Product Folder Order Now Technical Documents Tools & Software Support & Community DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 DRA77xP, DRA76xP Infotainment Applications Processor Silicon Revision 1.0 1 Device Overview 1.1 Features • Architecture Designed for Infotainment Applications • Video, Image, and Graphics Processing Support – Full-HD Video (1920 × 1080p, 60 fps) – Multiple Video Input and Video Output – 2D and 3D Graphics • Dual ARM® Cortex®-A15 Microprocessor Subsystem • Up to two C66x™ Floating-Point VLIW DSP – Fully Object-Code Compatible With C67x™ and C64x+™ – Up to Thirty-two 16 x 16-Bit Fixed-Point Multiplies per Cycle • Up to 2.5MB of On-Chip L3 RAM • Level 3 (L3) and Level 4 (L4) Interconnects • Two DDR2/DDR3/DDR3L Memory Interface (EMIF) Modules – Supports up to DDR2-800 and DDR3-1333 – Up to 2GB Supported per EMIF • Dual ARM® Cortex®-M4 Image Processing Units (IPU) • Up to Two Embedded Vision Engines (EVEs) • Imaging Subsystem (ISS) – Image Signal Processor (ISP) – Wide Dynamic Range and Lens Distortion Correction (WDR and Mesh LDC) – One Camera Adaptation Layer (CAL_B) • IVA Subsystem • Display Subsystem – Display Controller With DMA Engine and up to Three Pipelines – HDMI™ Encoder: HDMI 1.4a and DVI 1.0 Compliant • Video Processing Engine (VPE) • 2D-Graphics Accelerator (BB2D) Subsystem – Vivante™ GC320 Core • Dual-Core PowerVR® SGX544 3D GPU • Two Video Input Port (VIP) Modules – Support for up to eight Multiplexed Input Ports • General-Purpose Memory Controller (GPMC) • Enhanced Direct Memory Access (EDMA) Controller • • • • • • • • • • • • • • • • • • • • • • • • 2-Port Gigabit Ethernet (GMAC) Sixteen 32-Bit General-Purpose Timers 32-Bit MPU Watchdog Timer Five Inter-Integrated Circuit (I2C) Ports HDQ™/1-Wire® Interface SATA Interface Media Local Bus (MLB) Subsystem Ten Configurable UART/IrDA/CIR Modules Four Multichannel Serial Peripheral Interfaces (McSPI) Quad SPI (QSPI) Eight Multichannel Audio Serial Port (McASP) Modules SuperSpeed USB 3.0 Dual-Role Device Three High-Speed USB 2.0 Dual-Role Devices Four MultiMedia Card/Secure Digital/Secure Digital Input Output Interfaces (MMC/SD/SDIO) PCI Express® 3.0 Subsystems With Two 5-Gbps Lanes – One 2-lane Gen2-Compliant Port – or Two 1-lane Gen2-Compliant Ports Up to two Controller Area Network (DCAN) Modules – CAN 2.0B Protocol Modular Controller Area Network (MCAN) Module – CAN 2.0B Protocol with available FD (Flexible Data Rate) functionality MIPI® CSI-2 Camera Serial Interface Up to 247 General-Purpose I/O (GPIO) Pins Device security features – Hardware Crypto accelerators and DMA – Firewalls – JTAG lock – Secure keys – Secure ROM and boot – Customer programmable keys and OTP data Power, Reset, and Clock Management On-Chip Debug With CTools Technology 28-nm CMOS Technology 23 mm × 23 mm, 0.8-mm Pitch, 784-Pin BGA (ACD) 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. ADVANCE INFORMATION for pre-production products; subject to change without notice. ADVANCE INFORMATION 1 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 1.2 • • • • • Applications Human-Machine Interface (HMI) Navigation Digital and Analog Radio Rear Seat Entertainment Multimedia Playback 1.3 www.ti.com • • • • Web Browsing ADAS Integration Integrated Automotive Digital Cockpit Infotainment / Center Stack Description DRA77xP and DRA76xP (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences. The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set. ADVANCE INFORMATION Programmability is provided by dual-core ARM Cortex-A15 RISC CPUs with Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The ARM allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. Additionally, TI provides a complete set of development tools for the ARM, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code. Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative. The DRA77xP and DRA76xP Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard. Device Information 2 PART NUMBER PACKAGE BODY SIZE DRA77xP FCBGA (784) 23.0 mm × 23.0 mm DRA76xP FCBGA (784) 23.0 mm × 23.0 mm Device Overview Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 1.4 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Functional Block Diagram Figure 1-1 is functional block diagram for the device. DRA77x / DRA76x (2x ARM Cortex–A15) Co-Processor DSP1 C66x Co-Processors GPU (Dual-Core SGX544 3D) DSP2 C66x Co-Processors BB2D IPU1 (Dual Cortex–M4) (GC 320 2D) ISS ISP CAL_B EDMA CAL HD ATL 2x VCP SDMA Display Subsystem LCD1 1xGFX / 3xVID LCD2 Blend / Scale LCD3 IPU2 (Dual Cortex–M4) WDR & Mesh LDC Radio Accelerators 2x EVE Analytic Processors Secure Boot Debug Security TEE (HS devices) ADVANCE INFORMATION IVA HD 1080p Video MPU HDMI 1.4a CSI2 x2 2x MMU VIP1 VPE VIP2 High-Speed Interconnect Connectivity System Spinlock Timers x16 1x USB 3.0 Mailbox x13 WDT FS/HS/SS Dual Mode w/PHY GPIO x8 PWM SS x3 HDQ KBD 3x USB 2.0 Dual Mode FS/HS 1x w/ PHY 2x w/ ULPI Serial Interfaces QSPI McSPI x4 McASP x8 MediaLB / MOST150 GMAC AVB Program/Data Storage I2C x5 UART x10 PCIe SS x2 MMC / SD x4 256KiB ROM SATA DCAN x2 MCAN-FD x1 DMM up to 2.5MiB RAM w/ ECC GPMC / ELM OCMC EMIF x2 2x 32b (NAND/NOR/ DDR2/3(L) w/ ECC(1) Async) intro_001 Copyright © 2016, Texas Instruments Incorporated Figure 1-1. DRA77xP, DRA76xP Block Diagram (1) ECC is only available on EMIF1. Device Overview Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 3 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table of Contents 1 Device Overview ......................................... 1 6.6 IVA ................................................. 349 1.1 Features .............................................. 1 6.7 EVE ................................................ 350 1.2 Applications ........................................... 2 6.8 IPU ................................................. 351 1.3 Description ............................................ 2 6.9 VPE ................................................ 352 6.10 GPU ................................................ 354 6.11 ATL Overview ...................................... 354 6.12 Memory Subsystem ................................ 356 6.13 Interprocessor Communication 6.14 Interrupt Controller ................................. 360 6.15 EDMA .............................................. 361 6.16 Peripherals ......................................... 362 6.17 On-Chip Debug .................................... 378 ........................... 3 Revision History ......................................... 5 Device Comparison ..................................... 6 3.1 Device Comparison Table ............................ 6 3.2 Related Products .................................... 10 Terminal Configuration and Functions ............ 11 4.1 Pin Diagram ......................................... 11 4.2 Pin Attributes ........................................ 11 4.3 Signal Descriptions .................................. 81 4.4 Pin Multiplexing .................................... 122 4.5 Connections for Unused Pins ...................... 141 Specifications ......................................... 142 5.1 Absolute Maximum Ratings........................ 143 5.2 ESD Ratings ....................................... 143 5.3 Power-On Hours (POH) ........................... 144 5.4 Recommended Operating Conditions ............. 145 5.5 Operating Performance Points ..................... 148 5.6 Power Consumption Summary .................... 169 5.7 Electrical Characteristics ........................... 170 1.4 2 3 4 5 Functional Block Diagram ADVANCE INFORMATION 5.8 5.9 5.10 6 8 ........................................ 7.1 Introduction 7.2 Power Optimizations ............................... 383 7.3 Core Power Domains .............................. 397 7.4 Single-Ended Interfaces 7.5 7.6 Differential Interfaces .............................. 411 DDR2/DDR3 Board Design and Layout Guidelines .......................................... 434 ........................... 382 409 Device and Documentation Support .............. 469 Device Nomenclature .............................. 469 Tools and Software ................................ 471 VPP Specifications for One-Time Programmable (OTP) eFuses ...................................... 178 8.3 Documentation Support ............................ 471 8.4 Receiving Notification of Documentation Updates. 472 Thermal Resistance Characteristics ............... 179 Timing Requirements and Switching Characteristics ..................................... 181 8.5 Related Links 8.6 Community Resources............................. 473 8.7 Trademarks ........................................ 473 8.8 ................... Export Control Notice .............................. Glossary............................................ Description ......................................... 340 6.2 Functional Block Diagram 6.5 Applications, Implementation, and Layout ...... 382 8.2 6.1 6.4 359 8.1 Detailed Description.................................. 340 6.3 4 7 .................... ......................... MPU ................................................ DSP Subsystem ................................... ISS ................................................. 8.9 340 342 8.10 9 ...................................... Electrostatic Discharge Caution 472 473 473 473 345 Mechanical Packaging and Orderable Information ............................................. 474 349 9.1 Mechanical Data ................................... 474 Table of Contents Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 2 Revision History • • • • • • • • • • • • • • • • Page Added Secure Boot feature in Section 1.1, Section 1.3 and Figure 1-1 ....................................................... 1 Updated Table 3-1 to identify the ISS feature overall as “optional”, along with a footnote (2) ............................. 6 Added vpp ball information to Table 4-1 Pin Attributes, Table 4-32 Power Supply Signal Descriptions, and Table 4-34 Unused Balls Specific Connection Requirements. ............................................................... 13 Removed restriction on VOUT to operate in 1.8 V only onto balls mapped to the vddshv6 supply rail in Table 4-1 and Table 4-3 as it is not applicable to this device ............................................................................. 80 Added tie-off guidance for unused dqs, dqsn and I2C2 pins to Table 4-34................................................ 141 Added notes and references under table LVCMOS CSI2 DC Electrical Characteristics ................................ 174 Removed voltage high level limits from CSI2 ULPS state ................................................................... 174 Added new VPP Specification section about One-Time Programmable (OTP) eFuses ................................. 178 Updated Package Thermal Characteristics section ........................................................................... 179 Removed restriction on VOUT to operate in 1.8 V only onto balls mapped to the vddshv6 supply rail in VOUT IOSET Table 5-46 ................................................................................................................. 222 Added CAN delay time receive and transmit parameters in relation to the shift registers .............................. 295 Added Secure Boot feature in Section 6.1 and Figure 6-1 ................................................................... 340 Updated maximum ISP throughput in Section 6.5 ............................................................................ 349 Power Integrity Updates: Section 7.3 is updated to align with new PDN power integrity recommendations and provided EVM PCB PDN PI performance & Dcap scheme implementation results. ..................................... 397 Added High Security suffix “S” to Table 8-1 Nomenclature Description ................................................... 470 Added ISS designator "I" to Figure 8-1 and Table 8-1 ........................................................................ 470 Revision History Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 5 ADVANCE INFORMATION Changes from September 26, 2017 to December 15, 2017 (from B Revision (September 2017) to C Revision) DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 3 Device Comparison 3.1 Device Comparison Table Table 3-1 shows a comparison between devices, highlighting the differences. Table 3-1. Device Comparison Features Device Jacinto 6 Plus EX Jacinto 6 Plus EP Jacinto 6 Plus DRA777P DRA776P DRA775P DRA774P DRA773P DRA772P DRA771P DRA770P DRA767P DRA766P DRA765P DRA764P ADVANCE INFORMATION CTRL_WKUP_STD_FUSE_DIE_ID_2[31:24] Base PN register bitfield value(7) 104 (0x68) 102 (0x66) 101 (0x65) 100 (0x64) 99b (0x63) 98 (0x62) 97 (0x61) 96 (0x60) 87 (0x57) 86 (0x56) 85 (0x55) 84 (0x54) S P L J S P L J S P L J Processors/ Accelerators Speed Grades Dual ARM Cortex-A15 Microprocessor Subsystem MPU core 0 Yes Yes Yes MPU core 1 Yes Yes Yes C66x VLIW DSP DSP1 (with L1D ECC) Yes Yes Yes DSP2 (with L1D ECC) Yes Yes No BitBLT 2D Hardware Acceleration Engine BB2D Yes Yes Yes Display Subsystem VOUT1 Yes(1) Yes(1) Yes(1) VOUT2 Yes (1) (1) Yes(1) VOUT3 Yes(1) Yes(1) Yes(1) HDMI Yes Yes Yes EVE1 Yes No No EVE2 Yes No No Dual ARM Cortex-M4 Image Processing Unit IPU1 Yes Yes Yes IPU2 Yes Yes Yes Image Video Accelarator IVA Yes Yes Yes SGX544 Dual-Core 3D Graphics Processing Unit GPU Yes Yes Yes Imaging Subsystem (ISS) ISP Optional(2) Optional(2) Optional(2) WDR & Mesh LDC(6) Optional(2) Optional(2) Optional(2) CAL_B Optional(2) Optional(2) Optional(2) Embedded Vision Engine 6 Yes Device Comparison Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 3-1. Device Comparison (continued) Features Device Jacinto 6 Plus EX Jacinto 6 Plus EP Jacinto 6 Plus DRA777P DRA776P DRA775P DRA774P DRA773P DRA772P DRA771P DRA770P DRA767P DRA766P DRA765P DRA764P VIP1 vin1a Yes Yes vin1b Yes Yes No vin2a Yes Yes Yes vin2b Yes Yes Yes vin3a Yes Yes Yes vin3b Yes Yes Yes vin4a Yes Yes Yes vin4b Yes Yes Yes vin5a No No No vin6a No No No Video Processing Engine VPE Yes Yes Yes Camera Adaptation Layer (CAL) Camera Serial Interface 2 (CSI2) CSI2_0 (CLK + 4 Data) Yes Yes Yes CSI2_1 (CLK + 2 Data) Yes Yes Yes OCMC_RAM1 512 KB 512 KB 512 KB OCMC_RAM2 1MB No No OCMC_RAM3 1MB No No GPMC Yes Yes Yes up to 2GB (with optional R-mod-W ECC) up to 2GB (with optional R-mod-W ECC) up to 2GB EMIF2 up to 2GB up to 2GB up to 2GB DMM Yes Yes Yes Audio Tracking Logic (ATL) ATL Yes Yes Yes Viterbi Coprocessor (VCP) VCP1 Yes Yes Yes VCP2 Yes Yes Yes VIP2 VIP3 No ADVANCE INFORMATION Video Input Port Program/Data Storage On-Chip Shared Memory General-Purpose Memory Controller DDR2/DDR3/DDR3L Memory EMIF1 Controller(4) Dynamic Memory Manager (DMM) Radio Support Peripherals Device Comparison Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 7 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 3-1. Device Comparison (continued) Features Device Jacinto 6 Plus EX Jacinto 6 Plus EP Jacinto 6 Plus DRA777P DRA776P DRA775P DRA774P DRA773P DRA772P DRA771P DRA770P DRA767P DRA766P DRA765P DRA764P DCAN1(5) Yes Yes Yes (5) DCAN2 Yes Yes Yes MCAN with FD(5) Yes Yes Yes Enhanced DMA EDMA Yes Yes Yes System DMA DMA_SYSTEM Yes Yes Yes Ethernet Subsystem (Ethernet SS) GMAC_SW[0] MII, RMII, or RGMII MII, RMII, or RGMII MII, RMII, or RGMII GMAC_SW[1] MII, RMII, or RGMII MII, RMII, or RGMII MII, RMII, or RGMII General-Purpose I/O GPIO Up to 247 Up to 247 Up to 247 Inter-Integrated Circuit Interface I2C 5 5 5 System Mailbox Module MAILBOX Media Local Bus Subsystem MLB Multi-Channel Audio Serial Port Controller Area Network Interface (CAN) ADVANCE INFORMATION MultiMedia Card/Secure Digital/Secure Digital Input Output Interface (MMC/SD/SDIO) 13 13 13 4096 Fs 4096 Fs 4096 Fs McASP1 16 serializers 16 serializers 16 serializers McASP2 16 serializers 16 serializers 16 serializers McASP3 4 serializers 4 serializers 4 serializers McASP4 4 serializers 4 serializers 4 serializers McASP5 4 serializers 4 serializers 4 serializers McASP6 4 serializers 4 serializers 4 serializers McASP7 4 serializers 4 serializers 4 serializers McASP8 4 serializers 4 serializers 4 serializers MMC1 1x UHSI 4b 1x UHSI 4b 1x UHSI 4b MMC2 1x eMMC 8b 1x eMMC 8b 1x eMMC 8b MMC3 1x SDIO 8b 1x SDIO 8b 1x SDIO 8b MMC4 1x SDIO 4b 1x SDIO 4b 1x SDIO 4b Yes (Single-lane mode) PCI Express 3.0 Port with Integrated PHY PCIe_SS1 Yes Yes PCIe_SS2 Yes Yes No SATA SATA Yes Yes Yes Real-Time Clock RTCSS No No No No No No Programmable Real-Time PRU-ICSS Unit Subsystem and Industrial Communication Subsystem 8 Device Comparison Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 3-1. Device Comparison (continued) Features Device Jacinto 6 Plus EX Jacinto 6 Plus EP Jacinto 6 Plus Multichannel Serial Peripheral McSPI Interface 4 4 4 HDQ1W HDQ1W Yes Yes Yes Quad SPI QSPI Yes Yes Yes Spinlock Module SPINLOCK Yes Yes Yes Keyboard Controller KBD Yes Yes Yes Timers, General-Purpose TIMER 16 16 16 Timer, Watchdog WATCHDOG TIMER Yes Yes Yes Pulse-Width Modulation Subsystem PWMSS1 Yes Yes Yes PWMSS2 Yes Yes Yes PWMSS3 Yes Yes Yes 10 10 10 Universal Asynchronous Receiver/Transmitter UART Universal Serial Bus (USB3.0) USB1 (SuperSpeed, Dual-RoleDevice [DRD]) Yes Yes Yes Universal Serial Bus (USB2.0) USB2 (HighSpeed, Dual-RoleDevice [DRD], with embedded HS PHY) Yes Yes Yes USB3 (HighSpeed, OTG2.0, with ULPI) Yes Yes Yes USB4 (HighSpeed, OTG2.0, with ULPI) Yes Yes Yes(3) ADVANCE INFORMATION DRA777P DRA776P DRA775P DRA774P DRA773P DRA772P DRA771P DRA770P DRA767P DRA766P DRA765P DRA764P (1) DSS clock jitter can be improved by providing an external clock source (via inputs vin1a_clk, vin1b_clk) or from internal SATA or PCIe PLLs. (2) Device supports ISS as an optional feature if the part number is designated with the “I” option (3) USB4 will not be supported on some pin-compatible roadmap devices. USB3 will be mapped to these balls instead. Pin compatibility can be maintained in the future by either not using USB4, or via software change to use USB4 on this device, but USB3 on these balls in the future. (4) In the Unified L3 memory map, there is maximum of 2GB of SDRAM space which is available to all L3 initiators including MPU (MPU, GPU, DSP, IVA, DMA, etc). Typically this space is interleaved across both EMIFs to optimize memory performance. If a system populates > 2GB of physical memory, that additional addressable space can be accessed only by the MPU Device Comparison Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 9 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com via the ARM V7 Large Physical Address Extensions (LPAE). (5) DCAN1 has one pin mux option that can optionally be used for MCAN functionality. DCAN2 has two pin mux options, one of which can be optionally used for MCAN functionality. (6) Wide Dynamic Range and Lens Distortion Correction. (7) For more details about the CTRL_WKUP_STD_FUSE_DIE_ID_2 register and Base PN bitfield, see the Jacinto 6 Plus Technical Reference Manual. 3.2 Related Products Automotive Processors DRAx Infotainment SoCs The "Jacinto 6" family of infotainment processors (DRA7xx), paired with robust software and ecosystem offering bring unprecedented feature-rich, in-vehicle infotainment, instrument cluster and telematics features to the next generation automobiles. ADVANCE INFORMATION 10 Device Comparison Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 4 Terminal Configuration and Functions 4.1 Pin Diagram Figure 4-1. ACD S-PBGA-N784 Package (Bottom View) 4.2 Pin Attributes Table 4-1 describes the terminal characteristics and the signals multiplexed on each ball. The following list describes the table column headers: 1. BALL NUMBER: Ball number(s) on the bottom side associated with each signal on the bottom. 2. BALL NAME: Mechanical name from package device (name is taken from muxmode 0). 3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0). NOTE Table 4-1 does not take into account the subsystem multiplexing signals. Subsystem multiplexing signals are described in Section 4.3, Signal Descriptions. NOTE In the Driver off mode, the buffer is configured in high-impedance. 4. 76xP: This column shows if the functionality is applicable for DRA76xP devices. Note that the Pin Attributes table presents the functionality of DRA77xP device. An empty box means "Yes". 5. MUXMODE: Multiplexing mode number: a. MUXMODE 0 is the primary mode; this means that when MUXMODE=0 is set, the function mapped on the pin corresponds to the name of the pin. The primary muxmode is not necessarily the default muxmode. NOTE The default mode is the mode at the release of the reset; also see the RESET REL. MUXMODE column. Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 11 ADVANCE INFORMATION Figure 4-1 shows the ball locations for the 784 plastic ball grid array (PBGA) package and are used in conjunction with Table 4-1 through Table 4-32 to locate signal names and ball grid numbers. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com ADVANCE INFORMATION b. MUXMODE 1 through 15 are possible muxmodes for alternate functions. On each pin, some muxmodes are effectively used for alternate functions, while some muxmodes are not used. Only MUXMODE values which correspond to defined functions should be used. c. An empty box means Not Applicable 6. TYPE: Signal type and direction: – I = Input – O = Output – IO = Input or Output – D = Open drain – DS = Differential Signaling – A = Analog – PWR = Power – GND = Ground – CAP = LDO Capacitor 7. BALL RESET STATE: The state of the terminal at power-on reset: – drive 0 (OFF): The buffer drives VOL (pulldown or pullup resistor not activated) – drive 1 (OFF): The buffer drives VOH (pulldown or pullup resistor not activated) – OFF: High-impedance – PD: High-impedance with an active pulldown resistor – PU: High-impedance with an active pullup resistor – An empty box means Not Applicable 8. BALL RESET REL. STATE: The state of the terminal at the deactivation of the rstoutn signal (also mapped to the PRCM SYS_WARM_OUT_RST signal) – drive 0 (OFF): The buffer drives VOL (pulldown or pullup resistor not activated) – drive clk (OFF): The buffer drives a toggling clock (pulldown or pullup resistor not activated) – drive 1 (OFF): The buffer drives VOH (pulldown or pullup resistor not activated) – OFF: High-impedance – PD: High-impedance with an active pulldown resistor – PU: High-impedance with an active pullup resistor – An empty box means Not Applicable NOTE For more information on the CORE_PWRON_RET_RST reset signal and its reset sources, see the Power Reset and Clock Management / PRCM Reset Management Functional Description section of the Device TRM. 9. BALL RESET REL. MUXMODE: This muxmode is automatically configured at the release of the rstoutn signal (also mapped to the PRCM SYS_WARM_OUT_RST signal). An empty box means Not Applicable. 10. IO VOLTAGE VALUE: This column describes the IO voltage value (the corresponding power supply). An empty box means Not Applicable. 11. POWER: The voltage supply that powers the terminal IO buffers. An empty box means Not Applicable. 12. HYS: Indicates if the input buffer is with hysteresis: – Yes: With hysteresis – No: Without hysteresis – An empty box: Not Applicable NOTE For more information, see the hysteresis values in Section 5.7, Electrical Characteristics. 12 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 13. BUFFER TYPE: Drive strength of the associated output buffer. An empty box means Not Applicable. NOTE 14. PULLUP / PULLDOWN TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled via software. – PU: Internal pullup – PD: Internal pulldown – PU/PD: Internal pullup and pulldown – PUx/PDy: Programmable internal pullup and pulldown – PDy: Programmable internal pulldown – An empty box means No pull 15. DSIS: The deselected input state (DSIS) indicates the state driven on the peripheral input (logic "0" or logic "1") when the peripheral pin function is not selected by any of the PINCNTLx registers. – 0: Logic 0 driven on the peripheral's input signal port. – 1: Logic 1 driven on the peripheral's input signal port. – blank: Pin state driven on the peripheral's input signal port. NOTE Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the proper software configuration (Hi-Z mode is not an input signal). NOTE When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pad’s behavior is undefined. This should be avoided. CAUTION Peripherals exposed in Pin Attributes Table and Pin Multiplexing Table represent functionality of a DRA77xP device. Not all exposed peripherals are supported on DRA7xx devices. For peripherals supported on DRA7xx family of products please refer to Table 3-1, Device Comparison. NOTE Some of the DDR1 and DDR2 signals have an additional state change at the release of porz. The state that the signals change to at the release of porz is as follows: drive 0 (OFF) for: ddr1_csn0, ddr1_ck, ddr1_nck, ddr1_nck, ddr1_casn, ddr1_rasn, ddr1_wen, ddr1_ba[2:0], ddr1_a[15:0], ddr2_csn0, ddr2_ck, ddr2_nck, ddr2_casn, ddr2_rasn, ddr2_wen, ddr2_ba[2:0], ddr2_a[15:0]. OFF for: ddr1_ecc_d[7:0], ddr1_dqm[3:0], ddr1_dqm_ecc, ddr1_dqs[3:0], ddr1_dqsn[3:0], ddr1_dqs_ecc, ddr1_dqsn_ecc, ddr1_d[31:0], ddr2_dqm[3:0], ddr2_dqs[3:0], ddr2_dqsn[3:0], ddr2_d[31:0]. Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 13 ADVANCE INFORMATION For programmable buffer strength: – The default value is given in Table 4-1. – A note describes all possible values according to the selected muxmode. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] ADVANCE INFORMATION J11 cap_vbbldo_dspeve cap_vbbldo_dspeve CAP U13 cap_vbbldo_gpu cap_vbbldo_gpu CAP R19 cap_vbbldo_iva cap_vbbldo_iva CAP J19 cap_vbbldo_mpu cap_vbbldo_mpu CAP H11 cap_vddram_core1 cap_vddram_core1 CAP J17 cap_vddram_core2 cap_vddram_core2 CAP U15 cap_vddram_core3 cap_vddram_core3 CAP R17 cap_vddram_core4 cap_vddram_core4 CAP Y16 cap_vddram_core5 cap_vddram_core5 CAP G10 cap_vddram_dspeve1 cap_vddram_dspeve1 CAP H10 cap_vddram_dspeve2 cap_vddram_dspeve2 CAP T16 cap_vddram_gpu cap_vddram_gpu CAP R20 cap_vddram_iva cap_vddram_iva CAP J16 cap_vddram_mpu1 cap_vddram_mpu1 CAP J21 cap_vddram_mpu2 cap_vddram_mpu2 AD17 csi2_0_dx0 csi2_0_dx0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AF16 csi2_0_dx1 csi2_0_dx1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AF19 csi2_0_dx2 csi2_0_dx2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AE15 csi2_0_dx3 csi2_0_dx3 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AE19 csi2_0_dx4 csi2_0_dx4 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AD18 csi2_0_dy0 csi2_0_dy0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AF17 csi2_0_dy1 csi2_0_dy1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AF20 csi2_0_dy2 csi2_0_dy2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AE16 csi2_0_dy3 csi2_0_dy3 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AE18 csi2_0_dy4 csi2_0_dy4 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AC13 csi2_1_dx0 csi2_1_dx0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AD15 csi2_1_dx1 csi2_1_dx1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AC16 csi2_1_dx2 csi2_1_dx2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD 14 DSIS [15] CAP Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] AC14 csi2_1_dy0 csi2_1_dy0 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AD14 csi2_1_dy1 csi2_1_dy1 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD AC17 csi2_1_dy2 csi2_1_dy2 0 I 1.8 vdda_csi Yes LVCMOS CSI2 PU/PD D19 dcan1_rx dcan1_rx mcan_rx 0 IO 1.8/3.3 vddshv3 Yes PU/PD uart8_txd 2 O Dual Voltage LVCMOS mmc2_sdwp 3 I sata1_led 4 O hdmi1_cec 6 IO gpio1_15 14 IO Driver off 15 I dcan1_tx mcan_tx 0 IO uart8_rxd 2 I mmc2_sdcd 3 I hdmi1_hpd 6 I gpio1_14 14 IO Driver off 15 I E19 dcan1_tx PU PU 15 DSIS [15] ADVANCE INFORMATION BALL NUMBER [1] 0 PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 1 1 AG19 ddr1_casn ddr1_casn 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AG24 ddr1_ck ddr1_ck 0 O PD drive clk (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AH23 ddr1_cke ddr1_cke 0 O PD drive 0 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy T27 ddr1_dqm_ecc ddr1_dqm_ecc No 0 O PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy U28 ddr1_dqsn_ecc ddr1_dqsn_ecc No 0 IO PU PU 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy U27 ddr1_dqs_ecc ddr1_dqs_ecc No 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy AH24 ddr1_nck ddr1_nck 0 O PD drive clk (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AH20 ddr1_rasn ddr1_rasn 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AF23 ddr1_rst ddr1_rst 0 O PD drive 0 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AG22 ddr1_wen ddr1_wen 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy T25 ddr2_casn ddr2_casn 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 15 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] ADVANCE INFORMATION R28 ddr2_ck ddr2_ck 0 O PD drive clk (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy R25 ddr2_cke ddr2_cke 0 O PD drive 0 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy R27 ddr2_nck ddr2_nck 0 O PD drive clk (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy R26 ddr2_rasn ddr2_rasn 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy N25 ddr2_rst ddr2_rst 0 O PD drive 0 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy T24 ddr2_wen ddr2_wen 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy AE22 ddr1_a0 ddr1_a0 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD20 ddr1_a1 ddr1_a1 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE21 ddr1_a2 ddr1_a2 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD22 ddr1_a3 ddr1_a3 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE23 ddr1_a4 ddr1_a4 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AH22 ddr1_a5 ddr1_a5 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD24 ddr1_a6 ddr1_a6 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AC22 ddr1_a7 ddr1_a7 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AG23 ddr1_a8 ddr1_a8 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AF24 ddr1_a9 ddr1_a9 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD21 ddr1_a10 ddr1_a10 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE24 ddr1_a11 ddr1_a11 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AG21 ddr1_a12 ddr1_a12 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AF21 ddr1_a13 ddr1_a13 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AC23 ddr1_a14 ddr1_a14 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AG20 ddr1_a15 ddr1_a15 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE20 ddr1_ba0 ddr1_ba0 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy 16 Terminal Configuration and Functions DSIS [15] Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] AC21 ddr1_ba1 ddr1_ba1 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AH21 ddr1_ba2 ddr1_ba2 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD23 ddr1_csn0 ddr1_csn0 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE26 ddr1_d0 ddr1_d0 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE27 ddr1_d1 ddr1_d1 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AF28 ddr1_d2 ddr1_d2 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AH26 ddr1_d3 ddr1_d3 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AF25 ddr1_d4 ddr1_d4 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AG27 ddr1_d5 ddr1_d5 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AF27 ddr1_d6 ddr1_d6 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AF26 ddr1_d7 ddr1_d7 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AB24 ddr1_d8 ddr1_d8 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD27 ddr1_d9 ddr1_d9 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE28 ddr1_d10 ddr1_d10 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD28 ddr1_d11 ddr1_d11 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD26 ddr1_d12 ddr1_d12 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AE25 ddr1_d13 ddr1_d13 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AD25 ddr1_d14 ddr1_d14 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AC26 ddr1_d15 ddr1_d15 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AA25 ddr1_d16 ddr1_d16 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AB25 ddr1_d17 ddr1_d17 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AA26 ddr1_d18 ddr1_d18 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AA28 ddr1_d19 ddr1_d19 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy DSIS [15] Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 17 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] ADVANCE INFORMATION AA27 ddr1_d20 ddr1_d20 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AA24 ddr1_d21 ddr1_d21 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AC25 ddr1_d22 ddr1_d22 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy Y26 ddr1_d23 ddr1_d23 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy W26 ddr1_d24 ddr1_d24 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AB23 ddr1_d25 ddr1_d25 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy V24 ddr1_d26 ddr1_d26 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy Y24 ddr1_d27 ddr1_d27 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy W25 ddr1_d28 ddr1_d28 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy Y25 ddr1_d29 ddr1_d29 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy W24 ddr1_d30 ddr1_d30 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy Y28 ddr1_d31 ddr1_d31 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AG26 ddr1_dqm0 ddr1_dqm0 0 O PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AC24 ddr1_dqm1 ddr1_dqm1 0 O PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AB26 ddr1_dqm2 ddr1_dqm2 0 O PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy Y27 ddr1_dqm3 ddr1_dqm3 0 O PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy AH25 ddr1_dqs0 ddr1_dqs0 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy AC27 ddr1_dqs1 ddr1_dqs1 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy AB27 ddr1_dqs2 ddr1_dqs2 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy W28 ddr1_dqs3 ddr1_dqs3 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy AG25 ddr1_dqsn0 ddr1_dqsn0 0 IO PU PU 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy AC28 ddr1_dqsn1 ddr1_dqsn1 0 IO PU PU 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy AB28 ddr1_dqsn2 ddr1_dqsn2 0 IO PU PU 1.35/1.5/1.8 vdds_ddr1 LVCMOS DDR Pux/PDy 18 Terminal Configuration and Functions DSIS [15] Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) BALL NAME [2] SIGNAL NAME [3] W27 ddr1_dqsn3 ddr1_dqsn3 U25 ddr1_ecc_d0 ddr1_ecc_d0 U26 ddr1_ecc_d1 V25 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] 0 IO PU PU 1.35/1.5/1.8 vdds_ddr1 No 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 ddr1_ecc_d1 No 0 IO PD PD ddr1_ecc_d2 ddr1_ecc_d2 No 0 IO PD V26 ddr1_ecc_d3 ddr1_ecc_d3 No 0 IO V27 ddr1_ecc_d4 ddr1_ecc_d4 No 0 T28 ddr1_ecc_d5 ddr1_ecc_d5 No T26 ddr1_ecc_d6 ddr1_ecc_d6 V28 ddr1_ecc_d7 ddr1_ecc_d7 AF22 ddr1_odt0 AB22 HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] LVCMOS DDR Pux/PDy No LVCMOS DDR Pux/PDy 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy No 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy No 0 IO PD PD 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy ddr1_odt0 0 O PD drive 0 (OFF) 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR Pux/PDy ddr1_vref0 ddr1_vref0 0 PWR OFF OFF 1.35/1.5/1.8 vdds_ddr1 No LVCMOS DDR P25 ddr2_a0 ddr2_a0 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy P26 ddr2_a1 ddr2_a1 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy P28 ddr2_a2 ddr2_a2 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy P27 ddr2_a3 ddr2_a3 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy P24 ddr2_a4 ddr2_a4 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy P23 ddr2_a5 ddr2_a5 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy N26 ddr2_a6 ddr2_a6 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy M25 ddr2_a7 ddr2_a7 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy N28 ddr2_a8 ddr2_a8 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy M27 ddr2_a9 ddr2_a9 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy L25 ddr2_a10 ddr2_a10 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy N27 ddr2_a11 ddr2_a11 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy DSIS [15] Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 19 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] ADVANCE INFORMATION M28 ddr2_a12 ddr2_a12 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy R24 ddr2_a13 ddr2_a13 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy N24 ddr2_a14 ddr2_a14 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy R23 ddr2_a15 ddr2_a15 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy L24 ddr2_ba0 ddr2_ba0 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy U24 ddr2_ba1 ddr2_ba1 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy M24 ddr2_ba2 ddr2_ba2 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy M26 ddr2_csn0 ddr2_csn0 0 O PD drive 1 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy C28 ddr2_d0 ddr2_d0 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy A26 ddr2_d1 ddr2_d1 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy E24 ddr2_d2 ddr2_d2 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy D25 ddr2_d3 ddr2_d3 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy D26 ddr2_d4 ddr2_d4 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy B27 ddr2_d5 ddr2_d5 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy B26 ddr2_d6 ddr2_d6 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy C26 ddr2_d7 ddr2_d7 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy F26 ddr2_d8 ddr2_d8 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy E25 ddr2_d9 ddr2_d9 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy E26 ddr2_d10 ddr2_d10 