Drive Channel VCC = +15 V VEE = –15 V RL = 2.0 KΩ ∆VOD = 20 Vpp TA = 25°C MC33079 110 10 100 ∆VOA ∆VOM CS = 20 Log 1.0 k f, FREQUENCY (Hz) 10 k 0.1 10 M 10 AV = 100 Vin – + 10 kΩ AV = 10 VO 2.0 kΩ AV = 1.0 0.005 2.0 – VO + 2.0 kΩ 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 22. Slew Rate versus Supply Voltage AV = 1000 0.05 0.01 VCC = +15 V VEE = –15 V VO = 1.0 Vrms TA = 25°C 10 RA 6 1.0 M 0.001 100 k SR, SLEW RATE (V/ µ s) THD, TOTAL HARMONIC DISTORTION (%) VCC = +15 V VEE = –15 V 0.5 f = 2.0 kHz TA = 25°C 0.1 1.0 100 k AV = 1.0 0.01 1.0 0 AV = 10 1.0 Figure 21. Total Harmonic Distortion versus Output Voltage 0.001 10 k AV = 100 Figure 20. Total Harmonic Distortion versus Frequency 140 120 20 Figure 19. Channel Separation versus Frequency 150 100 Ω 30 f, FREQUENCY (Hz) MC33078 130 100 VCC = +15 V VEE = –15 V VO = 0 V TA = 25°C 40 TA, AMBIENT TEMPERATURE (°C) 160 CS, CHANNEL SEPARATION (dB) Figure 18. Output Impedance versus Frequency THD, TOTAL HARMONIC DISTORTION (%) A VOL, OPEN LOOP VOLTAGE GAIN (dB) Figure 17. Open Loop Voltage Gain versus Temperature 3.0 4.0 5.0 6.0 7.0 VO, OUTPUT VOLTAGE (Vrms) 8.0 9.0 Falling Rising 6.0 4.0 2.0 8.0 Vin = 2/3 (VCC –VEE) TA = 25°C 0 5.0 – ∆Vin + VO 2.0 kΩ 10 15 VCC |VEE| , SUPPLY VOLTAGE (V) 20 MOTOROLA ANALOG IC DEVICE DATA MC33078 MC33079 Figure 24. Voltage Gain and Phase versus Frequency SR, SLEW RATE (V/ µ s) 8.0 A VOL , OPEN LOOP VOLTAGE GAIN (dB) 10 VCC = +15 V VEE = –15 V ∆Vin = 20 V Falling Rising 6.0 – ∆Vin 4.0 2.0 –55 –25 VO + 2.0 kΩ 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 120 100 80 40 135 20 20 –55°C 30 8.0 125°C 125°C 6.0 40 50 4.0 VCC = +15 V VEE = –15 V VO = 0 V 2.0 0 25°C 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 180 10 M –55°C 60 ∆Vin 125°C VO + 25°C CL – 55°C 60 40 VCC = +15 V VEE = –15 V ∆Vin = 100 mV 20 Gain 1 10 0 10 70 1000 100 100 1.0 k 10 k CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF) Figure 27. Input Referred Noise Voltage and Current versus Frequency Figure 28. Total Input Referred Noise Voltage versus Source Resistance 100 80 10 VCC = +15 V VEE = –15 V TA = 25°C 50 30 20 10 8.0 5.0 Voltage 3.0 2.0 Current 1.0 10 100 1.0 k f, FREQUENCY (Hz) 10 k MOTOROLA ANALOG IC DEVICE DATA 0.1 100 k Vn, REFERRED NOISE VOLTAGE (nV/ √ Hz) e n , INPUT REFERRED NOISE VOLTAGE ( nV/ √ Hz ) 100 – 80 os, OVERSHOOT (%) Phase 25°C φ m, PHASE MARGIN (DEGREES) 10 i n, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz ) A m , OPEN LOOP GAIN MARGIN (dB) CL 10 10 100 0 VO + 2.0 kΩ 90 Figure 26. Overshoot versus Output Load Capacitance 14 12 Vin Phase Gain Figure 25. Open Loop Gain Margin and Phase Margin versus Load Capacitance – 45 60 0 1.0 125 0 VCC = +15 V VEE = –15 V RL = 2.0 kΩ TA = 25°C φ, EXCESS PHASE (DEGREES) Figure 23. Slew Rate versus