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy G27 ddr2_d11 ddr2_d11 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy E28 ddr2_d12 ddr2_d12 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy G26 ddr2_d13 ddr2_d13 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy G28 ddr2_d14 ddr2_d14 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy 20 Terminal Configuration and Functions DSIS [15] Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] F25 ddr2_d15 ddr2_d15 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy G25 ddr2_d16 ddr2_d16 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy G24 ddr2_d17 ddr2_d17 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy F23 ddr2_d18 ddr2_d18 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy F24 ddr2_d19 ddr2_d19 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy H28 ddr2_d20 ddr2_d20 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy H25 ddr2_d21 ddr2_d21 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy H27 ddr2_d22 ddr2_d22 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy H26 ddr2_d23 ddr2_d23 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy K27 ddr2_d24 ddr2_d24 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy K26 ddr2_d25 ddr2_d25 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy J25 ddr2_d26 ddr2_d26 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy K28 ddr2_d27 ddr2_d27 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy H24 ddr2_d28 ddr2_d28 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy J24 ddr2_d29 ddr2_d29 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy K24 ddr2_d30 ddr2_d30 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy L26 ddr2_d31 ddr2_d31 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy C27 ddr2_dqm0 ddr2_dqm0 0 O PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy E27 ddr2_dqm1 ddr2_dqm1 0 O PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy G23 ddr2_dqm2 ddr2_dqm2 0 O PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy J26 ddr2_dqm3 ddr2_dqm3 0 O PU PU 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy D28 ddr2_dqs0 ddr2_dqs0 0 IO PD PD 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy F27 ddr2_dqs1 ddr2_dqs1 0 IO PD PD 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy DSIS [15] Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 21 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] DSIS [15] ADVANCE INFORMATION J27 ddr2_dqs2 ddr2_dqs2 0 IO PD PD 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy L28 ddr2_dqs3 ddr2_dqs3 0 IO PD PD 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy D27 ddr2_dqsn0 ddr2_dqsn0 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy F28 ddr2_dqsn1 ddr2_dqsn1 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy J28 ddr2_dqsn2 ddr2_dqsn2 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy L27 ddr2_dqsn3 ddr2_dqsn3 0 IO PU PU 1.35/1.5/1.8 vdds_ddr2 LVCMOS DDR Pux/PDy K25 ddr2_odt0 ddr2_odt0 0 O PD drive 0 (OFF) 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR Pux/PDy M22 ddr2_vref0 ddr2_vref0 0 PWR OFF OFF 1.35/1.5/1.8 vdds_ddr2 No LVCMOS DDR F19 emu0 emu0 0 IO PU PU 0 1.8/3.3 vddshv3 Yes 14 IO Dual Voltage LVCMOS PU/PD gpio8_30 emu1 0 IO PU PU 0 1.8/3.3 vddshv3 Yes 14 IO Dual Voltage LVCMOS PU/PD gpio8_31 gpio6_10 0 IO PU PU 15 1.8/3.3 vddshv7 Yes 1 O Dual Voltage LVCMOS PU/PD mdio_mclk i2c3_sda 2 IO 1 usb3_ulpi_d7 3 IO 0 vin2b_hsync1 4 I ehrpwm2A 10 O gpio6_10 14 IO Driver off 15 I gpio6_11 0 IO mdio_d 1 IO i2c3_scl 2 IO 1 usb3_ulpi_d6 3 IO 0 vin2b_vsync1 4 I ehrpwm2B 10 O gpio6_11 14 IO Driver off 15 I C23 AC5 AB4 22 emu1 gpio6_10 gpio6_11 PU PU Terminal Configuration and Functions 15 1.8/3.3 vddshv7 Yes Dual Voltage LVCMOS 1 PU/PD 1 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) E21 F17 F18 BALL NAME [2] gpio6_14 gpio6_15 gpio6_16 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PU BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PU 15 1.8/3.3 POWER [11] vddshv3 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] DSIS [15] gpio6_14 0 IO mcasp1_axr8 1 IO PU/PD dcan2_tx mcan_tx 2 IO uart10_rxd 3 I vout2_hsync 6 O vin4a_hsync0 8 I 0 i2c3_sda 9 IO 1 timer1 10 IO gpio6_14 14 IO Driver off 15 I gpio6_15 0 IO mcasp1_axr9 1 IO dcan2_rx mcan_rx 2 IO uart10_txd 3 O vout2_vsync 6 O vin4a_vsync0 8 I 0 i2c3_scl 9 IO 1 timer2 10 IO gpio6_15 14 IO Driver off 15 I gpio6_16 0 IO mcasp1_axr10 1 IO vout2_fld 6 O vin4a_fld0 8 I clkout1 9 O timer3 10 IO gpio6_16 14 IO Driver off 15 I 0 1 PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv3 vddshv3 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 0 PU/PD 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 23 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] P6 ADVANCE INFORMATION J6 R4 24 BALL NAME [2] gpmc_a0 gpmc_a1 gpmc_a2 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O I vout3_d16 3 O vin4a_d0 4 I 0 vin4b_d0 6 I 0 i2c4_scl 7 IO 1 uart5_rxd 8 I 1 gpio7_3 gpmc_a26 gpmc_a16 14 IO Driver off 15 I gpmc_a1 0 O vin3a_d17 2 I vout3_d17 3 O vin4a_d1 4 I 0 vin4b_d1 6 I 0 i2c4_sda 7 IO 1 uart5_txd 8 O gpio7_4 14 IO Driver off 15 I gpmc_a2 0 O vin3a_d18 2 I vout3_d18 3 O vin4a_d2 4 I 0 vin4b_d2 6 I 0 uart7_rxd 7 I 1 uart5_ctsn 8 I 1 gpio7_5 14 IO Driver off 15 I PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv10 vddshv10 Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 2 1.8/3.3 vddshv10 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] vin3a_d16 PD 15 HYS [12] gpmc_a0 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 0 PU/PD 0 PU/PD 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) R5 M6 K4 BALL NAME [2] gpmc_a3 gpmc_a4 gpmc_a5 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv10 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] DSIS [15] gpmc_a3 0 O qspi1_cs2 1 O PU/PD vin3a_d19 2 I vout3_d19 3 O vin4a_d3 4 I 0 vin4b_d3 6 I 0 uart7_txd 7 O uart5_rtsn 8 O gpio7_6 14 IO Driver off 15 I gpmc_a4 0 O qspi1_cs3 1 O vin3a_d20 2 I vout3_d20 3 O vin4a_d4 4 I 0 vin4b_d4 6 I 0 i2c5_scl 7 IO 1 uart6_rxd 8 I 1 gpio1_26 14 IO Driver off 15 I gpmc_a5 0 O vin3a_d21 2 I vout3_d21 3 O vin4a_d5 4 I 0 vin4b_d5 6 I 0 i2c5_sda 7 IO 1 uart6_txd 8 O gpio1_27 14 IO Driver off 15 I 1 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS ADVANCE INFORMATION BALL NUMBER [1] PU/PD 1 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 25 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] P5 ADVANCE INFORMATION N6 N4 R3 26 BALL NAME [2] gpmc_a6 gpmc_a7 gpmc_a8 gpmc_a9 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O I vout3_d22 3 O vin4a_d6 4 I 0 vin4b_d6 6 I 0 uart8_rxd 7 I 1 uart6_ctsn 8 I 1 gpio1_28 14 IO Driver off 15 I gpmc_a7 0 O vin3a_d23 2 I vout3_d23 3 O vin4a_d7 4 I 0 vin4b_d7 6 I 0 uart8_txd 7 O uart6_rtsn 8 O gpio1_29 14 IO Driver off 15 I gpmc_a8 0 O vin3a_hsync0 2 I vout3_hsync 3 O vin4b_hsync1 6 I timer12 7 IO spi4_sclk 8 IO gpio1_30 14 IO Driver off 15 I gpmc_a9 0 O vin3a_vsync0 2 I vout3_vsync 3 O vin4b_vsync1 6 I timer11 7 IO spi4_d1 8 IO gpio1_31 14 IO Driver off 15 I PD PD 15 1.8/3.3 vddshv10 vddshv10 Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 2 1.8/3.3 vddshv10 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] vin3a_d22 PD 15 HYS [12] gpmc_a6 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 0 PU/PD 0 PU/PD 0 0 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) J5 K5 P4 R2 BALL NAME [2] gpmc_a10 gpmc_a11 gpmc_a12 gpmc_a13 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv10 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] DSIS [15] gpmc_a10 0 O vin3a_de0 2 I PU/PD vout3_de 3 O vin4b_clk1 6 I timer10 7 IO spi4_d0 8 IO gpio2_0 14 IO Driver off 15 I gpmc_a11 0 O vin3a_fld0 2 I vout3_fld 3 O vin4a_fld0 4 I 0 vin4b_de1 6 I 0 timer9 7 IO spi4_cs0 8 IO gpio2_1 14 IO Driver off 15 I gpmc_a12 0 O vin4a_clk0 4 I gpmc_a0 5 O vin4b_fld1 6 I timer8 7 IO spi4_cs1 8 IO 1 dma_evt1 9 I 0 gpio2_2 14 IO Driver off 15 I gpmc_a13 0 O qspi1_rtclk 1 I vin4a_hsync0 4 I timer7 7 IO spi4_cs2 8 IO 1 dma_evt2 9 I 0 gpio2_3 14 IO Driver off 15 I 0 0 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS ADVANCE INFORMATION BALL NUMBER [1] PU/PD 0 1 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 27 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] R6 ADVANCE INFORMATION T2 U1 P3 R1 H6 28 BALL NAME [2] gpmc_a14 gpmc_a15 gpmc_a16 gpmc_a17 gpmc_a18 gpmc_a19 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv10 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] DSIS [15] gpmc_a14 0 O qspi1_d3 1 I PU/PD vin4a_vsync0 4 I timer6 7 IO spi4_cs3 8 IO gpio2_4 14 IO Driver off 15 I gpmc_a15 0 O qspi1_d2 1 I vin4a_d8 4 I timer5 7 IO gpio2_5 14 IO Driver off 15 I gpmc_a16 0 O qspi1_d0 1 IO vin4a_d9 4 I gpio2_6 14 IO Driver off 15 I gpmc_a17 0 O qspi1_d1 1 I vin4a_d10 4 I gpio2_7 14 IO Driver off 15 I gpmc_a18 0 O qspi1_sclk 1 O vin4a_d11 4 I gpio2_8 14 IO Driver off 15 I gpmc_a19 0 O mmc2_dat4 1 IO gpmc_a13 2 O vin4a_d12 4 I 0 vin3b_d0 6 I 0 gpio2_9 14 IO Driver off 15 I 0 0 1 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv11 Yes Dual Voltage LVCMOS PU/PD 1 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) G6 J4 F5 G5 J3 BALL NAME [2] gpmc_a20 gpmc_a21 gpmc_a22 gpmc_a23 gpmc_a24 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O IO gpmc_a14 2 O vin4a_d13 4 I 0 vin3b_d1 6 I 0 gpio2_10 14 IO Driver off 15 I gpmc_a21 0 O mmc2_dat6 1 IO gpmc_a15 2 O vin4a_d14 4 I 0 vin3b_d2 6 I 0 gpio2_11 14 IO Driver off 15 I gpmc_a22 0 O mmc2_dat7 1 IO gpmc_a16 2 O vin4a_d15 4 I 0 vin3b_d3 6 I 0 gpio2_12 14 IO Driver off 15 I gpmc_a23 0 O mmc2_clk 1 IO gpmc_a17 2 O vin4a_fld0 4 I 0 vin3b_d4 6 I 0 gpio2_13 14 IO Driver off 15 I gpmc_a24 0 O mmc2_dat0 1 IO gpmc_a18 2 O vin3b_d5 6 I gpio2_14 14 IO Driver off 15 I PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv11 vddshv11 vddshv11 vddshv11 Yes Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 1 1.8/3.3 vddshv11 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] mmc2_dat5 PD 15 HYS [12] gpmc_a20 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 1 PU/PD 1 PU/PD 1 PU/PD 1 PU/PD 1 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 29 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] H4 H3 ADVANCE INFORMATION H5 N5 M2 L5 30 BALL NAME [2] gpmc_a25 gpmc_a26 gpmc_a27 gpmc_ad0 gpmc_ad1 gpmc_ad2 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] gpmc_a25 0 O mmc2_dat1 1 IO gpmc_a19 2 O vin3b_d6 6 I gpio2_15 14 IO Driver off 15 I gpmc_a26 0 O mmc2_dat2 1 IO gpmc_a20 2 O vin3b_d7 6 I gpio2_16 14 IO Driver off 15 I gpmc_a27 0 O mmc2_dat3 1 IO gpmc_a21 2 O vin3b_hsync1 6 I gpio2_17 14 IO Driver off 15 I gpmc_ad0 0 IO vin3a_d0 2 I vout3_d0 3 O gpio1_6 14 IO sysboot0 15 I gpmc_ad1 0 IO vin3a_d1 2 I vout3_d1 3 O gpio1_7 14 IO sysboot1 15 I gpmc_ad2 0 IO vin3a_d2 2 I vout3_d2 3 O gpio1_8 14 IO sysboot2 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv11 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] DSIS [15] PU/PD 1 0 PD PD 15 1.8/3.3 vddshv11 Yes Dual Voltage LVCMOS PU/PD 1 0 PD PD 15 1.8/3.3 vddshv11 Yes Dual Voltage LVCMOS PU/PD 1 0 OFF OFF OFF OFF OFF OFF Terminal Configuration and Functions 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv10 vddshv10 vddshv10 Yes Yes Yes Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 0 0 0 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) M1 K6 L4 L3 L2 L1 K1 BALL NAME [2] gpmc_ad3 gpmc_ad4 gpmc_ad5 gpmc_ad6 gpmc_ad7 gpmc_ad8 gpmc_ad9 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] gpmc_ad3 0 IO vin3a_d3 2 I vout3_d3 3 O gpio1_9 14 IO sysboot3 15 I gpmc_ad4 0 IO vin3a_d4 2 I vout3_d4 3 O gpio1_10 14 IO sysboot4 15 I gpmc_ad5 0 IO vin3a_d5 2 I vout3_d5 3 O gpio1_11 14 IO sysboot5 15 I gpmc_ad6 0 IO vin3a_d6 2 I vout3_d6 3 O gpio1_12 14 IO sysboot6 15 I gpmc_ad7 0 IO vin3a_d7 2 I vout3_d7 3 O gpio1_13 14 IO sysboot7 15 I gpmc_ad8 0 IO vin3a_d8 2 I vout3_d8 3 O gpio7_18 14 IO sysboot8 15 I gpmc_ad9 0 IO vin3a_d9 2 I vout3_d9 3 O gpio7_19 14 IO sysboot9 15 I BALL RESET STATE [7] OFF OFF OFF OFF OFF OFF OFF BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] OFF OFF OFF OFF OFF OFF OFF 15 15 15 15 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 POWER [11] vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 HYS [12] Yes Yes Yes Yes Yes Yes Yes BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD DSIS [15] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 31 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] J1 J2 ADVANCE INFORMATION H1 K2 H2 K3 32 BALL NAME [2] gpmc_ad10 gpmc_ad11 gpmc_ad12 gpmc_ad13 gpmc_ad14 gpmc_ad15 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] gpmc_ad10 0 IO vin3a_d10 2 I vout3_d10 3 O gpio7_28 14 IO sysboot10 15 I gpmc_ad11 0 IO vin3a_d11 2 I vout3_d11 3 O gpio7_29 14 IO sysboot11 15 I gpmc_ad12 0 IO vin3a_d12 2 I vout3_d12 3 O gpio1_18 14 IO sysboot12 15 I gpmc_ad13 0 IO vin3a_d13 2 I vout3_d13 3 O gpio1_19 14 IO sysboot13 15 I gpmc_ad14 0 IO vin3a_d14 2 I vout3_d14 3 O gpio1_20 14 IO sysboot14 15 I gpmc_ad15 0 IO vin3a_d15 2 I vout3_d15 3 O gpio1_21 14 IO sysboot15 15 I BALL RESET STATE [7] OFF OFF OFF OFF OFF OFF BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] OFF OFF OFF OFF OFF OFF Terminal Configuration and Functions 15 15 15 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 1.8/3.3 POWER [11] vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 vddshv10 HYS [12] Yes Yes Yes Yes Yes Yes BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD DSIS [15] 0 0 0 0 0 0 0 0 0 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) N1 N3 BALL NAME [2] gpmc_advn_ale gpmc_ben0 SIGNAL NAME [3] gpmc_ben1 MUXMODE [5] TYPE [6] BALL RESET STATE [7] clkout2 2 O gpmc_wait1 3 I 1 vin4a_vsync0 4 I 0 gpmc_a2 5 O gpmc_a23 6 O timer3 7 IO i2c3_sda 8 IO 1 dma_evt2 9 I 0 gpio2_23 gpmc_a19 14 IO Driver off 15 I gpmc_ben0 0 O gpmc_cs4 1 O vddshv10 Yes Yes Dual Voltage LVCMOS DSIS [15] O 1.8/3.3 vddshv10 PULL UP/DOWN TYPE [14] O 15 1.8/3.3 BUFFER TYPE [13] 1 PU 15 HYS [12] 0 PU PU POWER [11] gpmc_cs6 Dual Voltage LVCMOS PU/PD PU/PD 3 I 0 vin3b_de1 6 I 0 timer2 7 IO dma_evt3 9 I gpio2_26 gpmc_a21 14 IO Driver off 15 I gpmc_ben1 0 O gpmc_cs5 1 O vin1b_de1 No PU BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] gpmc_advn_ale vin1b_hsync1 M4 76x [4] No ADVANCE INFORMATION BALL NUMBER [1] 0 PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD 3 I 0 vin3b_clk1 4 I 0 gpmc_a3 5 O vin3b_fld1 6 I timer1 7 IO dma_evt4 9 I gpio2_27 gpmc_a22 14 IO Driver off 15 I 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 33 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] L6 ADVANCE INFORMATION T1 G4 P2 P1 34 BALL NAME [2] gpmc_clk gpmc_cs0 gpmc_cs1 gpmc_cs2 gpmc_cs3 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PU BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PU 15 1.8/3.3 POWER [11] vddshv10 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] gpmc_clk 0 IO gpmc_cs7 1 O clkout1 2 O gpmc_wait1 3 I 1 vin4a_hsync0 4 I 0 vin4a_de0 5 I 0 vin3b_clk1 6 I 0 timer4 7 IO i2c3_scl 8 IO 1 dma_evt1 9 I 0 gpio2_22 gpmc_a20 14 IO Driver off 15 I gpmc_cs0 0 O gpio2_19 14 IO Driver off 15 I gpmc_cs1 0 O mmc2_cmd 1 IO gpmc_a22 2 O vin4a_de0 4 I 0 vin3b_vsync1 6 I 0 gpio2_18 14 IO Driver off 15 I gpmc_cs2 0 O qspi1_cs0 1 O gpio2_20 gpmc_a23 gpmc_a13 14 IO Driver off 15 I gpmc_cs3 0 O qspi1_cs1 1 O vin3a_clk0 2 I vout3_clk 3 O gpmc_a1 5 O gpio2_21 gpmc_a24 gpmc_a14 14 IO Driver off 15 I PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD PU PU 15 1.8/3.3 vddshv11 Yes Dual Voltage LVCMOS PU/PD PU PU PU PU Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv10 vddshv10 Yes Yes 0 1 Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 1 1 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) M5 N2 M3 BALL NAME [2] gpmc_oen_ren gpmc_wait0 gpmc_wen SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] gpmc_oen_ren 0 O gpio2_24 14 IO Driver off 15 I gpmc_wait0 0 I gpio2_28 gpmc_a25 gpmc_a15 14 IO Driver off 15 I gpmc_wen 0 O gpio2_25 14 IO BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD PU PU 15 1.8/3.3 vddshv10 Yes Dual Voltage LVCMOS PU/PD DSIS [15] 1 Driver off 15 I AG14 hdmi1_clockx hdmi1_clockx 0 O 1.8 vdda_hdmi HDMIPHY PDy AH15 hdmi1_clocky hdmi1_clocky 0 O 1.8 vdda_hdmi HDMIPHY PDy AG15 hdmi1_data0x hdmi1_data0x 0 O 1.8 vdda_hdmi HDMIPHY PDy AH16 hdmi1_data0y hdmi1_data0y 0 O 1.8 vdda_hdmi HDMIPHY PDy AG17 hdmi1_data1x hdmi1_data1x 0 O 1.8 vdda_hdmi HDMIPHY PDy AH18 hdmi1_data1y hdmi1_data1y 0 O 1.8 vdda_hdmi HDMIPHY PDy AG18 hdmi1_data2x hdmi1_data2x 0 O 1.8 vdda_hdmi HDMIPHY PDy AH19 hdmi1_data2y hdmi1_data2y 0 O 1.8 vdda_hdmi HDMIPHY PDy C19 i2c1_scl i2c1_scl 0 IO OFF OFF 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS I2C PU/PD C20 i2c1_sda i2c1_sda 0 IO OFF OFF 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS I2C PU/PD F15 i2c2_scl i2c2_scl 0 IO OFF OFF 15 1.8/3.3 vddshv3 Yes 1 1 IO Driver off 15 I Dual Voltage LVCMOS I2C PU/PD hdmi1_ddc_sda i2c2_sda 0 IO OFF OFF 15 1.8/3.3 vddshv3 Yes 1 1 IO Dual Voltage LVCMOS I2C PU/PD hdmi1_ddc_scl C24 i2c2_sda Driver off 15 I AF14 ljcb_clkn ljcb_clkn 0 IO 1.8 vdda_pcie LJCB AE13 ljcb_clkp ljcb_clkp 0 IO 1.8 vdda_pcie LJCB Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 35 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] A13 ADVANCE INFORMATION B13 F14 C13 E15 A18 A19 A17 36 BALL NAME [2] mcasp1_aclkr mcasp1_aclkx mcasp1_fsr mcasp1_fsx mcasp2_aclkr mcasp2_aclkx mcasp2_fsr mcasp2_fsx SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] IO IO vout2_d0 6 O vin4a_d0 8 I 0 i2c4_sda 10 IO 1 gpio5_0 14 IO Driver off 15 I mcasp1_aclkx 0 IO i2c3_sda 10 IO gpio7_31 14 IO Driver off 15 I mcasp1_fsr 0 IO mcasp7_axr3 1 IO vout2_d1 6 O vin4a_d1 8 I 0 i2c4_scl 10 IO 1 gpio5_1 14 IO Driver off 15 I mcasp1_fsx 0 IO i2c3_scl 10 IO gpio7_30 14 IO Driver off 15 I mcasp2_aclkr 0 IO mcasp8_axr2 1 IO vout2_d8 6 O vin4a_d8 8 I Driver off 15 I mcasp2_aclkx 0 IO Driver off 15 I mcasp2_fsr 0 IO mcasp8_axr3 1 IO vout2_d9 6 O vin4a_d9 8 I Driver off 15 I mcasp2_fsx 0 IO Driver off 15 I PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv3 vddshv3 vddshv3 vddshv3 Yes Yes Yes Yes Yes Dual Voltage LVCMOS PU/PD DSIS [15] 1 1.8/3.3 vddshv3 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] mcasp7_axr2 PD 15 HYS [12] mcasp1_aclkr PD PD POWER [11] 0 0 Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 0 1 0 0 Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 0 1 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) B17 F13 C17 A20 AA3 BALL NAME [2] mcasp3_aclkx mcasp3_fsx mcasp4_aclkx mcasp4_fsx mcasp5_aclkx SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] IO IO mcasp2_axr12 2 IO 0 uart7_rxd 3 I 1 gpio5_13 14 IO Driver off 15 I mcasp3_fsx 0 IO mcasp3_fsr 1 IO mcasp2_axr13 2 IO uart7_txd 3 O gpio5_14 14 IO Driver off 15 I mcasp4_aclkx 0 IO mcasp4_aclkr 1 IO spi3_sclk 2 IO 0 uart8_rxd 3 I 1 i2c4_sda 4 IO 1 vout2_d16 6 O vin4a_d16 8 I Driver off 15 I mcasp4_fsx 0 IO mcasp4_fsr 1 IO spi3_d1 2 IO uart8_txd 3 O i2c4_scl 4 IO vout2_d17 6 O vin4a_d17 8 I Driver off 15 I mcasp5_aclkx 0 IO mcasp5_aclkr 1 IO spi4_sclk 2 IO 0 uart9_rxd 3 I 1 i2c5_sda 4 IO 1 mlb_clk 5 I 1 vout2_d20 6 O vin4a_d20 8 I Driver off 15 I vddshv3 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD DSIS [15] 1 1.8/3.3 vddshv3 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] mcasp3_aclkr PD 15 HYS [12] mcasp3_aclkx PD PD POWER [11] PU/PD 0 0 ADVANCE INFORMATION BALL NUMBER [1] 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 1 0 PD PD 15 1.8/3.3 vddshv7 Yes Dual Voltage LVCMOS PU/PD 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 37 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] AB6 ADVANCE INFORMATION F10 F11 E13 E11 38 BALL NAME [2] mcasp5_fsx mcasp1_axr0 mcasp1_axr1 mcasp1_axr2 mcasp1_axr3 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] mcasp5_fsx 0 IO mcasp5_fsr 1 IO spi4_d1 2 IO uart9_txd 3 O i2c5_scl 4 IO vout2_d21 6 O vin4a_d21 8 I Driver off 15 I mcasp1_axr0 0 IO uart6_rxd 3 I i2c5_sda 10 IO gpio5_2 14 IO Driver off 15 I mcasp1_axr1 0 IO uart6_txd 3 O i2c5_scl 10 IO gpio5_3 14 IO Driver off 15 I mcasp1_axr2 0 IO mcasp6_axr2 1 IO uart6_ctsn 3 I vout2_d2 6 O vin4a_d2 8 I gpio5_4 14 IO Driver off 15 I mcasp1_axr3 0 IO mcasp6_axr3 1 IO uart6_rtsn 3 O vout2_d3 6 O vin4a_d3 8 I gpio5_5 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv7 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 1 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 1 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 1 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) E12 D13 C11 D12 B11 A11 BALL NAME [2] mcasp1_axr4 mcasp1_axr5 mcasp1_axr6 mcasp1_axr7 mcasp1_axr8 mcasp1_axr9 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] mcasp1_axr4 0 IO mcasp4_axr2 1 IO vout2_d4 6 O vin4a_d4 8 I gpio5_6 14 IO Driver off 15 I mcasp1_axr5 0 IO mcasp4_axr3 1 IO vout2_d5 6 O vin4a_d5 8 I gpio5_7 14 IO Driver off 15 I mcasp1_axr6 0 IO mcasp5_axr2 1 IO vout2_d6 6 O vin4a_d6 8 I gpio5_8 14 IO Driver off 15 I mcasp1_axr7 0 IO mcasp5_axr3 1 IO vout2_d7 6 O vin4a_d7 8 I timer4 10 IO gpio5_9 14 IO Driver off 15 I mcasp1_axr8 0 IO mcasp6_axr0 1 IO spi3_sclk 3 IO timer5 10 IO gpio5_10 14 IO Driver off 15 I mcasp1_axr9 0 IO mcasp6_axr1 1 IO spi3_d1 3 IO timer6 10 IO gpio5_11 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv3 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 ADVANCE INFORMATION BALL NUMBER [1] 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 39 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] C12 ADVANCE INFORMATION A12 D14 B12 F12 E14 40 BALL NAME [2] mcasp1_axr10 mcasp1_axr11 mcasp1_axr12 mcasp1_axr13 mcasp1_axr14 mcasp1_axr15 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] mcasp1_axr10 0 IO mcasp6_aclkx 1 IO mcasp6_aclkr 2 IO spi3_d0 3 IO timer7 10 IO gpio5_12 14 IO Driver off 15 I mcasp1_axr11 0 IO mcasp6_fsx 1 IO mcasp6_fsr 2 IO spi3_cs0 3 IO timer8 10 IO gpio4_17 14 IO Driver off 15 I mcasp1_axr12 0 IO mcasp7_axr0 1 IO spi3_cs1 3 IO timer9 10 IO gpio4_18 14 IO Driver off 15 I mcasp1_axr13 0 IO mcasp7_axr1 1 IO timer10 10 IO gpio6_4 14 IO Driver off 15 I mcasp1_axr14 0 IO mcasp7_aclkx 1 IO mcasp7_aclkr 2 IO timer11 10 IO gpio6_5 14 IO Driver off 15 I mcasp1_axr15 0 IO mcasp7_fsx 1 IO mcasp7_fsr 2 IO timer12 10 IO gpio6_6 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv3 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 1 PD PD PD PD PD PD Terminal Configuration and Functions 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv3 vddshv3 vddshv3 Yes Yes Yes Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 0 0 0 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) B14 A14 C14 A15 D15 B15 B16 BALL NAME [2] mcasp2_axr0 mcasp2_axr1 mcasp2_axr2 mcasp2_axr3 mcasp2_axr4 mcasp2_axr5 mcasp2_axr6 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] mcasp2_axr0 0 IO vout2_d10 6 O vin4a_d10 8 I Driver off 15 I mcasp2_axr1 0 IO vout2_d11 6 O vin4a_d11 8 I Driver off 15 I mcasp2_axr2 0 IO mcasp3_axr2 1 IO gpio6_8 14 IO Driver off 15 I mcasp2_axr3 0 IO mcasp3_axr3 1 IO gpio6_9 14 IO Driver off 15 I mcasp2_axr4 0 IO mcasp8_axr0 1 IO vout2_d12 6 O vin4a_d12 8 I gpio1_4 14 IO Driver off 15 I mcasp2_axr5 0 IO mcasp8_axr1 1 IO vout2_d13 6 O vin4a_d13 8 I gpio6_7 14 IO Driver off 15 I mcasp2_axr6 0 IO mcasp8_aclkx 1 IO mcasp8_aclkr 2 IO vout2_d14 6 O vin4a_d14 8 I gpio2_29 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv3 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv3 vddshv3 vddshv3 Yes Yes Yes Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD ADVANCE INFORMATION BALL NUMBER [1] 0 0 0 0 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 41 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] A16 ADVANCE INFORMATION B18 C16 D16 D17 42 BALL NAME [2] mcasp2_axr7 mcasp3_axr0 mcasp3_axr1 mcasp4_axr0 mcasp4_axr1 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv3 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] mcasp2_axr7 0 IO mcasp8_fsx 1 IO 0 mcasp8_fsr 2 IO vout2_d15 6 O vin4a_d15 8 I gpio1_5 14 IO Driver off 15 I mcasp3_axr0 0 IO mcasp2_axr14 2 IO uart7_ctsn 3 I 1 uart5_rxd 4 I 1 Driver off 15 I mcasp3_axr1 0 IO mcasp2_axr15 2 IO uart7_rtsn 3 O uart5_txd 4 O Driver off 15 I mcasp4_axr0 0 IO spi3_d0 2 IO uart8_ctsn 3 I 1 uart4_rxd 4 I 1 vout2_d18 6 O vin4a_d18 8 I Driver off 15 I mcasp4_axr1 0 IO spi3_cs0 2 IO uart8_rtsn 3 O uart4_txd 4 O vout2_d19 6 O vin4a_d19 8 I Driver off 15 I 0 0 PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv3 vddshv3 vddshv3 Yes Yes Yes Dual Voltage LVCMOS PU/PD 0 0 Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 0 0 0 0 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 1 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AB3 AA4 U3 V1 BALL NAME [2] mcasp5_axr0 mcasp5_axr1 mdio_d mdio_mclk SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv7 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] mcasp5_axr0 0 IO spi4_d0 2 IO 0 uart9_ctsn 3 I 1 uart3_rxd 4 I 1 mlb_sig 5 IO 1 vout2_d22 6 O vin4a_d22 8 I Driver off 15 I mcasp5_axr1 0 IO spi4_cs0 2 IO uart9_rtsn 3 O uart3_txd 4 O mlb_dat 5 IO vout2_d23 6 O vin4a_d23 8 I Driver off 15 I mdio_d 0 IO uart3_ctsn 1 I mii0_txer 3 O 0 vin2a_d0 4 I 0 vin4b_d0 5 I 0 gpio5_16 14 IO Driver off 15 I mdio_mclk 0 O uart3_rtsn 1 O mii0_col 3 I vin2a_clk0 4 I vin4b_clk1 5 I gpio5_15 14 IO 0 0 PD PD 15 1.8/3.3 vddshv7 Yes Dual Voltage LVCMOS PU/PD ADVANCE INFORMATION BALL NUMBER [1] 0 1 1 0 PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv9 vddshv9 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 1 1 PU/PD 1 0 0 Driver off 15 I AB2 mlbp_clk_n mlbp_clk_n 0 I 1.8 vdds_mlbp No BMLB18 AB1 mlbp_clk_p mlbp_clk_p 0 I 1.8 vdds_mlbp No BMLB18 AA2 mlbp_dat_n mlbp_dat_n 0 IO OFF OFF 1.8 vdds_mlbp No BMLB18 AA1 mlbp_dat_p mlbp_dat_p 0 IO OFF OFF 1.8 vdds_mlbp No BMLB18 AC2 mlbp_sig_n mlbp_sig_n 0 IO OFF OFF 1.8 vdds_mlbp No BMLB18 AC1 mlbp_sig_p mlbp_sig_p 0 IO OFF OFF 1.8 vdds_mlbp No BMLB18 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 43 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] W3 W5 W4 ADVANCE INFORMATION V6 AC3 AC7 V5 Y4 44 BALL NAME [2] mmc1_clk mmc1_cmd mmc1_sdcd mmc1_sdwp mmc3_clk mmc3_cmd mmc1_dat0 mmc1_dat1 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] DSIS [15] mmc1_clk 0 IO gpio6_21 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO1833 PU/PD 1 Driver off 15 I mmc1_cmd 0 IO gpio6_22 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO1833 PU/PD 1 Driver off 15 I mmc1_sdcd 0 I uart6_rxd 3 I PU PU 15 1.8/3.3 vddshv8 Yes Dual Voltage LVCMOS PU/PD 1 i2c4_sda 4 IO gpio6_27 14 IO Driver off 15 I mmc1_sdwp 0 I uart6_txd 3 O i2c4_scl 4 IO gpio6_28 14 IO Driver off 15 I mmc3_clk 0 IO usb3_ulpi_d5 3 IO vin2b_d7 4 I 0 ehrpwm2_tripzone_input 10 IO 0 gpio6_29 14 IO Driver off 15 I mmc3_cmd 0 IO spi3_sclk 1 IO usb3_ulpi_d4 3 IO 0 vin2b_d6 4 I 0 eCAP2_in_PWM2_out 10 IO 0 gpio6_30 14 IO Driver off 15 I mmc1_dat0 0 IO gpio6_23 14 IO Driver off 15 I mmc1_dat1 0 IO gpio6_24 14 IO Driver off 15 I 1 1 PD PD 15 1.8/3.3 vddshv8 Yes Dual Voltage LVCMOS PU/PD 0 1 PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv7 vddshv7 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 1 0 PU/PD 1 0 PU PU 15 1.8/3.3 vddshv8 Yes SDIO1833 PU/PD 1 PU PU 15 1.8/3.3 vddshv8 Yes SDIO1833 PU/PD 1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) Y5 Y3 Y6 W6 AC6 BALL NAME [2] mmc1_dat2 mmc1_dat3 mmc3_dat0 mmc3_dat1 mmc3_dat2 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] DSIS [15] mmc1_dat2 0 IO gpio6_25 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO1833 PU/PD 1 Driver off 15 I mmc1_dat3 0 IO gpio6_26 14 IO PU PU 15 1.8/3.3 vddshv8 Yes SDIO1833 PU/PD 1 Driver off 15 I mmc3_dat0 0 IO spi3_d1 1 IO PU PU 15 1.8/3.3 vddshv7 Yes Dual Voltage LVCMOS PU/PD 1 uart5_rxd 2 I 1 usb3_ulpi_d3 3 IO 0 vin2b_d5 4 I 0 eQEP3A_in 10 I 0 gpio6_31 14 IO Driver off 15 I mmc3_dat1 0 IO spi3_d0 1 IO uart5_txd 2 O usb3_ulpi_d2 3 IO 0 vin2b_d4 4 I 0 eQEP3B_in 10 I 0 gpio7_0 14 IO Driver off 15 I mmc3_dat2 0 IO spi3_cs0 1 IO uart5_ctsn 2 I 1 usb3_ulpi_d1 3 IO 0 vin2b_d3 4 I 0 eQEP3_index 10 IO 0 gpio7_1 14 IO Driver off 15 I PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv7 vddshv7 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS 0 PU/PD 1 0 PU/PD 1 1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 45 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] AC4 ADVANCE INFORMATION AA6 AB5 AB7 46 BALL NAME [2] mmc3_dat3 mmc3_dat4 mmc3_dat5 mmc3_dat6 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PU BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] IO IO uart5_rtsn 2 O usb3_ulpi_d0 3 IO 0 vin2b_d2 4 I 0 eQEP3_strobe 10 IO 0 gpio7_2 14 IO Driver off 15 I mmc3_dat4 0 IO spi4_sclk 1 IO uart10_rxd 2 I 1 usb3_ulpi_nxt 3 I 0 vin2b_d1 4 I 0 ehrpwm3A 10 O gpio1_22 14 IO Driver off 15 I mmc3_dat5 0 IO spi4_d1 1 IO uart10_txd 2 O usb3_ulpi_dir 3 I 0 vin2b_d0 4 I 0 ehrpwm3B 10 O gpio1_23 14 IO Driver off 15 I mmc3_dat6 0 IO spi4_d0 1 IO uart10_ctsn 2 I usb3_ulpi_stp 3 O vin2b_de1 4 I ehrpwm3_tripzone_input 10 IO gpio1_24 14 IO Driver off 15 I PU PU PU PU Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv7 vddshv7 vddshv7 Yes Yes Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD DSIS [15] 1 1.8/3.3 vddshv7 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] spi3_cs1 PU 15 HYS [12] mmc3_dat3 PU PU POWER [11] 1 1 PU/PD 1 0 PU/PD 1 0 PU/PD 1 0 1 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AA5 BALL NAME [2] mmc3_dat7 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] mmc3_dat7 0 IO spi4_cs0 1 IO uart10_rtsn 2 O usb3_ulpi_clk 3 I vin2b_clk1 4 I eCAP3_in_PWM3_out 10 IO gpio1_25 14 IO BALL RESET STATE [7] PU BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PU 15 1.8/3.3 POWER [11] vddshv7 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 1 1 0 0 Driver off 15 I D21 nmin nmin 0 I PD PD 1.8/3.3 vddshv3 AG11 pcie_rxn0 pcie_rxn0 0 I OFF OFF 1.8 vdda_pcie0 SERDES AG8 pcie_rxn1 pcie_rxn1 0 I OFF OFF 1.8 vdda_pcie1 SERDES AH12 pcie_rxp0 pcie_rxp0 0 I OFF OFF 1.8 vdda_pcie0 SERDES AH9 pcie_rxp1 pcie_rxp1 0 I OFF OFF 1.8 vdda_pcie1 SERDES AG12 pcie_txn0 pcie_txn0 0 O 1.8 vdda_pcie0 SERDES AG9 pcie_txn1 pcie_txn1 0 O 1.8 vdda_pcie1 SERDES AH13 pcie_txp0 pcie_txp0 0 O 1.8 vdda_pcie0 SERDES AH10 pcie_txp1 pcie_txp1 0 O 1.8 vdda_pcie1 C25 porz porz 0 I 1.8/3.3 vddshv3 Yes IHHV1833 PU/PD D24 resetn resetn 0 I PU PU 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD U4 rgmii0_rxc rgmii0_rxc 0 I PD PD 1.8/3.3 vddshv9 Yes 2 O Dual Voltage LVCMOS PU/PD rmii1_txen mii0_txclk 3 I 0 vin2a_d5 4 I 0 vin4b_d5 5 I 0 usb4_ulpi_d2 6 IO 0 gpio5_26 14 IO Driver off 15 I rgmii0_rxctl 0 I rmii1_txd1 2 O mii0_txd3 3 O vin2a_d6 4 I 0 vin4b_d6 5 I 0 usb4_ulpi_d3 6 IO 0 gpio5_27 14 IO Driver off 15 I V4 rgmii0_rxctl No No No No PD PD 15 15 1.8/3.3 vddshv9 Yes Dual Voltage LVCMOS PU/PD SERDES Yes Dual Voltage LVCMOS PU/PD 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 47 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] T6 ADVANCE INFORMATION U5 W1 Y2 48 BALL NAME [2] rgmii0_txc rgmii0_txctl rgmii0_rxd0 rgmii0_rxd1 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O I rmii1_rxd1 2 I 0 mii0_rxd3 3 I 0 vin2a_d3 4 I 0 vin4b_d3 5 I 0 usb4_ulpi_clk 6 I 0 spi3_d0 7 IO 0 spi4_cs2 8 IO 1 gpio5_20 14 IO Driver off 15 I rgmii0_txctl 0 O uart3_rtsn 1 O rmii1_rxd0 2 I 0 mii0_rxd2 3 I 0 vin2a_d4 4 I 0 vin4b_d4 5 I 0 usb4_ulpi_stp 6 O spi3_cs0 7 IO 1 spi4_cs3 8 IO 1 gpio5_21 14 IO Driver off 15 I rgmii0_rxd0 0 I rmii0_txd0 1 O mii0_txd0 3 O vin2a_fld0 4 I vin4b_fld1 5 I 0 usb4_ulpi_d7 6 IO 0 gpio5_31 14 IO Driver off 15 I rgmii0_rxd1 0 I rmii0_txd1 1 O mii0_txd1 3 O vin2a_d9 4 I 0 usb4_ulpi_d6 6 IO 0 gpio5_30 14 IO Driver off 15 I PD PD PD PD Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv9 vddshv9 vddshv9 Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 1 1.8/3.3 vddshv9 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] uart3_ctsn PD 15 HYS [12] rgmii0_txc PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 1 PU/PD PU/PD PU/PD 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) V3 W2 T5 U6 BALL NAME [2] rgmii0_rxd2 rgmii0_rxd3 rgmii0_txd0 rgmii0_txd1 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] I O mii0_txen 3 O vin2a_d8 4 I 0 usb4_ulpi_d5 6 IO 0 gpio5_29 14 IO Driver off 15 I rgmii0_rxd3 0 I rmii1_txd0 2 O mii0_txd2 3 O vin2a_d7 4 I 0 vin4b_d7 5 I 0 usb4_ulpi_d4 6 IO 0 gpio5_28 14 IO Driver off 15 I rgmii0_txd0 0 O rmii0_rxd0 1 I mii0_rxd0 3 I 0 vin2a_d10 4 I 0 usb4_ulpi_d1 6 IO 0 spi4_cs0 7 IO 1 uart4_rtsn 8 O gpio5_25 14 IO Driver off 15 I rgmii0_txd1 0 O rmii0_rxd1 1 I mii0_rxd1 3 I vin2a_vsync0 4 I vin4b_vsync1 5 I 0 usb4_ulpi_d0 6 IO 0 spi4_d0 7 IO 0 uart4_ctsn 8 IO 1 gpio5_24 14 IO Driver off 15 I PD PD PD PD 15 15 1.8/3.3 1.8/3.3 vddshv9 vddshv9 vddshv9 Yes Yes Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD DSIS [15] 1 1.8/3.3 vddshv9 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] rmii0_txen PD 15 HYS [12] rgmii0_rxd2 PD PD POWER [11] PU/PD 0 0 PU/PD 0 PU/PD 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 49 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] T3 ADVANCE INFORMATION T4 U2 BALL NAME [2] rgmii0_txd2 rgmii0_txd3 RMII_MHZ_50_CLK SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv9 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS DSIS [15] rgmii0_txd2 0 O rmii0_rxer 1 I mii0_rxer 3 I vin2a_hsync0 4 I PU/PD vin4b_hsync1 5 I 0 usb4_ulpi_nxt 6 I 0 spi4_d1 7 IO 0 uart4_txd 8 O gpio5_23 14 IO Driver off 15 I rgmii0_txd3 0 O rmii0_crs 1 I mii0_crs 3 I vin2a_de0 4 I vin4b_de1 5 I 0 usb4_ulpi_dir 6 I 0 spi4_sclk 7 IO 0 uart4_rxd 8 I 1 gpio5_22 14 IO Driver off 15 I RMII_MHZ_50_CLK 0 IO vin2a_d11 4 I gpio5_17 14 IO 0 0 PD PD 15 1.8/3.3 vddshv9 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD Driver off 15 I D23 rstoutn rstoutn 0 O PD drive 1 (OFF) E18 rtck rtck 0 O PU gpio8_29 14 IO drive clk (OFF) 15 0 1.8/3.3 vddshv9 Yes Dual Voltage LVCMOS PU/PD vddshv3 Yes Dual Voltage LVCMOS PU/PD 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD sata1_rxn0 sata1_rxn0 0 I OFF OFF 1.8 vdda_sata SATAPHY AG5 sata1_rxp0 sata1_rxp0 0 I OFF OFF 1.8 vdda_sata SATAPHY AG6 sata1_txn0 sata1_txn0 0 O 1.8 vdda_sata SATAPHY AH7 sata1_txp0 sata1_txp0 0 O 1.8 vdda_sata A24 spi1_sclk spi1_sclk 0 IO 1.8/3.3 vddshv3 gpio7_7 14 IO Driver off 15 I PD PD Terminal Configuration and Functions 15 0 0 1.8/3.3 AH6 50 PULL UP/DOWN TYPE [14] SATAPHY Yes Dual Voltage LVCMOS PU/PD 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) A25 A23 A21 B20 B19 B24 C15 BALL NAME [2] spi2_sclk spi1_cs0 spi1_cs1 spi1_cs2 spi1_cs3 spi1_d0 spi1_d1 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv3 HYS [12] Yes BUFFER TYPE [13] PULL UP/DOWN TYPE [14] Dual Voltage LVCMOS PU/PD DSIS [15] spi2_sclk 0 IO uart3_rxd 1 I 0 gpio7_14 14 IO Driver off 15 I spi1_cs0 0 IO gpio7_10 14 IO Driver off 15 I spi1_cs1 0 IO sata1_led 2 O spi2_cs1 3 IO gpio7_11 14 IO Driver off 15 I spi1_cs2 0 IO uart4_rxd 1 I mmc3_sdcd 2 I 1 spi2_cs2 3 IO 1 dcan2_tx 4 IO 1 mdio_mclk 5 O 1 hdmi1_hpd 6 I gpio7_12 14 IO Driver off 15 I spi1_cs3 0 IO uart4_txd 1 O mmc3_sdwp 2 I 0 spi2_cs3 3 IO 1 dcan2_rx 4 IO 1 mdio_d 5 IO 1 hdmi1_cec 6 IO gpio7_13 14 IO Driver off 15 I spi1_d0 0 IO gpio7_9 14 IO Driver off 15 I spi1_d1 0 IO gpio7_8 14 IO Driver off 15 I 1 PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 1 PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 1 ADVANCE INFORMATION BALL NUMBER [1] 1 PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv3 vddshv3 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 1 1 PU/PD 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 51 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] B23 E16 ADVANCE INFORMATION B21 BALL NAME [2] spi2_cs0 spi2_d0 spi2_d1 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] spi2_cs0 0 IO uart3_rtsn 1 O uart5_txd 2 O gpio7_17 14 IO Driver off 15 I spi2_d0 0 IO uart3_ctsn 1 I uart5_rxd 2 I gpio7_16 14 IO Driver off 15 I spi2_d1 0 IO uart3_txd 1 O gpio7_15 14 IO Driver off 15 I BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] PU PU 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 1 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD E20 tclk tclk 0 I PU PU 0 1.8/3.3 vddshv3 Yes IQ1833 PU/PD B22 tdi tdi 0 I PU PU 0 1.8/3.3 vddshv3 Yes PU/PD gpio8_27 14 I Dual Voltage LVCMOS tdo 0 O PU PU 0 1.8/3.3 vddshv3 Yes 14 IO Dual Voltage LVCMOS PU/PD gpio8_28 0 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 1.8/3.3 vddshv4 Yes Dual Voltage LVCMOS PU/PD C18 tdo F16 tms tms 0 IO OFF OFF D20 trstn trstn 0 I PD PD F21 uart1_ctsn uart1_ctsn 0 I PU PU uart9_rxd 2 I mmc4_clk 3 IO gpio7_24 14 IO Driver off 15 I uart1_rtsn 0 O uart9_txd 2 O mmc4_cmd 3 IO gpio7_25 14 IO Driver off 15 I E23 52 uart1_rtsn DSIS [15] 15 0 1 1 1 PU PU Terminal Configuration and Functions 15 1.8/3.3 vddshv4 Yes Dual Voltage LVCMOS PU/PD 1 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) F22 C21 F20 C22 D22 BALL NAME [2] uart1_rxd uart1_txd uart2_ctsn uart2_rtsn uart2_rxd SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PU BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] I I gpio7_22 14 IO Driver off 15 I uart1_txd 0 O mmc4_sdwp 3 I gpio7_23 14 IO Driver off 15 I uart2_ctsn 0 I uart3_rxd 2 I mmc4_dat2 3 IO 1 uart10_rxd 4 I 1 uart1_dtrn 5 O gpio1_16 14 IO Driver off 15 I uart2_rtsn 0 O uart3_txd 1 O uart3_irtx 2 O mmc4_dat3 3 IO uart10_txd 4 O uart1_rin 5 I gpio1_17 14 IO Driver off 15 I uart3_ctsn 1 I uart3_rctx 2 O mmc4_dat0 3 IO 1 uart2_rxd 4 I 1 uart1_dcdn 5 I 1 gpio7_26 14 IO Driver off 15 I PU PU PU PU 15 15 1.8/3.3 1.8/3.3 vddshv4 vddshv4 vddshv4 Yes Yes Yes Yes Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD DSIS [15] 3 1.8/3.3 vddshv4 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] mmc4_sdcd PU 15 HYS [12] uart1_rxd PU PU POWER [11] Dual Voltage LVCMOS 1 1 0 ADVANCE INFORMATION BALL NUMBER [1] 1 1 PU/PD 1 1 PU PU 15 1.8/3.3 vddshv4 Yes Dual Voltage LVCMOS PU/PD 1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 53 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] E22 ADVANCE INFORMATION V2 Y1 BALL NAME [2] uart2_txd uart3_rxd uart3_txd SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PU BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PU 15 1.8/3.3 POWER [11] vddshv4 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS DSIS [15] uart2_txd 0 O uart3_rtsn 1 O uart3_sd 2 O mmc4_dat1 3 IO uart2_txd 4 O PU/PD uart1_dsrn 5 I gpio7_27 14 IO Driver off 15 I uart3_rxd 0 I rmii1_crs 2 I mii0_rxdv 3 I 0 vin2a_d1 4 I 0 vin4b_d1 5 I 0 spi3_sclk 7 IO 0 gpio5_18 14 IO Driver off 15 I uart3_txd 0 O rmii1_rxer 2 I mii0_rxclk 3 I 0 vin2a_d2 4 I 0 vin4b_d2 5 I 0 spi3_d1 7 IO 0 spi4_cs1 8 IO 1 gpio5_19 14 IO 1 0 PD PD PD PD 15 15 1.8/3.3 1.8/3.3 vddshv9 vddshv9 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS Driver off 15 I AE10 usb1_dm usb1_dm 0 IO OFF OFF 3.3 vdda33v_us b1 USBPHY AF11 usb1_dp usb1_dp 0 IO OFF OFF 3.3 vdda33v_us b1 USBPHY AD12 usb1_drvvbus usb1_drvvbus 0 O PD PD 1.8/3.3 vddshv6 timer16 7 IO gpio6_12 14 IO Driver off 15 I 15 Yes Dual Voltage LVCMOS AF13 usb2_dm usb2_dm 0 IO 3.3 vdda33v_us No b2 USBPHY AE12 usb2_dp usb2_dp 0 IO 3.3 vdda33v_us No b2 USBPHY 54 PULL UP/DOWN TYPE [14] Terminal Configuration and Functions PU/PD 1 0 PU/PD 0 PU/PD Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AC11 BALL NAME [2] usb2_drvvbus SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] usb2_drvvbus 0 O timer15 7 IO gpio6_13 14 IO Driver off 15 I BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD PD 15 POWER [11] 1.8/3.3 vddshv6 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS AG3 usb_rxn0 usb_rxn0 0 I OFF OFF 1.8 vdda_usb1 SERDES AH4 usb_rxp0 usb_rxp0 0 I OFF OFF 1.8 vdda_usb1 SERDES AG2 usb_txn0 usb_txn0 0 O 1.8 vdda_usb1 SERDES AH3 usb_txp0 usb_txp0 0 O 1.8 vdda_usb1 SERDES J15, J9, K14, N11, vdd N15, N17, P10, P12, P14, P21, R11, R13, R9, T10, T12, T14, U11, U17, U9, V16, V20, W19, Y18, Y20 vdd PWR G14 vpp vpp(9) PWR AD11 vdda33v_usb1 vdda33v_usb1 PWR AB10 vdda33v_usb2 vdda33v_usb2 PWR N9, P16 vdda_abe_per vdda_abe_per PWR W17 vdda_csi vdda_csi PWR N19 vdda_ddr vdda_ddr PWR N13 vdda_debug vdda_debug PWR J13 vdda_dsp_eve vdda_dsp_eve PWR R15 vdda_gmac_core vdda_gmac_core PWR W15 vdda_gpu vdda_gpu PWR AA17 vdda_hdmi vdda_hdmi PWR P20 vdda_iva vdda_iva PWR P18 vdda_mpu vdda_mpu PWR AA15 vdda_osc vdda_osc PWR Y12 vdda_pcie vdda_pcie PWR Y14 vdda_pcie0 vdda_pcie0 PWR AB12 vdda_pcie1 vdda_pcie1 PWR AA13 vdda_sata vdda_sata PWR Y10 vdda_usb1 vdda_usb1 PWR AA9 vdda_usb2 vdda_usb2 PWR AA11 vdda_usb3 vdda_usb3 PWR R14 vdda_video vdda_video PWR AB8, H14, H20, M8, vdds18v T20 vdds18v PWR AA19, U21 vdds18v_ddr1 PWR vdds18v_ddr1 PULL UP/DOWN TYPE [14] DSIS [15] PU/PD Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 55 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] ADVANCE INFORMATION H22, R21 vdds18v_ddr2 vdds18v_ddr2 PWR G7, G9 vddshv1 vddshv1 PWR G11, G13, H12 vddshv2 vddshv2 PWR G15, G17, G19, H16, H18 vddshv3 vddshv3 PWR G21 vddshv4 vddshv4 PWR AA14 vddshv5 vddshv5 PWR AA7, W7, Y8 vddshv6 vddshv6 PWR V8 vddshv7 vddshv7 PWR U7 vddshv8 vddshv8 PWR N7, P8 vddshv9 vddshv9 PWR J7, K8, L7 vddshv10 vddshv10 PWR H8 vddshv11 vddshv11 PWR AA21, AA23, T22, U23, V22, W21, W23, Y22 vdds_ddr1 vdds_ddr1 PWR J23, K22, L21, L23, vdds_ddr2 N21, N23, P22 vdds_ddr2 PWR R7, T8 vdds_mlbp PWR K10, K12, L11, L13, vdd_dspeve L9, M10, M12, M14 vdds_mlbp vdd_dspeve PWR V10, V12, V14, W11, W13, W9 vdd_gpu vdd_gpu PWR T18, U19, V18 vdd_iva vdd_iva PWR K16, K18, K20, L15, vdd_mpu L17, L19, M16, M18, M20 vdd_mpu PWR AD8 vin1a_clk0 AE9 56 vin1a_clk0 vin1a_d0 0 I vout3_d16 3 O vout3_fld 4 O gpio2_30 14 IO Driver off 15 I 0 I vout3_d7 3 O vout3_d23 4 O uart8_rxd 5 I ehrpwm1A 10 O gpio3_4 14 IO Driver off 15 I vin1a_d0 No No BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] DSIS [15] PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 Terminal Configuration and Functions 1 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AF10 AE7 BALL NAME [2] vin1a_d1 vin1a_d2 SIGNAL NAME [3] vin1a_d1 76x [4] vin1a_d3 vin1a_d4 vin1a_d5 POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] DSIS [15] I O vout3_d22 4 O uart8_txd 5 O ehrpwm1B 10 O gpio3_5 14 IO Driver off 15 I 0 I vout3_d5 3 O vout3_d21 4 O uart8_ctsn 5 I 1 ehrpwm1_tripzone_input 10 IO 0 gpio3_6 14 IO 15 I 0 I vout3_d4 3 O vout3_d20 4 O uart8_rtsn 5 O eCAP1_in_PWM1_out 10 IO gpio3_7 14 IO 15 I 0 I vout3_d3 3 O vout3_d19 4 O ehrpwm1_synci 10 I gpio3_8 14 IO 15 I 0 I vout3_d2 3 O vout3_d18 4 O ehrpwm1_synco 10 O gpio3_9 14 IO Driver off 15 I No vin1a_d3 No vin1a_d4 No Driver off AF7 BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] 3 Driver off AE6 BALL RESET STATE [7] 0 Driver off AE8 TYPE [6] vout3_d6 vin1a_d2 No MUXMODE [5] vin1a_d5 No PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD ADVANCE INFORMATION BALL NUMBER [1] 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 57 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] AF8 BALL NAME [2] vin1a_d6 SIGNAL NAME [3] vin1a_d6 76x [4] No vin1a_d7 0 I 3 O vout3_d17 4 O eQEP2A_in 10 I gpio3_10 14 IO 15 I 0 I vout3_d0 3 O vout3_d16 4 O eQEP2B_in 10 I gpio3_11 14 IO vin1a_d7 No ADVANCE INFORMATION Driver off AF4 vin1a_d8 vin1a_d9 58 vin1a_d10 PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv6 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 15 I No 0 I vin1b_d7 No 1 I vout3_d15 4 O kbd_row2 9 I 0 eQEP2_index 10 IO 0 gpio3_12 14 IO PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 15 I vin1a_d9 No 0 I vin1b_d6 No 1 I vout3_d14 4 O kbd_row3 9 I 0 eQEP2_strobe 10 IO 0 gpio3_13 14 IO Driver off AF3 BALL RESET STATE [7] vin1a_d8 Driver off AF2 TYPE [6] vout3_d1 Driver off AF6 MUXMODE [5] 15 I vin1a_d10 No 0 I vin1b_d5 No 1 I vout3_d13 4 O kbd_row4 9 I gpio3_14 14 IO Driver off 15 I PD PD PD PD Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv6 vddshv6 Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 0 0 PU/PD 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AF5 BALL NAME [2] vin1a_d11 SIGNAL NAME [3] 76x [4] vin1a_d12 No 0 I vin1b_d4 No 1 I vout3_d12 4 O gpmc_a23 5 O kbd_row5 9 I gpio3_15 14 IO 15 I vin1a_d12 No 0 I vin1b_d3 No 1 I usb3_ulpi_d7 2 IO vout3_d11 4 O gpmc_a24 5 O kbd_row6 9 I gpio3_16 14 IO Driver off AF1 vin1a_d13 15 I vin1a_d13 No 0 I vin1b_d2 No 1 I usb3_ulpi_d6 2 IO vout3_d10 4 O gpmc_a25 5 O kbd_row7 9 I gpio3_17 14 IO Driver off AD6 vin1a_d14 TYPE [6] vin1a_d11 Driver off AE5 MUXMODE [5] 15 I vin1a_d14 No 0 I vin1b_d1 No 1 I usb3_ulpi_d5 2 IO vout3_d9 4 O gpmc_a26 5 O kbd_row8 9 I gpio3_18 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv6 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD ADVANCE INFORMATION BALL NUMBER [1] 0 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 59 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] AE3 ADVANCE INFORMATION AE4 AE1 AD5 60 BALL NAME [2] vin1a_d15 vin1a_d16 vin1a_d17 vin1a_d18 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] vin1a_d15 No 0 I vin1b_d0 No 1 I usb3_ulpi_d4 2 IO vout3_d8 4 O gpmc_a27 5 O kbd_col0 9 O gpio3_19 14 IO Driver off 15 I vin1a_d16 No 0 I vin1b_d7 No 1 I usb3_ulpi_d3 2 IO vout3_d7 4 O vin3a_d0 6 I kbd_col1 9 O gpio3_20 14 IO Driver off 15 I vin1a_d17 No 0 I vin1b_d6 No 1 I usb3_ulpi_d2 2 IO vout3_d6 4 O vin3a_d1 6 I kbd_col2 9 O gpio3_21 14 IO Driver off 15 I vin1a_d18 No 0 I vin1b_d5 No 1 I usb3_ulpi_d1 2 IO vout3_d5 4 O vin3a_d2 6 I kbd_col3 9 O gpio3_22 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv6 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 0 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AD3 AD4 AE2 AD1 BALL NAME [2] vin1a_d19 vin1a_d20 vin1a_d21 vin1a_d22 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] vin1a_d19 No 0 I vin1b_d4 No 1 I usb3_ulpi_d0 2 IO vout3_d4 4 O vin3a_d3 6 I kbd_col4 9 O gpio3_23 14 IO Driver off 15 I vin1a_d20 No 0 I vin1b_d3 No 1 I usb3_ulpi_nxt 2 I vout3_d3 4 O vin3a_d4 6 I kbd_col5 9 O gpio3_24 14 IO Driver off 15 I vin1a_d21 No 0 I vin1b_d2 No 1 I usb3_ulpi_dir 2 I vout3_d2 4 O vin3a_d5 6 I kbd_col6 9 O gpio3_25 14 IO Driver off 15 I vin1a_d22 No 0 I vin1b_d1 No 1 I usb3_ulpi_stp 2 O vout3_d1 4 O vin3a_d6 6 I kbd_col7 9 O gpio3_26 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv6 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD ADVANCE INFORMATION BALL NUMBER [1] 0 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 0 0 PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 61 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] AD2 ADVANCE INFORMATION AC9 BALL NAME [2] vin1a_d23 vin1a_de0 SIGNAL NAME [3] 76x [4] 62 vin1a_fld0 TYPE [6] vin1a_d23 No 0 I vin1b_d0 No 1 I usb3_ulpi_clk 2 I vout3_d0 4 O vin3a_d7 6 I kbd_col8 9 O gpio3_27 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv6 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 0 0 0 vin1a_de0 No 0 I vin1b_hsync1 No 1 I vout3_d17 3 O vout3_de 4 O uart7_rxd 5 I timer16 7 IO spi3_sclk 8 IO 0 kbd_row0 9 I 0 eQEP1A_in 10 I 0 gpio3_0 14 IO Driver off AD9 MUXMODE [5] PD PD 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 1 15 I vin1a_fld0 No 0 I vin1b_vsync1 No 1 I vout3_clk 4 O uart7_txd 5 O timer15 7 IO spi3_d1 8 IO 0 kbd_row1 9 I 0 eQEP1B_in 10 I 0 gpio3_1 14 IO Driver off 15 I PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv6 Yes Dual Voltage LVCMOS PU/PD 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AC10 BALL NAME [2] vin1a_hsync0 SIGNAL NAME [3] 76x [4] vin1a_vsync0 F1 vin1b_clk1 vin2a_clk0 BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv6 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] No 0 I vin1b_fld1 No 1 I vout3_hsync 4 O uart7_ctsn 5 I timer14 7 IO spi3_d0 8 IO 0 eQEP1_index 10 IO 0 gpio3_2 14 IO 0 0 1 15 I vin1a_vsync0 No 0 I vin1b_de1 No 1 I vout3_vsync 4 O uart7_rtsn 5 O timer13 7 IO spi3_cs0 8 IO 1 eQEP1_strobe 10 IO 0 gpio3_3 14 IO 15 I 0 I vin3a_clk0 6 I gpio2_31 14 IO Driver off 15 I vin2a_clk0 0 I vout2_fld 4 O emu5 5 O kbd_row0 9 I 0 eQEP1A_in 10 I 0 gpio3_28 gpmc_a27 gpmc_a17 14 IO Driver off 15 I Driver off AC8 TYPE [6] vin1a_hsync0 Driver off AD7 MUXMODE [5] vin1b_clk1 No PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv6 vddshv6 vddshv1 Yes Yes Yes Dual Voltage LVCMOS PU/PD 0 0 Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 63 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] F2 ADVANCE INFORMATION E3 E1 E2 64 BALL NAME [2] vin2a_d0 vin2a_d1 vin2a_d2 vin2a_d3 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] I O emu10 5 O uart9_ctsn 7 I 1 spi4_d0 8 IO 0 kbd_row4 9 I 0 ehrpwm1B 10 O gpio4_1 14 IO Driver off 15 I vin2a_d1 0 I vout2_d22 4 O emu11 5 O uart9_rtsn 7 O spi4_cs0 8 IO 1 kbd_row5 9 I 0 ehrpwm1_tripzone_input 10 IO 0 gpio4_2 14 IO Driver off 15 I vin2a_d2 0 I vout2_d21 4 O emu12 5 O uart10_rxd 8 I 1 kbd_row6 9 I 0 eCAP1_in_PWM1_out 10 IO 0 gpio4_3 14 IO Driver off 15 I vin2a_d3 0 I vout2_d20 4 O emu13 5 O uart10_txd 8 O kbd_col0 9 O ehrpwm1_synci 10 I gpio4_4 14 IO Driver off 15 I PD PD PD PD Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv1 vddshv1 vddshv1 Yes Yes Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD DSIS [15] 4 1.8/3.3 vddshv1 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] vout2_d23 PD 15 HYS [12] vin2a_d0 PD PD POWER [11] PU/PD PU/PD PU/PD 0 0 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) D2 F3 D1 E4 BALL NAME [2] vin2a_d4 vin2a_d5 vin2a_d6 vin2a_d7 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] vin2a_d4 0 I vout2_d19 4 O emu14 5 O uart10_ctsn 8 I kbd_col1 9 O ehrpwm1_synco 10 O gpio4_5 14 IO Driver off 15 I vin2a_d5 0 I vout2_d18 4 O emu15 5 O uart10_rtsn 8 O kbd_col2 9 O eQEP2A_in 10 I gpio4_6 14 IO Driver off 15 I vin2a_d6 0 I vout2_d17 4 O emu16 5 O mii1_rxd1 8 I kbd_col3 9 O eQEP2B_in 10 I gpio4_7 14 IO Driver off 15 I vin2a_d7 0 I vout2_d16 4 O emu17 5 O mii1_rxd2 8 I kbd_col4 9 O eQEP2_index 10 IO gpio4_8 14 IO Driver off 15 I BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv1 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] 0 1 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD ADVANCE INFORMATION BALL NUMBER [1] 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 65 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] G3 ADVANCE INFORMATION C5 D3 F4 66 BALL NAME [2] vin2a_d8 vin2a_d9 vin2a_d10 vin2a_d11 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv1 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] vin2a_d8 0 I vout2_d15 4 O 0 emu18 5 O mii1_rxd3 8 I kbd_col5 9 O eQEP2_strobe 10 IO gpio4_9 gpmc_a26 14 IO Driver off 15 I vin2a_d9 0 I vout2_d14 4 O emu19 5 O mii1_rxd0 8 I kbd_col6 9 O ehrpwm2A 10 O gpio4_10 gpmc_a25 14 IO Driver off 15 I vin2a_d10 0 I mdio_mclk 3 O vout2_d13 4 O kbd_col7 9 O ehrpwm2B 10 O gpio4_11 gpmc_a24 14 IO Driver off 15 I vin2a_d11 0 I mdio_d 3 IO vout2_d12 4 O kbd_row7 9 I 0 ehrpwm2_tripzone_input 10 IO 0 gpio4_12 gpmc_a23 14 IO Driver off 15 I 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 PD PD PD PD Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv1 vddshv1 Yes Yes Dual Voltage LVCMOS PU/PD Dual Voltage LVCMOS PU/PD 0 1 0 1 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) E6 C1 C2 C3 BALL NAME [2] vin2a_d12 vin2a_d13 vin2a_d14 vin2a_d15 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv1 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] vin2a_d12 0 I rgmii1_txc 3 O 0 vout2_d11 4 O mii1_rxclk 8 I kbd_col8 9 O eCAP2_in_PWM2_out 10 IO gpio4_13 14 IO Driver off 15 I vin2a_d13 0 I rgmii1_txctl 3 O vout2_d10 4 O mii1_rxdv 8 I 0 kbd_row8 9 I 0 eQEP3A_in 10 I 0 gpio4_14 14 IO Driver off 15 I vin2a_d14 0 I rgmii1_txd3 3 O vout2_d9 4 O mii1_txclk 8 I 0 eQEP3B_in 10 I 0 gpio4_15 14 IO Driver off 15 I vin2a_d15 0 I rgmii1_txd2 3 O vout2_d8 4 O mii1_txd0 8 O eQEP3_index 10 IO gpio4_16 14 IO Driver off 15 I 0 0 PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv1 vddshv1 vddshv1 Yes Yes Yes Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD PU/PD PU/PD 0 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 67 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] B2 ADVANCE INFORMATION B5 D4 A3 68 BALL NAME [2] vin2a_d16 vin2a_d17 vin2a_d18 vin2a_d19 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv1 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] vin2a_d16 0 I vin2b_d7 2 I 0 rgmii1_txd1 3 O vout2_d7 4 O vin3a_d8 6 I mii1_txd1 8 O eQEP3_strobe 10 IO gpio4_24 14 IO Driver off 15 I vin2a_d17 0 I vin2b_d6 2 I rgmii1_txd0 3 O vout2_d6 4 O vin3a_d9 6 I mii1_txd2 8 O ehrpwm3A 10 O gpio4_25 14 IO Driver off 15 I vin2a_d18 0 I vin2b_d5 2 I rgmii1_rxc 3 I vout2_d5 4 O vin3a_d10 6 I mii1_txd3 8 O ehrpwm3B 10 O gpio4_26 14 IO Driver off 15 I vin2a_d19 0 I vin2b_d4 2 I rgmii1_rxctl 3 I vout2_d4 4 O vin3a_d11 6 I 0 mii1_txer 8 O 0 ehrpwm3_tripzone_input 10 IO 0 gpio4_27 14 IO Driver off 15 I 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 0 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) B3 B4 C4 A4 BALL NAME [2] vin2a_d20 vin2a_d21 vin2a_d22 vin2a_d23 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv1 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] PU/PD DSIS [15] vin2a_d20 0 I vin2b_d3 2 I 0 rgmii1_rxd3 3 I vout2_d3 4 O vin3a_de0 5 I 0 vin3a_d12 6 I 0 mii1_rxer 8 I 0 eCAP3_in_PWM3_out 10 IO 0 gpio4_28 14 IO Driver off 15 I vin2a_d21 0 I vin2b_d2 2 I rgmii1_rxd2 3 I vout2_d2 4 O vin3a_fld0 5 I 0 vin3a_d13 6 I 0 mii1_col 8 I 0 gpio4_29 14 IO Driver off 15 I vin2a_d22 0 I vin2b_d1 2 I rgmii1_rxd1 3 I vout2_d1 4 O vin3a_hsync0 5 I 0 vin3a_d14 6 I 0 mii1_crs 8 I 0 gpio4_30 14 IO Driver off 15 I vin2a_d23 0 I vin2b_d0 2 I rgmii1_rxd0 3 I vout2_d0 4 O vin3a_vsync0 5 I 0 vin3a_d15 6 I 0 mii1_txen 8 O gpio4_31 14 IO Driver off 15 I 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD ADVANCE INFORMATION BALL NUMBER [1] 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 0 PD PD 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD 0 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 69 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] G2 ADVANCE INFORMATION D5 G1 70 BALL NAME [2] vin2a_de0 vin2a_fld0 vin2a_hsync0 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] I I vin2b_fld1 2 I vin2b_de1 3 I vout2_de 4 O emu6 5 O kbd_row1 9 I 0 eQEP1B_in 10 I 0 gpio3_29 14 IO Driver off 15 I vin2a_fld0 0 I vin2b_clk1 2 I vout2_clk 4 O emu7 5 O eQEP1_index 10 IO gpio3_30 gpmc_a27 gpmc_a18 14 IO Driver off 15 I vin2a_hsync0 0 I vin2b_hsync1 3 I vout2_hsync 4 O emu8 5 O uart9_rxd 7 I 1 spi4_sclk 8 IO 0 kbd_row2 9 I 0 eQEP1_strobe 10 IO 0 gpio3_31 gpmc_a27 14 IO Driver off 15 I vddshv1 Yes Yes Dual Voltage LVCMOS DSIS [15] 1 1.8/3.3 vddshv1 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] vin2a_fld0 PD 15 HYS [12] vin2a_de0 PD PD POWER [11] Dual Voltage LVCMOS PU/PD PU/PD 0 PD PD Terminal Configuration and Functions 15 1.8/3.3 vddshv1 Yes Dual Voltage LVCMOS PU/PD Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) E5 D11 C10 B10 A10 BALL NAME [2] vin2a_vsync0 vout1_clk vout1_de vout1_fld vout1_hsync SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] I I vout2_vsync 4 O emu9 5 O uart9_txd 7 O spi4_d1 8 IO 0 kbd_row3 9 I 0 ehrpwm1A 10 O gpio4_0 14 IO Driver off 15 I vout1_clk 0 O vin4a_fld0 3 I vin3a_fld0 4 I 0 spi3_cs0 8 IO 1 gpio4_19 14 IO Driver off 15 I vout1_de 0 O vin4a_de0 3 I vin3a_de0 4 I 0 spi3_d1 8 IO 0 gpio4_20 14 IO Driver off 15 I vout1_fld 0 O vin4a_clk0 3 I vin3a_clk0 4 I 0 spi3_cs1 8 IO 1 gpio4_21 14 IO Driver off 15 I vout1_hsync 0 O vin4a_hsync0 3 I vin3a_hsync0 4 I 0 spi3_d0 8 IO 0 gpio4_22 14 IO Driver off 15 I PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 vddshv2 Yes Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 3 1.8/3.3 vddshv1 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] vin2b_vsync1 PD 15 HYS [12] vin2a_vsync0 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD PU/PD 0 PU/PD 0 PU/PD 0 PU/PD 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 71 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] D10 F9 ADVANCE INFORMATION E10 D9 C6 72 BALL NAME [2] vout1_vsync vout1_d0 vout1_d1 vout1_d2 vout1_d3 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O I vin3a_vsync0 4 I 0 spi3_sclk 8 IO 0 gpio4_23 14 IO Driver off 15 I vout1_d0 0 O uart5_rxd 2 I vin4a_d16 3 I 0 vin3a_d16 4 I 0 spi3_cs2 8 IO 1 gpio8_0 14 IO Driver off 15 I vout1_d1 0 O uart5_txd 2 O vin4a_d17 3 I 0 vin3a_d17 4 I 0 gpio8_1 14 IO Driver off 15 I vout1_d2 0 O emu2 2 O vin4a_d18 3 I 0 vin3a_d18 4 I 0 obs0 5 O obs16 6 O obs_irq1 7 O gpio8_2 14 IO Driver off 15 I vout1_d3 0 O emu5 2 O vin4a_d19 3 I 0 vin3a_d19 4 I 0 obs1 5 O obs17 6 O obs_dmarq1 7 O gpio8_3 14 IO Driver off 15 I PD PD PD PD PD PD Terminal Configuration and Functions 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 vddshv2 Yes Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 3 1.8/3.3 vddshv2 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] vin4a_vsync0 PD 15 HYS [12] vout1_vsync PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD 0 PU/PD 1 PU/PD PU/PD PU/PD Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) E9 F8 F7 E7 E8 BALL NAME [2] vout1_d4 vout1_d5 vout1_d6 vout1_d7 vout1_d8 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O O vin4a_d20 3 I 0 vin3a_d20 4 I 0 obs2 5 O obs18 6 O gpio8_4 14 IO Driver off 15 I vout1_d5 0 O emu7 2 O vin4a_d21 3 I 0 vin3a_d21 4 I 0 obs3 5 O obs19 6 O gpio8_5 14 IO Driver off 15 I vout1_d6 0 O emu8 2 O vin4a_d22 3 I 0 vin3a_d22 4 I 0 obs4 5 O obs20 6 O gpio8_6 14 IO Driver off 15 I vout1_d7 0 O emu9 2 O vin4a_d23 3 I 0 vin3a_d23 4 I 0 gpio8_7 14 IO Driver off 15 I vout1_d8 0 O uart6_rxd 2 I vin4a_d8 3 I 0 vin3a_d8 4 I 0 gpio8_8 14 IO Driver off 15 I PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 vddshv2 Yes Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 2 1.8/3.3 vddshv2 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] emu6 PD 15 HYS [12] vout1_d4 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD PU/PD PU/PD PU/PD PU/PD 1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 73 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] D8 D6 ADVANCE INFORMATION D7 A5 74 BALL NAME [2] vout1_d9 vout1_d10 vout1_d11 vout1_d12 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O O vin4a_d9 3 I 0 vin3a_d9 4 I 0 gpio8_9 14 IO Driver off 15 I vout1_d10 0 O emu3 2 O vin4a_d10 3 I 0 vin3a_d10 4 I 0 obs5 5 O obs21 6 O obs_irq2 7 O gpio8_10 14 IO Driver off 15 I vout1_d11 0 O emu10 2 O vin4a_d11 3 I 0 vin3a_d11 4 I 0 obs6 5 O obs22 6 O obs_dmarq2 7 O gpio8_11 14 IO Driver off 15 I vout1_d12 0 O emu11 2 O vin4a_d12 3 I 0 vin3a_d12 4 I 0 obs7 5 O obs23 6 O gpio8_12 14 IO Driver off 15 I PD PD PD PD Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 2 1.8/3.3 vddshv2 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] uart6_txd PD 15 HYS [12] vout1_d9 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD PU/PD PU/PD PU/PD Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) B6 C8 C7 B7 B8 BALL NAME [2] vout1_d13 vout1_d14 vout1_d15 vout1_d16 vout1_d17 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O O vin4a_d13 3 I 0 vin3a_d13 4 I 0 obs8 5 O obs24 6 O gpio8_13 14 IO Driver off 15 I vout1_d14 0 O emu13 2 O vin4a_d14 3 I 0 vin3a_d14 4 I 0 obs9 5 O obs25 6 O gpio8_14 14 IO Driver off 15 I vout1_d15 0 O emu14 2 O vin4a_d15 3 I 0 vin3a_d15 4 I 0 obs10 5 O obs26 6 O gpio8_15 14 IO Driver off 15 I vout1_d16 0 O uart7_rxd 2 I vin4a_d0 3 I 0 vin3a_d0 4 I 0 gpio8_16 14 IO Driver off 15 I vout1_d17 0 O uart7_txd 2 O vin4a_d1 3 I 0 vin3a_d1 4 I 0 gpio8_17 14 IO Driver off 15 I PD PD PD PD PD PD 15 15 15 1.8/3.3 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 vddshv2 Yes Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 2 1.8/3.3 vddshv2 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] emu12 PD 15 HYS [12] vout1_d13 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD PU/PD PU/PD PU/PD 1 PU/PD Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 75 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] A6 ADVANCE INFORMATION A7 C9 A8 76 BALL NAME [2] vout1_d18 vout1_d19 vout1_d20 vout1_d21 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O O vin4a_d2 3 I 0 vin3a_d2 4 I 0 obs11 5 O obs27 6 O gpio8_18 14 IO Driver off 15 I vout1_d19 0 O emu15 2 O vin4a_d3 3 I 0 vin3a_d3 4 I 0 obs12 5 O obs28 6 O gpio8_19 14 IO Driver off 15 I vout1_d20 0 O emu16 2 O vin4a_d4 3 I 0 vin3a_d4 4 I 0 obs13 5 O obs29 6 O gpio8_20 14 IO Driver off 15 I vout1_d21 0 O emu17 2 O vin4a_d5 3 I 0 vin3a_d5 4 I 0 obs14 5 O obs30 6 O gpio8_21 14 IO Driver off 15 I PD PD PD PD Terminal Configuration and Functions 15 15 1.8/3.3 1.8/3.3 vddshv2 vddshv2 vddshv2 Yes Yes Yes Yes Dual Voltage LVCMOS DSIS [15] 2 1.8/3.3 vddshv2 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] emu4 PD 15 HYS [12] vout1_d18 PD PD POWER [11] Dual Voltage LVCMOS Dual Voltage LVCMOS Dual Voltage LVCMOS PU/PD PU/PD PU/PD PU/PD Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) B9 A9 BALL NAME [2] vout1_d22 vout1_d23 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] O O vin4a_d6 3 I 0 vin3a_d6 4 I 0 obs15 5 O obs31 6 O gpio8_22 14 IO Driver off 15 I vout1_d23 0 O emu19 2 O vin4a_d7 3 I 0 vin3a_d7 4 I 0 spi3_cs3 8 IO 1 gpio8_23 14 IO Driver off 15 I vddshv2 Yes Yes Dual Voltage LVCMOS DSIS [15] 2 1.8/3.3 vddshv2 PULL UP/DOWN TYPE [14] 0 15 1.8/3.3 BUFFER TYPE [13] emu18 PD 15 HYS [12] vout1_d22 PD PD POWER [11] Dual Voltage LVCMOS PU/PD PU/PD Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION BALL NUMBER [1] 77 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] BALL NAME [2] SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] ADVANCE INFORMATION A1, A2, A28, AA10, vss AA12, AA16, AA18, AA20, AA22, AA8, AB11, AB13, AB17, AB9, AC12, AC15, AD10, AD13, AD16, AD19, AE11, AE14, AE17, AF12, AF15, AF18, AF9, AG1, AG10, AG13, AG16, AG28, AG4, AG7, AH1, AH11, AH14, AH17, AH2, AH27, AH28, AH5, AH8, B1, G12, G16, G18, G20, G22, G8, H13, H15, H17, H19, H21, H23, H7, H9, J10, J12, J14, J18, J20, J22, J8, K11, K13, K15, K17, K19, K21, K23, K7, K9, L10, L12, L14, L16, L18, L20, L22, L8, M11, M13, M15, M17, M19, M21, M23, M7, M9, N10, N12, N14, N16, N18, N20, N22, N8, P11, P13, P15, P17, P19, P7, P9, R10, R12, R16, R18, R22, R8, T11, T13, T15, T17, T19, T21, T23, T7, T9, U10, U12, U14, U16, U18, U20, U22, U8, V11, V13, V15, V17, V19, V21, V23, V7, V9, W10, W12, W14, W16, W18, W20, W22, W8, Y11, Y13, Y15, Y17, Y19, Y21, Y23, Y7, Y9 vss GND AB15 vssa_osc0 vssa_osc0 GND AC18 vssa_osc1 vssa_osc1 AB19 Wakeup0 dcan1_rx 1 I gpio1_0 14 I Driver off 15 I dcan2_rx 1 I gpio1_1 14 I Driver off 15 I AC20 78 Wakeup1 BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] PULL UP/DOWN TYPE [14] DSIS [15] GND OFF OFF 15 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD 1 OFF OFF 15 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD 1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-1. Pin Attributes(1) (continued) AB20 AB21 BALL NAME [2] Wakeup2 Wakeup3 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] sys_nirq2 1 I gpio1_2 14 I Driver off 15 I sys_nirq1 1 I gpio1_3 14 I BALL RESET STATE [7] BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] POWER [11] HYS [12] BUFFER TYPE [13] OFF OFF 15 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD OFF OFF 15 1.8/3.3 vddshv5 Yes IHHV1833 PU/PD Driver off 15 I AB16 xi_osc0 xi_osc0 0 I 1.8 vdda_osc No LVCMOS Analog AC19 xi_osc1 xi_osc1 0 I 1.8 vdda_osc No LVCMOS Analog AB14 xo_osc0 xo_osc0 0 O 1.8 vdda_osc No LVCMOS Analog AB18 xo_osc1 xo_osc1 0 A 1.8 vdda_osc No LVCMOS Analog D18 xref_clk0 xref_clk0 0 I 1.8/3.3 vddshv3 Yes mcasp2_axr8 1 IO Dual Voltage LVCMOS mcasp1_axr4 2 IO mcasp1_ahclkx 3 O mcasp5_ahclkx 4 O atl_clk0 5 O hdq0 8 IO clkout2 9 O timer13 10 IO gpio6_17 14 IO Driver off 15 I xref_clk1 0 I mcasp2_axr9 1 IO mcasp1_axr5 2 IO mcasp2_ahclkx 3 O mcasp6_ahclkx 4 O atl_clk1 5 O timer14 10 IO gpio6_18 14 IO Driver off 15 I E17 xref_clk1 PULL UP/DOWN TYPE [14] PD PD 15 DSIS [15] ADVANCE INFORMATION BALL NUMBER [1] PU/PD 0 0 1 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 79 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-1. Pin Attributes(1) (continued) BALL NUMBER [1] B25 ADVANCE INFORMATION A22 BALL NAME [2] xref_clk2 xref_clk3 SIGNAL NAME [3] 76x [4] MUXMODE [5] TYPE [6] BALL RESET STATE [7] PD BALL BALL RESET I/O RESET REL. VOLTAGE REL. MUXMODE VALUE [10] STATE [8] [9] PD 15 1.8/3.3 POWER [11] vddshv3 HYS [12] Yes BUFFER TYPE [13] Dual Voltage LVCMOS PULL UP/DOWN TYPE [14] DSIS [15] xref_clk2 0 I mcasp2_axr10 1 IO PU/PD mcasp1_axr6 2 IO mcasp3_ahclkx 3 O mcasp7_ahclkx 4 O atl_clk2 5 O vout2_clk 6 O vin4a_clk0 8 I timer15 10 IO gpio6_19 14 IO Driver off 15 I xref_clk3 0 I mcasp2_axr11 1 IO mcasp1_axr7 2 IO mcasp4_ahclkx 3 O mcasp8_ahclkx 4 O atl_clk3 5 O vout2_de 6 O hdq0 7 IO 1 vin4a_de0 8 I 0 clkout3 9 O timer16 10 IO gpio6_20 14 IO Driver off 15 I 0 0 0 PD PD 15 1.8/3.3 vddshv3 Yes Dual Voltage LVCMOS PU/PD 0 0 (1) NA in this table stands for Not Applicable. (2) For more information on recommended operating conditions, see Section 5.4, Recommended Operating Conditions. (3) The pullup or pulldown block strength is equal to: minimum = 50 μA, typical = 100 μA, maximum = 250 μA. (4) The output impedance settings of this IO cell are programmable; by default, the value is DS[1:0] = 10, this means 40 Ω. For more information on DS[1:0] register configuration, see the Device TRM. (5) IO drive strength for usb1_dp, usb1_dm, usb2_dp and usb2_dm: minimum 18.3 mA, maximum 89 mA (for a power supply vdda33v_usb1 and vdda33v_usb2 = 3.46 V). (6) Minimum PU = 900 Ω, maximum PU = 3.090 kΩ and minimum PD = 14.25 kΩ, maximum PD = 24.8 kΩ. For more information, see chapter 7 of the USB2.0 specification, in particular section Signaling / Device Speed Identification. (7) This function will not be supported on some pin-compatibleroadmap devices. Pin compatibility can be maintained in the future by not using these GPIO signals. (8) In PUx / PDy, x and y = 60 to 200 μA. The output impedance settings (or drive strengths) of this IO are programmable (34 Ω, 40 Ω, 48 Ω, 60 Ω, 80 Ω) depending on the values of the I[2:0] registers. (9) This signal is valid only for High-Security devices. For more details, see Section 5.8 VPP Specification for One-Time Programmable (OTP) eFUSEs. For General Purpose devices do not connect any signal, test point, or board trace to this signal. 80 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 4.3 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Signal Descriptions Many signals are available on multiple pins, according to the software configuration of the pin multiplexing options. 1. SIGNAL NAME: The name of the signal passing through the pin. NOTE The subsystem multiplexing signals are not described in Table 4-1 and Table 4-33. ADVANCE INFORMATION 2. DESCRIPTION: Description of the signal 3. TYPE: Signal direction and type: – I = Input – O = Output – IO = Input or output – D = Open Drain – DS = Differential – A = Analog – PWR = Power – GND = Ground 4. BALL: Associated ball(s) bottom NOTE For more information, see the Control Module / Control Module Register Manual section of the device TRM. 4.3.1 VIP NOTE For more information, see the Video Input Port (VIP) section of the device TRM. CAUTION The I/O timings provided in Section 5.10 Timing Requirements and Switching Characteristics are applicable for all combinations of signals for vin1. However, the timings are only valid for vin2, vin3, and vin4 if signals within a single IOSET are used. The IOSETs are defined in the Table 5-31, Table 5-32 and Table 5-33. Table 4-2. VIP Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL Video Input 1 Video Input 1 Port A Clock input. Input clock for 8-bit 16-bit or 24-bit Port A video capture. Input data is sampled on the CLK0 edge. I vin1a_d0 Video Input 1 Port A Data input (1) I AE9 vin1a_d1 Video Input 1 Port A Data input (1) I AF10 vin1a_d2 Video Input 1 Port A Data input (1) I AE7 vin1a_d3 Video Input 1 Port A Data input (1) I AE8 vin1a_d4 Video Input 1 Port A Data input (1) I AE6 vin1a_d5 Video Input 1 Port A Data input (1) I AF7 vin1a_d6 Video Input 1 Port A Data input (1) I AF8 vin1a_clk0 AD8 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 81 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-2. VIP Signal Descriptions (continued) SIGNAL NAME ADVANCE INFORMATION TYPE BALL vin1a_d7 DESCRIPTION Video Input 1 Port A Data input (1) I AF6 vin1a_d8 Video Input 1 Port A Data input (1) I AF4 vin1a_d9 Video Input 1 Port A Data input (1) I AF2 vin1a_d10 Video Input 1 Port A Data input (1) I AF3 vin1a_d11 Video Input 1 Port A Data input (1) I AF5 vin1a_d12 Video Input 1 Port A Data input (1) I AE5 vin1a_d13 Video Input 1 Port A Data input (1) I AF1 vin1a_d14 Video Input 1 Port A Data input (1) I AD6 vin1a_d15 Video Input 1 Port A Data input (1) I AE3 vin1a_d16 Video Input 1 Port A Data input (1) I AE4 vin1a_d17 Video Input 1 Port A Data input (1) I AE1 vin1a_d18 Video Input 1 Port A Data input (1) I AD5 vin1a_d19 Video Input 1 Port A Data input (1) I AD3 vin1a_d20 Video Input 1 Port A Data input (1) I AD4 vin1a_d21 Video Input 1 Port A Data input (1) I AE2 vin1a_d22 Video Input 1 Port A Data input (1) I AD1 vin1a_d23 Video Input 1 Port A Data input (1) I AD2 vin1a_de0 Video Input 1 Data Enable input (1) I AC9 vin1a_fld0 Video Input 1 Port A Field ID input (1) I AD9 vin1a_hsync0 Video Input 1 Port A Horizontal Sync input (1) I AC10 vin1a_vsync0 Video Input 1 Port A Vertical Sync input (1) I AD7 vin1b_clk1 Video Input 1 Port B Clock input (1) I AC8 vin1b_d0 Video Input 1 Port B Data input (1) I AD2, AE3 vin1b_d1 Video Input 1 Port B Data input (1) I AD1, AD6 vin1b_d2 Video Input 1 Port B Data input (1) I AE2, AF1 vin1b_d3 Video Input 1 Port B Data input (1) I AD4, AE5 vin1b_d4 Video Input 1 Port B Data input (1) I AD3, AF5 vin1b_d5 Video Input 1 Port B Data input (1) I AD5, AF3 vin1b_d6 Video Input 1 Port B Data input (1) I AE1, AF2 vin1b_d7 Video Input 1 Port B Data input (1) I AE4, AF4 vin1b_de1 Video Input 1 Port B Data Enable input (1) I AD7, M4 vin1b_fld1 Video Input 1 Port B Field ID input (1) I AC10 vin1b_hsync1 Video Input 1 Port B Horizontal Sync input (1) I AC9, N3 vin1b_vsync1 Video Input 1 Port B Vertical Sync input (1) I AD9 vin2a_clk0 Video Input 2 Port A Clock input I F1, V1 vin2a_d0 Video Input 2 Port A Data input I F2, U3 vin2a_d1 Video Input 2 Port A Data input I E3, V2 vin2a_d2 Video Input 2 Port A Data input I E1, Y1 vin2a_d3 Video Input 2 Port A Data input I E2, T6 vin2a_d4 Video Input 2 Port A Data input I D2, U5 vin2a_d5 Video Input 2 Port A Data input I F3, U4 vin2a_d6 Video Input 2 Port A Data input I D1, V4 vin2a_d7 Video Input 2 Port A Data input I E4, W2 vin2a_d8 Video Input 2 Port A Data input I G3, V3 vin2a_d9 Video Input 2 Port A Data input I C5, Y2 vin2a_d10 Video Input 2 Port A Data input I D3, T5 Video Input 2 82 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME TYPE BALL vin2a_d11 DESCRIPTION Video Input 2 Port A Data input I F4, U2 vin2a_d12 Video Input 2 Port A Data input I E6 vin2a_d13 Video Input 2 Port A Data input I C1 vin2a_d14 Video Input 2 Port A Data input I C2 vin2a_d15 Video Input 2 Port A Data input I C3 vin2a_d16 Video Input 2 Port A Data input I B2 vin2a_d17 Video Input 2 Port A Data input I B5 vin2a_d18 Video Input 2 Port A Data input I D4 vin2a_d19 Video Input 2 Port A Data input I A3 vin2a_d20 Video Input 2 Port A Data input I B3 vin2a_d21 Video Input 2 Port A Data input I B4 vin2a_d22 Video Input 2 Port A Data input I C4 vin2a_d23 Video Input 2 Port A Data input I A4 vin2a_de0 Video Input 2 Port A Data Enable input I G2, T4 vin2a_fld0 Video Input 2 Port A Field ID input I D5, G2, W1 vin2a_hsync0 Video Input 2 Port A Horizontal Sync input I G1, T3 vin2a_vsync0 Video Input 2 Port A Vertical Sync input I E5, U6 vin2b_clk1 Video Input 2 Port B Clock input I AA5, D5 vin2b_d0 Video Input 2 Port B Data input I A4, AB5 vin2b_d1 Video Input 2 Port B Data input I AA6, C4 vin2b_d2 Video Input 2 Port B Data input I AC4, B4 vin2b_d3 Video Input 2 Port B Data input I AC6, B3 vin2b_d4 Video Input 2 Port B Data input I A3, W6 vin2b_d5 Video Input 2 Port B Data input I D4, Y6 vin2b_d6 Video Input 2 Port B Data input I AC7, B5 vin2b_d7 Video Input 2 Port B Data input I AC3, B2 vin2b_de1 Video Input 2 Port B Data Enable input I AB7, G2 vin2b_fld1 Video Input 2 Port B Field ID input I G2 vin2b_hsync1 Video Input 2 Port B Horizontal Sync input I AC5, G1 vin2b_vsync1 Video Input 2 Port B Vertical Sync input I AB4, E5 vin3a_clk0 Video Input 3 Port A Clock input I AC8, B10, P1 vin3a_d0 Video Input 3 Port A Data input I AE4, B7, N5 vin3a_d1 Video Input 3 Port A Data input I AE1, B8, M2 vin3a_d2 Video Input 3 Port A Data input I A6, AD5, L5 vin3a_d3 Video Input 3 Port A Data input I A7, AD3, M1 vin3a_d4 Video Input 3 Port A Data input I AD4, C9, K6 vin3a_d5 Video Input 3 Port A Data input I A8, AE2, L4 vin3a_d6 Video Input 3 Port A Data input I AD1, B9, L3 vin3a_d7 Video Input 3 Port A Data input I A9, AD2, L2 vin3a_d8 Video Input 3 Port A Data input I B2, E8, L1 ADVANCE INFORMATION Table 4-2. VIP Signal Descriptions (continued) Video Input 3 vin3a_d9 Video Input 3 Port A Data input I B5, D8, K1 vin3a_d10 Video Input 3 Port A Data input I D4, D6, J1 vin3a_d11 Video Input 3 Port A Data input I A3, D7, J2 vin3a_d12 Video Input 3 Port A Data input I A5, B3, H1 vin3a_d13 Video Input 3 Port A Data input I B4, B6, K2 vin3a_d14 Video Input 3 Port A Data input I C4, C8, H2 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 83 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-2. VIP Signal Descriptions (continued) SIGNAL NAME ADVANCE INFORMATION TYPE BALL vin3a_d15 DESCRIPTION Video Input 3 Port A Data input I A4, C7, K3 vin3a_d16 Video Input 3 Port A Data input I F9, P6 vin3a_d17 Video Input 3 Port A Data input I E10, J6 vin3a_d18 Video Input 3 Port A Data input I D9, R4 vin3a_d19 Video Input 3 Port A Data input I C6, R5 vin3a_d20 Video Input 3 Port A Data input I E9, M6 vin3a_d21 Video Input 3 Port A Data input I F8, K4 vin3a_d22 Video Input 3 Port A Data input I F7, P5 vin3a_d23 Video Input 3 Port A Data input I E7, N6 vin3a_de0 Video Input 3 Port A Data Enable input I B3, C10, J5 vin3a_fld0 Video Input 3 Port A Field ID input I B4, D11, K5 vin3a_hsync0 Video Input 3 Port A Horizontal Sync input I A10, C4, N4 vin3a_vsync0 Video Input 3 Port A Vertical Sync input I A4, D10, R3 vin3b_clk1 Video Input 3 Port B Clock input I L6, M4 vin3b_d0 Video Input 3 Port B Data input I H6 vin3b_d1 Video Input 3 Port B Data input I G6 vin3b_d2 Video Input 3 Port B Data input I J4 vin3b_d3 Video Input 3 Port B Data input I F5 vin3b_d4 Video Input 3 Port B Data input I G5 vin3b_d5 Video Input 3 Port B Data input I J3 vin3b_d6 Video Input 3 Port B Data input I H4 H3 vin3b_d7 Video Input 3 Port B Data input I vin3b_de1 Video Input 3 Port B Data Enable input I N3 vin3b_fld1 Video Input 3 Port A Field ID input I M4 vin3b_hsync1 Video Input 3 Port A Horizontal Sync input I H5 vin3b_vsync1 Video Input 3 Port A Vertical Sync input I G4 vin4a_clk0 Video Input 4 Port A Clock input I B10, B25, P4 vin4a_d0 Video Input 4 Port A Data input I A13, B7, P6 vin4a_d1 Video Input 4 Port A Data input I B8, F14, J6 vin4a_d2 Video Input 4 Port A Data input I A6, E13, R4 vin4a_d3 Video Input 4 Port A Data input I A7, E11, R5 vin4a_d4 Video Input 4 Port A Data input I C9, E12, M6 vin4a_d5 Video Input 4 Port A Data input I A8, D13, K4 vin4a_d6 Video Input 4 Port A Data input I B9, C11, P5 vin4a_d7 Video Input 4 Port A Data input I A9, D12, N6 vin4a_d8 Video Input 4 Port A Data input I E15, E8, T2 A19, D8, U1 Video Input 4 84 vin4a_d9 Video Input 4 Port A Data input I vin4a_d10 Video Input 4 Port A Data input I B14, D6, P3 vin4a_d11 Video Input 4 Port A Data input I A14, D7, R1 vin4a_d12 Video Input 4 Port A Data input I A5, D15, H6 vin4a_d13 Video Input 4 Port A Data input I B15, B6, G6 vin4a_d14 Video Input 4 Port A Data input I B16, C8, J4 vin4a_d15 Video Input 4 Port A Data input I A16, C7, F5 vin4a_d16 Video Input 4 Port A Data input I C17, F9 vin4a_d17 Video Input 4 Port A Data input I A20, E10 vin4a_d18 Video Input 4 Port A Data input I D16, D9 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME TYPE BALL vin4a_d19 DESCRIPTION Video Input 4 Port A Data input I C6, D17 vin4a_d20 Video Input 4 Port A Data input I AA3, E9 vin4a_d21 Video Input 4 Port A Data input I AB6, F8 vin4a_d22 Video Input 4 Port A Data input I AB3, F7 vin4a_d23 Video Input 4 Port A Data input I AA4, E7 vin4a_de0 Video Input 4 Port A Data Enable input I A22, C10, G4, L6 vin4a_fld0 Video Input 4 Port A Field ID input I D11, F18, G5, K5 vin4a_hsync0 Video Input 4 Port A Horizontal Sync input I A10, E21, L6, R2 vin4a_vsync0 Video Input 4 Port A Vertical Sync input I D10, F17, N1, R6 vin4b_clk1 Video Input 4 Port B Clock input I J5, V1 vin4b_d0 Video Input 4 Port B Data input I P6, U3 vin4b_d1 Video Input 4 Port B Data input I J6, V2 vin4b_d2 Video Input 4 Port B Data input I R4, Y1 vin4b_d3 Video Input 4 Port B Data input I R5, T6 vin4b_d4 Video Input 4 Port B Data input I M6, U5 vin4b_d5 Video Input 4 Port B Data input I K4, U4 vin4b_d6 Video Input 4 Port B Data input I P5, V4 N6, W2 vin4b_d7 Video Input 4 Port B Data input I vin4b_de1 Video Input 4 Port B Data Enable input I K5, T4 vin4b_fld1 Video Input 4 Port B Field ID input I P4, W1 vin4b_hsync1 Video Input 4 Port B Horizontal Sync input I N4, T3 vin4b_vsync1 Video Input 4 Port B Vertical Sync input I R3, U6 ADVANCE INFORMATION Table 4-2. VIP Signal Descriptions (continued) (1) The VIP1 interface (Video Input 1a and Video Input 1b in Table 4-2 ) signal sets are NOT supported in the DRA76xP device. For more details on the device differentiation, refer to the Table 3-1, Device Comparison. 4.3.2 DSS CAUTION The I/O timings provided in Section 5.10, Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 5-45 and Table 5-46. Table 4-3. DSS Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL DPI Video Output 1 vout1_clk Video Output 1 Clock output O D11 vout1_de Video Output 1 Data Enable output O C10 vout1_fld Video Output 1 Field ID output. This signal is not used for embedded sync modes. O B10 vout1_hsync Video Output 1 Horizontal Sync output. This signal is not used for embedded sync modes. O vout1_vsync A10 Video Output 1 Vertical Sync output. This signal is not used for embedded sync modes. O vout1_d0 Video Output 1 Data output O D10 F9 vout1_d1 Video Output 1 Data output O E10 vout1_d2 Video Output 1 Data output O D9 vout1_d3 Video Output 1 Data output O C6 vout1_d4 Video Output 1 Data output O E9 vout1_d5 Video Output 1 Data output O F8 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 85 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-3. DSS Signal Descriptions (continued) SIGNAL NAME ADVANCE INFORMATION TYPE BALL vout1_d6 DESCRIPTION Video Output 1 Data output O F7 vout1_d7 Video Output 1 Data output O E7 vout1_d8 Video Output 1 Data output O E8 vout1_d9 Video Output 1 Data output O D8 vout1_d10 Video Output 1 Data output O D6 vout1_d11 Video Output 1 Data output O D7 vout1_d12 Video Output 1 Data output O A5 vout1_d13 Video Output 1 Data output O B6 vout1_d14 Video Output 1 Data output O C8 vout1_d15 Video Output 1 Data output O C7 vout1_d16 Video Output 1 Data output O B7 vout1_d17 Video Output 1 Data output O B8 vout1_d18 Video Output 1 Data output O A6 vout1_d19 Video Output 1 Data output O A7 vout1_d20 Video Output 1 Data output O C9 vout1_d21 Video Output 1 Data output O A8 vout1_d22 Video Output 1 Data output O B9 vout1_d23 Video Output 1 Data output O A9 vout2_clk Video Output 2 Clock output O B25, D5 vout2_de Video Output 2 Data Enable output O A22, G2 vout2_fld Video Output 2 Field ID output. This signal is not used for embedded sync modes. O F1, F18 vout2_hsync Video Output 2 Horizontal Sync output. This signal is not used for embedded sync modes. O vout2_vsync DPI Video Output 2 86 E21, G1 Video Output 2 Vertical Sync output. This signal is not used for embedded sync modes. O E5, F17 vout2_d0 Video Output 2 Data output O A13, A4 vout2_d1 Video Output 2 Data output O C4, F14 vout2_d2 Video Output 2 Data output O B4, E13 vout2_d3 Video Output 2 Data output O B3, E11 vout2_d4 Video Output 2 Data output O A3, E12 vout2_d5 Video Output 2 Data output O D13, D4 vout2_d6 Video Output 2 Data output O B5, C11 vout2_d7 Video Output 2 Data output O B2, D12 vout2_d8 Video Output 2 Data output O C3, E15 vout2_d9 Video Output 2 Data output O A19, C2 vout2_d10 Video Output 2 Data output O B14, C1 vout2_d11 Video Output 2 Data output O A14, E6 vout2_d12 Video Output 2 Data output O D15, F4 vout2_d13 Video Output 2 Data output O B15, D3 vout2_d14 Video Output 2 Data output O B16, C5 vout2_d15 Video Output 2 Data output O A16, G3 vout2_d16 Video Output 2 Data output O C17, E4 vout2_d17 Video Output 2 Data output O A20, D1 vout2_d18 Video Output 2 Data output O D16, F3 vout2_d19 Video Output 2 Data output O D17, D2 vout2_d20 Video Output 2 Data output O AA3, E2 vout2_d21 Video Output 2 Data output O AB6, E1 vout2_d22 Video Output 2 Data output O AB3, E3 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-3. DSS Signal Descriptions (continued) SIGNAL NAME TYPE BALL Video Output 2 Data output O AA4, F2 vout3_clk Video Output 3 Clock output O AD9, P1 vout3_de Video Output 3 Data Enable output O AC9, J5 vout3_fld Video Output 3 Field ID output. This signal is not used for embedded sync modes. O AD8, K5 vout3_hsync Video Output 3 Horizontal Sync output. This signal is not used for embedded sync modes. O vout3_vsync Video Output 3 Vertical Sync output. This signal is not used for embedded sync modes. O vout3_d0 Video Output 3 Data output O AD2, AF6, N5 vout3_d1 Video Output 3 Data output O AD1, AF8, M2 vout3_d2 Video Output 3 Data output O AE2, AF7, L5 vout3_d3 Video Output 3 Data output O AD4, AE6, M1 vout3_d4 Video Output 3 Data output O AD3, AE8, K6 vout3_d5 Video Output 3 Data output O AD5, AE7, L4 vout3_d6 Video Output 3 Data output O AE1, AF10, L3 vout3_d7 Video Output 3 Data output O AE4, AE9, L2 vout3_d8 Video Output 3 Data output O AE3, L1 vout3_d9 Video Output 3 Data output O AD6, K1 vout3_d10 Video Output 3 Data output O AF1, J1 vout3_d11 Video Output 3 Data output O AE5, J2 vout3_d12 Video Output 3 Data output O AF5, H1 vout3_d13 Video Output 3 Data output O AF3, K2 vout3_d14 Video Output 3 Data output O AF2, H2 vout3_d15 Video Output 3 Data output O AF4, K3 vout3_d16 Video Output 3 Data output O AD8, AF6, P6 vout3_d17 Video Output 3 Data output O AC9, AF8, J6 vout3_d18 Video Output 3 Data output O AF7, R4 vout3_d19 Video Output 3 Data output O AE6, R5 vout3_d20 Video Output 3 Data output O AE8, M6 vout3_d21 Video Output 3 Data output O AE7, K4 vout3_d22 Video Output 3 Data output O AF10, P5 vout3_d23 Video Output 3 Data output O AE9, N6 vout2_d23 DESCRIPTION DPI Video Output 3 4.3.3 AC10, N4 ADVANCE INFORMATION AD7, R3 HDMI NOTE For more information, see the Display Subsystem / Display Subsystem Overview of the device TRM. Table 4-4. HDMI Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL AG14 hdmi1_clockx HDMI clock differential positive or negative O hdmi1_clocky HDMI clock differential positive or negative O AH15 hdmi1_data0x HDMI data 0 differential positive or negative O AG15 hdmi1_data0y HDMI data 0 differential positive or negative O AH16 hdmi1_data1x HDMI data 1 differential positive or negative O AG17 hdmi1_data1y HDMI data 1 differential positive or negative O AH18 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 87 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-4. HDMI Signal Descriptions (continued) SIGNAL NAME DESCRIPTION hdmi1_data2x HDMI data 2 differential positive or negative hdmi1_data2y TYPE BALL O AG18 HDMI data 2 differential positive or negative O AH19 hdmi1_cec HDMI consumer electronic control IO B19, D19 hdmi1_ddc_scl HDMI display data channel clock IO C24 hdmi1_ddc_sda HDMI display data channel data IO F15 I B20, E19 hdmi1_hpd 4.3.4 HDMI display hot plug detect Camera Serial Interface 2 CAL bridge (CSI2) NOTE For more information, see the CAL Subsystem / CAL Subsystem Overview of the device TRM. Table 4-5. CSI 2 Signal Descriptions ADVANCE INFORMATION SIGNAL NAME TYPE BALL csi2_0_dx0 DESCRIPTION Serial data/clock input - line 0 (position 1) I AD17 csi2_0_dx1 Serial data/clock input - line 1 (position 2) I AF16 csi2_0_dx2 Serial data/clock input - line 2 (position 3) I AF19 csi2_0_dx3 Serial data/clock input - line 3 (position 4) I AE15 csi2_0_dx4 Serial data input only - line 4 (position 5)(1) I AE19 csi2_0_dy0 Serial data/clock input - line 0 (position 1) I AD18 csi2_0_dy1 Serial data/clock input - line 1 (position 2) I AF17 csi2_0_dy2 Serial data/clock input - line 2 (position 3) I AF20 csi2_0_dy3 Serial data/clock input - line 3 (position 4) I AE16 csi2_0_dy4 Serial data input only - line 4 (position 5)(1) I AE18 csi2_1_dx0 Serial data/clock input - line 0 (position 1) I AC13 csi2_1_dx1 Serial data/clock input - line 1 (position 2) I AD15 csi2_1_dx2 Serial data/clock input - line 2 (position 3) I AC16 csi2_1_dy0 Serial data/clock input - line 0 (position 1) I AC14 csi2_1_dy1 Serial data/clock input - line 1 (position 2) I AD14 csi2_1_dy2 Serial data/clock input - line 2 (position 3) I AC17 (1) Line 4 (position 5) supports only data. For more information, see CAL Subsystem of the device TRM. 4.3.5 EMIF NOTE For more information, see the Memory Subsystem / EMIF Controller section of the device TRM. NOTE The index numbers 1 and 2 which are part of the EMIF1 and EMIF2 signal prefixes (ddr1_* and ddr2_*) listed in Table 4-6, EMIF Signal Descriptions, not to be confused with DDR1 and DDR2 types of SDRAM memories. 88 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-6. EMIF Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL ddr1_casn EMIF1 Column Address Strobe O AG19 ddr1_ck EMIF1 Clock O AG24 ddr1_cke AH23 EMIF1 Clock Enable O ddr1_dqm_ecc EMIF1 ECC Data Mask O T27 ddr1_dqsn_ecc EMIF1 ECC Complementary Data Strobe IO U28 ddr1_dqs_ecc EMIF1 ECC Data Strobe input/output. This signal is output to the EMIF1 memory when writing and input when reading. IO U27 ddr1_nck EMIF1 Negative Clock O AH24 ddr1_rasn EMIF1 Row Address Strobe O AH20 EMIF1 Reset output (DDR3-SDRAM only) O AF23 ddr1_wen ddr1_rst EMIF1 Write Enable O AG22 ddr1_a0 EMIF1 Address Bus O AE22 ddr1_a1 EMIF1 Address Bus O AD20 ddr1_a2 EMIF1 Address Bus O AE21 ddr1_a3 EMIF1 Address Bus O AD22 ddr1_a4 EMIF1 Address Bus O AE23 ddr1_a5 EMIF1 Address Bus O AH22 ddr1_a6 EMIF1 Address Bus O AD24 ddr1_a7 EMIF1 Address Bus O AC22 ddr1_a8 EMIF1 Address Bus O AG23 ddr1_a9 EMIF1 Address Bus O AF24 ddr1_a10 EMIF1 Address Bus O AD21 ddr1_a11 EMIF1 Address Bus O AE24 ddr1_a12 EMIF1 Address Bus O AG21 ddr1_a13 EMIF1 Address Bus O AF21 ddr1_a14 EMIF1 Address Bus O AC23 ddr1_a15 EMIF1 Address Bus O AG20 ddr1_ba0 EMIF1 Bank Address O AE20 ddr1_ba1 EMIF1 Bank Address O AC21 ddr1_ba2 EMIF1 Bank Address O AH21 ddr1_csn0 EMIF1 Chip Select 0 O AD23 ddr1_d0 EMIF1 Data Bus IO AE26 ddr1_d1 EMIF1 Data Bus IO AE27 ddr1_d2 EMIF1 Data Bus IO AF28 ddr1_d3 EMIF1 Data Bus IO AH26 ddr1_d4 EMIF1 Data Bus IO AF25 ddr1_d5 EMIF1 Data Bus IO AG27 ddr1_d6 EMIF1 Data Bus IO AF27 ddr1_d7 EMIF1 Data Bus IO AF26 ddr1_d8 EMIF1 Data Bus IO AB24 ddr1_d9 EMIF1 Data Bus IO AD27 ddr1_d10 EMIF1 Data Bus IO AE28 ddr1_d11 EMIF1 Data Bus IO AD28 ddr1_d12 EMIF1 Data Bus IO AD26 ddr1_d13 EMIF1 Data Bus IO AE25 ddr1_d14 EMIF1 Data Bus IO AD25 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION EMIF Channel 1 89 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-6. EMIF Signal Descriptions (continued) DESCRIPTION TYPE BALL ddr1_d15 EMIF1 Data Bus IO AC26 ddr1_d16 EMIF1 Data Bus IO AA25 ddr1_d17 EMIF1 Data Bus IO AB25 ddr1_d18 EMIF1 Data Bus IO AA26 ddr1_d19 EMIF1 Data Bus IO AA28 ddr1_d20 EMIF1 Data Bus IO AA27 ddr1_d21 EMIF1 Data Bus IO AA24 ddr1_d22 EMIF1 Data Bus IO AC25 ddr1_d23 EMIF1 Data Bus IO Y26 ddr1_d24 EMIF1 Data Bus IO W26 ddr1_d25 EMIF1 Data Bus IO AB23 ddr1_d26 EMIF1 Data Bus IO V24 ddr1_d27 EMIF1 Data Bus IO Y24 ddr1_d28 EMIF1 Data Bus IO W25 ddr1_d29 EMIF1 Data Bus IO Y25 ddr1_d30 EMIF1 Data Bus IO W24 ddr1_d31 EMIF1 Data Bus IO Y28 ddr1_dqm0 EMIF1 Data Mask O AG26 ddr1_dqm1 EMIF1 Data Mask O AC24 ddr1_dqm2 EMIF1 Data Mask O AB26 ddr1_dqm3 EMIF1 Data Mask O Y27 ddr1_dqs0 Data strobe 0 input/output for byte 0 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO AH25 ddr1_dqs1 Data strobe 1 input/output for byte 1 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO AC27 ddr1_dqs2 Data strobe 2 input/output for byte 2 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO AB27 ddr1_dqs3 Data strobe 3 input/output for byte 3 of the 32-bit data bus. This signal is output to the EMIF1 memory when writing and input when reading. IO W28 ddr1_dqsn0 Data strobe 0 invert IO AG25 ddr1_dqsn1 Data strobe 1 invert IO AC28 ddr1_dqsn2 Data strobe 2 invert IO AB28 ddr1_dqsn3 Data strobe 3 invert IO W27 ddr1_ecc_d0 EMIF1 ECC Data Bus (1) IO U25 ddr1_ecc_d1 EMIF1 ECC Data Bus (1) IO U26 ddr1_ecc_d2 EMIF1 ECC Data Bus (1) IO V25 ddr1_ecc_d3 EMIF1 ECC Data Bus (1) IO V26 ddr1_ecc_d4 EMIF1 ECC Data Bus (1) IO V27 ddr1_ecc_d5 EMIF1 ECC Data Bus (1) IO T28 ddr1_ecc_d6 EMIF1 ECC Data Bus (1) IO T26 ddr1_ecc_d7 EMIF1 ECC Data Bus (1) IO V28 EMIF1 On-Die Termination for Chip Select 0 O AF22 ADVANCE INFORMATION SIGNAL NAME ddr1_odt0 EMIF Channel 2 ddr2_casn 90 EMIF2 Column Address Strobe O T25 ddr2_ck EMIF2 Clock O R28 ddr2_cke EMIF2 Clock Enable O R25 ddr2_nck EMIF2 Negative Clock O R27 ddr2_rasn EMIF2 Row Address Strobe O R26 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME TYPE BALL EMIF2 Reset output (DDR3-SDRAM only) O N25 ddr2_wen EMIF2 Write Enable O T24 ddr2_a0 EMIF2 Address Bus O P25 ddr2_a1 EMIF2 Address Bus O P26 ddr2_a2 EMIF2 Address Bus O P28 ddr2_a3 EMIF2 Address Bus O P27 ddr2_a4 EMIF2 Address Bus O P24 ddr2_a5 EMIF2 Address Bus O P23 ddr2_a6 EMIF2 Address Bus O N26 ddr2_a7 EMIF2 Address Bus O M25 ddr2_a8 EMIF2 Address Bus O N28 M27 ddr2_rst DESCRIPTION ddr2_a9 EMIF2 Address Bus O ddr2_a10 EMIF2 Address Bus O L25 ddr2_a11 EMIF2 Address Bus O N27 ddr2_a12 EMIF2 Address Bus O M28 ddr2_a13 EMIF2 Address Bus O R24 ddr2_a14 EMIF2 Address Bus O N24 ddr2_a15 EMIF2 Address Bus O R23 ddr2_ba0 EMIF2 Bank Address O L24 ddr2_ba1 EMIF2 Bank Address O U24 ddr2_ba2 EMIF2 Bank Address O M24 ddr2_csn0 EMIF2 Chip Select 0 O M26 ddr2_d0 EMIF2 Data Bus IO C28 ddr2_d1 EMIF2 Data Bus IO A26 ddr2_d2 EMIF2 Data Bus IO E24 ddr2_d3 EMIF2 Data Bus IO D25 ddr2_d4 EMIF2 Data Bus IO D26 ddr2_d5 EMIF2 Data Bus IO B27 ddr2_d6 EMIF2 Data Bus IO B26 ddr2_d7 EMIF2 Data Bus IO C26 ddr2_d8 EMIF2 Data Bus IO F26 E25 ddr2_d9 EMIF2 Data Bus IO ddr2_d10 EMIF2 Data Bus IO E26 ddr2_d11 EMIF2 Data Bus IO G27 ddr2_d12 EMIF2 Data Bus IO E28 ddr2_d13 EMIF2 Data Bus IO G26 ddr2_d14 EMIF2 Data Bus IO G28 ddr2_d15 EMIF2 Data Bus IO F25 ddr2_d16 EMIF2 Data Bus IO G25 ddr2_d17 EMIF2 Data Bus IO G24 ddr2_d18 EMIF2 Data Bus IO F23 ddr2_d19 EMIF2 Data Bus IO F24 ddr2_d20 EMIF2 Data Bus IO H28 ddr2_d21 EMIF2 Data Bus IO H25 ddr2_d22 EMIF2 Data Bus IO H27 ddr2_d23 EMIF2 Data Bus IO H26 ddr2_d24 EMIF2 Data Bus IO K27 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION Table 4-6. EMIF Signal Descriptions (continued) 91 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-6. EMIF Signal Descriptions (continued) ADVANCE INFORMATION SIGNAL NAME DESCRIPTION TYPE BALL ddr2_d25 EMIF2 Data Bus IO K26 ddr2_d26 EMIF2 Data Bus IO J25 ddr2_d27 EMIF2 Data Bus IO K28 ddr2_d28 EMIF2 Data Bus IO H24 ddr2_d29 EMIF2 Data Bus IO J24 ddr2_d30 EMIF2 Data Bus IO K24 ddr2_d31 EMIF2 Data Bus IO L26 ddr2_dqm0 EMIF2 Data Mask O C27 ddr2_dqm1 EMIF2 Data Mask O E27 ddr2_dqm2 EMIF2 Data Mask O G23 ddr2_dqm3 EMIF2 Data Mask O J26 ddr2_dqs0 Data strobe 0 input/output for byte 0 of the 32-bit data bus. This signal is output to the EMIF2 memory when writing and input when reading. IO D28 ddr2_dqs1 Data strobe 1 input/output for byte 1 of the 32-bit data bus. This signal is output to the EMIF2 memory when writing and input when reading. IO F27 ddr2_dqs2 Data strobe 2 input/output for byte 2 of the 32-bit data bus. This signal is output to the EMIF2 memory when writing and input when reading. IO J27 ddr2_dqs3 Data strobe 3 input/output for byte 3 of the 32-bit data bus. This signal is output to the EMIF2 memory when writing and input when reading. IO L28 ddr2_dqsn0 Data strobe 0 invert IO D27 ddr2_dqsn1 Data strobe 1 invert IO F28 ddr2_dqsn2 Data strobe 2 invert IO J28 ddr2_dqsn3 Data strobe 3 invert IO L27 EMIF2 On-Die Termination for Chip Select 0 O K25 ddr2_odt0 (1) The ECC module (EMIF1 ECC Data Bus in Table 4-2) signal sets are NOT supported in the DRA76xP devices. For more details on the device differentiation, refer to the Table 3-1, Device Comparison. 4.3.6 GPMC NOTE For more information, see the Memory Subsystem / General-Purpose Memory Controller section of the device TRM. Table 4-7. GPMC Signal Descriptions SIGNAL NAME 92 DESCRIPTION TYPE BALL gpmc_a0 GPMC Address 0. Only used to effectively address 8-bit data nonmultiplexed memories O P4, P6 gpmc_a1 GPMC address 1 in A/D nonmultiplexed mode and Adress 17 in A/D multiplexed mode O J6, P1 gpmc_a2 GPMC address 2 in A/D nonmultiplexed mode and Adress 18 in A/D multiplexed mode O N1, R4 gpmc_a3 GPMC address 3 in A/D nonmultiplexed mode and Address 19 in A/D multiplexed mode O M4, R5 gpmc_a4 GPMC address 4 in A/D nonmultiplexed mode and Address 20 in A/D multiplexed mode O M6 gpmc_a5 GPMC address 5 in A/D nonmultiplexed mode and Address 21 in A/D multiplexed mode O K4 gpmc_a6 GPMC address 6 in A/D nonmultiplexed mode and Address 22 in A/D multiplexed mode O P5 gpmc_a7 GPMC address 7 in A/D nonmultiplexed mode and Address 23 in A/D multiplexed mode O N6 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-7. GPMC Signal Descriptions (continued) DESCRIPTION TYPE BALL gpmc_a8 GPMC address 8 in A/D nonmultiplexed mode and Address 24 in A/D multiplexed mode O N4 gpmc_a9 GPMC address 9 in A/D nonmultiplexed mode and Address 25 in A/D multiplexed mode O R3 gpmc_a10 GPMC address 10 in A/D nonmultiplexed mode and Address 26 in A/D multiplexed mode O J5 gpmc_a11 GPMC address 11 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O K5 gpmc_a12 GPMC address 12 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O P4 gpmc_a13 GPMC address 13 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O H6, R2, P2 gpmc_a14 GPMC address 14 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O G6, R6, P1 gpmc_a15 GPMC address 15 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O J4, T2, N2 gpmc_a16 GPMC address 16 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O F5, U1, P6 gpmc_a17 GPMC address 17 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O G5, P3, F1 gpmc_a18 GPMC address 18 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O J3, R1, D5 gpmc_a19 GPMC address 19 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O H4, H6(3), N1 gpmc_a20 GPMC address 20 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O G6(3), H3, L6 gpmc_a21 GPMC address 21 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O H5, J4(3), N3 gpmc_a22 GPMC address 22 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O F5(3), G4, M4 gpmc_a23 GPMC address 23 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O AF5, G5, N1, P2, F4 gpmc_a24 GPMC address 24 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O AE5, J3(3), P1, D3 gpmc_a25 GPMC address 25 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O AF1, H4(3), N2, C5 gpmc_a26 GPMC address 26 in A/D nonmultiplexed mode and unused in A/D multiplexed mode O AD6, H3(3), G3, P6 gpmc_a27 GPMC address 27 in A/D nonmultiplexed mode and Address 27 in A/D multiplexed mode O AE3, H5(3), F1, D5, G1 gpmc_ad0 GPMC Data 0 in A/D nonmultiplexed mode and additionally Address 1 in A/D multiplexed mode IO N5 gpmc_ad1 GPMC Data 1 in A/D nonmultiplexed mode and additionally Address 2 in A/D multiplexed mode IO M2 gpmc_ad2 GPMC Data 2 in A/D nonmultiplexed mode and additionally Address 3 in A/D multiplexed mode IO L5 gpmc_ad3 GPMC Data 3 in A/D nonmultiplexed mode and additionally Address 4 in A/D multiplexed mode IO M1 gpmc_ad4 GPMC Data 4 in A/D nonmultiplexed mode and additionally Address 5 in A/D multiplexed mode IO K6 gpmc_ad5 GPMC Data 5 in A/D nonmultiplexed mode and additionally Address 6 in A/D multiplexed mode IO L4 gpmc_ad6 GPMC Data 6 in A/D nonmultiplexed mode and additionally Address 7 in A/D multiplexed mode IO L3 gpmc_ad7 GPMC Data 7 in A/D nonmultiplexed mode and additionally Address 8 in A/D multiplexed mode IO L2 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION SIGNAL NAME 93 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-7. GPMC Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpmc_ad8 GPMC Data 8 in A/D nonmultiplexed mode and additionally Address 9 in A/D multiplexed mode IO L1 gpmc_ad9 GPMC Data 9 in A/D nonmultiplexed mode and additionally Address 10 in A/D multiplexed mode IO K1 gpmc_ad10 GPMC Data 10 in A/D nonmultiplexed mode and additionally Address 11 in A/D multiplexed mode IO J1 gpmc_ad11 GPMC Data 11 in A/D nonmultiplexed mode and additionally Address 12 in A/D multiplexed mode IO J2 gpmc_ad12 GPMC Data 12 in A/D nonmultiplexed mode and additionally Address 13 in A/D multiplexed mode IO H1 gpmc_ad13 GPMC Data 13 in A/D nonmultiplexed mode and additionally Address 14 in A/D multiplexed mode IO K2 gpmc_ad14 GPMC Data 14 in A/D nonmultiplexed mode and additionally Address 15 in A/D multiplexed mode IO H2 gpmc_ad15 GPMC Data 15 in A/D nonmultiplexed mode and additionally Address 16 in A/D multiplexed mode IO K3 N1 gpmc_advn_ale DESCRIPTION ADVANCE INFORMATION GPMC address valid active low or address latch enable O gpmc_ben0 GPMC lower-byte enable active low O N3 gpmc_ben1 GPMC upper-byte enable active low O M4 gpmc_clk GPMC Clock output IO L6 gpmc_cs0 GPMC Chip Select 0 (active low) O T1 gpmc_cs1 GPMC Chip Select 1 (active low) O G4 gpmc_cs2 GPMC Chip Select 2 (active low) O P2 gpmc_cs3 GPMC Chip Select 3 (active low) O P1 gpmc_cs4 GPMC Chip Select 4 (active low) O N3 gpmc_cs5 GPMC Chip Select 5 (active low) O M4 gpmc_cs6 GPMC Chip Select 6 (active low) O N1 gpmc_cs7 GPMC Chip Select 7 (active low) O L6 GPMC output enable active low or read enable O M5 gpmc_wait0 GPMC external indication of wait 0 I N2 gpmc_wait1 GPMC external indication of wait 1 I L6, N1 gpmc_wen GPMC write enable active low O M3 gpmc_oen_ren (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any nonmonotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. (2) The gpio6_16.clkout1 signal can be used as an “always-on” alternative to gpmc_clk provided that the external device can support the associated timing. See Table 5-52, GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Default Mode and Table 5-54, GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Alternate Mode for timing information. (3) The internal pull resistors for balls H6, G6, J4, F5, J3, H4, H3, H5 are permanently disabled when sysboot15 is set to 1 as described in the section Sysboot Configuration of the Device TRM. If internal pull-up/down resistors are desired on these balls then sysboot15 should be set to 0. If gpmc boot mode is used with SYSBOOT15=1 (not recommended) then external pull-downs should be implemented to keep the address bus at logic-0 value during boot since the gpmc ms-address bits are Hi-Z during boot. 4.3.7 Timers NOTE For more information, see the Timers section of the device TRM. Table 4-8. Timers Signal Descriptions SIGNAL NAME 94 TYPE BALL timer1 DESCRIPTION PWM output/event trigger input IO E21, M4 timer2 PWM output/event trigger input IO F17, N3 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME TYPE BALL timer3 PWM output/event trigger input IO F18, N1 timer4 PWM output/event trigger input IO D12, L6 timer5 PWM output/event trigger input IO B11, T2 timer6 PWM output/event trigger input IO A11, R6 timer7 PWM output/event trigger input IO C12, R2 timer8 PWM output/event trigger input IO A12, P4 timer9 PWM output/event trigger input IO D14, K5 timer10 PWM output/event trigger input IO B12, J5 timer11 PWM output/event trigger input IO F12, R3 timer12 PWM output/event trigger input IO E14, N4 timer13 PWM output/event trigger input IO AD7, D18 timer14 PWM output/event trigger input IO AC10, E17 timer15 PWM output/event trigger input IO AC11, AD9, B25 timer16 PWM output/event trigger input IO A22, AC9, AD12 4.3.8 DESCRIPTION ADVANCE INFORMATION Table 4-8. Timers Signal Descriptions (continued) I2C NOTE For more information, see the Serial Communication Interface / Multimaster High-Speed I2C Controller / HS I2C Environment / HS I2C in I2C Mode section of the device TRM. NOTE I2C1 and I2C2 do NOT support HS-mode. Table 4-9. I2C Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL Inter-Integrated Circuit Interface (I2C1) i2c1_scl I2C1 Clock IO C19 i2c1_sda I2C1 Data IO C20 Inter-Integrated Circuit Interface (I2C2) i2c2_scl I2C2 Clock IO F15 i2c2_sda I2C2 Data IO C24 Inter-Integrated Circuit Interface (I2C3) i2c3_scl I2C3 Clock IO AB4, C13, F17, L6 i2c3_sda I2C3 Data IO AC5, B13, E21, N1 Inter-Integrated Circuit Interface (I2C4) i2c4_scl I2C4 Clock IO A20, F14, P6, V6 i2c4_sda I2C4 Data IO A13, C17, J6, W4 Inter-Integrated Circuit Interface (I2C5) i2c5_scl I2C5 Clock IO AB6, F11, M6 i2c5_sda I2C5 Data IO AA3, F10, K4 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 95 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 4.3.9 www.ti.com HDQ1W NOTE For more information, see the Serial Communication Interface / HDQ/1-Wire section of the device TRM. Table 4-10. HDQ / 1-Wire Signal Descriptions SIGNAL NAME hdq0 DESCRIPTION HDQ or 1-wire protocol single interface pin TYPE BALL IO A22, D18 4.3.10 UART NOTE For more information see, the Serial Communication Interface /UART/IrDA/CIR section of the device TRM. ADVANCE INFORMATION Table 4-11. UART Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL Universal Asynchronous Receiver/Transmitter (UART1) uart1_ctsn UART1 Clear to Send active low I F21 uart1_dcdn UART1 Data Carrier Detect active low I D22 uart1_dsrn UART1 Data Set Ready active Low I E22 uart1_dtrn UART1 Data Terminal Ready active Low O F20 uart1_rin UART1 Ring Indicator I C22 uart1_rtsn UART1 Request to Send active low O E23 uart1_rxd UART1 Receive Data I F22 uart1_txd UART1 Transmit Data O C21 Universal Asynchronous Receiver/Transmitter (UART2) uart2_ctsn UART2 Clear to Send active low I F20 uart2_rtsn UART2 Request to Send active low O C22 uart2_rxd UART2 Receive Data I D22 uart2_txd UART2 Transmit Data O E22 Universal Asynchronous Receiver/Transmitter (UART3)/IrDA uart3_ctsn UART3 Clear to Send active low I D22, E16, T6, U3 uart3_irtx Infrared data output O C22 uart3_rctx Remote control data O D22 uart3_rtsn UART3 Request to Send active low O B23, E22, U5, V1 uart3_rxd UART3 Receive Data Input for both normal UART mode and IrDA mode. I A25, AB3, F20, V2 uart3_sd Infrared transceiver configure/shutdown O E22 uart3_txd UART3 Transmit Data Output O AA4, B21, C22, Y1 U6 Universal Asynchronous Receiver/Transmitter (UART4) uart4_ctsn UART4 Clear to Send active low IO uart4_rtsn UART4 Request to Send active low O T5 uart4_rxd UART4 Receive Data I B20, D16, T4 uart4_txd UART4 Transmit Data O B19, D17, T3 Universal Asynchronous Receiver/Transmitter (UART5) 96 uart5_ctsn UART5 Clear to Send active low I AC6, R4 uart5_rtsn UART5 Request to Send active low O AC4, R5 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-11. UART Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL uart5_rxd UART5 Receive Data I B18, E16, F9, P6, Y6 uart5_txd UART5 Transmit Data O B23, C16, E10, J6, W6 Universal Asynchronous Receiver/Transmitter (UART6) uart6_ctsn UART6 Clear to Send active low I E13, P5 uart6_rtsn UART6 Request to Send active low O E11, N6 uart6_rxd UART6 Receive Data I E8, F10, M6, W4 uart6_txd UART6 Transmit Data O D8, F11, K4, V6 AC10, B18 Universal Asynchronous Receiver/Transmitter (UART7) uart7_ctsn UART7 Clear to Send active low I uart7_rtsn UART7 Request to Send active low O AD7, C16 uart7_rxd UART7 Receive Data I AC9, B17, B7, R4 uart7_txd UART7 Transmit Data O AD9, B8, F13, R5 AE7, D16 uart8_ctsn UART8 Clear to Send active low I uart8_rtsn UART8 Request to Send active low O AE8, D17 uart8_rxd UART8 Receive Data I AE9, C17, E19, P5 uart8_txd UART8 Transmit Data O A20, AF10, D19, N6 AB3, F2 Universal Asynchronous Receiver/Transmitter (UART9) uart9_ctsn UART9 Clear to Send active low I uart9_rtsn UART9 Request to Send active low O AA4, E3 uart9_rxd UART9 Receive Data I AA3, F21, G1 uart9_txd UART9 Transmit Data O AB6, E23, E5 AB7, D2 Universal Asynchronous Receiver/Transmitter (UART10) uart10_ctsn UART10 Clear to Send active low I uart10_rtsn UART10 Request to Send active low O AA5, F3 uart10_rxd UART10 Receive Data I AA6, E1, E21, F20 uart10_txd UART10 Transmit Data O AB5, C22, E2, F17 4.3.11 McSPI CAUTION The I/O timings provided in Section 5.10 Timing Requirements and Switching Characteristics are applicable for all combinations of signals for SPI1 and SPI2. However, the timings are valid only for SPI3 and SPI4 if signals within a single IOSET are used. The IOSETS are defined in the Table 5-71. NOTE For more information, see the Serial Communication Interface / Multichannel Serial Peripheral Interface (McSPI) section of the device TRM. Table 4-12. SPI Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL IO A24 Serial Peripheral Interface 1 spi1_sclk(1) SPI1 Clock Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 97 ADVANCE INFORMATION Universal Asynchronous Receiver/Transmitter (UART8) DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-12. SPI Signal Descriptions (continued) SIGNAL NAME TYPE BALL spi1_cs0 DESCRIPTION SPI1 Chip Select IO A23 spi1_cs1 SPI1 Chip Select IO A21 spi1_cs2 SPI1 Chip Select IO B20 spi1_cs3 SPI1 Chip Select IO B19 spi1_d0 SPI1 Data. Can be configured as either MISO or MOSI. IO B24 spi1_d1 SPI1 Data. Can be configured as either MISO or MOSI. IO C15 Serial Peripheral Interface 2 spi2_sclk(1) ADVANCE INFORMATION SPI2 Clock IO A25 spi2_cs0 SPI2 Chip Select IO B23 spi2_cs1 SPI2 Chip Select IO A21 spi2_cs2 SPI2 Chip Select IO B20 spi2_cs3 SPI2 Chip Select IO B19 spi2_d0 SPI2 Data. Can be configured as either MISO or MOSI. IO E16 spi2_d1 SPI2 Data. Can be configured as either MISO or MOSI. IO B21 SPI3 Clock IO AC7, AC9, B11, C17, D10, V2 spi3_cs0 SPI3 Chip Select IO A12, AC6, AD7, D11, D17, U5 spi3_cs1 SPI3 Chip Select IO AC4, B10, D14 spi3_cs2 SPI3 Chip Select IO F9 spi3_cs3 SPI3 Chip Select IO A9 Serial Peripheral Interface 3 spi3_sclk(1) spi3_d0 SPI3 Data. Can be configured as either MISO or MOSI. IO A10, AC10, C12, D16, T6, W6 spi3_d1 SPI3 Data. Can be configured as either MISO or MOSI. IO A11, A20, AD9, C10, Y1, Y6 SPI4 Clock IO AA3, AA6, G1, N4, T4 spi4_cs0 SPI4 Chip Select IO AA4, AA5, E3, K5, T5 spi4_cs1 SPI4 Chip Select IO P4, Y1 spi4_cs2 SPI4 Chip Select IO R2, T6 spi4_cs3 SPI4 Chip Select IO R6, U5 spi4_d0 SPI4 Data. Can be configured as either MISO or MOSI. IO AB3, AB7, F2, J5, U6 spi4_d1 SPI4 Data. Can be configured as either MISO or MOSI. IO AB5, AB6, E5, R3, T3 Serial Peripheral Interface 4 spi4_sclk(1) (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any non-monotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. 4.3.12 QSPI NOTE For more information see the Serial Communication Interface / Quad Serial Peripheral Interface section of the device TRM. 98 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-13. QSPI Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL qspi1_rtclk QSPI1 Return Clock Input. Must be connected from QSPI1_SCLK on PCB. Refer to PCB Guidelines for QSPI1 I R2 qspi1_sclk QSPI1 Serial Clock O R1 qspi1_cs0 QSPI1 Chip Select[0]. This pin is Used for QSPI1 boot modes. O P2 qspi1_cs1 QSPI1 Chip Select[1] O P1 qspi1_cs2 QSPI1 Chip Select[2] O R5 qspi1_cs3 QSPI1 Chip Select[3] O M6 qspi1_d0 QSPI1 Data[0]. This pin is output data for all commands/writes and for dual read and quad read modes it becomes input data pin during read phase. IO U1 qspi1_d1 QSPI1 Data[1]. Input read data in all modes. I P3 qspi1_d2 QSPI1 Data[2]. This pin is used only in quad read mode as input data pin during read phase. I T2 qspi1_d3 QSPI1 Data[3]. This pin is used only in quad read mode as input data pin during read phase. I R6 ADVANCE INFORMATION 4.3.13 McASP NOTE For more information, see the Serial Communication Interface / Multichannel Audio Serial Port (McASP) section of the device TRM. Table 4-14. McASP Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL A13 Multichannel Audio Serial Port 1 mcasp1_aclkr(1) MCASP1 Receive Bit Clock IO mcasp1_aclkx(1) MCASP1 Transmit Bit Clock IO B13 MCASP1 Transmit High-Frequency Master Clock O D18 mcasp1_ahclkx mcasp1_fsr MCASP1 Receive Frame Sync IO F14 mcasp1_fsx MCASP1 Transmit Frame Sync IO C13 mcasp1_axr0 MCASP1 Transmit/Receive Data IO F10 mcasp1_axr1 MCASP1 Transmit/Receive Data IO F11 mcasp1_axr2 MCASP1 Transmit/Receive Data IO E13 mcasp1_axr3 MCASP1 Transmit/Receive Data IO E11 mcasp1_axr4 MCASP1 Transmit/Receive Data IO D18, E12 mcasp1_axr5 MCASP1 Transmit/Receive Data IO D13, E17 mcasp1_axr6 MCASP1 Transmit/Receive Data IO B25, C11 mcasp1_axr7 MCASP1 Transmit/Receive Data IO A22, D12 mcasp1_axr8 MCASP1 Transmit/Receive Data IO B11, E21 mcasp1_axr9 MCASP1 Transmit/Receive Data IO A11, F17 mcasp1_axr10 MCASP1 Transmit/Receive Data IO C12, F18 mcasp1_axr11 MCASP1 Transmit/Receive Data IO A12 mcasp1_axr12 MCASP1 Transmit/Receive Data IO D14 mcasp1_axr13 MCASP1 Transmit/Receive Data IO B12 mcasp1_axr14 MCASP1 Transmit/Receive Data IO F12 mcasp1_axr15 MCASP1 Transmit/Receive Data IO E14 Multichannel Audio Serial Port 2 mcasp2_aclkr(1) MCASP2 Transmit Bit Clock IO E15 mcasp2_aclkx(1) MCASP2 Transmit Bit Clock IO A18 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 99 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-14. McASP Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL mcasp2_ahclkx MCASP2 Transmit High-Frequency Master Clock O E17 ADVANCE INFORMATION mcasp2_fsr MCASP2 Receive Frame Sync IO A19 mcasp2_fsx MCASP2 Transmit Frame Sync IO A17 mcasp2_axr0 MCASP2 Transmit/Receive Data IO B14 mcasp2_axr1 MCASP2 Transmit/Receive Data IO A14 mcasp2_axr2 MCASP2 Transmit/Receive Data IO C14 mcasp2_axr3 MCASP2 Transmit/Receive Data IO A15 mcasp2_axr4 MCASP2 Transmit/Receive Data IO D15 mcasp2_axr5 MCASP2 Transmit/Receive Data IO B15 mcasp2_axr6 MCASP2 Transmit/Receive Data IO B16 mcasp2_axr7 MCASP2 Transmit/Receive Data IO A16 mcasp2_axr8 MCASP2 Transmit/Receive Data IO D18 mcasp2_axr9 MCASP2 Transmit/Receive Data IO E17 mcasp2_axr10 MCASP2 Transmit/Receive Data IO B25 mcasp2_axr11 MCASP2 Transmit/Receive Data IO A22 mcasp2_axr12 MCASP2 Transmit/Receive Data IO B17 mcasp2_axr13 MCASP2 Transmit/Receive Data IO F13 mcasp2_axr14 MCASP2 Transmit/Receive Data IO B18 mcasp2_axr15 MCASP2 Transmit/Receive Data IO C16 Multichannel Audio Serial Port 3 mcasp3_aclkr(1) MCASP3 Transmit Bit Clock IO B17 mcasp3_aclkx(1) MCASP3 Transmit Bit Clock IO B17 MCASP3 Transmit High-Frequency Master Clock O B25 mcasp3_fsr MCASP3 Receive Frame Sync IO F13 mcasp3_ahclkx mcasp3_fsx MCASP3 Transmit Frame Sync IO F13 mcasp3_axr0 MCASP3 Transmit/Receive Data IO B18 mcasp3_axr1 MCASP3 Transmit/Receive Data IO C16 mcasp3_axr2 MCASP3 Transmit/Receive Data IO C14 mcasp3_axr3 MCASP3 Transmit/Receive Data IO A15 Multichannel Audio Serial Port 4 mcasp4_aclkr(1) MCASP4 Transmit Bit Clock IO C17 mcasp4_aclkx(1) MCASP4 Transmit Bit Clock IO C17 MCASP4 Transmit High-Frequency Master Clock O A22 mcasp4_fsr MCASP4 Receive Frame Sync IO A20 mcasp4_ahclkx mcasp4_fsx MCASP4 Transmit Frame Sync IO A20 mcasp4_axr0 MCASP4 Transmit/Receive Data IO D16 mcasp4_axr1 MCASP4 Transmit/Receive Data IO D17 mcasp4_axr2 MCASP4 Transmit/Receive Data IO E12 mcasp4_axr3 MCASP4 Transmit/Receive Data IO D13 Multichannel Audio Serial Port 5 mcasp5_aclkr(1) MCASP5 Transmit Bit Clock IO AA3 mcasp5_aclkx(1) MCASP5 Transmit Bit Clock IO AA3 MCASP5 Transmit High-Frequency Master Clock O D18 mcasp5_fsr MCASP5 Receive Frame Sync IO AB6 mcasp5_ahclkx 100 mcasp5_fsx MCASP5 Transmit Frame Sync IO AB6 mcasp5_axr0 MCASP5 Transmit/Receive Data IO AB3 mcasp5_axr1 MCASP5 Transmit/Receive Data IO AA4 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-14. McASP Signal Descriptions (continued) SIGNAL NAME TYPE BALL mcasp5_axr2 DESCRIPTION MCASP5 Transmit/Receive Data IO C11 mcasp5_axr3 MCASP5 Transmit/Receive Data IO D12 Multichannel Audio Serial Port 6 mcasp6_aclkr(1) MCASP6 Transmit Bit Clock IO C12 mcasp6_aclkx(1) MCASP6 Transmit Bit Clock IO C12 MCASP6 Transmit High-Frequency Master Clock O E17 mcasp6_fsr MCASP6 Receive Frame Sync IO A12 mcasp6_ahclkx mcasp6_fsx MCASP6 Transmit Frame Sync IO A12 mcasp6_axr0 MCASP6 Transmit/Receive Data IO B11 mcasp6_axr1 MCASP6 Transmit/Receive Data IO A11 mcasp6_axr2 MCASP6 Transmit/Receive Data IO E13 mcasp6_axr3 MCASP6 Transmit/Receive Data IO E11 F12 mcasp7_aclkr(1) MCASP7 Transmit Bit Clock IO mcasp7_aclkx(1) MCASP7 Transmit Bit Clock IO F12 MCASP7 Transmit High-Frequency Master Clock O B25 mcasp7_fsr MCASP7 Receive Frame Sync IO E14 mcasp7_ahclkx mcasp7_fsx MCASP7 Transmit Frame Sync IO E14 mcasp7_axr0 MCASP7 Transmit/Receive Data IO D14 mcasp7_axr1 MCASP7 Transmit/Receive Data IO B12 mcasp7_axr2 MCASP7 Transmit/Receive Data IO A13 mcasp7_axr3 MCASP7 Transmit/Receive Data IO F14 ADVANCE INFORMATION Multichannel Audio Serial Port 7 Multichannel Audio Serial Port 8 mcasp8_aclkr(1) MCASP8 Transmit Bit Clock IO B16 mcasp8_aclkx(1) MCASP8 Transmit Bit Clock IO B16 MCASP8 Transmit High-Frequency Master Clock O A22 mcasp8_fsr MCASP8 Receive Frame Sync IO A16 mcasp8_ahclkx mcasp8_fsx MCASP7 Transmit Frame Sync IO A16 mcasp8_axr0 MCASP8 Transmit/Receive Data IO D15 mcasp8_axr1 MCASP8 Transmit/Receive Data IO B15 mcasp8_axr2 MCASP8 Transmit/Receive Data IO E15 mcasp8_axr3 MCASP8 Transmit/Receive Data IO A19 (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any non-monotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. 