Temperature 1000 100 VCC = +15 V VEE = –15 V f = 1.0 kHz TA = 25°C Vn(total) = (inRs)2 Ǹ ) en2 ) 4KTRS 10 1.0 10 100 1.0 k 10 k 100 k 1.0 M RS, SOURCE RESISTANCE (Ω) 7 MC33078 MC33079 Figure 29. Phase Margin and Gain Margin versus Differential Source Resistance 14 Am, GAIN MARGIN (dB) 12 10 R1 8.0 6.0 4.0 2.0 0 60 Gain R2 50 Phase – + 40 VO 30 VCC = +15 V VEE = –15 V RT = R1 +R2 AV = +100 VO = 0 V TA = 25°C 20 10 10 100 1.0 k 10 k φ m , PHASE MARGIN (DEGREES) 70 0 100 k RT, DIFFERENTIAL SOURCE RESISTANCE (Ω) Figure 31. Noninverting Amplifier Slew Rate V O , OUTPUT VOLTAGE (5.0 V/DIV) V O , OUTPUT VOLTAGE (5.0 V/DIV) Figure 30. Inverting Amplifier Slew Rate VCC = +15 V VEE = –15 V AV = –1.0 RL = 2.0 kΩ CL = 100 pF TA = 25°C VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 kΩ CL = 100 pF TA = 25°C t, TIME (2.0 µs/DIV) t, TIME (2.0 µs/DIV) Figure 33. Low Frequency Noise Voltage versus Time e n , INPUT NOISE VOLTAGE (100 nV/DIV) V O , OUTPUT VOLTAGE (5.0 V/DIV) Figure 32. Noninverting Amplifier Overshoot VCC = +15 V VEE = –15 V RL = 2.0 kΩ CL = 100 pF AV = +1.0 TA = 25°C t, TIME (200 µs/DIV) 8 VCC = +15 V VEE = –15 V BW = 0.1 Hz to 10 Hz TA = 25°C t, TIME (1.0 sec/DIV) MOTOROLA ANALOG IC DEVICE DATA MC33078 MC33079 Figure 34. Voltage Noise Test Circuit (0.1 Hz to 10 Hzp–p) 0.1 µF 10 Ω 100 kΩ – 2.0 kΩ + D.U.T. + 1/2 4.7 µF 4.3 kΩ Scope ×1 Rin = 1.0 MΩ MC33078 – 100 kΩ Voltage Gain = 50,000 22 µF 2.2 µF 110 kΩ 24.3 kΩ 0.1 µF Note: All capacitors are non–polarized. MOTOROLA ANALOG IC DEVICE DATA 9 MC33078 MC33079 OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 5 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. –B– 1 4 F –A– NOTE 2 DIM A B C D F G H J K L M N L C J –T– N SEATING PLANE D M K MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 G H 0.13 (0.005) T A M B M M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 8 5 0.25 H E M B M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 10 M C B S A S DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ MOTOROLA ANALOG IC DEVICE DATA MC33078 MC33079 OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 646–06 ISSUE L 14 NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. 8 B 1 7 A F DIM A B C D F G H J K L M N L C J N H G D SEATING PLANE K M D SUFFIX PLASTIC PACKAGE CASE 751A–03 (SO–14) ISSUE F 8 –B– 1 P 7 PL 0.25 (0.010) 7 G M F –T– 0.25 (0.010) M K D 14 PL M T B S MOTOROLA ANALOG IC DEVICE DATA M R X 45 _ C SEATING PLANE B A S MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. –A– 14 INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 J DIM A B C D F G J K M P R MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 11 MC33078 MC33079 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 12 ◊ *MC33078/D* MOTOROLA ANALOG IC DEVICE DATA MC33078/D