4.3.14 USB NOTE For more information, see Serial Communication Interface / SuperSpeed USB DRD Subsystem section of the device TRM. Table 4-15. Universal Serial Bus Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL Universal Serial Bus 1 usb1_dm USB1 USB2.0 differential signal pair (negative) IO AE10 usb1_dp USB1 USB2.0 differential signal pair (positive) IO AF11 USB1 Drive VBUS signal O AD12 usb1_drvvbus Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 101 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-15. Universal Serial Bus Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL I AG3 usb_rxn0 USB1 USB3.0 receiver negative lane usb_rxp0 USB1 USB3.0 receiver positive lane I AH4 usb_txn0 USB1 USB3.0 transmitter negative lane O AG2 usb_txp0 USB1 USB3.0 transmitter positive lane O AH3 usb2_dm USB2 USB2.0 differential signal pair (negative) IO AF13 usb2_dp USB2 USB2.0 differential signal pair (positive) IO AE12 USB2 Drive VBUS signal O AC11 usb3_ulpi_clk USB3 - ULPI functional clock I AA5, AD2 usb3_ulpi_dir USB3 - ULPI bus direction I AB5, AE2 usb3_ulpi_nxt USB3 - ULPI next I AA6, AD4 usb3_ulpi_stp USB3 - ULPI stop O AB7, AD1 usb3_ulpi_d0 USB1 USB3.0 transmitter negative lane IO AC4, AD3 usb3_ulpi_d1 USB3 - ULPI 8-bit data bus IO AC6, AD5 usb3_ulpi_d2 USB3 - ULPI 8-bit data bus IO AE1, W6 usb3_ulpi_d3 USB3 - ULPI 8-bit data bus IO AE4, Y6 usb3_ulpi_d4 USB3 - ULPI 8-bit data bus IO AC7, AE3 usb3_ulpi_d5 USB3 - ULPI 8-bit data bus IO AC3, AD6 usb3_ulpi_d6 USB3 - ULPI 8-bit data bus IO AB4, AF1 usb3_ulpi_d7 USB3 - ULPI 8-bit data bus IO AC5, AE5 Universal Serial Bus 2 usb2_drvvbus Universal Serial Bus 3 ADVANCE INFORMATION Universal Serial Bus 4 usb4_ulpi_clk USB4 - ULPI functional clock I T6 usb4_ulpi_dir USB4 - ULPI bus direction I T4 usb4_ulpi_nxt USB4 - ULPI next I T3 usb4_ulpi_stp USB4 - ULPI stop O U5 usb4_ulpi_d0 USB4 - ULPI 8-bit data bus IO U6 usb4_ulpi_d1 USB4 - ULPI 8-bit data bus IO T5 usb4_ulpi_d2 USB4 - ULPI 8-bit data bus IO U4 usb4_ulpi_d3 USB4 - ULPI 8-bit data bus IO V4 usb4_ulpi_d4 USB4 - ULPI 8-bit data bus IO W2 usb4_ulpi_d5 USB4 - ULPI 8-bit data bus IO V3 usb4_ulpi_d6 USB4 - ULPI 8-bit data bus IO Y2 usb4_ulpi_d7 USB4 - ULPI 8-bit data bus IO W1 (1) USB4 will not be supported on some pin-compatible roadmap devices. USB3 will be mapped to these balls instead. Pin compatibility can be maintained in the future by either not using USB4, or via software change to use USB4 on this device, but USB3 on these balls in the future. 4.3.15 SATA NOTE For more information, see the Serial Communication Interfaces / SATA section of the device TRM. Table 4-16. SATA Signal Descriptions SIGNAL NAME sata1_led sata1_rxn0 102 DESCRIPTION TYPE BALL SATA channel activity indicator O A21, D19 SATA differential negative receiver lane 0 I AH6 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-16. SATA Signal Descriptions (continued) SIGNAL NAME TYPE BALL sata1_rxp0 DESCRIPTION SATA differential positive receiver lane 0 I AG5 sata1_txn0 SATA differential negative transmitter lane 0 O AG6 sata1_txp0 SATA differential positive transmitter lane 0 O AH7 4.3.16 PCIe NOTE For more information, see the Serial Communication Interfaces / PCIe Controllers and the Shared PHY Component Subsystems / PCIe Shared PHY Susbsytem sections of the device TRM. NOTE ADVANCE INFORMATION In the DRA76xP device, the PCIe_SS2 controller is NOT available, and the PCIe_SS1 controller supports only a single lane. The PCIe2_PHY interface signal set (pcie_rxn1/rxp1, pcie_txn1/txp1 in Table 4-17) is NOT supported in the DRA76xP device. For more details on the device differentiation, refer to the Table 3-1, Device Comparison. Table 4-17. PCIe Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL ljcb_clkn PCIe1_PHY / PCIe2_PHY shared Reference Clock Input / Output Differential Pair (negative) IO AF14 ljcb_clkp PCIe1_PHY / PCIe2_PHY shared Reference Clock Input / Output Differential Pair (positive) IO AE13 pcie_rxn0 PCIe1_PHY_RX Receive Data Lane 0 (negative) - mapped to PCIe_SS1 only I AG11 pcie_rxp0 PCIe1_PHY_RX Receive Data Lane 0 (positive) - mapped to PCIe_SS1 only I AH12 pcie_txn0 PCIe1_PHY_TX Transmit Data Lane 0 (negative) - mapped to PCIe_SS1 only O AG12 pcie_txp0 PCIe1_PHY_TX Transmit Data Lane 0 (positive) - mapped to PCIe_SS1 only O AH13 pcie_rxn1(1) PCIe2_PHY_RX Receive Data Lane 1 (negative) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) I AG8 pcie_rxp1(1) PCIe2_PHY_RX Receive Data Lane 1 (positive) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) I AH9 pcie_txn1(1) PCIe2_PHY_TX Transmit Data Lane 1 (negative) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) O AG9 pcie_txp1(1) PCIe2_PHY_TX Transmit Data Lane 1 (positive) - mapped to either PCIe_SS1 (dual lane- mode) or PCIe_SS2 (single lane- mode) O AH10 (1) This is not applicable for DRA76xP devices. 4.3.17 DCAN and MCAN NOTE For more information, see the Serial Communication Interface / DCAN and MCAN section of the device TRM. Table 4-18. DCAN Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL DCAN 1 dcan1_tx DCAN1 transmit data pin IO E19 dcan1_rx DCAN1 receive data pin IO D19, AB19 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 103 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-18. DCAN Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL DCAN 2 dcan2_tx DCAN2 transmit data pin IO B20, E21 dcan2_rx DCAN2 receive data pin IO B19, F17, AC20 mcan_tx MCAN transmit data pin IO E19, E21 mcan_rx MCAN receive data pin IO D19, F17 MCAN 4.3.18 GMAC_SW CAUTION The I/O timings provided in Section 5.10 Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in the Table 5-101, Table 5-104, Table 5-109 and Table 5116. ADVANCE INFORMATION NOTE For more information, see the Serial Communication Interfaces / Ethernet Controller section of the device TRM. Table 4-19. GMAC Signal Descriptions SIGNAL NAME 104 TYPE BALL rgmii0_rxc DESCRIPTION RGMII0 Receive Clock I U4 rgmii0_rxctl RGMII0 Receive Control I V4 rgmii0_rxd0 RGMII0 Receive Data I W1 rgmii0_rxd1 RGMII0 Receive Data I Y2 rgmii0_rxd2 RGMII0 Receive Data I V3 rgmii0_rxd3 RGMII0 Receive Data I W2 rgmii0_txc RGMII0 Transmit Clock O T6 rgmii0_txctl RGMII0 Transmit Enable O U5 rgmii0_txd0 RGMII0 Transmit Data O T5 rgmii0_txd1 RGMII0 Transmit Data O U6 rgmii0_txd2 RGMII0 Transmit Data O T3 rgmii0_txd3 RGMII0 Transmit Data O T4 rgmii1_rxc RGMII1 Receive Clock I D4 rgmii1_rxctl RGMII1 Receive Control I A3 rgmii1_rxd0 RGMII1 Receive Data I A4 rgmii1_rxd1 RGMII1 Receive Data I C4 rgmii1_rxd2 RGMII1 Receive Data I B4 rgmii1_rxd3 RGMII1 Receive Data I B3 rgmii1_txc RGMII1 Transmit Clock O E6 rgmii1_txctl RGMII1 Transmit Enable O C1 rgmii1_txd0 RGMII1 Transmit Data O B5 rgmii1_txd1 RGMII1 Transmit Data O B2 rgmii1_txd2 RGMII1 Transmit Data O C3 rgmii1_txd3 RGMII1 Transmit Data O C2 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME TYPE BALL mii1_col DESCRIPTION MII1 Collision Detect (Sense) I B4 C4 mii1_crs MII1 Carrier Sense I mii1_rxclk MII1 Receive Clock I E6 mii1_rxdv MII1 Receive Data Valid I C1 mii1_rxer MII1 Receive Data Error I B3 mii1_txclk MII1 Transmit Clock I C2 mii1_txen MII1 Transmit Data Enable O A4 mii1_txer MII1 Transmit Error I A3 mii1_rxd0 MII1 Receive Data I C5 mii1_rxd1 MII1 Receive Data I D1 mii1_rxd2 MII1 Receive Data I E4 mii1_rxd3 MII1 Receive Data I G3 mii1_txd0 MII1 Transmit Data O C3 mii1_txd1 MII1 Transmit Data O B2 mii1_txd2 MII1 Transmit Data O B5 mii1_txd3 MII1 Transmit Data O D4 mii0_col MII0 Collision Detect (Sense) I V1 mii0_crs MII0 Carrier Sense I T4 mii0_rxclk MII0 Receive Clock I Y1 mii0_rxdv MII0 Receive Data Valid I V2 mii0_rxer MII0 Receive Data Error I T3 mii0_txclk MII0 Transmit Clock I U4 mii0_txen MII0 Transmit Data Enable O V3 mii0_txer MII0 Transmit Error I U3 mii0_rxd0 MII0 Receive Data I T5 mii0_rxd1 MII0 Receive Data I U6 mii0_rxd2 MII0 Receive Data I U5 mii0_rxd3 MII0 Receive Data I T6 mii0_txd0 MII0 Transmit Data O W1 mii0_txd1 MII0 Transmit Data O Y2 mii0_txd2 MII0 Transmit Data O W2 mii0_txd3 MII0 Transmit Data O V4 rmii0_crs RMII0 Carrier Sense I T4 rmii0_rxer RMII0 Receive Data Error I T3 V3 rmii0_txen RMII0 Transmit Data Enable O rmii0_rxd0 RMII0 Receive Data I T5 rmii0_rxd1 RMII0 Receive Data I U6 rmii0_txd0 RMII0 Transmit Data O W1 rmii0_txd1 RMII0 Transmit Data O Y2 rmii1_crs RMII1 Carrier Sense I V2 rmii1_rxer RMII1 Receive Data Error I Y1 ADVANCE INFORMATION Table 4-19. GMAC Signal Descriptions (continued) rmii1_txen RMII1 Transmit Data Enable O U4 rmii1_rxd0 RMII1 Receive Data I U5 rmii1_rxd1 RMII1 Receive Data I T6 rmii1_txd0 RMII1 Transmit Data O W2 rmii1_txd1 RMII1 Transmit Data O V4 mdio_mclk Management Data Serial Clock O AC5, B20, D3, V1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 105 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-19. GMAC Signal Descriptions (continued) SIGNAL NAME mdio_d DESCRIPTION Management Data TYPE BALL IO AB4, B19, F4, U3 4.3.19 MLB NOTE MLB in 6-pin mode may require pullups/ pulldowns on SIG and DAT bus signals. For additional details, please consult the MLB bus interface specification. NOTE For more information, see the Serial Communication Interface / Media Local Bus (MLB) section of the device TRM. Table 4-20. MLB Signal Descriptions ADVANCE INFORMATION SIGNAL NAME TYPE BALL mlbp_clk_n DESCRIPTION Media Local Bus (MLB) Subsystem clock differential pair (negative) I AB2 mlbp_clk_p Media Local Bus (MLB) Subsystem clock differential pair (positive) I AB1 mlbp_dat_n Media Local Bus (MLB) Subsystem data differential pair (negative) IO AA2 mlbp_dat_p Media Local Bus (MLB) Subsystem data differential pair (positive) IO AA1 mlbp_sig_n Media Local Bus (MLB) Subsystem signal differential pair (negative) IO AC2 mlbp_sig_p Media Local Bus (MLB) Subsystem signal differential pair (positive) IO AC1 mlb_clk Media Local Bus (MLB) Subsystem clock I AA3 mlb_dat Media Local Bus (MLB) Subsystem data IO AA4 mlb_sig Media Local Bus (MLB) Subsystem signal IO AB3 TYPE BALL 4.3.20 eMMC/SD/SDIO NOTE For more information, see the HS MMC/SDIO section of the device TRM. Table 4-21. eMMC/SD/SDIO Signal Descriptions SIGNAL NAME DESCRIPTION Multi Media Card 1 mmc1_clk(1) MMC1 clock IO W3 mmc1_cmd MMC1 command IO W5 mmc1_sdcd MMC1 Card Detect I W4 mmc1_sdwp MMC1 Write Protect I V6 mmc1_dat0 MMC1 data bit 0 IO V5 mmc1_dat1 MMC1 data bit 1 IO Y4 mmc1_dat2 MMC1 data bit 2 IO Y5 mmc1_dat3 MMC1 data bit 3 IO Y3 mmc2_clk(1) MMC2 clock IO G5 Multi Media Card 2 106 mmc2_cmd MMC2 command IO G4 mmc2_sdcd MMC2 Card Detect I E19 mmc2_sdwp MMC2 Write Protect I D19 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-21. eMMC/SD/SDIO Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL mmc2_dat0 MMC2 data bit 0 IO J3 mmc2_dat1 MMC2 data bit 1 IO H4 mmc2_dat2 MMC2 data bit 2 IO H3 mmc2_dat3 MMC2 data bit 3 IO H5 mmc2_dat4 MMC2 data bit 4 IO H6 mmc2_dat5 MMC2 data bit 5 IO G6 mmc2_dat6 MMC2 data bit 6 IO J4 mmc2_dat7 MMC2 data bit 7 IO F5 mmc3_clk(1) MMC3 clock IO AC3 mmc3_cmd MMC3 command IO AC7 mmc3_sdcd MMC3 Card Detect I B20 mmc3_sdwp MMC3 Write Protect I B19 mmc3_dat0 MMC3 data bit 0 IO Y6 mmc3_dat1 MMC3 data bit 1 IO W6 mmc3_dat2 MMC3 data bit 2 IO AC6 mmc3_dat3 MMC3 data bit 3 IO AC4 mmc3_dat4 MMC3 data bit 4 IO AA6 mmc3_dat5 MMC3 data bit 5 IO AB5 mmc3_dat6 MMC3 data bit 6 IO AB7 mmc3_dat7 MMC3 data bit 7 IO AA5 mmc4_clk(1) MMC4 clock IO F21 mmc4_cmd MMC4 command IO E23 Multi Media Card 4 mmc4_sdcd MMC4 Card Detect I F22 mmc4_sdwp MMC4 Write Protect I C21 mmc4_dat0 MMC4 data bit 0 IO D22 mmc4_dat1 MMC4 data bit 1 IO E22 mmc4_dat2 MMC4 data bit 2 IO F20 mmc4_dat3 MMC4 data bit 3 IO C22 (1) By default, this clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. mmc1_clk and mmc2_clk have an optional software programmable setting to use an 'internal loopback clock' instead of the default 'pad loopback clock'. If the 'pad loopback clock' is used, series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any non-monotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. 4.3.21 GPIO NOTE For more information, see the General-Purpose Interface section of the device TRM. Table 4-22. GPIOs Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL GPIO 1 gpio1_0 General-Purpose Input I AB19 gpio1_1 General-Purpose Input I AC20 gpio1_2 General-Purpose Input I AB20 gpio1_3 General-Purpose Input I AB21 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 107 ADVANCE INFORMATION Multi Media Card 3 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-22. GPIOs Signal Descriptions (continued) SIGNAL NAME ADVANCE INFORMATION TYPE BALL gpio1_4 DESCRIPTION General-Purpose Input/Output IO D15 gpio1_5 General-Purpose Input/Output IO A16 gpio1_6 General-Purpose Input/Output IO N5 gpio1_7 General-Purpose Input/Output IO M2 gpio1_8 General-Purpose Input/Output IO L5 gpio1_9 General-Purpose Input/Output IO M1 gpio1_10 General-Purpose Input/Output IO K6 gpio1_11 General-Purpose Input/Output IO L4 gpio1_12 General-Purpose Input/Output IO L3 gpio1_13 General-Purpose Input/Output IO L2 gpio1_14 General-Purpose Input/Output IO E19 gpio1_15 General-Purpose Input/Output IO D19 gpio1_16 General-Purpose Input/Output IO F20 gpio1_17 General-Purpose Input/Output IO C22 gpio1_18 General-Purpose Input/Output IO H1 gpio1_19 General-Purpose Input/Output IO K2 gpio1_20 General-Purpose Input/Output IO H2 gpio1_21 General-Purpose Input/Output IO K3 gpio1_22 General-Purpose Input/Output IO AA6 gpio1_23 General-Purpose Input/Output IO AB5 gpio1_24 General-Purpose Input/Output IO AB7 gpio1_25 General-Purpose Input/Output IO AA5 gpio1_26 General-Purpose Input/Output IO M6 gpio1_27 General-Purpose Input/Output IO K4 gpio1_28 General-Purpose Input/Output IO P5 gpio1_29 General-Purpose Input/Output IO N6 gpio1_30 General-Purpose Input/Output IO N4 gpio1_31 General-Purpose Input/Output IO R3 gpio2_0 General-Purpose Input/Output IO J5 gpio2_1 General-Purpose Input/Output IO K5 gpio2_2 General-Purpose Input/Output IO P4 gpio2_3 General-Purpose Input/Output IO R2 gpio2_4 General-Purpose Input/Output IO R6 gpio2_5 General-Purpose Input/Output IO T2 gpio2_6 General-Purpose Input/Output IO U1 gpio2_7 General-Purpose Input/Output IO P3 gpio2_8 General-Purpose Input/Output IO R1 gpio2_9 General-Purpose Input/Output IO H6 gpio2_10 General-Purpose Input/Output IO G6 gpio2_11 General-Purpose Input/Output IO J4 gpio2_12 General-Purpose Input/Output IO F5 gpio2_13 General-Purpose Input/Output IO G5 gpio2_14 General-Purpose Input/Output IO J3 gpio2_15 General-Purpose Input/Output IO H4 gpio2_16 General-Purpose Input/Output IO H3 gpio2_17 General-Purpose Input/Output IO H5 GPIO 2 108 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-22. GPIOs Signal Descriptions (continued) SIGNAL NAME TYPE BALL gpio2_18 DESCRIPTION General-Purpose Input/Output IO G4 gpio2_19 General-Purpose Input/Output IO T1 gpio2_20 General-Purpose Input/Output IO P2 gpio2_21 General-Purpose Input/Output IO P1 gpio2_22 General-Purpose Input/Output IO L6 gpio2_23 General-Purpose Input/Output IO N1 gpio2_24 General-Purpose Input/Output IO M5 gpio2_25 General-Purpose Input/Output IO M3 gpio2_26 General-Purpose Input/Output IO N3 gpio2_27 General-Purpose Input/Output IO M4 gpio2_28 General-Purpose Input/Output IO N2 gpio2_29 General-Purpose Input/Output IO B16 gpio2_30 General-Purpose Input/Output IO AD8 gpio2_31 General-Purpose Input/Output IO AC8 gpio3_0 General-Purpose Input/Output IO AC9 gpio3_1 General-Purpose Input/Output IO AD9 gpio3_2 General-Purpose Input/Output IO AC10 gpio3_3 General-Purpose Input/Output IO AD7 gpio3_4 General-Purpose Input/Output IO AE9 gpio3_5 General-Purpose Input/Output IO AF10 gpio3_6 General-Purpose Input/Output IO AE7 gpio3_7 General-Purpose Input/Output IO AE8 gpio3_8 General-Purpose Input/Output IO AE6 gpio3_9 General-Purpose Input/Output IO AF7 gpio3_10 General-Purpose Input/Output IO AF8 gpio3_11 General-Purpose Input/Output IO AF6 gpio3_12 General-Purpose Input/Output IO AF4 gpio3_13 General-Purpose Input/Output IO AF2 gpio3_14 General-Purpose Input/Output IO AF3 gpio3_15 General-Purpose Input/Output IO AF5 gpio3_16 General-Purpose Input/Output IO AE5 gpio3_17 General-Purpose Input/Output IO AF1 gpio3_18 General-Purpose Input/Output IO AD6 gpio3_19 General-Purpose Input/Output IO AE3 gpio3_20 General-Purpose Input/Output IO AE4 gpio3_21 General-Purpose Input/Output IO AE1 gpio3_22 General-Purpose Input/Output IO AD5 gpio3_23 General-Purpose Input/Output IO AD3 gpio3_24 General-Purpose Input/Output IO AD4 gpio3_25 General-Purpose Input/Output IO AE2 gpio3_26 General-Purpose Input/Output IO AD1 gpio3_27 General-Purpose Input/Output IO AD2 gpio3_28 General-Purpose Input/Output IO F1 gpio3_29 General-Purpose Input/Output IO G2 gpio3_30 General-Purpose Input/Output IO D5 gpio3_31 General-Purpose Input/Output IO G1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION GPIO 3 109 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-22. GPIOs Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL E5 GPIO 4 ADVANCE INFORMATION gpio4_0 General-Purpose Input/Output IO gpio4_1 General-Purpose Input/Output IO F2 gpio4_2 General-Purpose Input/Output IO E3 gpio4_3 General-Purpose Input/Output IO E1 gpio4_4 General-Purpose Input/Output IO E2 gpio4_5 General-Purpose Input/Output IO D2 gpio4_6 General-Purpose Input/Output IO F3 gpio4_7 General-Purpose Input/Output IO D1 gpio4_8 General-Purpose Input/Output IO E4 gpio4_9 General-Purpose Input/Output IO G3 gpio4_10 General-Purpose Input/Output IO C5 gpio4_11 General-Purpose Input/Output IO D3 gpio4_12 General-Purpose Input/Output IO F4 gpio4_13 General-Purpose Input/Output IO E6 gpio4_14 General-Purpose Input/Output IO C1 gpio4_15 General-Purpose Input/Output IO C2 gpio4_16 General-Purpose Input/Output IO C3 gpio4_17 General-Purpose Input/Output IO A12 gpio4_18 General-Purpose Input/Output IO D14 gpio4_19 General-Purpose Input/Output IO D11 gpio4_20 General-Purpose Input/Output IO C10 gpio4_21 General-Purpose Input/Output IO B10 gpio4_22 General-Purpose Input/Output IO A10 gpio4_23 General-Purpose Input/Output IO D10 gpio4_24 General-Purpose Input/Output IO B2 gpio4_25 General-Purpose Input/Output IO B5 gpio4_26 General-Purpose Input/Output IO D4 gpio4_27 General-Purpose Input/Output IO A3 gpio4_28 General-Purpose Input/Output IO B3 gpio4_29 General-Purpose Input/Output IO B4 gpio4_30 General-Purpose Input/Output IO C4 gpio4_31 General-Purpose Input/Output IO A4 gpio5_0 General-Purpose Input/Output IO A13 gpio5_1 General-Purpose Input/Output IO F14 gpio5_2 General-Purpose Input/Output IO F10 gpio5_3 General-Purpose Input/Output IO F11 gpio5_4 General-Purpose Input/Output IO E13 gpio5_5 General-Purpose Input/Output IO E11 gpio5_6 General-Purpose Input/Output IO E12 gpio5_7 General-Purpose Input/Output IO D13 gpio5_8 General-Purpose Input/Output IO C11 gpio5_9 General-Purpose Input/Output IO D12 gpio5_10 General-Purpose Input/Output IO B11 gpio5_11 General-Purpose Input/Output IO A11 gpio5_12 General-Purpose Input/Output IO C12 GPIO 5 110 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME TYPE BALL gpio5_13 DESCRIPTION General-Purpose Input/Output IO B17 gpio5_14 General-Purpose Input/Output IO F13 gpio5_15 General-Purpose Input/Output IO V1 gpio5_16 General-Purpose Input/Output IO U3 gpio5_17 General-Purpose Input/Output IO U2 gpio5_18 General-Purpose Input/Output IO V2 gpio5_19 General-Purpose Input/Output IO Y1 gpio5_20 General-Purpose Input/Output IO T6 gpio5_21 General-Purpose Input/Output IO U5 gpio5_22 General-Purpose Input/Output IO T4 gpio5_23 General-Purpose Input/Output IO T3 gpio5_24 General-Purpose Input/Output IO U6 gpio5_25 General-Purpose Input/Output IO T5 gpio5_26 General-Purpose Input/Output IO U4 gpio5_27 General-Purpose Input/Output IO V4 gpio5_28 General-Purpose Input/Output IO W2 gpio5_29 General-Purpose Input/Output IO V3 gpio5_30 General-Purpose Input/Output IO Y2 gpio5_31 General-Purpose Input/Output IO W1 gpio6_4 General-Purpose Input/Output IO B12 gpio6_5 General-Purpose Input/Output IO F12 gpio6_6 General-Purpose Input/Output IO E14 gpio6_7 General-Purpose Input/Output IO B15 gpio6_8 General-Purpose Input/Output IO C14 gpio6_9 General-Purpose Input/Output IO A15 gpio6_10 General-Purpose Input/Output IO AC5 gpio6_11 General-Purpose Input/Output IO AB4 gpio6_12 General-Purpose Input/Output IO AD12 gpio6_13 General-Purpose Input/Output IO AC11 gpio6_14 General-Purpose Input/Output IO E21 gpio6_15 General-Purpose Input/Output IO F17 gpio6_16 General-Purpose Input/Output IO F18 gpio6_17 General-Purpose Input/Output IO D18 gpio6_18 General-Purpose Input/Output IO E17 gpio6_19 General-Purpose Input/Output IO B25 gpio6_20 General-Purpose Input/Output IO A22 gpio6_21 General-Purpose Input/Output IO W3 gpio6_22 General-Purpose Input/Output IO W5 gpio6_23 General-Purpose Input/Output IO V5 gpio6_24 General-Purpose Input/Output IO Y4 gpio6_25 General-Purpose Input/Output IO Y5 gpio6_26 General-Purpose Input/Output IO Y3 gpio6_27 General-Purpose Input/Output IO W4 gpio6_28 General-Purpose Input/Output IO V6 gpio6_29 General-Purpose Input/Output IO AC3 gpio6_30 General-Purpose Input/Output IO AC7 ADVANCE INFORMATION Table 4-22. GPIOs Signal Descriptions (continued) GPIO 6 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 111 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-22. GPIOs Signal Descriptions (continued) SIGNAL NAME TYPE BALL General-Purpose Input/Output IO Y6 gpio7_0 General-Purpose Input/Output IO W6 gpio7_1 General-Purpose Input/Output IO AC6 gpio7_2 General-Purpose Input/Output IO AC4 gpio7_3 General-Purpose Input/Output IO P6 gpio7_4 General-Purpose Input/Output IO J6 gpio7_5 General-Purpose Input/Output IO R4 gpio7_6 General-Purpose Input/Output IO R5 gpio7_7 General-Purpose Input/Output IO A24 gpio7_8 General-Purpose Input/Output IO C15 gpio6_31 DESCRIPTION GPIO 7 ADVANCE INFORMATION gpio7_9 General-Purpose Input/Output IO B24 gpio7_10 General-Purpose Input/Output IO A23 gpio7_11 General-Purpose Input/Output IO A21 gpio7_12 General-Purpose Input/Output IO B20 gpio7_13 General-Purpose Input/Output IO B19 gpio7_14 General-Purpose Input/Output IO A25 gpio7_15 General-Purpose Input/Output IO B21 gpio7_16 General-Purpose Input/Output IO E16 gpio7_17 General-Purpose Input/Output IO B23 gpio7_18 General-Purpose Input/Output IO L1 gpio7_19 General-Purpose Input/Output IO K1 gpio7_22 General-Purpose Input/Output IO F22 gpio7_23 General-Purpose Input/Output IO C21 gpio7_24 General-Purpose Input/Output IO F21 gpio7_25 General-Purpose Input/Output IO E23 gpio7_26 General-Purpose Input/Output IO D22 gpio7_27 General-Purpose Input/Output IO E22 gpio7_28 General-Purpose Input/Output IO J1 gpio7_29 General-Purpose Input/Output IO J2 gpio7_30 General-Purpose Input/Output IO C13 gpio7_31 General-Purpose Input/Output IO B13 gpio8_0 General-Purpose Input/Output IO F9 gpio8_1 General-Purpose Input/Output IO E10 gpio8_2 General-Purpose Input/Output IO D9 gpio8_3 General-Purpose Input/Output IO C6 gpio8_4 General-Purpose Input/Output IO E9 gpio8_5 General-Purpose Input/Output IO F8 gpio8_6 General-Purpose Input/Output IO F7 gpio8_7 General-Purpose Input/Output IO E7 gpio8_8 General-Purpose Input/Output IO E8 gpio8_9 General-Purpose Input/Output IO D8 gpio8_10 General-Purpose Input/Output IO D6 gpio8_11 General-Purpose Input/Output IO D7 gpio8_12 General-Purpose Input/Output IO A5 gpio8_13 General-Purpose Input/Output IO B6 GPIO 8 112 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME TYPE BALL gpio8_14 DESCRIPTION General-Purpose Input/Output IO C8 gpio8_15 General-Purpose Input/Output IO C7 gpio8_16 General-Purpose Input/Output IO B7 gpio8_17 General-Purpose Input/Output IO B8 gpio8_18 General-Purpose Input/Output IO A6 gpio8_19 General-Purpose Input/Output IO A7 gpio8_20 General-Purpose Input/Output IO C9 gpio8_21 General-Purpose Input/Output IO A8 gpio8_22 General-Purpose Input/Output IO B9 gpio8_23 General-Purpose Input/Output IO A9 gpio8_27 General-Purpose Input I B22 gpio8_28 General-Purpose Input/Output IO C18 gpio8_29 General-Purpose Input/Output IO E18 gpio8_30 General-Purpose Input/Output IO F19 gpio8_31 General-Purpose Input/Output IO C23 ADVANCE INFORMATION Table 4-22. GPIOs Signal Descriptions (continued) 4.3.22 KBD NOTE For more information, see Keyboard Controller section of the device TRM. Table 4-23. Keyboard Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL kbd_col0 Keypad column 0 O AE3, E2 kbd_col1 Keypad column 1 O AE4, D2 kbd_col2 Keypad column 2 O AE1, F3 kbd_col3 Keypad column 3 O AD5, D1 kbd_col4 Keypad column 4 O AD3, E4 kbd_col5 Keypad column 5 O AD4, G3 kbd_col6 Keypad column 6 O AE2, C5 kbd_col7 Keypad column 7 O AD1, D3 kbd_col8 Keypad column 8 O AD2, E6 kbd_row0 Keypad row 0 I AC9, F1 kbd_row1 Keypad row 1 I AD9, G2 kbd_row2 Keypad row 2 I AF4, G1 kbd_row3 Keypad row 3 I AF2, E5 kbd_row4 Keypad row 4 I AF3, F2 kbd_row5 Keypad row 5 I AF5, E3 kbd_row6 Keypad row 6 I AE5, E1 kbd_row7 Keypad row 7 I AF1, F4 kbd_row8 Keypad row 8 I AD6, C1 4.3.23 PWM NOTE For more information, see the Pulse-Width Modulation (PWM) SS section of the device TRM. Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 113 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-24. PWM Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL PWMSS1 eQEP1A_in EQEP1 Quadrature Input A I AC9, F1 eQEP1B_in EQEP1 Quadrature Input B I AD9, G2 eQEP1_index EQEP1 Index Input IO AC10, D5 eQEP1_strobe EQEP1 Strobe Input IO AD7, G1 ehrpwm1A EHRPWM1 Output A O AE9, E5 ehrpwm1B EHRPWM1 Output B O AF10, F2 EHRPWM1 Trip Zone Input IO AE7, E3 IO AE8, E1 ehrpwm1_tripzone_in put eCAP1_in_PWM1_out ECAP1 Capture Input / PWM Output ehrpwm1_synci EHRPWM1 Sync Input I AE6, E2 ehrpwm1_synco EHRPWM1 Sync Output O AF7, D2 eQEP2A_in EQEP2 Quadrature Input A I AF8, F3 eQEP2B_in EQEP2 Quadrature Input B I AF6, D1 AF4, E4 PWMSS2 ADVANCE INFORMATION eQEP2_index EQEP2 Index Input IO eQEP2_strobe EQEP2 Strobe Input IO AF2, G3 ehrpwm2A EHRPWM2 Output A O AC5, C5 ehrpwm2B EHRPWM2 Output B O AB4, D3 EHRPWM2 Trip Zone Input IO AC3, F4 IO AC7, E6 ehrpwm2_tripzone_in put eCAP2_in_PWM2_out ECAP2 Capture Input / PWM Output PWMSS3 eQEP3A_in EQEP3 Quadrature Input A I C1, Y6 eQEP3B_in EQEP3 Quadrature Input B I C2, W6 eQEP3_index EQEP3 Index Input IO AC6, C3 eQEP3_strobe EQEP3 Strobe Input IO AC4, B2 ehrpwm3A EHRPWM3 Output A O AA6, B5 ehrpwm3B EHRPWM3 Output B O AB5, D4 EHRPWM3 Trip Zone Input IO A3, AB7 IO AA5, B3 ehrpwm3_tripzone_in put eCAP3_in_PWM3_out ECAP3 Capture Input / PWM Output 4.3.24 ATL NOTE For more information, see the Audio Tracking Logic (ATL) section of the device TRM. Table 4-25. ATL Signal Descriptions SIGNAL NAME DESCRIPTION 114 TYPE BALL atl_clk0 Audio Tracking Logic Clock 0 O D18 atl_clk1 Audio Tracking Logic Clock 1 O E17 atl_clk2 Audio Tracking Logic Clock 2 O B25 atl_clk3 Audio Tracking Logic Clock 3 O A22 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 4.3.25 Test Interfaces CAUTION The I/O timings provided in Section 5.10 Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in the Table 5-177. NOTE For more information, see the On-Chip Debug Support / Debug Ports section of the device TRM. Table 4-26. Debug Signal Descriptions DESCRIPTION TYPE emu0 Emulator pin 0 IO BALL F19 emu1 Emulator pin 1 IO C23 emu2 Emulator pin 2 O D9 emu3 Emulator pin 3 O D6 emu4 Emulator pin 4 O A6 emu5 Emulator pin 5 O C6, F1 emu6 Emulator pin 6 O E9, G2 emu7 Emulator pin 7 O D5, F8 emu8 Emulator pin 8 O F7, G1 emu9 Emulator pin 9 O E5, E7 emu10 Emulator pin 10 O D7, F2 emu11 Emulator pin 11 O A5, E3 emu12 Emulator pin 12 O B6, E1 emu13 Emulator pin 13 O C8, E2 emu14 Emulator pin 14 O C7, D2 emu15 Emulator pin 15 O A7, F3 emu16 Emulator pin 16 O C9, D1 emu17 Emulator pin 17 O A8, E4 emu18 Emulator pin 18 O B9, G3 emu19 Emulator pin 19 O A9, C5 rtck JTAG return clock O E18 tclk JTAG test clock I E20 tdi JTAG test data I B22 tdo JTAG test port data O C18 tms JTAG test port mode select. An external pull-up resistor should be used on this ball. IO F16 trstn JTAG test reset I D20 ADVANCE INFORMATION SIGNAL NAME 4.3.26 System and Miscellaneous 4.3.26.1 Sysboot NOTE For more information, see the Initialization (ROM Code) section of the device TRM. Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 115 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-27. Sysboot Signal Descriptions SIGNAL NAME DESCRIPTION TYPE ADVANCE INFORMATION sysboot0 Boot Mode Configuration 0. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot1 Boot Mode Configuration 1. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot2 Boot Mode Configuration 2. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot3 Boot Mode Configuration 3. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot4 Boot Mode Configuration 4. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot5 Boot Mode Configuration 5. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot6 Boot Mode Configuration 6. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot7 Boot Mode Configuration 7. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot8 Boot Mode Configuration 8. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot9 Boot Mode Configuration 9. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot10 Boot Mode Configuration 10. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot11 Boot Mode Configuration 11. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot12 Boot Mode Configuration 12. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot13 Boot Mode Configuration 13. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot14 Boot Mode Configuration 14. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I sysboot15 Boot Mode Configuration 15. The value latched on this pin upon porz reset release will determine the boot mode configuration of the device. I BALL N5 M2 L5 M1 K6 L4 L3 L2 L1 K1 J1 J2 H1 K2 H2 K3 4.3.26.2 PRCM NOTE For more information, see PRCM section of the device TRM. Table 4-28. PRCM Signal Descriptions SIGNAL NAME clkout1 TYPE BALL Device Clock output 1. Can be used externally for devices with non-critical timing requirements, or for debug, or as a reference clock on GPMC as described in Table 5-52 GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Default Mode and Table 5-54 GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Alternate Mode. O clkout2 Device Clock output 2. Can be used externally for devices with non-critical timing requirements, or for debug. O clkout3 Device Clock output 3. Can be used externally for devices with non-critical timing requirements, or for debug. O rstoutn Reset out (Active low). This pin asserts low in response to any global reset condition on the device.(2) O D23 resetn Device Reset Input I D24 Power on Reset (active low). This pin must be asserted low until all device supplies are valid (see reset sequence/requirements). I C25 porz 116 DESCRIPTION Terminal Configuration and Functions F18, L6 D18, N1 A22 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-28. PRCM Signal Descriptions (continued) TYPE BALL xref_clk0 DESCRIPTION External Reference Clock 0. For Audio and other Peripherals. I D18 xref_clk1 External Reference Clock 1. For Audio and other Peripherals. I E17 xref_clk2 External Reference Clock 2. For Audio and other Peripherals. I B25 xref_clk3 External Reference Clock 3. For Audio and other Peripherals. I A22 System Oscillator OSC0 Crystal input / LVCMOS clock input. Functions as the input connection to a crystal when the internal oscillator OSC0 is used. Functions as an LVCMOS-compatible input clock when an external oscillator is used. I xi_osc0 Auxiliary Oscillator OSC1 Crystal input / LVCMOS clock input. Functions as the input connection to a crystal when the internal oscillator OSC1 is used. Functions as an LVCMOS-compatible input clock when an external oscillator is used. I xi_osc1 xo_osc0 System Oscillator OSC0 Crystal output O AB14 xo_osc1 Auxiliary Oscillator OSC1 Crystal output O AB18 IO U2 AB16 AC19 RMII_MHZ_50_C RMII Reference Clock (50 MHz). This pin is an input when external reference is LK(1) used or output when internal reference is used. (1) This clock signal is implemented as 'pad loopback' inside the device - the output signal is looped back through the input buffer to serve as the internal reference signal. Series termination is recommended (as close to device pin as possible) to improve signal integrity of the clock input. Any non-monotonicity in voltage that occurs at the pad loopback clock pin between VIH and VIL must be less than VHYS. (2) Note that rstoutn is only valid after vddshv3 is valid. If the rstoutn signal will be used as a reset into other devices attached to the SOC, it must be AND'ed with porz. This will prevent glitches occurring during supply ramping being propagated. 4.3.26.3 SDMA NOTE For more information, see the DMA Controllers / System DMA section of the device TRM. Table 4-29. SDMA Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL dma_evt1 System DMA Event Input 1 I L6, P4 dma_evt2 System DMA Event Input 2 I N1, R2 dma_evt3 System DMA Event Input 3 I N3 dma_evt4 System DMA Event Input 4 I M4 4.3.26.4 INTC NOTE For more information, see the Interrupt Controllers section of the device TRM. Table 4-30. INTC Signal Descriptions SIGNAL NAME TYPE BALL Non-maskable interrupt input, active-low. This pin can be optionally routed to the DSP NMI input or as generic input to the ARM cores. Note that by default this pin has an internal pulldown resistor enabled. This internal pulldown should be disabled or countered by a stronger external pullup resistor before routing to the DSP or ARM processors. I D21 sys_nirq1 External interrupt event to any device INTC I AB21 sys_nirq2 External interrupt event to any device INTC I AB20 nmin DESCRIPTION Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 117 ADVANCE INFORMATION SIGNAL NAME DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 4.3.26.5 Observability NOTE For more information, see the Control Module section of the device TRM. Table 4-31. Observability Signal Descriptions SIGNAL NAME DESCRIPTION TYPE BALL Observation Output 0 O D9 obs1 Observation Output 1 O C6 obs2 Observation Output 2 O E9 obs3 Observation Output 3 O F8 obs4 Observation Output 4 O F7 obs5 Observation Output 5 O D6 obs6 Observation Output 6 O D7 obs7 Observation Output 7 O A5 obs8 Observation Output 8 O B6 obs9 Observation Output 9 O C8 obs10 Observation Output 10 O C7 obs11 Observation Output 11 O A6 obs12 Observation Output 12 O A7 obs13 Observation Output 13 O C9 obs14 Observation Output 14 O A8 obs15 Observation Output 15 O B9 obs16 Observation Output 16 O D9 obs17 Observation Output 17 O C6 obs18 Observation Output 18 O E9 obs19 Observation Output 19 O F8 obs20 Observation Output 20 O F7 obs21 Observation Output 21 O D6 obs22 Observation Output 22 O D7 obs23 Observation Output 23 O A5 obs24 Observation Output 24 O B6 obs25 Observation Output 25 O C8 obs26 Observation Output 26 O C7 obs27 Observation Output 27 O A6 obs28 Observation Output 28 O A7 obs29 Observation Output 29 O C9 obs30 Observation Output 30 O A8 obs31 Observation Output 31 O B9 obs_dmarq1 DMA Request External Observation Output 1 O C6 obs_dmarq2 DMA Request External Observation Output 2 O D7 obs_irq1 IRQ External Observation Output 1 O D9 obs_irq2 IRQ External Observation Output 2 O D6 ADVANCE INFORMATION obs0 4.3.26.6 Power Supplies NOTE For more information, see Power, Reset, and Clock Management / PRCM Subsystem Environment / External Voltage Inputs section of the device TRM. 118 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SIGNAL NAME vdd vpp(2) vss vdd_dspeve DESCRIPTION TYPE BALL Core voltage domain supply PWR J15, J9, K14, N11, N15, N17, P10, P12, P14, P21, R11, R13, R9, T10, T12, T14, U11, U17, U9, V16, V20, W19, Y18, Y20 eFuse power supply PWR G14 Ground GND A1, A2, A28, AA10, AA12, AA16, AA18, AA20, AA22, AA8, AB11, AB13, AB17, AB9, AC12, AC15, AD10, AD13, AD16, AD19, AE11, AE14, AE17, AF12, AF15, AF18, AF9, AG1, AG10, AG13, AG16, AG28, AG4, AG7, AH1, AH11, AH14, AH17, AH2, AH27, AH28, AH5, AH8, B1, G12, G16, G18, G20, G22, G8, H13, H15, H17, H19, H21, H23, H7, H9, J10, J12, J14, J18, J20, J22, J8, K11, K13, K15, K17, K19, K21, K23, K7, K9, L10, L12, L14, L16, L18, L20, L22, L8, M11, M13, M15, M17, M19, M21, M23, M7, M9, N10, N12, N14, N16, N18, N20, N22, N8, P11, P13, P15, P17, P19, P7, P9, R10, R12, R16, R18, R22, R8, T11, T13, T15, T17, T19, T21, T23, T7, T9, U10, U12, U14, U16, U18, U20, U22, U8, V11, V13, V15, V17, V19, V21, V23, V7, V9, W10, W12, W14, W16, W18, W20, W22, W8, Y11, Y13, Y15, Y17, Y19, Y21, Y23, Y7, Y9 DSP-EVE voltage domain supply PWR K10, K12, L11, L13, L9, M10, M12, M14 vdd_iva IVA voltage domain supply PWR T18, U19, V18 vdd_gpu GPU voltage domain supply PWR V10, V12, V14, W11, W13, W9 vdd_mpu MPU voltage domain supply PWR K16, K18, K20, L15, L17, L19, M16, M18, M20 DPLL_USB and HS USB1 1.8V analog power supply PWR Y10 CSI Interface Power Supply PWR W17 HS USB2 1.8V analog power supply PWR AA9 HS USB1 3.3V analog power supply. If USB1 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb1_dm/usb1_dp pins are left unconnected - The USB1 PHY is kept powered down PWR AD11 vdda_usb1 vdda_csi vdda_usb2 vdda33v_usb1 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 119 ADVANCE INFORMATION Table 4-32. Power Supply Signal Descriptions DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-32. Power Supply Signal Descriptions (continued) SIGNAL NAME DESCRIPTION TYPE BALL vdda33v_usb2 HS USB2 3.3V analog power supply. If USB2 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb2_dm/usb2_dp pins are left unconnected - The USB2 PHY is kept powered down PWR AB10 vdda_abe_per DPLL_ABE, DPLL_PER, and PER HSDIVIDER analog power supply PWR N9, P16 DPLL_DDR and DDR HSDIVIDER analog power supply PWR N19 DPLL_DEBUG analog power supply PWR N13 DPLL_DSP and DPLL_EVE analog power supply PWR J13 vdda_ddr vdda_debug vdda_dsp_eve vdda_gmac_core DPLL_CORE and CORE HSDIVIDER analog power supply PWR R15 vdda_gpu DPLL_GPU analog power supply PWR W15 vdda_hdmi PLL_HDMI and HDMI analog power supply PWR AA17 vdda_iva DPLL_IVA analog power supply PWR P20 vdda_pcie DPLL_PCIe_REF and PCIe analog power supply PWR Y12 vdda_pcie0 PCIe ch0 RX/TX analog power supply PWR Y14 vdda_pcie1 PCIe ch1 RX/TX analog power supply PWR AB12 ADVANCE INFORMATION vdda_sata DPLL_SATA and SATA RX/TX analog power supply PWR AA13 vdda_usb3 DPLL_USB_OTG_SS and USB3.0 RX/TX analog power supply PWR AA11 vdda_video DPLL_VIDEO1 and DPLL_VIDEO2 analog power supply PWR R14 vdds_mlbp MLBP IO power supply PWR R7, T8 vdda_mpu DPLL_MPU analog power supply PWR P18 vdda_osc HFOSC analog power supply PWR AA15 vssa_osc0 OSC0 analog ground GND AB15 vssa_osc1 OSC1 analog ground GND AC18 1.8V power supply PWR AB8, H14, H20, M8, T20 vdds18v_ddr1 DDR1 bias power supply PWR AA19, U21 vdds18v_ddr2 DDR2 bias power supply PWR H22, R21 vdds_ddr2 DDR2 power supply (1.8V for DDR2 mode / 1.5V for DDR3 mode / 1.35V DDR3L mode) PWR J23, K22, L21, L23, N21, N23, P22 vdds_ddr1 DDR1 power supply (1.8V for DDR2 mode / 1.5V for DDR3 mode / 1.35V DDR3L mode) PWR AA21, AA23, T22, U23, V22, W21, W23, Y22 vddshv5 Dual Voltage (1.8V or 3.3V) power supply for the INTC Power Group pins PWR vddshv1 Dual Voltage (1.8V or 3.3V) power supply for the VIN2 Power Group pins PWR vddshv10 Dual Voltage (1.8V or 3.3V) power supply for the GPMC Power Group pins PWR vddshv11 Dual Voltage (1.8V or 3.3V) power supply for the MMC2 Power Group pins PWR vddshv2 Dual Voltage (1.8V or 3.3V) power supply for the VOUT Power Group pins PWR vddshv3 Dual Voltage (1.8V or 3.3V) power supply for the GENERAL Power Group pins PWR vddshv4 Dual Voltage (1.8V or 3.3V) power supply for the MMC4 Power Group pins PWR vddshv6 Dual Voltage (1.8V or 3.3V) power supply for the VIN1 Power Group pins PWR vddshv7 Dual Voltage (1.8V or 3.3V) power supply for the WIFI Power Group pins PWR vddshv8 Dual Voltage (1.8V or 3.3V) power supply for the MMC1 Power Group pins PWR vdds18v 120 Terminal Configuration and Functions AA14 G7, G9 J7, K8, L7 H8 G11, G13, H12 G15, G17, G19, H16, H18 G21 AA7, W7, Y8 V8 U7 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-32. Power Supply Signal Descriptions (continued) DESCRIPTION TYPE Dual Voltage (1.8V or 3.3V) power supply for the RGMII Power Group pins PWR ddr1_vref0 DDR1 – ADDR/CMD - vref supply PWR AB22 ddr2_vref0 DDR2 – CMD - vref supply PWR M22 vddshv9 (1) cap_vbbldo_dspeve BALL N7, P8 EVE-DSP Back bias supply CAP J11 cap_vbbldo_gpu(1) MM (SGX) Back bias supply CAP U13 cap_vbbldo_iva(1) IVA Back bias supply CAP R19 cap_vbbldo_mpu(1) MPU back bias supply CAP J19 (1) cap_vddram_core1 SRAM array supply for core memories CAP H11 cap_vddram_core2(1) SRAM array supply for core memories CAP J17 cap_vddram_core3(1) SRAM array supply for core memories CAP U15 cap_vddram_core4(1) SRAM array supply for core memories CAP R17 cap_vddram_core5(1) SRAM array supply for core memories CAP Y16 cap_vddram_dspeve1(1) SRAM array supply for EVE-DSP memories CAP G10 cap_vddram_dspeve2(1) SRAM array supply for EVE-DSP memories CAP H10 cap_vddram_gpu(1) SRAM array supply for SGX (MM) memories CAP T16 cap_vddram_iva(1) SRAM array supply for IVA memories CAP R20 cap_vddram_mpu1(1) SRAM array supply for Zonda (MM) memories CAP J16 (1) SRAM array supply for Zonda (MM) memories CAP J21 cap_vddram_mpu2 ADVANCE INFORMATION SIGNAL NAME (1) This pin must always be connected via a 1-uF capacitor to vss. (2) This signal is valid only for High-Security devices. For more details, see Section 5.8 VPP Specification for One-Time Programmable (OTP) eFUSEs. For General Purpose devices do not connect any signal, test point, or board trace to this signal. Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 121 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 4.4 www.ti.com Pin Multiplexing Table 4-33 describes the device pin multiplexing (no characteristics are provided in this table). NOTE Table 4-33, Pin Multiplexing doesn't take into account subsystem multiplexing signals. Subsystem multiplexing signals are described in Section 4.3, Signal Descriptions. NOTE ADVANCE INFORMATION For more information, see the Control Module / Control Module Functional Description / PAD Functional Multiplexing and Configuration section of the Device TRM. NOTE Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the proper software configuration. (Hi-Z mode is not an input signal.) NOTE In some cases Table 4-33 may present more than one signal name per muxmode for the same ball. First signal in the list is the dominant function as selected via CTRL_CORE_PAD_* register. All other signals are virtual functions that present alternate multiplexing options. This virtual functions are controlled via CTRL_CORE_ALT_SELECT_MUX or CTRL_CORE_VIP_MUX_SELECT register. For more information on how to use this options, please refer to the Device TRM, Chapter Control Module, Section Pad Configuration Registers. NOTE When a pad is set into a pin multiplexing mode which is not defined, that pad’s behavior is undefined. This should be avoided. CAUTION The I/O timings provided in Section 5.10, Timing Requirements and Switching Characteristics are valid only if signals within a single IOSET are used. The IOSETs are defined in the corresponding tables. 122 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0* P25 ddr2_a0 AD26 ddr1_d12 AE15 csi2_0_dx3 AH24 ddr1_nck D21 nmin AG15 hdmi1_data0x AF24 ddr1_a9 N26 ddr2_a6 U25 ddr1_ecc_d0 F27 ddr2_dqs1 V25 ddr1_ecc_d2 AB16 xi_osc0 G26 ddr2_d13 T25 ddr2_casn M27 ddr2_a9 AB25 ddr1_d17 AG19 ddr1_casn AF21 ddr1_a13 E27 ddr2_dqm1 AG5 sata1_rxp0 H26 ddr2_d23 F24 ddr2_d19 Y27 ddr1_dqm3 AC24 ddr1_dqm1 C28 ddr2_d0 J24 ddr2_d29 R26 ddr2_rasn G27 ddr2_d11 AF28 ddr1_d2 AD18 csi2_0_dy0 B27 ddr2_d5 W27 ddr1_dqsn3 AH16 hdmi1_data0y D28 ddr2_dqs0 D25 ddr2_d3 AE19 csi2_0_dx4 K25 ddr2_odt0 AA24 ddr1_d21 1 2* 3 4 5 6 7 8 9 10 14* 15 ADVANCE INFORMATION ADDRESS Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 123 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS ADVANCE INFORMATION 124 REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0* L24 ddr2_ba0 AG11 pcie_rxn0 AG21 ddr1_a12 AE28 ddr1_d10 U28 ddr1_dqsn_ec c AF19 csi2_0_dx2 AE25 ddr1_d13 AG25 ddr1_dqsn0 AC14 csi2_1_dy0 AB26 ddr1_dqm2 AC17 csi2_1_dy2 AF14 ljcb_clkn AA27 ddr1_d20 AF25 ddr1_d4 AF23 ddr1_rst AH6 sata1_rxn0 AG18 hdmi1_data2x AF20 csi2_0_dy2 V26 ddr1_ecc_d3 C25 porz G25 ddr2_d16 AH13 pcie_txp0 AG9 pcie_txn1 AH23 ddr1_cke R25 ddr2_cke Y24 ddr1_d27 AH15 hdmi1_clocky AD20 ddr1_a1 AA25 ddr1_d16 T26 ddr1_ecc_d6 N25 ddr2_rst AA1 mlbp_dat_p J25 ddr2_d26 AD14 csi2_1_dy1 AC25 ddr1_d22 AB23 ddr1_d25 P28 ddr2_a2 AB24 ddr1_d8 1 2* 3 4 5 6 Terminal Configuration and Functions 7 8 9 10 14* 15 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* AE16 csi2_0_dy3 AH19 hdmi1_data2y AG2 usb_txn0 M26 ddr2_csn0 AB27 ddr1_dqs2 AG14 hdmi1_clockx Y28 ddr1_d31 AH10 pcie_txp1 G28 ddr2_d14 AG24 ddr1_ck AE24 ddr1_a11 AE10 usb1_dm AC21 ddr1_ba1 K28 ddr2_d27 AB1 mlbp_clk_p L28 ddr2_dqs3 M24 ddr2_ba2 AD17 csi2_0_dx0 AH9 pcie_rxp1 AC26 ddr1_d15 AF16 csi2_0_dx1 D27 ddr2_dqsn0 W26 ddr1_d24 AA28 ddr1_d19 H28 ddr2_d20 AD23 ddr1_csn0 N24 ddr2_a14 E26 ddr2_d10 AE27 ddr1_d1 V24 ddr1_d26 AF27 ddr1_d6 B26 ddr2_d6 C26 ddr2_d7 AB14 xo_osc0 T28 ddr1_ecc_d5 H24 ddr2_d28 AG20 ddr1_a15 AG27 ddr1_d5 R23 ddr2_a15 1 2* 3 4 5 6 7 8 9 10 14* 15 ADVANCE INFORMATION ADDRESS BALL NUMBER Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 125 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS ADVANCE INFORMATION 126 REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* U27 ddr1_dqs_ecc AF22 ddr1_odt0 AA2 mlbp_dat_n AD24 ddr1_a6 AC22 ddr1_a7 AH21 ddr1_ba2 AE21 ddr1_a2 J28 ddr2_dqsn2 AH12 pcie_rxp0 AC27 ddr1_dqs1 AE23 ddr1_a4 W28 ddr1_dqs3 D26 ddr2_d4 T27 ddr1_dqm_ec c AG22 ddr1_wen AD27 ddr1_d9 AH26 ddr1_d3 AD21 ddr1_a10 N28 ddr2_a8 Y25 ddr1_d29 AH18 hdmi1_data1y AH22 ddr1_a5 J26 ddr2_dqm3 AE12 usb2_dp AB2 mlbp_clk_n AG23 ddr1_a8 AG6 sata1_txn0 AG8 pcie_rxn1 A26 ddr2_d1 H27 ddr2_d22 AB18 xo_osc1 AG17 hdmi1_data1x AF26 ddr1_d7 H25 ddr2_d21 C27 ddr2_dqm0 M25 ddr2_a7 AC1 mlbp_sig_p L27 ddr2_dqsn3 1 2* 3 4 5 6 Terminal Configuration and Functions 7 8 9 10 14* 15 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* V27 ddr1_ecc_d4 AF17 csi2_0_dy1 AE26 ddr1_d0 G24 ddr2_d17 K27 ddr2_d24 AC19 xi_osc1 L26 ddr2_d31 AB28 ddr1_dqsn2 E25 ddr2_d9 F23 ddr2_d18 M22 ddr2_vref0 K24 ddr2_d30 U26 ddr1_ecc_d1 Y26 ddr1_d23 W25 ddr1_d28 P24 ddr2_a4 AH3 usb_txp0 AD22 ddr1_a3 AD28 ddr1_d11 U24 ddr2_ba1 AE18 csi2_0_dy4 F26 ddr2_d8 AE20 ddr1_ba0 W24 ddr1_d30 E28 ddr2_d12 F25 ddr2_d15 AB22 ddr1_vref0 T24 ddr2_wen AF11 usb1_dp R24 ddr2_a13 AD15 csi2_1_dx1 AH7 sata1_txp0 AE22 ddr1_a0 R27 ddr2_nck AC13 csi2_1_dx0 F28 ddr2_dqsn1 M28 ddr2_a12 P26 ddr2_a1 AC2 mlbp_sig_n 1 2* 3 4 5 6 7 8 9 10 14* 15 ADVANCE INFORMATION ADDRESS BALL NUMBER Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 127 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* ADVANCE INFORMATION AH20 ddr1_rasn J27 ddr2_dqs2 AE13 ljcb_clkp E24 ddr2_d2 AH4 usb_rxp0 K26 ddr2_d25 G23 ddr2_dqm2 AF13 usb2_dm N27 ddr2_a11 P23 ddr2_a5 AG26 ddr1_dqm0 AH25 ddr1_dqs0 AG12 pcie_txn0 AC28 ddr1_dqsn1 AG3 usb_rxn0 V28 ddr1_ecc_d7 P27 ddr2_a3 AC23 ddr1_a14 L25 ddr2_a10 R28 ddr2_ck AC16 csi2_1_dx2 AA26 ddr1_d18 AD25 ddr1_d14 1 2* 3 4 5 6 7 8 9 10 14* 15 0x1400 CTRL_CORE_PAD_ GPMC_AD0 N5 gpmc_ad0 vin3a_d0 vout3_d0 gpio1_6 sysboot0 0x1404 CTRL_CORE_PAD_ GPMC_AD1 M2 gpmc_ad1 vin3a_d1 vout3_d1 gpio1_7 sysboot1 0x1408 CTRL_CORE_PAD_ GPMC_AD2 L5 gpmc_ad2 vin3a_d2 vout3_d2 gpio1_8 sysboot2 0x140C CTRL_CORE_PAD_ GPMC_AD3 M1 gpmc_ad3 vin3a_d3 vout3_d3 gpio1_9 sysboot3 0x1410 CTRL_CORE_PAD_ GPMC_AD4 K6 gpmc_ad4 vin3a_d4 vout3_d4 gpio1_10 sysboot4 0x1414 CTRL_CORE_PAD_ GPMC_AD5 L4 gpmc_ad5 vin3a_d5 vout3_d5 gpio1_11 sysboot5 0x1418 CTRL_CORE_PAD_ GPMC_AD6 L3 gpmc_ad6 vin3a_d6 vout3_d6 gpio1_12 sysboot6 0x141C CTRL_CORE_PAD_ GPMC_AD7 L2 gpmc_ad7 vin3a_d7 vout3_d7 gpio1_13 sysboot7 0x1420 CTRL_CORE_PAD_ GPMC_AD8 L1 gpmc_ad8 vin3a_d8 vout3_d8 gpio7_18 sysboot8 128 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 4 14* 15 0x1424 CTRL_CORE_PAD_ GPMC_AD9 K1 gpmc_ad9 vin3a_d9 vout3_d9 5 gpio7_19 sysboot9 0x1428 CTRL_CORE_PAD_ GPMC_AD10 J1 gpmc_ad10 vin3a_d10 vout3_d10 gpio7_28 sysboot10 0x142C CTRL_CORE_PAD_ GPMC_AD11 J2 gpmc_ad11 vin3a_d11 vout3_d11 gpio7_29 sysboot11 0x1430 CTRL_CORE_PAD_ GPMC_AD12 H1 gpmc_ad12 vin3a_d12 vout3_d12 gpio1_18 sysboot12 0x1434 CTRL_CORE_PAD_ GPMC_AD13 K2 gpmc_ad13 vin3a_d13 vout3_d13 gpio1_19 sysboot13 0x1438 CTRL_CORE_PAD_ GPMC_AD14 H2 gpmc_ad14 vin3a_d14 vout3_d14 gpio1_20 sysboot14 0x143C CTRL_CORE_PAD_ GPMC_AD15 K3 gpmc_ad15 vin3a_d15 vout3_d15 gpio1_21 sysboot15 0x1440 CTRL_CORE_PAD_ GPMC_A0 P6 gpmc_a0 vin3a_d16 vout3_d16 vin4a_d0 vin4b_d0 i2c4_scl uart5_rxd gpio7_3 gpmc_a26 gpmc_a16 Driver off 0x1444 CTRL_CORE_PAD_ GPMC_A1 J6 gpmc_a1 vin3a_d17 vout3_d17 vin4a_d1 vin4b_d1 i2c4_sda uart5_txd gpio7_4 Driver off 0x1448 CTRL_CORE_PAD_ GPMC_A2 R4 gpmc_a2 vin3a_d18 vout3_d18 vin4a_d2 vin4b_d2 uart7_rxd uart5_ctsn gpio7_5 Driver off 0x144C CTRL_CORE_PAD_ GPMC_A3 R5 gpmc_a3 qspi1_cs2 vin3a_d19 vout3_d19 vin4a_d3 vin4b_d3 uart7_txd uart5_rtsn gpio7_6 Driver off 0x1450 CTRL_CORE_PAD_ GPMC_A4 M6 gpmc_a4 qspi1_cs3 vin3a_d20 vout3_d20 vin4a_d4 vin4b_d4 i2c5_scl uart6_rxd gpio1_26 Driver off 0x1454 CTRL_CORE_PAD_ GPMC_A5 K4 gpmc_a5 vin3a_d21 vout3_d21 vin4a_d5 vin4b_d5 i2c5_sda uart6_txd gpio1_27 Driver off 0x1458 CTRL_CORE_PAD_ GPMC_A6 P5 gpmc_a6 vin3a_d22 vout3_d22 vin4a_d6 vin4b_d6 uart8_rxd uart6_ctsn gpio1_28 Driver off 0x145C CTRL_CORE_PAD_ GPMC_A7 N6 gpmc_a7 vin3a_d23 vout3_d23 vin4a_d7 vin4b_d7 uart8_txd uart6_rtsn gpio1_29 Driver off 0x1460 CTRL_CORE_PAD_ GPMC_A8 N4 gpmc_a8 vin3a_hsync0 vout3_hsync vin4b_hsync1 timer12 spi4_sclk gpio1_30 Driver off 0x1464 CTRL_CORE_PAD_ GPMC_A9 R3 gpmc_a9 vin3a_vsync0 vout3_vsync vin4b_vsync1 timer11 spi4_d1 gpio1_31 Driver off 0x1468 CTRL_CORE_PAD_ GPMC_A10 J5 gpmc_a10 vin3a_de0 vout3_de vin4b_clk1 timer10 spi4_d0 gpio2_0 Driver off 0x146C CTRL_CORE_PAD_ GPMC_A11 K5 gpmc_a11 vin3a_fld0 vout3_fld vin4b_de1 timer9 spi4_cs0 gpio2_1 Driver off 0x1470 CTRL_CORE_PAD_ GPMC_A12 P4 gpmc_a12 vin4b_fld1 timer8 spi4_cs1 dma_evt1 gpio2_2 Driver off 0x1474 CTRL_CORE_PAD_ GPMC_A13 R2 gpmc_a13 qspi1_rtclk vin4a_hsync0 timer7 spi4_cs2 dma_evt2 gpio2_3 Driver off 0x1478 CTRL_CORE_PAD_ GPMC_A14 R6 gpmc_a14 qspi1_d3 vin4a_vsync0 timer6 spi4_cs3 gpio2_4 Driver off 0x147C CTRL_CORE_PAD_ GPMC_A15 T2 gpmc_a15 qspi1_d2 vin4a_d8 timer5 gpio2_5 Driver off vin4a_fld0 vin4a_clk0 gpmc_a0 6 7 8 9 10 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 129 ADVANCE INFORMATION ADDRESS BALL NUMBER DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 4 5 6 7 8 9 10 14* 15 ADVANCE INFORMATION 0x1480 CTRL_CORE_PAD_ GPMC_A16 U1 gpmc_a16 qspi1_d0 vin4a_d9 gpio2_6 Driver off 0x1484 CTRL_CORE_PAD_ GPMC_A17 P3 gpmc_a17 qspi1_d1 vin4a_d10 gpio2_7 Driver off 0x1488 CTRL_CORE_PAD_ GPMC_A18 R1 gpmc_a18 qspi1_sclk vin4a_d11 gpio2_8 Driver off 0x148C CTRL_CORE_PAD_ GPMC_A19 H6 gpmc_a19 mmc2_dat4 gpmc_a13 vin4a_d12 vin3b_d0 gpio2_9 Driver off 0x1490 CTRL_CORE_PAD_ GPMC_A20 G6 gpmc_a20 mmc2_dat5 gpmc_a14 vin4a_d13 vin3b_d1 gpio2_10 Driver off 0x1494 CTRL_CORE_PAD_ GPMC_A21 J4 gpmc_a21 mmc2_dat6 gpmc_a15 vin4a_d14 vin3b_d2 gpio2_11 Driver off 0x1498 CTRL_CORE_PAD_ GPMC_A22 F5 gpmc_a22 mmc2_dat7 gpmc_a16 vin4a_d15 vin3b_d3 gpio2_12 Driver off 0x149C CTRL_CORE_PAD_ GPMC_A23 G5 gpmc_a23 mmc2_clk gpmc_a17 vin4a_fld0 vin3b_d4 gpio2_13 Driver off 0x14A0 CTRL_CORE_PAD_ GPMC_A24 J3 gpmc_a24 mmc2_dat0 gpmc_a18 vin3b_d5 gpio2_14 Driver off 0x14A4 CTRL_CORE_PAD_ GPMC_A25 H4 gpmc_a25 mmc2_dat1 gpmc_a19 vin3b_d6 gpio2_15 Driver off 0x14A8 CTRL_CORE_PAD_ GPMC_A26 H3 gpmc_a26 mmc2_dat2 gpmc_a20 vin3b_d7 gpio2_16 Driver off 0x14AC CTRL_CORE_PAD_ GPMC_A27 H5 gpmc_a27 mmc2_dat3 gpmc_a21 vin3b_hsync1 gpio2_17 Driver off 0x14B0 CTRL_CORE_PAD_ GPMC_CS1 G4 gpmc_cs1 mmc2_cmd gpmc_a22 vin3b_vsync1 gpio2_18 Driver off 0x14B4 CTRL_CORE_PAD_ GPMC_CS0 T1 gpmc_cs0 gpio2_19 Driver off 0x14B8 CTRL_CORE_PAD_ GPMC_CS2 P2 gpmc_cs2 qspi1_cs0 gpio2_20 gpmc_a23 gpmc_a13 Driver off 0x14BC CTRL_CORE_PAD_ GPMC_CS3 P1 gpmc_cs3 qspi1_cs1 vin3a_clk0 vout3_clk gpio2_21 gpmc_a24 gpmc_a14 Driver off 0x14C0 CTRL_CORE_PAD_ GPMC_CLK L6 gpmc_clk gpmc_cs7 clkout1 gpmc_wait1 vin4a_hsync0 vin4a_de0 vin3b_clk1 timer4 i2c3_scl dma_evt1 gpio2_22 gpmc_a20 Driver off 0x14C4 CTRL_CORE_PAD_ GPMC_ADVN_ALE N1 gpmc_advn_al gpmc_cs6 e clkout2 gpmc_wait1 vin4a_vsync0 gpmc_a2 gpmc_a23 timer3 i2c3_sda dma_evt2 gpio2_23 gpmc_a19 Driver off 0x14C8 CTRL_CORE_PAD_ GPMC_OEN_REN M5 gpmc_oen_re n gpio2_24 Driver off 0x14CC CTRL_CORE_PAD_ GPMC_WEN M3 gpmc_wen gpio2_25 Driver off 0x14D0 CTRL_CORE_PAD_ GPMC_BEN0 N3 gpmc_ben0 gpmc_cs4 vin1b_hsync1 0x14D4 CTRL_CORE_PAD_ GPMC_BEN1 M4 gpmc_ben1 gpmc_cs5 vin1b_de1 130 vin4a_de0 gpmc_a1 vin3b_clk1 gpmc_a3 vin3b_de1 timer2 dma_evt3 gpio2_26 gpmc_a21 Driver off vin3b_fld1 timer1 dma_evt4 gpio2_27 gpmc_a22 Driver off Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) N2 0* 1 0x14D8 CTRL_CORE_PAD_ GPMC_WAIT0 0x14DC CTRL_CORE_PAD_V AD8 IN1A_CLK0 vin1a_clk0 0x14E0 CTRL_CORE_PAD_V AC8 IN1B_CLK1 vin1b_clk1 0x14E4 CTRL_CORE_PAD_V AC9 IN1A_DE0 vin1a_de0 vin1b_hsync1 0x14E8 CTRL_CORE_PAD_V AD9 IN1A_FLD0 vin1a_fld0 vin1b_vsync1 0x14EC CTRL_CORE_PAD_V AC10 IN1A_HSYNC0 0x14F0 2* 3 4 5 6 7 8 9 10 gpmc_wait0 vout3_d16 vout3_fld vin3a_clk0 vout3_d17 14* 15 gpio2_28 gpmc_a25 gpmc_a15 Driver off gpio2_30 Driver off gpio2_31 Driver off vout3_de uart7_rxd timer16 spi3_sclk kbd_row0 eQEP1A_in gpio3_0 Driver off vout3_clk uart7_txd timer15 spi3_d1 kbd_row1 eQEP1B_in gpio3_1 Driver off vin1a_hsync0 vin1b_fld1 vout3_hsync uart7_ctsn timer14 spi3_d0 eQEP1_index gpio3_2 Driver off CTRL_CORE_PAD_V AD7 IN1A_VSYNC0 vin1a_vsync0 vin1b_de1 vout3_vsync uart7_rtsn timer13 spi3_cs0 eQEP1_strob gpio3_3 e Driver off 0x14F4 CTRL_CORE_PAD_V AE9 IN1A_D0 vin1a_d0 vout3_d7 vout3_d23 uart8_rxd ehrpwm1A gpio3_4 Driver off 0x14F8 CTRL_CORE_PAD_V AF10 IN1A_D1 vin1a_d1 vout3_d6 vout3_d22 uart8_txd ehrpwm1B gpio3_5 Driver off 0x14FC CTRL_CORE_PAD_V AE7 IN1A_D2 vin1a_d2 vout3_d5 vout3_d21 uart8_ctsn ehrpwm1_trip gpio3_6 zone_input Driver off 0x1500 CTRL_CORE_PAD_V AE8 IN1A_D3 vin1a_d3 vout3_d4 vout3_d20 uart8_rtsn eCAP1_in_P WM1_out gpio3_7 Driver off 0x1504 CTRL_CORE_PAD_V AE6 IN1A_D4 vin1a_d4 vout3_d3 vout3_d19 ehrpwm1_syn gpio3_8 ci Driver off 0x1508 CTRL_CORE_PAD_V AF7 IN1A_D5 vin1a_d5 vout3_d2 vout3_d18 ehrpwm1_syn gpio3_9 co Driver off 0x150C CTRL_CORE_PAD_V AF8 IN1A_D6 vin1a_d6 vout3_d1 vout3_d17 eQEP2A_in gpio3_10 Driver off 0x1510 CTRL_CORE_PAD_V AF6 IN1A_D7 vin1a_d7 vout3_d0 vout3_d16 eQEP2B_in gpio3_11 Driver off 0x1514 CTRL_CORE_PAD_V AF4 IN1A_D8 vin1a_d8 vin1b_d7 vout3_d15 kbd_row2 eQEP2_index gpio3_12 Driver off 0x1518 CTRL_CORE_PAD_V AF2 IN1A_D9 vin1a_d9 vin1b_d6 vout3_d14 kbd_row3 eQEP2_strob gpio3_13 e Driver off 0x151C CTRL_CORE_PAD_V AF3 IN1A_D10 vin1a_d10 vin1b_d5 vout3_d13 kbd_row4 gpio3_14 Driver off 0x1520 CTRL_CORE_PAD_V AF5 IN1A_D11 vin1a_d11 vin1b_d4 vout3_d12 gpmc_a23 kbd_row5 gpio3_15 Driver off 0x1524 CTRL_CORE_PAD_V AE5 IN1A_D12 vin1a_d12 vin1b_d3 usb3_ulpi_d7 vout3_d11 gpmc_a24 kbd_row6 gpio3_16 Driver off 0x1528 CTRL_CORE_PAD_V AF1 IN1A_D13 vin1a_d13 vin1b_d2 usb3_ulpi_d6 vout3_d10 gpmc_a25 kbd_row7 gpio3_17 Driver off 0x152C CTRL_CORE_PAD_V AD6 IN1A_D14 vin1a_d14 vin1b_d1 usb3_ulpi_d5 vout3_d9 gpmc_a26 kbd_row8 gpio3_18 Driver off 0x1530 CTRL_CORE_PAD_V AE3 IN1A_D15 vin1a_d15 vin1b_d0 usb3_ulpi_d4 vout3_d8 gpmc_a27 kbd_col0 gpio3_19 Driver off Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION ADDRESS BALL NUMBER 131 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 ADVANCE INFORMATION 14* 15 0x1534 CTRL_CORE_PAD_V AE4 IN1A_D16 vin1a_d16 vin1b_d7 usb3_ulpi_d3 vout3_d7 vin3a_d0 kbd_col1 gpio3_20 Driver off 0x1538 CTRL_CORE_PAD_V AE1 IN1A_D17 vin1a_d17 vin1b_d6 usb3_ulpi_d2 vout3_d6 vin3a_d1 kbd_col2 gpio3_21 Driver off 0x153C CTRL_CORE_PAD_V AD5 IN1A_D18 vin1a_d18 vin1b_d5 usb3_ulpi_d1 vout3_d5 vin3a_d2 kbd_col3 gpio3_22 Driver off 0x1540 CTRL_CORE_PAD_V AD3 IN1A_D19 vin1a_d19 vin1b_d4 usb3_ulpi_d0 vout3_d4 vin3a_d3 kbd_col4 gpio3_23 Driver off 0x1544 CTRL_CORE_PAD_V AD4 IN1A_D20 vin1a_d20 vin1b_d3 usb3_ulpi_nxt vout3_d3 vin3a_d4 kbd_col5 gpio3_24 Driver off 0x1548 CTRL_CORE_PAD_V AE2 IN1A_D21 vin1a_d21 vin1b_d2 usb3_ulpi_dir vout3_d2 vin3a_d5 kbd_col6 gpio3_25 Driver off 0x154C CTRL_CORE_PAD_V AD1 IN1A_D22 vin1a_d22 vin1b_d1 usb3_ulpi_stp vout3_d1 vin3a_d6 kbd_col7 gpio3_26 Driver off 0x1550 CTRL_CORE_PAD_V AD2 IN1A_D23 vin1a_d23 vin1b_d0 usb3_ulpi_clk vout3_d0 vin3a_d7 kbd_col8 gpio3_27 Driver off 0x1554 CTRL_CORE_PAD_V F1 IN2A_CLK0 vin2a_clk0 0x1558 CTRL_CORE_PAD_V G2 IN2A_DE0 vin2a_de0 0x155C CTRL_CORE_PAD_V D5 IN2A_FLD0 vin2a_fld0 0x1560 CTRL_CORE_PAD_V G1 IN2A_HSYNC0 vin2a_hsync0 vin2b_hsync1 vout2_hsync emu8 uart9_rxd spi4_sclk 0x1564 CTRL_CORE_PAD_V E5 IN2A_VSYNC0 vin2a_vsync0 vin2b_vsync1 vout2_vsync emu9 uart9_txd 0x1568 CTRL_CORE_PAD_V F2 IN2A_D0 vin2a_d0 vout2_d23 emu10 0x156C CTRL_CORE_PAD_V E3 IN2A_D1 vin2a_d1 vout2_d22 emu11 0x1570 CTRL_CORE_PAD_V E1 IN2A_D2 vin2a_d2 vout2_d21 0x1574 CTRL_CORE_PAD_V E2 IN2A_D3 vin2a_d3 0x1578 CTRL_CORE_PAD_V D2 IN2A_D4 0x157C vin2a_fld0 2* vin2b_fld1 vin2b_de1 4 5 6 7 8 9 10 vout2_fld emu5 kbd_row0 eQEP1A_in gpio3_28 gpmc_a27 gpmc_a17 Driver off vout2_de emu6 kbd_row1 eQEP1B_in gpio3_29 Driver off vout2_clk emu7 eQEP1_index gpio3_30 gpmc_a27 gpmc_a18 Driver off kbd_row2 eQEP1_strob gpio3_31 e gpmc_a27 Driver off spi4_d1 kbd_row3 ehrpwm1A gpio4_0 Driver off uart9_ctsn spi4_d0 kbd_row4 ehrpwm1B gpio4_1 Driver off uart9_rtsn spi4_cs0 kbd_row5 ehrpwm1_trip gpio4_2 zone_input Driver off emu12 uart10_rxd kbd_row6 eCAP1_in_P WM1_out gpio4_3 Driver off vout2_d20 emu13 uart10_txd kbd_col0 ehrpwm1_syn gpio4_4 ci Driver off vin2a_d4 vout2_d19 emu14 uart10_ctsn kbd_col1 ehrpwm1_syn gpio4_5 co Driver off CTRL_CORE_PAD_V F3 IN2A_D5 vin2a_d5 vout2_d18 emu15 uart10_rtsn kbd_col2 eQEP2A_in gpio4_6 Driver off 0x1580 CTRL_CORE_PAD_V D1 IN2A_D6 vin2a_d6 vout2_d17 emu16 mii1_rxd1 kbd_col3 eQEP2B_in gpio4_7 Driver off 0x1584 CTRL_CORE_PAD_V E4 IN2A_D7 vin2a_d7 vout2_d16 emu17 mii1_rxd2 kbd_col4 eQEP2_index gpio4_8 Driver off 0x1588 CTRL_CORE_PAD_V G3 IN2A_D8 vin2a_d8 vout2_d15 emu18 mii1_rxd3 kbd_col5 eQEP2_strob gpio4_9 e gpmc_a26 Driver off 0x158C CTRL_CORE_PAD_V C5 IN2A_D9 vin2a_d9 vout2_d14 emu19 mii1_rxd0 kbd_col6 ehrpwm2A Driver off 132 vin2b_clk1 3 Terminal Configuration and Functions gpio4_10 gpmc_a25 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 4 5 6 7 8 9 10 14* 15 0x1590 CTRL_CORE_PAD_V D3 IN2A_D10 vin2a_d10 mdio_mclk vout2_d13 kbd_col7 ehrpwm2B gpio4_11 gpmc_a24 Driver off 0x1594 CTRL_CORE_PAD_V F4 IN2A_D11 vin2a_d11 mdio_d vout2_d12 kbd_row7 ehrpwm2_trip gpio4_12 zone_input gpmc_a23 Driver off 0x1598 CTRL_CORE_PAD_V E6 IN2A_D12 vin2a_d12 rgmii1_txc vout2_d11 mii1_rxclk kbd_col8 eCAP2_in_P WM2_out gpio4_13 Driver off 0x159C CTRL_CORE_PAD_V C1 IN2A_D13 vin2a_d13 rgmii1_txctl vout2_d10 mii1_rxdv kbd_row8 eQEP3A_in gpio4_14 Driver off 0x15A0 CTRL_CORE_PAD_V C2 IN2A_D14 vin2a_d14 rgmii1_txd3 vout2_d9 mii1_txclk eQEP3B_in gpio4_15 Driver off 0x15A4 CTRL_CORE_PAD_V C3 IN2A_D15 vin2a_d15 rgmii1_txd2 vout2_d8 mii1_txd0 eQEP3_index gpio4_16 Driver off 0x15A8 CTRL_CORE_PAD_V B2 IN2A_D16 vin2a_d16 vin2b_d7 rgmii1_txd1 vout2_d7 vin3a_d8 mii1_txd1 eQEP3_strob gpio4_24 e Driver off 0x15AC CTRL_CORE_PAD_V B5 IN2A_D17 vin2a_d17 vin2b_d6 rgmii1_txd0 vout2_d6 vin3a_d9 mii1_txd2 ehrpwm3A gpio4_25 Driver off 0x15B0 CTRL_CORE_PAD_V D4 IN2A_D18 vin2a_d18 vin2b_d5 rgmii1_rxc vout2_d5 vin3a_d10 mii1_txd3 ehrpwm3B gpio4_26 Driver off 0x15B4 CTRL_CORE_PAD_V A3 IN2A_D19 vin2a_d19 vin2b_d4 rgmii1_rxctl vout2_d4 vin3a_d11 mii1_txer ehrpwm3_trip gpio4_27 zone_input Driver off 0x15B8 CTRL_CORE_PAD_V B3 IN2A_D20 vin2a_d20 vin2b_d3 rgmii1_rxd3 vout2_d3 vin3a_de0 vin3a_d12 mii1_rxer eCAP3_in_P WM3_out gpio4_28 Driver off 0x15BC CTRL_CORE_PAD_V B4 IN2A_D21 vin2a_d21 vin2b_d2 rgmii1_rxd2 vout2_d2 vin3a_fld0 vin3a_d13 mii1_col gpio4_29 Driver off 0x15C0 CTRL_CORE_PAD_V C4 IN2A_D22 vin2a_d22 vin2b_d1 rgmii1_rxd1 vout2_d1 vin3a_hsync0 vin3a_d14 mii1_crs gpio4_30 Driver off 0x15C4 CTRL_CORE_PAD_V A4 IN2A_D23 vin2a_d23 vin2b_d0 rgmii1_rxd0 vout2_d0 vin3a_vsync0 vin3a_d15 mii1_txen gpio4_31 Driver off 0x15C8 CTRL_CORE_PAD_V D11 OUT1_CLK vout1_clk vin4a_fld0 vin3a_fld0 spi3_cs0 gpio4_19 Driver off 0x15CC CTRL_CORE_PAD_V C10 OUT1_DE vout1_de vin4a_de0 vin3a_de0 spi3_d1 gpio4_20 Driver off 0x15D0 CTRL_CORE_PAD_V B10 OUT1_FLD vout1_fld vin4a_clk0 vin3a_clk0 spi3_cs1 gpio4_21 Driver off 0x15D4 CTRL_CORE_PAD_V A10 OUT1_HSYNC vout1_hsync vin4a_hsync0 vin3a_hsync0 spi3_d0 gpio4_22 Driver off 0x15D8 CTRL_CORE_PAD_V D10 OUT1_VSYNC vout1_vsync vin4a_vsync0 vin3a_vsync0 spi3_sclk gpio4_23 Driver off 0x15DC CTRL_CORE_PAD_V F9 OUT1_D0 vout1_d0 uart5_rxd vin4a_d16 vin3a_d16 spi3_cs2 gpio8_0 Driver off 0x15E0 CTRL_CORE_PAD_V E10 OUT1_D1 vout1_d1 uart5_txd vin4a_d17 vin3a_d17 gpio8_1 Driver off 0x15E4 CTRL_CORE_PAD_V D9 OUT1_D2 vout1_d2 emu2 vin4a_d18 vin3a_d18 obs0 obs16 obs_irq1 gpio8_2 Driver off 0x15E8 CTRL_CORE_PAD_V C6 OUT1_D3 vout1_d3 emu5 vin4a_d19 vin3a_d19 obs1 obs17 obs_dmarq1 gpio8_3 Driver off 0x15EC CTRL_CORE_PAD_V E9 OUT1_D4 vout1_d4 emu6 vin4a_d20 vin3a_d20 obs2 obs18 gpio8_4 Driver off Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION ADDRESS BALL NUMBER 133 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 4 5 6 7 8 9 10 14* 15 ADVANCE INFORMATION 0x15F0 CTRL_CORE_PAD_V F8 OUT1_D5 vout1_d5 emu7 vin4a_d21 vin3a_d21 obs3 obs19 gpio8_5 Driver off 0x15F4 CTRL_CORE_PAD_V F7 OUT1_D6 vout1_d6 emu8 vin4a_d22 vin3a_d22 obs4 obs20 gpio8_6 Driver off 0x15F8 CTRL_CORE_PAD_V E7 OUT1_D7 vout1_d7 emu9 vin4a_d23 vin3a_d23 gpio8_7 Driver off 0x15FC CTRL_CORE_PAD_V E8 OUT1_D8 vout1_d8 uart6_rxd vin4a_d8 vin3a_d8 gpio8_8 Driver off 0x1600 CTRL_CORE_PAD_V D8 OUT1_D9 vout1_d9 uart6_txd vin4a_d9 vin3a_d9 gpio8_9 Driver off 0x1604 CTRL_CORE_PAD_V D6 OUT1_D10 vout1_d10 emu3 vin4a_d10 vin3a_d10 obs5 obs21 obs_irq2 gpio8_10 Driver off 0x1608 CTRL_CORE_PAD_V D7 OUT1_D11 vout1_d11 emu10 vin4a_d11 vin3a_d11 obs6 obs22 obs_dmarq2 gpio8_11 Driver off 0x160C CTRL_CORE_PAD_V A5 OUT1_D12 vout1_d12 emu11 vin4a_d12 vin3a_d12 obs7 obs23 gpio8_12 Driver off 0x1610 CTRL_CORE_PAD_V B6 OUT1_D13 vout1_d13 emu12 vin4a_d13 vin3a_d13 obs8 obs24 gpio8_13 Driver off 0x1614 CTRL_CORE_PAD_V C8 OUT1_D14 vout1_d14 emu13 vin4a_d14 vin3a_d14 obs9 obs25 gpio8_14 Driver off 0x1618 CTRL_CORE_PAD_V C7 OUT1_D15 vout1_d15 emu14 vin4a_d15 vin3a_d15 obs10 obs26 gpio8_15 Driver off 0x161C CTRL_CORE_PAD_V B7 OUT1_D16 vout1_d16 uart7_rxd vin4a_d0 vin3a_d0 gpio8_16 Driver off 0x1620 CTRL_CORE_PAD_V B8 OUT1_D17 vout1_d17 uart7_txd vin4a_d1 vin3a_d1 gpio8_17 Driver off 0x1624 CTRL_CORE_PAD_V A6 OUT1_D18 vout1_d18 emu4 vin4a_d2 vin3a_d2 obs11 obs27 gpio8_18 Driver off 0x1628 CTRL_CORE_PAD_V A7 OUT1_D19 vout1_d19 emu15 vin4a_d3 vin3a_d3 obs12 obs28 gpio8_19 Driver off 0x162C CTRL_CORE_PAD_V C9 OUT1_D20 vout1_d20 emu16 vin4a_d4 vin3a_d4 obs13 obs29 gpio8_20 Driver off 0x1630 CTRL_CORE_PAD_V A8 OUT1_D21 vout1_d21 emu17 vin4a_d5 vin3a_d5 obs14 obs30 gpio8_21 Driver off 0x1634 CTRL_CORE_PAD_V B9 OUT1_D22 vout1_d22 emu18 vin4a_d6 vin3a_d6 obs15 obs31 gpio8_22 Driver off 0x1638 CTRL_CORE_PAD_V A9 OUT1_D23 vout1_d23 emu19 vin4a_d7 vin3a_d7 gpio8_23 Driver off 0x163C CTRL_CORE_PAD_ MDIO_MCLK V1 mdio_mclk uart3_rtsn mii0_col vin2a_clk0 vin4b_clk1 gpio5_15 Driver off 0x1640 CTRL_CORE_PAD_ MDIO_D U3 mdio_d uart3_ctsn mii0_txer vin2a_d0 vin4b_d0 gpio5_16 Driver off 0x1644 CTRL_CORE_PAD_R U2 MII_MHZ_50_CLK RMII_MHZ_50 _CLK gpio5_17 Driver off 0x1648 CTRL_CORE_PAD_U V2 ART3_RXD uart3_rxd rmii1_crs mii0_rxdv vin2a_d1 vin4b_d1 spi3_sclk gpio5_18 Driver off 0x164C CTRL_CORE_PAD_U Y1 ART3_TXD uart3_txd rmii1_rxer mii0_rxclk vin2a_d2 vin4b_d2 spi3_d1 gpio5_19 Driver off 134 spi3_cs3 vin2a_d11 Terminal Configuration and Functions spi4_cs1 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 4 14* 15 0x1650 CTRL_CORE_PAD_R T6 GMII0_TXC rgmii0_txc uart3_ctsn rmii1_rxd1 mii0_rxd3 vin2a_d3 vin4b_d3 5 usb4_ulpi_clk spi3_d0 6 7 spi4_cs2 gpio5_20 Driver off 0x1654 CTRL_CORE_PAD_R U5 GMII0_TXCTL rgmii0_txctl uart3_rtsn rmii1_rxd0 mii0_rxd2 vin2a_d4 vin4b_d4 usb4_ulpi_stp spi3_cs0 spi4_cs3 gpio5_21 Driver off 0x1658 CTRL_CORE_PAD_R T4 GMII0_TXD3 rgmii0_txd3 rmii0_crs mii0_crs vin2a_de0 vin4b_de1 usb4_ulpi_dir spi4_sclk uart4_rxd gpio5_22 Driver off 0x165C CTRL_CORE_PAD_R T3 GMII0_TXD2 rgmii0_txd2 rmii0_rxer mii0_rxer vin2a_hsync0 vin4b_hsync1 usb4_ulpi_nxt spi4_d1 uart4_txd gpio5_23 Driver off 0x1660 CTRL_CORE_PAD_R U6 GMII0_TXD1 rgmii0_txd1 rmii0_rxd1 mii0_rxd1 vin2a_vsync0 vin4b_vsync1 usb4_ulpi_d0 spi4_d0 uart4_ctsn gpio5_24 Driver off 0x1664 CTRL_CORE_PAD_R T5 GMII0_TXD0 rgmii0_txd0 rmii0_rxd0 mii0_rxd0 vin2a_d10 uart4_rtsn gpio5_25 Driver off 0x1668 CTRL_CORE_PAD_R U4 GMII0_RXC rgmii0_rxc rmii1_txen mii0_txclk vin2a_d5 vin4b_d5 usb4_ulpi_d2 gpio5_26 Driver off 0x166C CTRL_CORE_PAD_R V4 GMII0_RXCTL rgmii0_rxctl rmii1_txd1 mii0_txd3 vin2a_d6 vin4b_d6 usb4_ulpi_d3 gpio5_27 Driver off 0x1670 CTRL_CORE_PAD_R W2 GMII0_RXD3 rgmii0_rxd3 rmii1_txd0 mii0_txd2 vin2a_d7 vin4b_d7 usb4_ulpi_d4 gpio5_28 Driver off 0x1674 CTRL_CORE_PAD_R V3 GMII0_RXD2 rgmii0_rxd2 rmii0_txen mii0_txen vin2a_d8 usb4_ulpi_d5 gpio5_29 Driver off 0x1678 CTRL_CORE_PAD_R Y2 GMII0_RXD1 rgmii0_rxd1 rmii0_txd1 mii0_txd1 vin2a_d9 usb4_ulpi_d6 gpio5_30 Driver off 0x167C CTRL_CORE_PAD_R W1 GMII0_RXD0 rgmii0_rxd0 rmii0_txd0 mii0_txd0 vin2a_fld0 usb4_ulpi_d7 gpio5_31 Driver off 0x1680 CTRL_CORE_PAD_U AD12 SB1_DRVVBUS usb1_drvvbus timer16 gpio6_12 Driver off 0x1684 CTRL_CORE_PAD_U AC11 SB2_DRVVBUS usb2_drvvbus timer15 gpio6_13 Driver off 0x1688 CTRL_CORE_PAD_ GPIO6_14 E21 gpio6_14 mcasp1_axr8 dcan2_tx mcan_tx uart10_rxd vout2_hsync vin4a_hsync0 i2c3_sda timer1 gpio6_14 Driver off 0x168C CTRL_CORE_PAD_ GPIO6_15 F17 gpio6_15 mcasp1_axr9 dcan2_rx mcan_rx uart10_txd vout2_vsync vin4a_vsync0 i2c3_scl timer2 gpio6_15 Driver off 0x1690 CTRL_CORE_PAD_ GPIO6_16 F18 gpio6_16 mcasp1_axr1 0 vout2_fld vin4a_fld0 clkout1 timer3 gpio6_16 Driver off 0x1694 CTRL_CORE_PAD_X D18 REF_CLK0 xref_clk0 mcasp2_axr8 mcasp1_axr4 mcasp1_ahclk mcasp5_ahclk atl_clk0 x x hdq0 clkout2 timer13 gpio6_17 Driver off 0x1698 CTRL_CORE_PAD_X E17 REF_CLK1 xref_clk1 mcasp2_axr9 mcasp1_axr5 mcasp2_ahclk mcasp6_ahclk atl_clk1 x x timer14 gpio6_18 Driver off 0x169C CTRL_CORE_PAD_X B25 REF_CLK2 xref_clk2 mcasp2_axr1 mcasp1_axr6 mcasp3_ahclk mcasp7_ahclk atl_clk2 0 x x vout2_clk timer15 gpio6_19 Driver off 0x16A0 CTRL_CORE_PAD_X A22 REF_CLK3 xref_clk3 mcasp2_axr1 mcasp1_axr7 mcasp4_ahclk mcasp8_ahclk atl_clk3 1 x x vout2_de timer16 gpio6_20 Driver off 0x16A4 CTRL_CORE_PAD_ MCASP1_ACLKX B13 mcasp1_aclkx i2c3_sda gpio7_31 Driver off 0x16A8 CTRL_CORE_PAD_ MCASP1_FSX C13 mcasp1_fsx i2c3_scl gpio7_30 Driver off 0x16AC CTRL_CORE_PAD_ MCASP1_ACLKR A13 mcasp1_aclkr mcasp7_axr2 i2c4_sda gpio5_0 Driver off usb4_ulpi_d1 spi4_cs0 vin4b_fld1 vout2_d0 8 9 vin4a_clk0 hdq0 vin4a_de0 vin4a_d0 clkout3 10 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION ADDRESS BALL NUMBER 135 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 0x16B0 CTRL_CORE_PAD_ MCASP1_FSR F14 mcasp1_fsr 0x16B4 CTRL_CORE_PAD_ MCASP1_AXR0 F10 mcasp1_axr0 0x16B8 CTRL_CORE_PAD_ MCASP1_AXR1 F11 0x16BC CTRL_CORE_PAD_ MCASP1_AXR2 0x16C0 1 2* 3 5 6 8 10 14* 15 ADVANCE INFORMATION Driver off uart6_rxd i2c5_sda gpio5_2 Driver off mcasp1_axr1 uart6_txd i2c5_scl gpio5_3 Driver off E13 mcasp1_axr2 mcasp6_axr2 uart6_ctsn vout2_d2 vin4a_d2 gpio5_4 Driver off CTRL_CORE_PAD_ MCASP1_AXR3 E11 mcasp1_axr3 mcasp6_axr3 uart6_rtsn vout2_d3 vin4a_d3 gpio5_5 Driver off 0x16C4 CTRL_CORE_PAD_ MCASP1_AXR4 E12 mcasp1_axr4 mcasp4_axr2 vout2_d4 vin4a_d4 gpio5_6 Driver off 0x16C8 CTRL_CORE_PAD_ MCASP1_AXR5 D13 mcasp1_axr5 mcasp4_axr3 vout2_d5 vin4a_d5 gpio5_7 Driver off 0x16CC CTRL_CORE_PAD_ MCASP1_AXR6 C11 mcasp1_axr6 mcasp5_axr2 vout2_d6 vin4a_d6 gpio5_8 Driver off 0x16D0 CTRL_CORE_PAD_ MCASP1_AXR7 D12 mcasp1_axr7 mcasp5_axr3 vout2_d7 vin4a_d7 timer4 gpio5_9 Driver off 0x16D4 CTRL_CORE_PAD_ MCASP1_AXR8 B11 mcasp1_axr8 mcasp6_axr0 spi3_sclk timer5 gpio5_10 Driver off 0x16D8 CTRL_CORE_PAD_ MCASP1_AXR9 A11 mcasp1_axr9 mcasp6_axr1 spi3_d1 timer6 gpio5_11 Driver off 0x16DC CTRL_CORE_PAD_ MCASP1_AXR10 C12 mcasp1_axr1 mcasp6_aclkx mcasp6_aclkr spi3_d0 0 timer7 gpio5_12 Driver off 0x16E0 CTRL_CORE_PAD_ MCASP1_AXR11 A12 mcasp1_axr1 mcasp6_fsx 1 spi3_cs0 timer8 gpio4_17 Driver off 0x16E4 CTRL_CORE_PAD_ MCASP1_AXR12 D14 mcasp1_axr1 mcasp7_axr0 2 spi3_cs1 timer9 gpio4_18 Driver off 0x16E8 CTRL_CORE_PAD_ MCASP1_AXR13 B12 mcasp1_axr1 mcasp7_axr1 3 timer10 gpio6_4 Driver off 0x16EC CTRL_CORE_PAD_ MCASP1_AXR14 F12 mcasp1_axr1 mcasp7_aclkx mcasp7_aclkr 4 timer11 gpio6_5 Driver off 0x16F0 CTRL_CORE_PAD_ MCASP1_AXR15 E14 mcasp1_axr1 mcasp7_fsx 5 timer12 gpio6_6 Driver off 0x16F4 CTRL_CORE_PAD_ MCASP2_ACLKX A18 mcasp2_aclkx Driver off 0x16F8 CTRL_CORE_PAD_ MCASP2_FSX A17 mcasp2_fsx Driver off 0x16FC CTRL_CORE_PAD_ MCASP2_ACLKR E15 mcasp2_aclkr mcasp8_axr2 vout2_d8 vin4a_d8 Driver off 0x1700 CTRL_CORE_PAD_ MCASP2_FSR A19 mcasp2_fsr vout2_d9 vin4a_d9 Driver off 0x1704 CTRL_CORE_PAD_ MCASP2_AXR0 B14 mcasp2_axr0 vout2_d10 vin4a_d10 Driver off 0x1708 CTRL_CORE_PAD_ MCASP2_AXR1 A14 mcasp2_axr1 vout2_d11 vin4a_d11 Driver off 0x170C CTRL_CORE_PAD_ MCASP2_AXR2 C14 mcasp2_axr2 mcasp3_axr2 mcasp6_fsr vin4a_d1 9 gpio5_1 mcasp8_axr3 vout2_d1 7 i2c4_scl 136 mcasp7_axr3 4 mcasp7_fsr gpio6_8 Terminal Configuration and Functions Driver off Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 4 5 6 0x1710 CTRL_CORE_PAD_ MCASP2_AXR3 A15 mcasp2_axr3 mcasp3_axr3 0x1714 CTRL_CORE_PAD_ MCASP2_AXR4 D15 mcasp2_axr4 mcasp8_axr0 vout2_d12 0x1718 CTRL_CORE_PAD_ MCASP2_AXR5 B15 mcasp2_axr5 mcasp8_axr1 0x171C CTRL_CORE_PAD_ MCASP2_AXR6 B16 0x1720 CTRL_CORE_PAD_ MCASP2_AXR7 0x1724 7 8 9 10 14* 15 gpio6_9 Driver off vin4a_d12 gpio1_4 Driver off vout2_d13 vin4a_d13 gpio6_7 Driver off mcasp2_axr6 mcasp8_aclkx mcasp8_aclkr vout2_d14 vin4a_d14 gpio2_29 Driver off A16 mcasp2_axr7 mcasp8_fsx vout2_d15 vin4a_d15 gpio1_5 Driver off CTRL_CORE_PAD_ MCASP3_ACLKX B17 mcasp3_aclkx mcasp3_aclkr mcasp2_axr1 uart7_rxd 2 gpio5_13 Driver off 0x1728 CTRL_CORE_PAD_ MCASP3_FSX F13 mcasp3_fsx gpio5_14 Driver off 0x172C CTRL_CORE_PAD_ MCASP3_AXR0 B18 mcasp3_axr0 mcasp2_axr1 uart7_ctsn 4 uart5_rxd Driver off 0x1730 CTRL_CORE_PAD_ MCASP3_AXR1 C16 mcasp3_axr1 mcasp2_axr1 uart7_rtsn 5 uart5_txd Driver off 0x1734 CTRL_CORE_PAD_ MCASP4_ACLKX C17 mcasp4_aclkx mcasp4_aclkr spi3_sclk uart8_rxd i2c4_sda vout2_d16 vin4a_d16 Driver off 0x1738 CTRL_CORE_PAD_ MCASP4_FSX A20 mcasp4_fsx spi3_d1 uart8_txd i2c4_scl vout2_d17 vin4a_d17 Driver off 0x173C CTRL_CORE_PAD_ MCASP4_AXR0 D16 mcasp4_axr0 spi3_d0 uart8_ctsn uart4_rxd vout2_d18 vin4a_d18 Driver off 0x1740 CTRL_CORE_PAD_ MCASP4_AXR1 D17 mcasp4_axr1 spi3_cs0 uart8_rtsn uart4_txd vout2_d19 vin4a_d19 Driver off 0x1744 CTRL_CORE_PAD_ MCASP5_ACLKX AA3 mcasp5_aclkx mcasp5_aclkr spi4_sclk uart9_rxd i2c5_sda vout2_d20 vin4a_d20 Driver off 0x1748 CTRL_CORE_PAD_ MCASP5_FSX AB6 mcasp5_fsx spi4_d1 uart9_txd i2c5_scl vout2_d21 vin4a_d21 Driver off 0x174C CTRL_CORE_PAD_ MCASP5_AXR0 AB3 mcasp5_axr0 spi4_d0 uart9_ctsn uart3_rxd mlb_sig vout2_d22 vin4a_d22 Driver off 0x1750 CTRL_CORE_PAD_ MCASP5_AXR1 AA4 mcasp5_axr1 spi4_cs0 uart9_rtsn uart3_txd mlb_dat vout2_d23 vin4a_d23 Driver off 0x1754 CTRL_CORE_PAD_ MMC1_CLK W3 mmc1_clk gpio6_21 Driver off 0x1758 CTRL_CORE_PAD_ MMC1_CMD W5 mmc1_cmd gpio6_22 Driver off 0x175C CTRL_CORE_PAD_ MMC1_DAT0 V5 mmc1_dat0 gpio6_23 Driver off 0x1760 CTRL_CORE_PAD_ MMC1_DAT1 Y4 mmc1_dat1 gpio6_24 Driver off 0x1764 CTRL_CORE_PAD_ MMC1_DAT2 Y5 mmc1_dat2 gpio6_25 Driver off 0x1768 CTRL_CORE_PAD_ MMC1_DAT3 Y3 mmc1_dat3 gpio6_26 Driver off 0x176C CTRL_CORE_PAD_ MMC1_SDCD W4 mmc1_sdcd gpio6_27 Driver off mcasp3_fsr mcasp4_fsr mcasp5_fsr mcasp8_fsr mcasp2_axr1 uart7_txd 3 uart6_rxd mlb_clk i2c4_sda Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION ADDRESS BALL NUMBER 137 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS REGISTER NAME BALL NUMBER MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 ADVANCE INFORMATION 14* 15 gpio6_28 Driver off ehrpwm2A gpio6_10 Driver off usb3_ulpi_d6 vin2b_vsync1 ehrpwm2B gpio6_11 Driver off usb3_ulpi_d5 vin2b_d7 ehrpwm2_trip gpio6_29 zone_input Driver off usb3_ulpi_d4 vin2b_d6 eCAP2_in_P WM2_out gpio6_30 Driver off uart5_rxd usb3_ulpi_d3 vin2b_d5 eQEP3A_in gpio6_31 Driver off spi3_d0 uart5_txd usb3_ulpi_d2 vin2b_d4 eQEP3B_in gpio7_0 Driver off mmc3_dat2 spi3_cs0 uart5_ctsn usb3_ulpi_d1 vin2b_d3 eQEP3_index gpio7_1 Driver off AC4 mmc3_dat3 spi3_cs1 uart5_rtsn usb3_ulpi_d0 vin2b_d2 eQEP3_strob gpio7_2 e Driver off CTRL_CORE_PAD_ MMC3_DAT4 AA6 mmc3_dat4 spi4_sclk uart10_rxd usb3_ulpi_nxt vin2b_d1 ehrpwm3A gpio1_22 Driver off 0x1798 CTRL_CORE_PAD_ MMC3_DAT5 AB5 mmc3_dat5 spi4_d1 uart10_txd usb3_ulpi_dir vin2b_d0 ehrpwm3B gpio1_23 Driver off 0x179C CTRL_CORE_PAD_ MMC3_DAT6 AB7 mmc3_dat6 spi4_d0 uart10_ctsn usb3_ulpi_stp vin2b_de1 ehrpwm3_trip gpio1_24 zone_input Driver off 0x17A0 CTRL_CORE_PAD_ MMC3_DAT7 AA5 mmc3_dat7 spi4_cs0 uart10_rtsn usb3_ulpi_clk vin2b_clk1 eCAP3_in_P WM3_out gpio1_25 Driver off 0x17A4 CTRL_CORE_PAD_S A24 PI1_SCLK spi1_sclk gpio7_7 Driver off 0x17A8 CTRL_CORE_PAD_S C15 PI1_D1 spi1_d1 gpio7_8 Driver off 0x17AC CTRL_CORE_PAD_S B24 PI1_D0 spi1_d0 gpio7_9 Driver off 0x17B0 CTRL_CORE_PAD_S A23 PI1_CS0 spi1_cs0 gpio7_10 Driver off 0x17B4 CTRL_CORE_PAD_S A21 PI1_CS1 spi1_cs1 gpio7_11 Driver off 0x17B8 CTRL_CORE_PAD_S B20 PI1_CS2 spi1_cs2 0x17BC CTRL_CORE_PAD_S B19 PI1_CS3 0x17C0 uart6_txd 4 0x1770 CTRL_CORE_PAD_ MMC1_SDWP V6 mmc1_sdwp 0x1774 CTRL_CORE_PAD_ GPIO6_10 AC5 gpio6_10 mdio_mclk i2c3_sda usb3_ulpi_d7 vin2b_hsync1 0x1778 CTRL_CORE_PAD_ GPIO6_11 AB4 gpio6_11 mdio_d i2c3_scl 0x177C CTRL_CORE_PAD_ MMC3_CLK AC3 mmc3_clk 0x1780 CTRL_CORE_PAD_ MMC3_CMD AC7 mmc3_cmd spi3_sclk 0x1784 CTRL_CORE_PAD_ MMC3_DAT0 Y6 mmc3_dat0 spi3_d1 0x1788 CTRL_CORE_PAD_ MMC3_DAT1 W6 mmc3_dat1 0x178C CTRL_CORE_PAD_ MMC3_DAT2 AC6 0x1790 CTRL_CORE_PAD_ MMC3_DAT3 0x1794 5 6 7 8 9 10 i2c4_scl sata1_led spi2_cs1 uart4_rxd mmc3_sdcd spi2_cs2 dcan2_tx mdio_mclk hdmi1_hpd gpio7_12 Driver off spi1_cs3 uart4_txd mmc3_sdwp spi2_cs3 dcan2_rx mdio_d hdmi1_cec gpio7_13 Driver off CTRL_CORE_PAD_S A25 PI2_SCLK spi2_sclk uart3_rxd gpio7_14 Driver off 0x17C4 CTRL_CORE_PAD_S B21 PI2_D1 spi2_d1 uart3_txd gpio7_15 Driver off 0x17C8 CTRL_CORE_PAD_S E16 PI2_D0 spi2_d0 uart3_ctsn uart5_rxd gpio7_16 Driver off 0x17CC CTRL_CORE_PAD_S B23 PI2_CS0 spi2_cs0 uart3_rtsn uart5_txd gpio7_17 Driver off 138 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 4-33. Pin Multiplexing (continued) REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) 0* 1 2* 3 4 5 14* 15 hdmi1_hpd 6 7 8 9 10 gpio1_14 Driver off hdmi1_cec gpio1_15 Driver off mmc4_sdcd gpio7_22 Driver off mmc4_sdwp gpio7_23 Driver off uart9_rxd mmc4_clk gpio7_24 Driver off uart9_txd mmc4_cmd gpio7_25 Driver off uart3_ctsn uart3_rctx mmc4_dat0 uart2_rxd uart1_dcdn gpio7_26 Driver off uart3_rtsn uart3_sd mmc4_dat1 uart2_txd uart1_dsrn gpio7_27 Driver off uart3_rxd mmc4_dat2 uart10_rxd uart1_dtrn gpio1_16 Driver off uart3_irtx mmc4_dat3 uart10_txd uart1_rin gpio1_17 Driver off 0x17D0 CTRL_CORE_PAD_D E19 CAN1_TX dcan1_tx mcan_tx uart8_rxd mmc2_sdcd 0x17D4 CTRL_CORE_PAD_D D19 CAN1_RX dcan1_rx mcan_rx uart8_txd mmc2_sdwp 0x17E0 CTRL_CORE_PAD_U F22 ART1_RXD uart1_rxd 0x17E4 CTRL_CORE_PAD_U C21 ART1_TXD uart1_txd 0x17E8 CTRL_CORE_PAD_U F21 ART1_CTSN uart1_ctsn 0x17EC CTRL_CORE_PAD_U E23 ART1_RTSN uart1_rtsn 0x17F0 CTRL_CORE_PAD_U D22 ART2_RXD 0x17F4 CTRL_CORE_PAD_U E22 ART2_TXD uart2_txd 0x17F8 CTRL_CORE_PAD_U F20 ART2_CTSN uart2_ctsn 0x17FC CTRL_CORE_PAD_U C22 ART2_RTSN uart2_rtsn 0x1800 CTRL_CORE_PAD_I C20 2C1_SDA i2c1_sda 0x1804 CTRL_CORE_PAD_I C19 2C1_SCL i2c1_scl 0x1808 CTRL_CORE_PAD_I C24 2C2_SDA i2c2_sda hdmi1_ddc_sc l Driver off 0x180C CTRL_CORE_PAD_I F15 2C2_SCL i2c2_scl hdmi1_ddc_sd a Driver off 0x1818 CTRL_CORE_PAD_ WAKEUP0 AB19 dcan1_rx gpio1_0 Driver off 0x181C CTRL_CORE_PAD_ WAKEUP1 AC20 dcan2_rx gpio1_1 Driver off 0x1820 CTRL_CORE_PAD_ WAKEUP2 AB20 sys_nirq2 gpio1_2 Driver off 0x1824 CTRL_CORE_PAD_ WAKEUP3 AB21 sys_nirq1 gpio1_3 Driver off 0x1830 CTRL_CORE_PAD_T F16 MS tms 0x1834 CTRL_CORE_PAD_T B22 DI tdi gpio8_27 0x1838 CTRL_CORE_PAD_T C18 DO tdo gpio8_28 0x183C CTRL_CORE_PAD_T E20 CLK tclk 0x1840 CTRL_CORE_PAD_T D20 RSTN trstn 0x1844 CTRL_CORE_PAD_R E18 TCK rtck uart3_txd sata1_led ADVANCE INFORMATION ADDRESS BALL NUMBER gpio8_29 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 139 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 4-33. Pin Multiplexing (continued) ADDRESS REGISTER NAME MUXMODE FIELD SETTINGS (CTRL_CORE_PAD_*[3:0]) BALL NUMBER 0* 1 2* 3 4 5 6 7 8 9 10 14* 0x1848 CTRL_CORE_PAD_E F19 MU0 emu0 gpio8_30 0x184C CTRL_CORE_PAD_E C23 MU1 emu1 gpio8_31 0x185C CTRL_CORE_PAD_R D24 ESETN resetn 0x1864 CTRL_CORE_PAD_R D23 STOUTN rstoutn 15 1. NA in this table stands for Not Applicable. ADVANCE INFORMATION 140 Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 4.5 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Connections for Unused Pins This section describes the Unused/Reserved balls connection requirements. NOTE The following balls are reserved: B28 / F6 / A27 These balls must be left unconnected. NOTE All unused power supply balls must be supplied with the voltages specified in the Section 5.4, Recommended Operating Conditions, unless alternative tie-off options are included in Section 4.3, Signal Descriptions. Balls Connection Requirements AB16 / AC19 / D20 / AB19 / AC20 / AB21 / AB20 / U27 / AH25 / AC27 / AB27 / W28 / D28 / F27 / J27 / L28 These balls must be connected to GND through an external pull resistor if unused E20 / D21 / D24 / C19 / C20 / U28 / F16 / AG25 / AC28 / AB28 / W27 / D27 / F28 / J28 / L27 / F15 / C24 These balls must be connect to the corresponding power supply through an external pull resistor if unused G14 (vpp) This ball must be left unconnected if unused. NOTE All other unused signal balls with a Pad Configuration Register can be left unconnected with their internal pullup or pulldown resistor enabled. NOTE All other unused signal balls without Pad Configuration Register can be left unconnected. Terminal Configuration and Functions Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 141 ADVANCE INFORMATION Table 4-34. Unused Balls Specific Connection Requirements DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5 Specifications NOTE For more information, see Power, Reset, and Clock Management / PRCM Subsystem Environment / External Voltage Inputs or Initialization / Preinitialization / Power Requirements section of the Device TRM. NOTE The index numbers 1 and 2 which are part of the EMIF1 and EMIF2 signal prefixes (ddr1_* and ddr2_* ) listed in Table 4-6, EMIF Signal Descriptions, not to be confused with DDR1 and DDR2 types of SDRAM memories. NOTE Audio Back End (ABE) module is not supported for this family of devices, but “ABE” name is still present in some clock or DPLL names. ADVANCE INFORMATION CAUTION All IO Cells are NOT Fail-safe compliant and should not be externally driven in absence of their IO supply. 142 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 5.1 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) VSUPPLY (Steady-State) VIO (Steady-State) Supply Voltage Ranges (SteadyState) Input and Output Voltage Ranges (Steady-State) MIN MAX Core (vdd, vdd_mpu, vdd_gpu, vdd_dspeve, vdd_iva) -0.3 1.5 V Analog (vdda_usb1, vdda_usb2, vdda_abe_per, vdda_ddr, vdda_debug, vdda_dsp_eve, vdda_csi, vdda_gmac_core, vdda_gpu, vdda_hdmi, vdda_iva, vdda_pcie, vdda_pcie0, vdda_pcie1, vdda_sata, vdda_usb3, vdda_video, vdda_mpu, vdda_osc) -0.3 2.0 V Analog 3.3V (vdda33v_usb1, vdda33v_usb2) -0.3 3.8 V vdds18v, vdds18v_ddr1, vdds18v_ddr2, vdds_mlbp, vdds_ddr1, vdds_ddr2 -0.3 2.1 V vddshv1-11 (1.8V mode) -0.3 2.1 V vddshv1-7 (3.3V mode), vddshv9-11 (3.3V mode) -0.3 3.8 V vddshv8 (3.3V mode) -0.3 3.6 V Core I/Os -0.3 1.5 V Analog I/Os (except HDMI) -0.3 2.0 V HDMI I/Os -0.3 3.5 V I/O 1.35V -0.3 1.65 V I/O 1.5V -0.3 1.8 V 1.8V I/Os -0.3 2.1 V 3.3V I/Os (except those powered by vddshv8) -0.3 3.8 V 3.3V I/Os (powered by vddshv8) -0.3 SR Maximum slew rate, all supplies VIO (Transient Overshoot / Undershoot) Input and Output Voltage Ranges (Transient Overshoot/Undershoot) Note: valid for up to 20% of the signal period. TJ Operating junction temperature range TSTG Latch-up I-Test Latch-up OV-Test Over-voltage Test(5), All supplies (if different levels then one line per level) UNIT 3.6 V 105 V/s 0.2 × VDD (3) V -40 125 °C Storage temperature range after soldered onto PC Board -55 +150 °C I-test(4), All I/Os (if different levels then one line per level) -100 100 mA N/A 1.5 × Vsupply max Automotive ADVANCE INFORMATION PARAMETER(2) V (1) Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Section 5.4, Recommended Operating Conditions, is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. (2) See I/Os supplied by this power pin in Table 4-1, Pin Attributes. (3) VDD is the voltage on the corresponding power-supply pin(s) for the IO. (4) Per JEDEC JESD78 at 125°C with specified I/O pin injection current and clamp voltage of 1.5 times maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage. (5) Per JEDEC JESD78 at 125°C. 5.2 ESD Ratings VALUE V(ESD) Electrostatic discharge Human-Body model (HBM), per AEC Q100-002(1) ±1000 All pins Charged-device model (CDM), per AEC Corner pins (A1, Q100-011 AH1, A28, AH28) ±250 Submit Documentation Feedback Product Folder Links: DRA77P DRA76P V ±750 Specifications Copyright © 2017, Texas Instruments Incorporated UNIT 143 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 5.3 Power-On Hours (POH) IP ARM (4) Others Duty Cycle Voltage Domain Voltage (V) (max) Frequency (MHz) (max) Tj(°C) POH TBD vdd_mpu TBD 1800 Automotive Profile(3) TBD 70% vdd_mpu OPP_HIGH 1500 Automotive Profile(3) 20000 30% vdd_mpu Retention 0 40% vdd_mpu OPP_HIGH 1500 Automotive Profile(3) 20000 60% vdd_mpu OPP_HIGH 1000 55% vdd_mpu OPP_HIGH 1500 Automotive Profile(3) 20000 45% vdd_mpu OPP_NOM 1000 100% vdd_mpu OPP_HIGH 1176 Automotive Profile(3) 20000 100% vdd_mpu OPP_NOM 1000 Automotive Profile(3) 20000 (3) 20000 100% All All Support OPPs Automotive Profile (1) The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products. ADVANCE INFORMATION (2) POH is a functional of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH to achieve the same reliability performance. For assessment of alternate use cases, contact your local TI representative. (3) Automotive profile is defined as 20000 power on hours with junction temperature as follows: 5%@-40°C, 65%@70°C, 20%@110°C, 10%@125°C. (4) Others covers all other IP's voltage and temperature combinations that are not specified in the table, and are constrained by other sections of this data manual. 144 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 5.4 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER DESCRIPTION MIN (2) NOM MAX DC (3) MAX (2) UNIT Input Power Supply Voltage Range vdd Core voltage domain supply See Section 5.5 V vdd_mpu Supply voltage range for MPU domain See Section 5.5 V vdd_gpu GPU voltage domain supply See Section 5.5 V vdd_dspeve DSP-EVE voltage domain supply See Section 5.5 V vdd_iva IVA voltage domain supply See Section 5.5 vdda_usb1 DPLL_USB and HS USB1 1.8V analog power supply 1.80 1.71 1.80 Maximum noise (peak-peak) vdda_usb2 HS USB2 1.8V analog power supply HS USB1 3.3V analog power supply.If USB1 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb1_dm/usb1_dp pins are left unconnected - The USB1 PHY is kept powered down HS USB2 3.3V analog power supply. If USB2 is not used, this pin can alternatively be connected to VSS if the following requirements are met: - The usb2_dm/usb2_dp pins are left unconnected - The USB2 PHY is kept powered down 3.135 3.3 3.135 3.3 DPLL_ABE, DPLL_PER, and PER HSDIVIDER analog power supply 1.71 1.80 DPLL_DDR and DDR HSDIVIDER analog power supply 1.71 1.80 DPLL_DEBUG analog power supply 1.71 1.80 vdda_dsp_eve DPLL_DSP and DPLL_EVE analog power supply DPLL_CORE and CORE HSDIVIDER analog power supply 1.71 DPLL_GPU analog power supply PLL_HDMI and HDMI analog power supply 1.80 1.71 1.80 DPLL_IVA analog power supply 1.71 1.80 DPLL_PCIe_REF and PCIe analog power supply 1.836 1.89 1.836 1.89 1.836 1.89 1.71 1.80 Maximum noise (peak-peak) 50 V mVPPmax V mVPPmax V mVPPmax 1.836 1.89 V mVPPmax 1.836 1.89 1.836 1.89 1.836 1.89 1.836 1.89 V mVPPmax V mVPPmax V mVPPmax 50 1.80 V mVPPmax 50 1.71 V mVPPmax 50 Maximum noise (peak-peak) vdda_pcie 3.465 50 Maximum noise (peak-peak) vdda_iva 1.80 1.71 Maximum noise (peak-peak) vdda_hdmi 3.366 50 Maximum noise (peak-peak) vdda_gpu 3.465 50 Maximum noise (peak-peak) vdda_gmac_core 3.366 50 Maximum noise (peak-peak) V mVPPmax 50 Maximum noise (peak-peak) vdda_debug V mVPPmax 50 Maximum noise (peak-peak) vdda_ddr 1.89 50 Maximum noise (peak-peak) vdda_abe_per 1.836 50 Maximum noise (peak-peak) vdda33v_usb2 1.89 50 Maximum noise (peak-peak) vdda33v_usb1 V 1.836 V mVPPmax 1.836 1.89 V mVPPmax Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 145 ADVANCE INFORMATION 1.71 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com over operating free-air temperature range (unless otherwise noted) PARAMETER vdda_pcie0 DESCRIPTION PCIe ch0 RX/TX analog power supply MIN (2) NOM 1.71 1.80 Maximum noise (peak-peak) vdda_pcie1 PCIe ch1 RX/TX analog power supply DPLL_SATA and SATA RX/TX analog power supply 1.71 1.80 1.71 1.80 DPLL_USB_OTG_SS and USB3.0 RX/TX analog power supply 1.71 1.80 DPLL_VIDEO1 and DPLL_VIDEO2 analog power supply Maximum noise (peak-peak) vdds_mlbp MLBP IO power supply 1.71 ADVANCE INFORMATION DPLL_MPU analog power supply HFOSC analog power supply CSI Interface 1.8v Supply 1.80 1.71 1.80 1.8V power supply 1.71 1.80 1.71 1.80 (4) DDR1 bias power supply vdds18v_ddr2 (4) DDR2 bias power supply DDR1 power supply (1.8V for DDR2 mode / 1.5V for DDR3 mode / 1.35V DDR3L mode) Maximum noise (peakpeak) 1.89 1.80 1.71 1.80 1.35-V Mode 1.28 1.5-V Mode 1.8-V Mode 1.89 V V mVPPmax 1.836 1.89 V mVPPmax 1.89 V mVPPmax 1.836 1.89 1.836 1.89 V mVPPmax V mVPPmax 1.836 1.89 V mVPPmax 1.836 1.89 1.35 1.377 1.42 1.43 1.50 1.53 1.57 1.71 1.80 1.836 1.89 50 1.35-V Mode V mVPPmax 50 Maximum noise (peak-peak) vdds_ddr1 (4) 1.836 50 1.71 V mVPPmax 50 Maximum noise (peak-peak) V mVPPmax 50 Maximum noise (peak-peak) vdds18v_ddr1 1.89 50 Maximum noise (peak-peak) vdds18v 1.836 1.80 1.71 Maximum noise (peak-peak) vdda_csi 1.89 50 Maximum noise (peak-peak) vdda_osc 1.80 V mVPPmax 1.836 50 Maximum noise (peak-peak) vdda_mpu 1.89 50 1.71 UNIT mVPPmax 50 Maximum noise (peak-peak) vdda_video 1.89 50 Maximum noise (peak-peak) vdda_usb3 MAX (2) 50 Maximum noise (peak-peak) vdda_sata MAX DC (3) V mVPPmax 50 V mVPPmax 1.5-V Mode 1.8-V Mode vdds_ddr2 (4) DDR2 power supply (1.8V for DDR2 mode/ 1.5V for DDR3 mode / 1.35V DDR3L mode) Maximum noise (peakpeak) 1.35-V Mode 1.28 1.35 1.5-V Mode 1.43 1.8-V Mode 1.71 1.35-V Mode 1.377 1.42 1.50 1.53 1.57 1.80 1.836 1.89 50 V mVPPmax 1.5-V Mode 1.8-V Mode vddshv5 146 Dual Voltage (1.8V or 3.3V) power supply for the INTC Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode 50 V mVPPmax 3.3-V Mode Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 over operating free-air temperature range (unless otherwise noted) vddshv1 vddshv10 vddshv11 vddshv2 vddshv3 vddshv4 vddshv6 vddshv7 vddshv8 DESCRIPTION MIN (2) NOM MAX DC (3) MAX (2) Dual Voltage (1.8V or 3.3V) power supply for the VIN2 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode 50 UNIT V mVPPmax 3.3-V Mode Dual Voltage (1.8V or 1.8-V Mode 3.3V) power supply for 3.3-V Mode the GPMC Power Group pins 1.71 1.80 1.836 1.89 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode 50 Dual Voltage (1.8V or 3.3V) power supply for the MMC2 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the VOUT Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the GENERAL Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the MMC4 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the VIN1 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the WIFI Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode Dual Voltage (1.8V or 3.3V) power supply for the MMC1 Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode 50 V mVPPmax 3.3-V Mode Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 147 ADVANCE INFORMATION PARAMETER DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com over operating free-air temperature range (unless otherwise noted) PARAMETER vddshv9 DESCRIPTION MIN (2) NOM MAX DC (3) MAX (2) Dual Voltage (1.8V or 3.3V) power supply for the RGMII Power Group pins 1.8-V Mode 1.71 1.80 1.836 1.89 3.3-V Mode 3.135 3.30 3.366 3.465 Maximum noise (peakpeak) 1.8-V Mode UNIT V 50 mVPPmax 3.3-V Mode vss Ground supply 0 V vssa_osc0 OSC0 analog ground 0 V vssa_osc1 OSC1 analog ground 0 TJ(1) Operating junction temperature range ddr1_vref0 Reference Power Supply DDR1 0.5 × vdds_ddr1 V ddr2_vref0 Reference Power Supply DDR2 0.5 × vdds_ddr2 V Automotive V -40 125 °C (1) Refer to Power on Hours table for limitations. (2) The voltage at the device ball should never be below the MIN voltage or above the MAX voltage for any amount of time. This requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, etc. ADVANCE INFORMATION (3) The DC voltage at the device ball should never be above the MAX DC voltage to avoid impact on device reliability and lifetime POH (Power-On-Hours). The MAX DC voltage is defined as the highest allowed DC regulated voltage, without transients, seen at the ball. (4) If DDR2 type of memories are used, the EMIF power supply (vdds_ddrx) and the corresponding bias power supply (vdds18v_ddrx) must be sourced from single power source. (5) Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. 5.5 Operating Performance Points This section describes the operating conditions of the device. This section also contains the description of each OPP (operating performance point) for processor clocks and device core clocks. CAUTION The OPP voltage and frequency values may change following the silicon characterization result. Table 5-1 describes the maximum supported frequency per speed grade for DRA77xP/DRA76xP devices. Table 5-1. Speed Grade Maximum Frequency(2) Device Speed Maximum frequency (MHz) MPU DSP EVE IVA ISP GPU IPU L3 DDR3/DDR3L DDR2 DRA7xxxS 1800 850 650(1) 532 532 665 212.8 266 667 (DDR3-1333) 400 (DDR2-800) DRA7xxxP 1500 850 650 (1) 532 532 665 212.8 266 667 (DDR3-1333) 400 (DDR2-800) (1) 532 532 665 212.8 266 667 (DDR3-1333) 400 (DDR2-800) 532 532 665 212.8 266 667 (DDR3-1333) 400 (DDR2-800) DRA7xxxL 1176 850 650 DRA7xxxJ 1000 850 650 (1) (1) Applicable for DRA777P, DRA776P, DRA775P and DRA774P. Not Applicable for all other devices! (2) Maximum frequencies subject to change based on device characterization. 5.5.1 AVS and ABB Requirements Adaptive Voltage Scaling (AVS) and Adaptive Body Biasing (ABB) are required on most of the vdd_* supplies as defined in Table 5-2. 148 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-2. AVS and ABB Requirements per vdd_* Supply Supply AVS Required? vdd Yes, for all OPPs No vdd_mpu Yes, for all OPPs Yes, for all OPPs vdd_iva Yes, for all OPPs Yes, for all OPPs vdd_dspeve Yes, for all OPPs Yes, for all OPPs vdd_gpu Yes, for all OPPs Yes, for all OPPs 5.5.2 ABB Required? Voltage And Core Clock Specifications Table 5-3 shows the recommended OPP per voltage domain. Table 5-3. Voltage Domains Operating Performance Points CONDITION OPP_NOM MIN (2) VD_CORE (V) BOOT (Before AVS is enabled) (4) After AVS is enabled (4) VD_MPU (V) BOOT (Before AVS is enabled) (4) After AVS is enabled (4) Others (V) BOOT (Before AVS is enabled) (4) After AVS is enabled (4) 1.11 1.15 AVS AVS Voltag Voltage (5) (5) e – 3.5% 1.11 1.15 AVS AVS Voltag Voltage (5) e (5) – 3.5% 1.02 OPP_OD NOM (1) MAX (2) 1.06 AVS AVS Voltag Voltage (5) (5) e – 3.5% MIN (2) OPP_HIGH, OPP_PLUS NOM (1) MAX (2) MIN (2) NOM (1) MAX DC (3) 1.2 Not Applicable Not Applicable 1.2 Not Applicable Not Applicable 1.2 Not Applicable Not Applicable 1.2 AVS AVS AVS AVS AVS AVS Voltage Voltage Voltage Voltage Voltage Voltage (5) (5) (5) (5) (5) (5) – + 5% – +2% 3.5% 3.5% 1.16 1.16 Not Applicable MAX (2) AVS Voltage (5) + 5% Not Applicable AVS AVS AVS AVS AVS AVS Voltage Voltage Voltage Voltage Voltage Voltage (5) (5) (5) (5) (5) (5) – + 5% – +2% 3.5% 3.5% AVS Voltage + 5% (5) (1) In a typical implementation, the power supply should target the NOM voltage. (2) The voltage at the device ball should never be below the MIN voltage or above the MAX voltage for any amount of time. This requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, etc. (3) The DC voltage at the device ball should never be above the MAX DC voltage to avoid impact on device reliability and lifetime POH (Power-On-Hours). The MAX DC voltage is defined as the highest allowed DC regulated voltage, without transients, seen at the ball. (4) For all OPPs, AVS must be enabled to avoid impact on device reliability, lifetime POH (Power-On-Hours), and device power. (5) The AVS Voltages are device-dependent, voltage domain-dependent, and OPP-dependent. They must be read from the STD_FUSE_OPP. For information about STD_FUSE_OPP Registers address, please refer to Control Module Section of the Device TRM. The power supply should be adjustable over the following ranges for each required OPP: – OPP_NOM for MPU: 0.85V – 1.15V – OPP_NOM for CORE and Others: 0.85V - 1.15V – OPP_OD: 0.885V - 1.15V – OPP_HIGH: 0.95V - 1.25V – OPP_PLUS: 0.95V - 1.25V The AVS Voltages will be within the above specified ranges. (6) The power supply must be programmed with the AVS voltages for the MPU and the CORE voltage domain, either just after the ROM boot or at the earliest possible time in the secondary boot loader before there is significant activity seen on these domains. Table 5-4 describes the standard processor clocks speed characteristics vs OPP of the device. Table 5-4. Supported OPP vs Max Frequency (2) DESCRIPTION OPP_NOM OPP_OD OPP_HIGH OPP_PLUS Max Freq. (MHz) Max Freq. (MHz) Max Freq. (MHz) Max Freq. (MHz) VD_MPU Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 149 ADVANCE INFORMATION DOMAIN DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-4. Supported OPP vs Max Frequency (2) (continued) DESCRIPTION OPP_NOM OPP_OD OPP_HIGH OPP_PLUS Max Freq. (MHz) Max Freq. (MHz) Max Freq. (MHz) Max Freq. (MHz) 1000 1176 1500 1800 DSP_CLK 600 700 850 N/A EVE_FCLK 535 650 650 N/A ISP_CLK 355 355 532 N/A IVA_GCLK 388.3 430 532 N/A 425.6 500 532 665 CORE_IPUx_CLK 212.8 N/A N/A N/A L3_CLK 266 N/A N/A N/A DDR2 400 (DDR2-800) N/A N/A N/A DDR3 / DDR3L 667 (DDR3-1333) N/A N/A N/A MPU_CLK VD_DSPEVE VD_IVA VD_GPU GPU_CLK VD_CORE ADVANCE INFORMATION (1) N/A in this table stands for Not Applicable. (2) Maximum supported frequency is limited according to the Device Speed Grade (see Table 5-1). 5.5.3 Maximum Supported Frequency Device modules either receive their clock directly from an external clock input, directly from a PLL, or from a PRCM. Table 5-5 lists the clock source options for each module on this device, along with the maximum frequency that module can accept. To ensure proper module functionality, the device PLLs and dividers must be programmed not to exceed the maximum frequencies listed in this table. Table 5-5. Maximum Supported Frequency Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name AES1 AES1_L3_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE AES2 AES2_L3_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE ATL ATL_ICLK_L3 Int 266 ATL_L3_GICLK CORE_X2_CLK DPLL_CORE ATLPCLK Func 266 ATL_GFCLK CORE_X2_CLK DPLL_CORE PER_ABE_X1_GF CLK DPLL_ABE FUNC_32K_CLK OSC0 VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI BB2D CSI2_0 150 BB2D_FCLK Func 354.6 BB2D_GFCLK BB2D_GFCLK DPLL_CORE BB2D_ICLK Int 266 DSS_L3_GICLK CORE_X2_CLK DPLL_CORE CTRLCLK Int & Func 96 LVDSRX_96M_GFCLK FUNC_192M_CLK DPLL_PER CAL_FCLK Int & Func 266 VIP3_GCLK CORE_ISS_MAIN_ CLK DPLL_CORE L3_ICLK CM_CORE_AON Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Module Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name CTRLCLK Int & Func 96 LVDSRX_96M_GFCLK FUNC_192M_CLK DPLL_PER CAL_FCLK Int & Func 266 VIP3_GCLK CORE_ISS_MAIN_ CLK DPLL_CORE L3_ICLK CM_CORE_AON SYS_CLK1/610 OSC0 Input Clock Name CSI2_1 COUNTER_32K_F CLK Func 0.032 FUNC_32K_CLK COUNTER_32K_IC LK Int 38.4 WKUPAON_GICLK CTRL_MODULE_B ANDGAP L3INSTR_TS_GCL K Int CTRL_MODULE_C ORE L4CFG_L4_GICLK Int 133 CTRL_MODULE_ WKUP WKUPAON_GICLK Int 38.4 DCAN1 DCAN1_FCLK Func 38.4 DCAN1_SYS_CLK DCAN1_ICLK Int 266 WKUPAON_GICLK DCAN2 MCAN 4.8 L3INSTR_TS_GCLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE L4CFG_L4_GICLK CORE_X2_CLK DPLL_CORE WKUPAON_GICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE SYS_CLK1 OSC0 SYS_CLK2 OSC1 SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE DCAN2_FCLK Func 38.4 DCAN2_SYS_CLK SYS_CLK1 OSC0 DCAN2_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE MCAN_FCLK Func 38.4 MCAN_SYS_CLK SYS_CLK1 OSC0 SYS_CLK2 OSC1 MCAN_ICLK Int 266 WKUPAON_GICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE DES3DES DES_CLK_L3 Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE DLL EMIF_DLL_FCLK Func EMIF_DLL_FC LK EMIF_DLL_GCLK EMIF_DLL_GCLK DPLL_DDR DLL_AGING FCLK Int 38.4 L3INSTR_DLL_AGING _GCLK DMA_CRYPTO SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE DMA_CRYPTO_FC LK Int & Func 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE DMA_CRYPTO_IC LK Int 133 L4SEC_L4_GICLK CORE_X2_CLK DPLL_CORE DPLL_CORE DMM DMM_CLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_DEBUG SYSCLK Int 38.4 EMU_SYS_CLK SYS_CLK1 OSC0 DSP1 DSP1_FICLK Int & Func DSP_CLK DSP1_GFCLK DSP_GFCLK DPLL_DSP DSP2 DSP2_FICLK Int & Func DSP_CLK DSP2_GFCLK DSP_GFCLK DPLL_DSP Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION Clock Type Instance Name COUNTER_32K Clock Sources 151 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name DSS_HDMI_CEC_ CLK Func 0.032 HDMI_CEC_GFCLK SYS_CLK1/610 OSC0 DSS_HDMI_PHY_ CLK Func 48 HDMI_PHY_GFCLK FUNC_192M_CLK DPLL_PER DSS_CLK Func 192 DSS_GFCLK DSS_CLK DPLL_PER HDMI_CLKINP Func 38.4 HDMI_DPLL_CLK SYS_CLK1 OSC0 Instance Name Input Clock Name DSS SYS_CLK2 OSC1 DSS_L3_ICLK Int 266 DSS_L3_GICLK CORE_X2_CLK DPLL_CORE VIDEO1_CLKINP Func 38.4 VIDEO1_DPLL_CLK SYS_CLK1 OSC0 SYS_CLK2 OSC1 SYS_CLK1 OSC0 SYS_CLK2 OSC1 VIDEO2_CLKINP Func ADVANCE INFORMATION DPLL_DSI1_A_CL K1 Func DPLL_DSI1_B_CL K1 Func DPLL_DSI1_C_CL K1 DSS DISPC Clock Sources Func 38.4 209.3 209.3 209.3 VIDEO2_DPLL_CLK N/A N/A N/A HDMI_CLK DPLL_HDMI VIDEO1_CLKOUT1 DPLL_VIDEO1 VIDEO1_CLKOUT3 DPLL_VIDEO1 VIDEO2_CLKOUT3 DPLL_VIDEO2 HDMI_CLK DPLL_HDMI DPLL_ABE_X2_CL K DPLL_ABE HDMI_CLK DPLL_HDMI VIDEO1_CLKOUT3 DPLL_VIDEO1 VIDEO2_CLKOUT1 DPLL_VIDEO2 DPLL_HDMI_CLK1 Func 185.6 N/A HDMI_CLK DPLL_HDMI LCD1_CLK Func 209.3 N/A DPLL_DSI1_A_CL K1 See DSS data in the rows above LCD2_CLK Func 209.3 N/A DPLL_DSI1_B_CL K1 DSS_CLK DSS_CLK LCD3_CLK Func 209.3 N/A DPLL_DSI1_C_CL K1 DSS_CLK F_CLK Func 209.3 N/A DPLL_DSI1_A_CL K1 DPLL_DSI1_B_CL K1 DPLL_DSI1_C_CL K1 DSS_CLK DPLL_HDMI_CLK1 ISP ISS_MAIN_FCLK Func PCLK Func ocp_clk Int sys_clk ELM EMIF_OCP_FW EFUSE_CTRL_CU ST 152 ISP_CLK CORE_ISS_MAIN_CLK CORE_ISS_MAIN_ CLK DPLL_CORE ISS_MAIN_FCLK ISS_MAIN_FCLK 133 CUSTEFUSE_L4_GICL K CORE_X2_CLK DPLL_CORE Func 38.4 CUSTEFUSE_SYS_GF CLK SYS_CLK1 OSC0 ELM_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE L3_CLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name EMIF_PHY1 EMIF_PHY1_FCLK Func DDR EMIF_PHY_GCLK EMIF_PHY_GCLK DPLL_DDR EMIF_PHY2 EMIF_PHY2_FCLK Func DDR EMIF_PHY_GCLK EMIF_PHY_GCLK DPLL_DDR EMIF1 EMIF1_ICLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE EMIF2 EMIF2_ICLK Int 266 EMIF_L3_GICLK CORE_X2_CLK DPLL_CORE EVE1 EVE1_FCLK Func EVE_FCLK EVE1_GFCLK - DPLL_DSP EVE2 EVE2_FCLK Func EVE_FCLK EVE2_GFCLK EVE_GFCLK DPLL_EVE - DPLL_DSP EVE_GFCLK DPLL_EVE FPKA PKA_CLK Int & Func 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE GMAC_SW CPTS_RFT_CLK Func 266 GMAC_RFT_CLK PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI GPIO1 GPIO2 GPIO3 GPIO4 GPIO5 GPIO6 GPIO7 CORE_X2_CLK DPLL_CORE MAIN_CLK Int 125 GMAC_MAIN_CLK GMAC_250M_CLK DPLL_GMAC MHZ_250_CLK Func 250 GMII_250MHZ_CLK GMII_250MHZ_CL K DPLL_GMAC MHZ_5_CLK Func 5 RGMII_5MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC MHZ_50_CLK Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC RMII1_MHZ_50_CL K Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC RMII2_MHZ_50_CL K Func 50 RMII_50MHZ_CLK GMAC_RMII_HS_C LK DPLL_GMAC GPIO1_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE GPIO1_DBCLK Func 0.032 WKUPAON_SYS_GFC LK WKUPAON_32K_G FCLK OSC0 GPIO2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO2_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC0 GPIO3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO3_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC0 GPIO4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO4_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC0 PIDBCLK Func 0.032 GPIO_GFCLK GPIO5_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO5_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC0 PIDBCLK Func 0.032 GPIO_GFCLK GPIO6_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO6_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC0 PIDBCLK Func 0.032 GPIO_GFCLK GPIO7_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO7_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC0 PIDBCLK Func 0.032 GPIO_GFCLK Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 153 ADVANCE INFORMATION Module DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name GPIO8 GPIO8_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE GPIO8_DBCLK Func 0.032 GPIO_GFCLK FUNC_32K_CLK OSC0 PIDBCLK Func 0.032 GPIO_GFCLK GPMC GPMC_FCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE GPU GPU_FCLK1 Func GPU_CLK GPU_CORE_GCLK CORE_GPU_CLK DPLL_CORE GPU_FCLK2 Func GPU_CLK GPU_HYD_GCLK PER_GPU_CLK DPLL_PER GPU_GCLK DPLL_GPU CORE_GPU_CLK DPLL_CORE PER_GPU_CLK DPLL_PER GPU_GCLK DPLL_GPU ADVANCE INFORMATION GPU_ICLK Int 266 GPU_L3_GICLK CORE_X2_CLK DPLL_CORE HDMI PHY DSS_HDMI_PHY_ CLK Func 38.4 HDMI_PHY_GFCLK FUNC_192M_CLK DPLL_PER HDQ1W HDQ1W_ICLK Int & Func 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE HDQ1W_FCLK Func 12 PER_12M_GFCLK FUNC_192M_CLK DPLL_PER I2C1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE I2C1_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER DPLL_CORE I2C1 I2C2 I2C3 I2C4 I2C5 I2C2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK I2C2_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER I2C3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE I2C3_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER DPLL_CORE I2C4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK I2C4_FCLK Func 96 PER_96M_GFCLK FUNC_192M_CLK DPLL_PER I2C5_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE I2C5_FCLK Func 96 IPU_96M_GFCLK FUNC_192M_CLK DPLL_PER IEEE1500_2_OCP PI_L3CLK Int & Func 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE IPU1 IPU1_GFCLK Int & Func 425.6 IPU1_GFCLK DPLL_ABE_X2_CL K DPLL_ABE CORE_IPU_ISS_B OOST_CLK DPLL_CORE CORE_IPU_ISS_B OOST_CLK DPLL_CORE IPU2 154 IPU2_GFCLK Int & Func 425.6 IPU2_GFCLK IVA IVA_GCLK Int IVA_GCLK IVA_GCLK IVA_GFCLK DPLL_IVA KBD KBD_FCLK Func 0.032 WKUPAON_SYS_GFC LK WKUPAON_32K_G FCLK OSC0 PICLKKBD Func 0.032 WKUPAON_SYS_GFC LK KBD_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC0 PICLKOCP Int 38.4 WKUPAON_GICLK DPLL_ABE_X2_CL K DPLL_ABE L3_INSTR L3_CLK Int L3_CLK L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE L3_MAIN L3_CLK1 Int L3_CLK L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE L3_CLK2 Int L3_CLK L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE L4_CFG L4_CFG_CLK Int 133 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE L4_PER1 L4_PER1_CLK Int 133 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE L4_PER2 L4_PER2_CLK Int 133 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name L4_PER3 L4_PER3_CLK Int 133 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE L4_WKUP L4_WKUP_CLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE MAILBOX1 MAILBOX1_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX2 MAILBOX2_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX3 MAILBOX3_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX4 MAILBOX4_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX5 MAILBOX5_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX6 MAILBOX6_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX7 MAILBOX7_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX8 MAILBOX8_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX9 MAILBOX9_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX10 MAILBOX10_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX11 MAILBOX11_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX12 MAILBOX12_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE MAILBOX13 MAILBOX13_FLCK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION Instance Name 155 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name McASP1 MCASP1_AHCLKR Func 100 MCASP1_AHCLKR ABE_24M_GFCLK DPLL_ABE ADVANCE INFORMATION MCASP1_AHCLKX MCASP1_FCLK MCASP1_ICLK 156 Func Func Int 100 192 266 MCASP1_AHCLKX MCASP1_AUX_GFCLK IPU_L3_GICLK Specifications ABE_SYS_CLK OSC0 FUNC_24M_GFCL K DPLL_PER ATL_CLK0 Module ATL ATL_CLK1 Module ATL ATL_CLK2 Module ATL ATL_CLK3 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB ABE_24M_GFCLK DPLL_ABE ABE_SYS_CLK OSC0 FUNC_24M_GFCL K DPLL_PER ATL_CLK0 Module ATL ATL_CLK1 Module ATL ATL_CLK2 Module ATL ATL_CLK3 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name McASP2 MCASP2_AHCLKR Func 100 MCASP2_AHCLKR ABE_24M_GFCLK DPLL_ABE MCASP2_AHCLKX MCASP2_FCLK MCASP2_ICLK Func Func Int 100 192 266 MCASP2_AHCLKX MCASP2_AUX_GFCLK L4PER2_L3_GICLK ABE_SYS_CLK OSC0 FUNC_24M_GFCL K DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB ABE_24M_GFCLK DPLL_ABE ABE_SYS_CLK OSC0 FUNC_24M_GFCL K DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION Instance Name 157 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name McASP3 MCASP3_AHCLKX Func 100 MCASP3_AHCLKX ABE_24M_GFCLK DPLL_ABE ADVANCE INFORMATION MCASP3_FCLK McASP4 192 MCASP3_AUX_GFCLK OSC0 DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI MCASP3_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE MCASP4_AHCLKX Func 100 MCASP4_AHCLKX ABE_24M_GFCLK DPLL_ABE MCASP4_FCLK MCASP4_ICLK 158 Func ABE_SYS_CLK FUNC_24M_GFCL K Func Int 192 266 MCASP4_AUX_GFCLK L4PER2_L3_GICLK Specifications ABE_SYS_CLK OSC0 FUNC_24M_GFCL K DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name McASP5 MCASP5_AHCLKX Func 100 MCASP5_AHCLKX ABE_24M_GFCLK DPLL_ABE MCASP5_FCLK McASP6 Func 192 MCASP5_AUX_GFCLK ABE_SYS_CLK OSC0 FUNC_24M_GFCL K DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI MCASP5_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE MCASP6_AHCLKX Func 100 MCASP6_AHCLKX ABE_24M_GFCLK DPLL_ABE FUNC_24M_GFCL K DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL MCASP6_FCLK MCASP6_ICLK Func Int 192 266 MCASP6_AUX_GFCLK L4PER2_L3_GICLK ATL_CLK0 Module ATL MLB_CLK Module MLB MLBP_CLK Module MLB ABE_SYS_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 159 ADVANCE INFORMATION Module DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name McASP7 MCASP7_AHCLKX Func 100 MCASP7_AHCLKX ABE_24M_GFCLK DPLL_ABE ADVANCE INFORMATION MCASP7_FCLK McASP8 160 MCASP7_AUX_GFCLK ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE MCASP8_AHCLKX Func 100 MCASP8_AHCLKX ABE_24M_GFCLK DPLL_ABE MCASP8_ICLK McSPI2 192 OSC0 DPLL_PER MCASP7_ICLK MCASP8_FCLK McSPI1 Func ABE_SYS_CLK FUNC_24M_GFCL K Func 192 Int 266 MCASP8_AUX_GFCLK L4PER2_L3_GICLK ABE_SYS_CLK OSC0 FUNC_24M_GFCL K DPLL_PER ATL_CLK3 Module ATL ATL_CLK2 Module ATL ATL_CLK1 Module ATL ATL_CLK0 Module ATL SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 MLB_CLK Module MLB MLBP_CLK Module MLB PER_ABE_X1_GF CLK DPLL_ABE VIDEO1_CLK DPLL_ABE VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CORE_X2_CLK DPLL_CORE DPLL_CORE SPI1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK SPI1_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER SPI2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE SPI2_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name McSPI3 SPI3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE SPI3_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER McSPI4 SPI4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE SPI4_FCLK Func 48 PER_48M_GFCLK PER_48M_GFCLK DPLL_PER MLB_SS MLB_L3_ICLK Int 266 MLB_SHB_L3_GICLK CORE_X2_CLK DPLL_CORE MLB_L4_ICLK Int 133 MLB_SPB_L4_GICLK CORE_X2_CLK DPLL_CORE MLB_FCLK Func 266 MLB_SYS_L3_GFCLK CORE_X2_CLK DPLL_CORE MMC1_CLK_32K Func 0.032 L3INIT_32K_GFCLK FUNC_32K_CLK OSC0 MMC1_FCLK Func 192 MMC1_GFCLK FUNC_192M_CLK DPLL_PER MMC1 128 MMC1_ICLK1 MMC2 Int 266 L3INIT_L3_GICLK DPLL_PER CORE_X2_CLK DPLL_CORE DPLL_CORE MMC1_ICLK2 Int 133 L3INIT_L4_GICLK CORE_X2_CLK MMC2_CLK_32K Func 0.032 L3INIT_32K_GFCLK FUNC_32K_CLK OSC0 MMC2_FCLK Func 192 MMC2_GFCLK FUNC_192M_CLK DPLL_PER FUNC_256M_CLK DPLL_PER 128 MMC3 FUNC_256M_CLK MMC2_ICLK1 Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE MMC2_ICLK2 Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE MMC3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE MMC3_CLK_32K Func 0.032 L4PER_32K_GFCLK FUNC_32K_CLK OSC0 MMC3_FCLK Func 48 MMC3_GFCLK FUNC_192M_CLK DPLL_PER DPLL_CORE ADVANCE INFORMATION Instance Name 192 MMC4 MMC4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK MMC4_CLK_32K Func 0.032 L4PER_32K_GFCLK FUNC_32K_CLK OSC0 MMC4_FCLK Func 48 MMC4_GFCLK FUNC_192M_CLK DPLL_PER 192 MMU_EDMA MMU1_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE MMU_PCIESS MMU2_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE MPU MPU_CLK Int & Func MPU_CLK MPU_GCLK MPU_GCLK DPLL_MPU MPU_EMU_DBG FCLK Int 38.4 EMU_SYS_CLK SYS_CLK1 OSC0 MPU_GCLK DPLL_MPU OCMC_RAM1 OCMC1_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE OCMC_RAM2 OCMC2_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE OCMC_RAM3 OCMC3_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE OCMC_ROM OCMC_L3_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE OCP_WP_NOC PICLKOCPL3 Int 266 L3INSTR_L3_GICLK CORE_X2_CLK DPLL_CORE OCP2SCP1 L4CFG1_ADAPTE R_CLKIN Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE OCP2SCP2 L4CFG2_ADAPTE R_CLKIN Int 133 L4CFG_L4_GICLK CORE_X2_CLK DPLL_CORE OCP2SCP3 L4CFG3_ADAPTE R_CLKIN Int 133 L3INIT_L4_GICLK CORE_X2_CLK DPLL_CORE Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 161 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Instance Name Input Clock Name PCIESS1 PCIE1_PHY_WKU P_CLK PCIESS2 ADVANCE INFORMATION PRCM_MPU Clock Sources Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name Func 0.032 PCIE_32K_GFCLK FUNC_32K_CLK OSC0 PCIe_SS1_FICLK Int 266 PCIE_L3_GICLK CORE_X2_CLK DPLL_CORE PCIEPHY_CLK Func 2500 PCIE_PHY_GCLK PCIE_PHY_GCLK APLL_PCIE PCIEPHY_CLK_DI V Func 1250 PCIE_PHY_DIV_GCLK PCIE_PHY_DIV_G CLK APLL_PCIE PCIE1_REF_CLKI N Func 34.3 PCIE_REF_GFCLK CORE_USB_OTG_ SS_LFPS_TX_CLK DPLL_CORE PCIE1_PWR_CLK Func 38.4 PCIE_SYS_GFCLK SYS_CLK1 OSC0 PCIE2_PHY_WKU P_CLK Func 0.032 PCIE_32K_GFCLK FUNC_32K_CLK OSC0 PCIe_SS2_FICLK Func 266 PCIE_L3_GICLK CORE_X2_CLK DPLL_CORE PCIEPHY_CLK Func 2500 PCIE_PHY_GCLK PCIE_PHY_GCLK APLL_PCIE PCIEPHY_CLK_DI V Func 1250 PCIE_PHY_DIV_GCLK PCIE_PHY_DIV_G CLK APLL_PCIE PCIE2_REF_CLKI N Func 34.3 PCIE_REF_GFCLK CORE_USB_OTG_ SS_LFPS_TX_CLK DPLL_CORE PCIE2_PWR_CLK Func 38.4 PCIE_SYS_GFCLK SYS_CLK1 OSC0 32K_CLK Func 0.032 FUNC_32K_CLK SYS_CLK1/610 OSC0 SYS_CLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE PWMSS1 PWMSS1_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE PWMSS2 PWMSS2_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE PWMSS3 PWMSS3_GICLK Int & Func 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE QSPI QSPI_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE QSPI_FCLK Func 128 QSPI_GFCLK FUNC_256M_CLK DPLL_PER PER_QSPI_CLK DPLL_PER RNG RNG_ICLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE SAR_ROM PRCM_ROM_CLO CK Int 266 L4CFG_L3_GICLK CORE_X2_CLK DPLL_CORE SATA SATA_FICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE SATA_PMALIVE_F CLK Func 48 L3INIT_48M_GFCLK FUNC_192M_CLK DPLL_PER REF_CLK Func 38 SATA_REF_GFCLK SYS_CLK1 OSC0 SDMA SDMA_FCLK Int & Func 266 DMA_L3_GICLK CORE_X2_CLK DPLL_CORE SHA2MD51 SHAM_1_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE SHA2MD52 SHAM_2_CLK Int 266 L4SEC_L3_GICLK CORE_X2_CLK DPLL_CORE SL2 IVA_GCLK Int IVA_GCLK IVA_GCLK IVA_GFCLK DPLL_IVA SMARTREFLEX_C ORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE SYSCLK Func 38.4 WKUPAON_ICLK 162 Specifications SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name SMARTREFLEX_D SPEVE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK DPLL_CORE SYSCLK Func 38.4 WKUPAON_ICLK SMARTREFLEX_G PU SMARTREFLEX_IV AHD SMARTREFLEX_M PU MCLK Int 133 COREAON_L4_GICLK SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE CORE_X2_CLK DPLL_CORE SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE DPLL_CORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE DPLL_CORE MCLK Int 133 COREAON_L4_GICLK CORE_X2_CLK SYSCLK Func 38.4 WKUPAON_ICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE DPLL_CORE SPINLOCK SPINLOCK_ICLK Int 266 L4CFG_L3_GICLK CORE_X2_CLK TIMER1 TIMER1_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 TIMER1_FCLK TIMER2 Func 100 TIMER1_GFCLK SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI TIMER2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER2_FCLK Func 100 TIMER2_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 163 ADVANCE INFORMATION Module DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER3 TIMER3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER3_FCLK Func 100 TIMER3_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 ADVANCE INFORMATION TIMER4 TIMER5 164 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI TIMER4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER4_FCLK Func 100 TIMER4_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI TIMER5_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER5_FCLK Func 100 TIMER5_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 Specifications SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER6 TIMER6_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER6_FCLK Func 100 TIMER6_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 TIMER7 TIMER8 TIMER7_ICLK Int 266 IPU_L3_GICLK TIMER7_FCLK Func 100 TIMER7_GFCLK SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] CORE_X2_CLK DPLL_CORE SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] TIMER8_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER8_FCLK Func 100 TIMER8_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI CLKOUTMUX[0] CLKOUTMUX[0] Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 165 ADVANCE INFORMATION Module DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER9 TIMER9_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER9_FCLK Func 100 TIMER9_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 ADVANCE INFORMATION TIMER10 TIMER11 TIMER12 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI TIMER10_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER10_FCLK Func 100 TIMER10_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI TIMER11_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER11_FCLK Func 100 TIMER11_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 TIMER12_ICLK TIMER12_FCLK 166 SYS_CLK2 Int 38.4 Func 0.032 WKUPAON_GICLK OSC_32K_CLK Specifications SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE RC_CLK OSC0 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER13 TIMER13_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER13_FCLK Func 100 TIMER13_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 TIMER14 TIMER15 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI TIMER14_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER14_FCLK Func 100 TIMER14_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI TIMER15_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER15_FCLK Func 100 TIMER15_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 SYS_CLK2 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 HDMI_CLK DPLL_HDMI Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 167 ADVANCE INFORMATION Module DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-5. Maximum Supported Frequency (continued) Module Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name TIMER16 TIMER16_ICLK Int 266 L4PER3_L3_GICLK CORE_X2_CLK DPLL_CORE TIMER16_FCLK Func 100 TIMER16_GFCLK SYS_CLK1 OSC0 FUNC_32K_CLK OSC0 OSC1 XREF_CLK0 XREF_CLK0 XREF_CLK1 XREF_CLK1 XREF_CLK2 XREF_CLK2 XREF_CLK3 XREF_CLK3 DPLL_ABE_X2_CL K DPLL_ABE VIDEO1_CLK DPLL_VIDEO1 VIDEO2_CLK DPLL_VIDEO2 ADVANCE INFORMATION HDMI_CLK DPLL_HDMI TPCC TPCC_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE TPTC1 TPTC0_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE TPTC2 TPTC1_GCLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE UART1 UART1_FCLK Func 48 UART1_GFCLK FUNC_192M_CLK DPLL_PER UART1_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART2_FCLK Func 48 UART2_GFCLK FUNC_192M_CLK DPLL_PER UART2_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART3_FCLK Func 48 UART3_GFCLK FUNC_192M_CLK DPLL_PER UART3_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART4_FCLK Func 48 UART4_GFCLK FUNC_192M_CLK DPLL_PER UART4_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART5 UART5_FCLK Func 48 UART5_GFCLK FUNC_192M_CLK DPLL_PER UART5_ICLK Int 266 L4PER_L3_GICLK CORE_X2_CLK DPLL_CORE UART6 UART6_FCLK Func 48 UART6_GFCLK FUNC_192M_CLK DPLL_PER UART6_ICLK Int 266 IPU_L3_GICLK CORE_X2_CLK DPLL_CORE UART7_FCLK Func 48 UART7_GFCLK FUNC_192M_CLK DPLL_PER UART7_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE UART8_FCLK Func 48 UART8_GFCLK FUNC_192M_CLK DPLL_PER UART8_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE UART9_FCLK Func 48 UART9_GFCLK FUNC_192M_CLK DPLL_PER UART9_ICLK Int 266 L4PER2_L3_GICLK CORE_X2_CLK DPLL_CORE UART10_FCLK Func 48 UART10_GFCLK FUNC_192M_CLK DPLL_PER UART10_ICLK Int 38.4 WKUPAON_GICLK UART2 UART3 UART4 UART7 UART8 UART9 UART10 USB1 168 SYS_CLK2 SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE USB1_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE USB3PHY_REF_C LK Func 34.3 USB_LFPS_TX_GFCL K CORE_USB_OTG_ SS_LFPS_TX_CLK DPLL_CORE USB2PHY1_TREF _CLK Func 38.4 USB_OTG_SS_REF_C LK SYS_CLK1 OSC0 USB2PHY1_REF_ CLK Func 960 L3INIT_960M_GFCLK L3INIT_960_GFCL K DPLL_USB Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-5. Maximum Supported Frequency (continued) Clock Sources Instance Name Input Clock Name Clock Type Max. Clock Allowed (MHz) PRCM Clock Name PLL / OSC / Source Clock Name PLL / OSC / Source Name USB2 USB2_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE USB2PHY2_TREF _CLK Func 38.4 USB_OTG_SS_REF_C LK SYS_CLK1 OSC0 USB2PHY2_REF_ CLK Func 960 L3INIT_960M_GFCLK L3INIT_960_GFCL K DPLL_USB USB3 USB3_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE USB3PHY_PWRS_ CLK Func 38.4 USB_OTG_SS_REF_C LK SYS_CLK1 OSC0 USB4_MICLK Int 266 L3INIT_L3_GICLK CORE_X2_CLK DPLL_CORE DPLL_USBSS_RE F_CLK Func 38.4 USB_OTG_SS_REF_C LK SYS_CLK1 OSC0 USB_PHY1_CORE USB2PHY1_WKUP _CLK Func 0.032 COREAON_32K_GFCL K SYS_CLK1/610 OSC0 USB_PHY2_CORE USB2PHY2_WKUP _CLK Func 0.032 COREAON_32K_GFCL K SYS_CLK1/610 OSC0 USB_PHY3_CORE USB3PHY_WKUP_ CLK Func 0.032 COREAON_32K_GFCL K SYS_CLK1/610 OSC0 USB4 VCP1 VCP1_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE VCP2 VCP2_CLK Int 266 L3MAIN1_L3_GICLK CORE_X2_CLK DPLL_CORE VIP1 L3_CLK_PROC_CL K Int & Func 266 VIP1_GCLK L3_CLK_PROC_CL K Int & Func 266 VPE L3_CLK_PROC_CL K Int & Func 300 VPE_GCLK WD_TIMER1 PIOCPCLK Int 38.4 WKUPAON_GICLK VIP2 WD_TIMER2 DPLL_CORE DPLL_CORE CORE_X2_CLK DPLL_CORE CORE_ISS_MAIN_ CLK DPLL_CORE CORE_ISS_MAIN_ CLK DPLL_CORE VIDEO1_CLKOUT4 DPLL_VIDEO1 SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE PITIMERCLK Func 0.032 OSC_32K_CLK RC_CLK OSC0 WD_TIMER2_ICLK Int 38.4 WKUPAON_GICLK SYS_CLK1 OSC0 DPLL_ABE_X2_CL K DPLL_ABE WKUPAON_32K_G FCLK OSC0 WD_TIMER2_FCL K 5.6 VIP2_GCLK CORE_X2_CLK CORE_ISS_MAIN_ CLK Func 0.032 WKUPAON_SYS_GFC LK Power Consumption Summary NOTE Maximum power consumption for this SoC depends on the specific use conditions for the end system. Contact your TI representative for assistance in estimating maximum power consumption for the end system use case. 5.7 Electrical Characteristics Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 169 ADVANCE INFORMATION Module DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com NOTE The data specified in Table 5-6 through Table 5-13 are subject to change. NOTE The interfaces or signals described in Table 5-6 through Table 5-13 correspond to the interfaces or signals available in multiplexing mode 0 (Function 1). All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical characteristics, unless multiplexing involves a PHY/GPIO combination in which case different DC electrical characteristics are specified for the different multiplexing modes (Functions). ADVANCE INFORMATION 170 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-6. LVCMOS DDR DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0 (Single-Ended Signals): ddr1_d[31:0], ddr1_a[15:0], ddr1_dqm[3:0], ddr1_ba[2:0], ddr1_csn[0], ddr1_cke, ddr1_odt[0], ddr1_casn, ddr1_rasn, ddr1_wen, ddr1_rst, ddr1_ecc_d[7:0], ddr1_dqm_ecc, ddr2_d[31:0], ddr2_a[15:0], ddr2_dqm[3:0], ddr2_ba[2:0], ddr2_csn[0], ddr2_cke, ddr2_odt[0], ddr2_casn, ddr2_rasn, ddr2_wen, ddr2_rst; Balls: AE26 / AE27 / AF28 / AH26 / AF25 / AG27 / AF27 / AF26 / AB24 / AD27 / AE28 / AD28 / AD26 / AE25 / AD25 / AC26 / AA25 / AB25 / AA26 / AA28 / AA27 / AA24 / AC25 / Y26 / W26 / AB23 / V24 / Y24 / W25 / Y25 / W24 / Y28 / AE22 / AD20 / AE21 / AD22 / AE23 / AH22 / AD24 / AC22 / AG23 / AF24 / AD21 / AE24 / AG21 / AF21 / AC23 / AG20 / AG26 / AC24 / AB26 / Y27 / AE20 / AC21 / AH21 / AE20 / AC21 / AH21 / AE22 / AD20 / AE21 / AD22 / AE23 / AH22 / AD24 / AC22 / AG23 / AF24 / AD21 / AE24 / AG21 / AF21 / AC23 / AG20 / AG26 / AC24 / AB26 / Y27 / AE20 / AC21 / AH21 / AD23 / AH23 / AF22 / AG19 / AH20 / AG22 / AF23 / U25 / U26 / V25 / V26 / V27 / T28 / T26 / V28 / T27 / C28 / A26 / E24 / D25 / D26 / B27 / B26 / C26 / F26 / E25 / E26 / G27 / E28 / G26 / G28 / F25 / G25 / G24 / F23 / F24 / H28 / H25 / H27 / H26 / K27 / K26 / J25 / K28 / H24 / J24 / K24 / L26 / P25 / P26 / P28 / P27 / P24 / P23 / N26 / M25 / N28 / M27 / L25 / N27 / M28 / R24 / N24 / R23 / C27 / E27 / G23 / J26 / L24 / U24 / M24 / M26 / R25 / K25 / T25 / R26 / T24 / N25 Driver Mode High-level output threshold (IOH = 0.1 mA) VOL Low-level output threshold (IOL = 0.1 mA) CPAD Pad capacitance (including package capacitance) ZO Output impedance (drive strength) 0.9 × VDDS V l[2:0] = 000 (Imp80) 80 l[2:0] = 001 (Imp60) 60 l[2:0] = 010 (Imp48) 48 l[2:0] = 011 (Imp40) 40 l[2:0] = 100 (Imp34) 34 0.1 × VDDS V 3 pF Ω Single-Ended Receiver Mode VIH High-level input threshold DDR3/DDR3L VIL Low-level input threshold DDR3/DDR3L -0.2 VREF - 0.1 DDR2 -0.3 VREF-0.125 VREF 10%VDDS VREF + 10%VDDS V 3 pF DDR2 VCM Input common-mode voltage CPAD Pad capacitance (including package capacitance) VREF + 0.1 VDDS + 0.2 VREF + 0.125 VDDS + 0.3 V V Signal Names in MUXMODE 0 (Differential Signals): ddr1_dqs[3:0], ddr1_dqsn[3:0], ddr1_ck, ddr1_nck, ddr2_dqs[3:0], ddr2_dqsn[3:0], ddr2_ck, ddr2_nck, ddr1_dqs_ecc, ddr1_dqsn_ecc Bottom Balls: AH25 / AC27 / AB27 / W28 / AG25 / AC28 / AB28 / W27 / AG27 / AH24 / D28 / F27 / J27 / L28 / D27 / F28 / J28 / L27 / R28 / R27 / U27 / U28 Driver Mode VOH High-level output threshold (IOH = 0.1 mA) VOL Low-level output threshold (IOL = 0.1 mA) CPAD Pad capacitance (including package capacitance) ZO Output impedance (drive strength) 0.9 × VDDS V l[2:0] = 000 (Imp80) 80 l[2:0] = 001 (Imp60) 60 l[2:0] = 010 (Imp48) 48 l[2:0] = 011 (Imp40) 40 l[2:0] = 100 (Imp34) 34 0.1 × VDDS V 3 pF Ω Single-Ended Receiver Mode Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 171 ADVANCE INFORMATION VOH DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-6. LVCMOS DDR DC Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER VIH High-level input threshold MIN DDR3/DDR3L DDR2 VIL Low-level input threshold NOM MAX VREF + 0.1 VDDS+0.2 VREF + 0.125 VDDS+0.3 UNIT V DDR3/DDR3L -0.2 VREF - 0.1 DDR2 -0.3 VREF - 0.125 VREF 10%VDDS VREF + 10%VDDS V 3 pF 0.2 VDDS + 0.4 V 0.25 VDDS + 0.6 VREF 10%VDDS VREF + 10%VDDS VCM Input common-mode voltage CPAD Pad capacitance (including package capacitance) V Differential Receiver Mode VSWING Input voltage swing DDR3/DDR3L DDR2 VCM Input common-mode voltage CPAD Pad capacitance (including package capacitance) 3 pF ADVANCE INFORMATION (1) VDDS in this table stands for corresponding power supply (i.e. vdds_ddr1 or vdds_ddr2). For more information on the power supply name and the corresponding ball, see Table 4-1, POWER [11] column. (2) VREF in this table stands for corresponding Reference Power Supply (i.e. ddr1_vref0 or ddr2_vref0). For more information on the power supply name and the corresponding ball, see Table 4-1, POWER [11] column. (3) For more information on the I/O cell configurations (i[2:0], sr[1:0]), see chapter Control Module of the Device TRM. Table 5-7. Dual Voltage LVCMOS I2C DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: i2c1_sda, 2c1_scl, i2c2_sda, i2c2_scl; Balls: C20 / C19 / C24 / F15 I2C Standard Mode – 1.8 V VIH Input high-level threshold VIL Input low-level threshold Vhys Hysteresis 0.7 × VDDS V 0.3 × VDDS V 0.1 × VDDS V IIN Input current at each I/O pin with an input voltage between 0.1 × VDDS to 0.9 × VDDS 12 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 12 µA CIN Input capacitance 10 pF 0.2 × VDDS V VOL3 Output low-level threshold open-drain at 3-mA sink current IOLmin Low-level output current @VOL = 0.2 × VDDS tOF 3 Output fall time from VIHmin to VILmax with a bus capacitance CB from 5 pF to 400 pF mA 250 ns I2C Fast Mode – 1.8 V VIH Input high-level threshold VIL Input low-level threshold Vhys Hysteresis IIN 172 0.7 × VDDS V 0.3 × VDDS 0.1 × VDDS Input current at each I/O pin with an input voltage between 0.1 × VDDS to 0.9 × VDDS Specifications V V 12 µA Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-7. Dual Voltage LVCMOS I2C DC Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 12 µA CIN Input capacitance 10 pF 0.2 × VDDS V VOL3 Output low-level threshold open-drain at 3-mA sink current IOLmin Low-level output current @VOL = 0.2 × VDDS tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 400 pF 3 20 + 0.1 × Cb mA 250 ns I2C Standard Mode – 3.3 V Input high-level threshold VIL Input low-level threshold Vhys Hysteresis 0.7 × VDDS V 0.3 × VDDS V 0.05 × VDDS V IIN Input current at each I/O pin with an input voltage between 0.1 × VDDS to 0.9 × VDDS 31 80 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 31 80 µA CIN Input capacitance 10 pF VOL3 Output low-level threshold open-drain at 3-mA sink current 0.4 V IOLmin Low-level output current @VOL = 0.4V 3 mA IOLmin Low-level output current @VOL = 0.6V for full drive load (400pF/400KHz) 6 mA tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 5 pF to 400 pF 250 ADVANCE INFORMATION VIH ns I2C Fast Mode – 3.3 V VIH Input high-level threshold VIL Input low-level threshold Vhys Hysteresis 0.7 × VDDS V 0.3 × VDDS 0.05 × VDDS V V IIN Input current at each I/O pin with an input voltage between 0.1 × VDDS to 0.9 × VDDSS 31 80 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 31 80 µA CIN Input capacitance 10 pF VOL3 Output low-level threshold open-drain at 3-mA sink current 0.4 V IOLmin Low-level output current @VOL = 0.4V 3 mA IOLmin Low-level output current @VOL = 0.6V for full drive load (400pF/400KHz) 6 mA tOF Output fall time from VIHmin to VILmax with a bus capacitance CB from 10 pF to 200 pF (Proper External Resistor Value should be used as per I2C spec) 20 + 0.1 × Cb 250 Output fall time from VIHmin to VILmax with a bus capacitance CB from 300 pF to 400 pF (Proper External Resistor Value should be used as per I2C spec) 40 290 ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 173 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-7. Dual Voltage LVCMOS I2C DC Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) (1) VDDS in this table stands for corresponding power supply (i.e. vddshv3). For more information on the power supply name and the corresponding ball, see Table 4-1, POWER [11] column. (2) For more information on the I/O cell configurations, see the Control Module section of the Device TRM. Table 5-8. IQ1833 Buffers DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: tclk; Balls: E20; 1.8-V Mode ADVANCE INFORMATION VIH Input high-level threshold (Does not meet JEDEC VIH) VIL Input low-level threshold (Does not meet JEDEC VIL) VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 0.75 × VDDS V 0.25 × VDDS 100 V mV 2 11 µA 1 pF 3.3-V Mode VIH Input high-level threshold (Does not meet JEDEC VIH) VIL Input low-level threshold (Does not meet JEDEC VIL) VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 2.0 V 0.6 400 V mV 5 11 1 µA pF (1) VDDS in this table stands for corresponding power supply (i.e. vddshv3). For more information on the power supply name and the corresponding ball, see Table 4-1, POWER [11] column. Table 5-9. LVCMOS CSI2 DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT Signals MUXMODE0: csi2_0_dx[4:0]; csi2_0_dy[4:0]; csi2_1_dx[2:0]; csi2_1_dy[2:0] Bottom Balls: AD17 / AD18 / AF16 / AF17 / AF19 / AF20 / AE15 / AE16 / AE19 / AE18 / AC13 / AC14 / AD15 / AD14 / AC16 / AC17 MIPI D-PHY Mode Low-Power Receiver (LP-RX) VIH Input high-level voltage VIL Input low-level voltage 880 (1) VITH Input high-level threshold VITL Input low-level threshold(2) VHYS Input hysteresis(3) 1350 mV 550 mV 880 mV 550 mV 25 mV MIPI D-PHY Mode Ultralow Power Receiver (ULP-RX) VIL Input low-level voltage VITL Input low-level threshold(4) VHYS Input hysteresis(3) 300 mV 300 mV 25 mV MIPI D-PHY Mode High-Speed Receiver (HS-RX) 174 VIDTH Differential input high-level threshold VIDTL Differential input low-level threshold 70 (7) mV –70 mV VIDMAX Maximum differential input voltage 270 mV VIHHS Single-ended input high voltage(5) 460 mV VILHS Single-ended input low voltage(5) –40 Specifications mV Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-9. LVCMOS CSI2 DC Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER VCMRXDC ZID MIN Differential input common-mode voltage(6)(8)(9) 70 Differential input impedance 80 NOM 100 MAX UNIT 330 mV 125 Ω (1) VITH is the voltage at which the receiver is required to detect a high state in the input signal. (2) VITL is the voltage at which the receiver is required to detect a low state in the input signal. VITL is larger than the maximum single-ended line high voltage during HS transmission. Therefore, both low-power (LP) receivers will detect low during HS signaling. (3) To reduce noise sensitivity on the received signal, the LP receiver is required to incorporate a hysteresis, VHYST. VHYST is the difference between the VITH threshold and the VITL threshold. (4) VITL is the voltage at which the receiver is required to detect a low state in the input signal. Specification is relaxed for detecting 0 during ultralow power (ULP) state. The LP receiver is not required to detect HS single-ended voltage as 0 in this state. (5) Excluding possible additional RF interference of 200 mVPP beyond 450 MHz. (6) This value includes a ground difference of 50 mV between the transmitter and the receiver, the static common-mode level tolerance and variations below 450 MHz. (7) This number corresponds to the VODMAX transmitter. (8) Common mode is defined as the average voltage level of X and Y: VCMRX = (VX + VY) / 2. ADVANCE INFORMATION (9) Common mode ripple may be due to tR or tF and transmission line impairments in the PCB. Table 5-10. IHHV1833 Buffers DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: porz / wakeup[3:2] Balls: C25 / AB20 / AB21 1.8-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 1.2 V 0.4 V 40 mV 0.02 1 µA 1 pF 3.3-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage IIN Input current at each I/O pin CPAD Pad capacitance (including package capacitance) 1.2 V 0.4 V 40 mV 5 8 µA 1 pF Table 5-11. BMLB18 Buffers DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT Signal Names in MUXMODE 0: mlbp_dat_n / mlbp_dat_p / mlbp_sig_n / mlbp_sig_p / mlbp_clk_n / mlbp_clk_p; Balls: AA2 / AA1 / AC2 / AC1 / AB2 / AB1; 1.8-V Mode VIH/VIL Input high-level threshold VHYS Input hysteresis voltage VOD Differential output voltage (measured with 50Ω resistor between PAD and PADN) VCM Common mode output voltage CPAD Pad capacitance (including package capacitance) VCM ± 50mV V NONE mV 300 500 mV 1 1.5 V 4 pF (1) VDDS in this table stands for corresponding power supply (i.e. vdds_mlbp). For more information on the power supply name and the Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 175 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-11. BMLB18 Buffers DC Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) corresponding ball, see Table 4-1, POWER [11] column. Table 5-12. Dual Voltage SDIO1833 DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT Signal Names in Mode 0: mmc1_clk, mmc1_cmd, mmc1_data[3:0] Bottom Balls: W3 / W5 / V5 / Y4 / Y5 / Y3 1.8-V Mode VIH Input high-level threshold VIL Input low-level threshold 1.27 V 0.58 V ADVANCE INFORMATION VHYS Input hysteresis voltage IIN Input current at each I/O pin 30 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 30 µA IIN with Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 50 120 210 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 60 120 200 µA 5 pF pulldown enabled IIN with pullup enabled 50 (2) CPAD Pad capacitance (including package capacitance) VOH Output high-level threshold (IOH = 2 mA) VOL Output low-level threshold (IOL = 2 mA) mV 1.4 V 0.45 V 3.3-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage IIN Input current at each I/O pin 110 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 110 µA IIN with Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 40 100 290 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 10 100 290 µA 5 pF pulldown enabled IIN with pullup enabled 0.625 × VDDS V 0.25 × VDDS 40(2) CPAD Pad capacitance (including package capacitance) VOH Output high-level threshold (IOH = 2 mA) VOL Output low-level threshold (IOL = 2 mA) V mV 0.75 × VDDS V 0.125 × VDDS V (1) VDDS in this table stands for corresponding power supply (i.e. vddshv8). For more information on the power supply name and the corresponding ball, see Table 4-1, POWER [11] column. (2) Hysteresis is enabled/disabled with CTRL_CORE_CONTROL_HYST_1.SDCARD_HYST register. 176 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-13. Dual Voltage LVCMOS DC Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN NOM MAX UNIT 1.8-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage VOH Output high-level threshold (IOH = 2 mA) VOL Output low-level threshold (IOL = 2 mA) IDRIVE Pin Drive strength at PAD Voltage = 0.45 V or VDDS - 0.45 V IIN Input current at each I/O pin 16 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 16 µA IIN with pulldown Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 50 120 210 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 60 120 200 µA enabled CPAD Pad capacitance (including package capacitance) 4 pF ZO Output impedance (drive strength) IIN with pullup V 0.35 × VDDS 100 V mV VDDS - 0.45 V 0.45 6 V mA 40 ADVANCE INFORMATION enabled 0.65 × VDDS Ω 3.3-V Mode VIH Input high-level threshold VIL Input low-level threshold VHYS Input hysteresis voltage VOH Output high-level threshold (IOH = 100 µA) VOL Output low-level threshold (IOL = 100 µA) IDRIVE Pin Drive strength at PAD Voltage = 0.45 V or VDDS - 0.45 V IIN Input current at each I/O pin 65 µA IOZ IOZ(IPAD Current) for BIDI cell. This current is contributed by the tristated driver leakage + input current of the Rx + weak pullup/pulldown leakage. PAD is swept from 0 to VDDS and the Max(I(PAD)) is measured and is reported as IOZ 65 µA IIN with pulldown Input current at each I/O pin with weak pulldown enabled measured when PAD = VDDS 40 100 200 µA Input current at each I/O pin with weak pullup enabled measured when PAD = 0 10 100 290 µA enabled CPAD Pad capacitance (including package capacitance) 4 pF ZO Output impedance (drive strength) enabled IIN with pullup 2 V 0.8 200 V mV VDDS - 0.2 V 0.2 6 V mA 40 Ω (1) VDDS in this table stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Table 4-1, POWER [11] column. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 177 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.7.1 www.ti.com HDMIPHY DC Electrical Characteristics The HDMIPHY DC Electrical Characteristics are compliant with the HDMI 1.4a specification and are not reproduced here. 5.7.2 USBPHY DC Electrical Characteristics NOTE USB1 instance is compliant with the USB3.0 SuperSpeed Transmitter and Receiver Normative Electrical Parameters as defined in the USB3.0 Specification Rev 1.0 dated Jun 6, 2011. NOTE USB1 and USB2 Electrical Characteristics are compliant with USB2.0 Specification Rev 2.0 dated April 27, 2000 including ECNs and Errata as applicable. 5.7.3 SATAPHY DC Electrical Characteristics ADVANCE INFORMATION NOTE The SATA module is compliant with the electrical parameters specified in the SATA-IO SATA Specification, Revision 3.2, August 7, 2013. 5.7.4 PCIEPHY DC Electrical Characteristics NOTE The PCIe interfaces are compliant with the electrical parameters specified in PCI Express® Base Specification Revision 3.0. 5.8 VPP Specifications for One-Time Programmable (OTP) eFuses This section specifies the operating conditions required for programming the OTP eFuses and is applicable only for High-Security Devices. Table 5-14. Recommended Operating Conditions for OTP eFuse Programming over operating free-air temperature range (unless otherwise noted) PARAMETER DESCRIPTION vdd_core Supply voltage range for the core domain during OTP operation; OPP NOM (BOOT) vpp Supply voltage range for the eFuse ROM domain during normal operation MIN NOM MAX 1.11 1.15 1.2 NC Supply voltage range for the eFuse ROM domain during OTP programming(1)(2) Temperature (ambient) 1.8 0 V V I(vpp) Tj UNIT 25 V TBD mA 85 ºC (1) Supply voltage range includes DC errors and peak-to-peak noise. TI power management solutions TLV70718 from the TLV707x family meet the supply voltage range needed for vpp. (2) During normal operation, no voltage should be applied to vpp. This can be typically achieved by disabling the regulator attached to the vpp terminal. For more details, see TLV707, TLV707P 200-mA, Low-IQ, Low-Noise, Low-Dropout Regulator for Portable Devices. 178 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 5.8.1 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Hardware Requirements The following hardware requirements must be met when programming keys in the OTP eFuses: • The vpp power supply must be disabled when not programming OTP registers. • The vpp power supply must be ramped up after the proper device power-up sequence (for more details, see Section 5.10.3). 5.8.2 Programming Sequence 5.8.3 Impact to Your Hardware Warranty You recognize and accept at your own risk that your use of eFuse permanently alters the TI device. You acknowledge that eFuse can fail due to incorrect operating conditions or programming sequence. Such a failure may render the TI device inoperable and TI will be unable to confirm the TI device conformed to TI device specifications prior to the attempted eFuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY FOR ANY TI DEVICES THAT HAVE BEEN eFUSED. 5.9 Thermal Resistance Characteristics For reliability and operability concerns, the maximum junction temperature of the Device has to be at or below the TJ value identified in , Recommended Operating Conditions. A BCI compact thermal model for this Device is available and recommended for use when modeling thermal performance in a system. Therefore, it is recommended to perform thermal simulations at the system level with the worst case device power consumption. 5.9.1 Package Thermal Characteristics Table 5-15 provides the thermal resistance characteristics for the package used on this device. NOTE Power dissipation of 1.5 W and an ambient temperature of 85ºC is assumed for ACD package. Table 5-15. Thermal Resistance Characteristics PARAMET ER DESCRIPTION °C/W(3) (1) AIR FLOW (m/s)(2) T1 RΘJC Junction-to-case 0.16 N/A T2 RΘJB Junction-to-board 3.08 N/A Junction-to-free air 12.50 0 TBD 1 TBD 2 TBD 3 NO. T3 T4 T5 RΘJA Junction-to-moving air T6 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 179 ADVANCE INFORMATION Programming sequence for OTP eFuses: • Power on the board per the power-up sequencing. No voltage should be applied on the vpp terminal during power up and normal operation. • Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP software package). • Apply the voltage on the vpp terminal according to the specification in Table 5-14. • Run the software that programs the OTP registers. • After validating the content of the OTP registers, remove the voltage from the vpp terminal. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-15. Thermal Resistance Characteristics (continued) °C/W(3) (1) AIR FLOW (m/s)(2) T7 0.08 0 T8 0.08 1 0.08 2 T10 0.08 3 T11 2.85 0 T12 2.85 1 2.85 2 2.85 3 NO. T9 T13 PARAMET ER ΨJT ΨJB DESCRIPTION Junction-to-package top Junction-to-board T14 ADVANCE INFORMATION (1) These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: – JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) – JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages – JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air) – JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages – JESD51-9, Test Boards for Area Array Surface Mount Packages (2) m/s = meters per second (3) °C/W = degrees Celsius per watt. 180 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10 Timing Requirements and Switching Characteristics 5.10.1 Timing Parameters and Information The timing parameter symbols used in the timing requirement and switching characteristic tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some of pin names and other related terminologies have been abbreviated as follows: Table 5-16. Timing Parameters SYMBOL PARAMETER c Cycle time (period) d Delay time dis Disable time en Enable time h Hold time su Setup time START Start bit t Transition time v Valid time w Pulse duration (width) X Unknown, changing, or don't care level F Fall time H High L Low R Rise time V Valid IV Invalid AE Active Edge FE First Edge LE Last Edge Z High impedance ADVANCE INFORMATION SUBSCRIPTS Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 181 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.1.1 Parameter Information Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Z0 = 50 Ω (see Note) 4.0 pF 1.85 pF Data Sheet Timing Reference Point Output Under Test Device Pin (see Note) NOTE: The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin. ADVANCE INFORMATION pm_tstcirc_prs403 Figure 5-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 5.10.1.1.1 1.8V and 3.3V Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. Vref = (VDD I/O)/2. Vref pm_io_volt_prs403 Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOL MAX and VOH MIN for output clocks. Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) pm_transvolt_prs403 Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels 5.10.1.1.2 1.8V and 3.3V Signal Transition Rates The default SLEWCONTROL settings in each pad configuration register must be used to guarantee timings, unless specific instructions otherwise are given in the individual timing sub-sections of the datasheet. All timings are tested with an input edge rate of 4 volts per nanosecond (4 V/ns). 182 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10.1.1.3 Timing Parameters and Board Routing Analysis The timing parameter values specified in this data manual do not include delays by board routes. As a good board design practice, such delays must always be taken into account. Timing values may be adjusted by increasing/decreasing such delays. TI recommends using the available I/O buffer information specification (IBIS) models to analyze the timing characteristics correctly. To properly use IBIS models to attain accurate timing analysis for a given system, see the Using IBIS Models for timing Analysis application report (literature number SPRA839). If needed, external logic hardware such as buffers may be used to compensate any timing differences. 5.10.2 Interface Clock Specifications 5.10.2.1 Interface Clock Terminology The interface clock is used at the system level to sequence the data and/or to control transfers accordingly with the interface protocol. The two interface clock characteristics are: • The maximum clock frequency • The maximum operating frequency The interface clock frequency documented in this document is the maximum clock frequency, which corresponds to the maximum frequency programmable on this output clock. This frequency defines the maximum limit supported by the Device IC and does not take into account any system consideration (PCB, peripherals). The system designer will have to consider these system considerations and the Device IC timing characteristics as well to define properly the maximum operating frequency that corresponds to the maximum frequency supported to transfer the data on this interface. 5.10.3 Power Supply Sequences This section describes the power-up and power-down sequence required to ensure proper device operation. The power supply names described in this section comprise a superset of a family of compatible devices. Some members of this family will not include a subset of these power supplies and their associated device modules. Refer to the Section 4.2, Pin Attributes of the Section 4, Terminal Configuration and Functions to determine which power supplies are applicable. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 183 ADVANCE INFORMATION 5.10.2.2 Interface Clock Frequency DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Figure 5-4 and Figure 5-5, describe the device Power Sequencing. Note 3 Note 4 vdds18v, vdds_mlbp, vdds18v_ddr1, vdds18v_ddr2 vdda_abe_per, vdda_ddr, vdda_debug, vdda_dsp_eve, vdda_gmac_core, vdda_gpu, vdda_iva, vdda_video, vdda_mpu, vdda_osc vdds_ddr2, vdds_ddr1, ddr1_vref0, ddr2_vref0 VD_CORE BOOT voltage vdd VD_MPU BOOT voltage vdd_mpu VD_IVA BOOT voltage vdd_iva ADVANCE INFORMATION VD_GPU BOOT voltage vdd_gpu VD_DSPEVE BOOT voltage vdd_dspeve vdda_usb1, vdda_usb2, vdda_hdmi, vdda_pcie, vdda_pcie0, vdda_pcie1, vdda_sata, vdda_usb3, vdda_csi vddshv1, vddshv2, vddshv3, vddshv4, vddshv5, vddshv6, vddshv7, vddshv9, vddshv10, vddshv11 Note 5 vdda33v_usb1, vdda33v_usb2 Note 6 vddshv8 xi_osc0 Note 8 resetn/porz Note 9 sysboot[15:0] Note 10 Valid Config Note 11 rstoutn SPRS85v_ELCH_04 Figure 5-4. Power-Up Sequencing (1) Grey shaded areas are windows where it is valid to ramp the voltage rail. (2) Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note. (3) vdd must ramp before or at the same time as vdd_mpu, vdd_gpu, vdd_dspeve and vdd_iva. (4) vdd_mpu, vdd_gpu, vdd_dspeve, vdd_iva can be ramped at the same time or can be staggered. (5) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18v. (6) vddshv8 is separated out to show support for dual voltage. If single voltage is used then vddshv8 can be combined with other vddshvn rails but vddshv8 must ramp after vdd. 184 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (7) vdds and vdda rails must not be combined together. (8) Pulse duration: resetn/porz must remain low a minimum of 12P(12) after xi_osc0 is stable and at a valid frequency. (9) Setup time: sysboot[15:0] pins must be valid 2P(12) before porz is de-asserted high. (10) Hold time: sysboot[15:0] pins must be valid 15P(12) after porz is de-asserted high. (11) resetn to rstoutn delay is 2ms. (12) P = 1/(SYS_CLK1/610) µs, where SYS_CLK1 is in MHz. Note 4 Note 5 porz Note 7 vddshv8 vdda33v_usb1, vdda33v_usb2 vddshv1, vddshv2, vddshv3, vddshv4, vddshv5, vddshv6, vddshv7, vddshv9, vddshv10, vddshv11 ADVANCE INFORMATION Note 6 vdda_usb1, vdda_usb2, vdda_hdmi, vdda_pcie, vdda_pcie0, vdda_pcie1, vdda_sata, vdda_usb3, vdda_csi vdd_dspeve vdd_gpu vdd_iva vdd_mpu vdd vdds_ddr2, vdds_ddr1, ddr1_vref0, ddr2_vref0 vdda_osc, vdda_abe_per, vdda_ddr, vdda_debug, vdda_dsp_eve, vdda_gmac_core, vdda_gpu, vdda_iva,vdda_video, vdda_mpu vdds18v, vdds_mlbp, vdds18v_ddr1, vdds18v_ddr2 xi_osc0 SPRS85v_ELCH_05 Figure 5-5. Power-Down Sequencing (1) Grey shaded areas are windows where it is valid to ramp the voltage rail. (2) Blue dashed lines are not valid windows but show alternate ramp possibilities based on the associated note. (3) xi_osc0 can be turned off anytime after porz assertion and must be turned off before vdda_osc voltage rail is shutdown. (4) vdd_mpu, vdd_gpu, vdd_dspeve, vdd_iva can be ramped at the same time or can be staggered. (5) vdd must ramp after or at the same time as vdd_mpu, vdd_gpu, vdd_dspeve and vdd_iva. (6) If any of the vddshv[1-7,9-11] rails (not including vddshv8) are used as 1.8V only, then these rails can be combined with vdds18h. vddshv[1-7,9-11] is allowed to ramp down at either of the two points shown in the timing diagram in either 1.8V mode or in 3.3V mode. If Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 185 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com vddshv[1-7,9-11] ramps down at the later time in the diagram then the board design must guarantee that the vddshv[1-7,9-11] rail is never higher than 2.0 V above the vdds18v rail. (7) vddshv8 is separated out to show support for dual voltage. If a dedicated LDO/supply source is used for vddshv8, then vddshv8 ramp down should occur at one of the two earliest points in the timing diagram. If vddshv8 is powered by the same supply source as the other vddshv[1-7,9-11] rails, then it is allowed to ramp down at either of the last two points in the timing diagram. Figure 5-6 describes vddshv[1-7,9-11] Supplies Falling Before vdds18v Supplies Delta. ADVANCE INFORMATION Figure 5-6. vddshv* Supplies Falling After vdds18v Supplies Delta (1) Vdelta MAX = 2V (2) If vddshv8 is powered by the same supply source as the other vddshv[1-7,9-11] rails. 186 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10.4 Clock Specifications NOTE For more information, see Power, Reset, and Clock Management / PRCM Environment / External Clock Signal and Power Reset / PRCM Functional Description / PRCM Clock Manager Functional Description section of the Device TRM. NOTE The device operation requires the following clocks: • The 32 kHz frequency is used for low frequency operation. It supplies the wake-up domain for operation in lowest power mode. This is an optional clock and will be supplied by on chip divider + mux (FUNC_32K_CLK) incase it is not available on external pin. • The system clocks, SYS_CLKIN1(Mandatory) and SYS_CLKIN2(Optional) are the main clock sources of the device. They supply the reference clock to the DPLLs as well as functional clock to several modules. The Device also embeds an internal free-running 32-kHz oscillator that is always active as long as the the wake-up (WKUP) domain is supplied. Figure 5-7 shows the external input clock sources and the output clocks to peripherals. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 187 ADVANCE INFORMATION Audio Back End (ABE) module is not supported for this family of devices, but “ABE” name is still present in some clock or DPLL names. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com DEVICE rstoutn Warm reset output. resetn Device reset input. porz xi_osc0 Power ON Reset. From quartz (19.2, 20 or 27 MHz) or from CMOS square clock source (19.2, 20 or 27 MHz). xo_osc0 To quartz (from oscillator output). xi_osc1 From quartz (range from 19.2 to 32 MHz) or from CMOS square clock source (range from 12 to 38.4 MHz). xo_osc1 To quartz (from oscillator output). clkout1 ADVANCE INFORMATION clkout2 Output clkout[3:1] clocks come from: • Either the input system clock and alternate clock (xi_osc0 or xi_osc1) • Or a CORE clock (from CORE output) • Or a 192-MHz clock (from PER DPLL output). clkout3 xref_clk0 xref_clk1 External Reference Clock [3:0]. For Audio and other Peripherals xref_clk2 xref_clk3 sysboot[15:0] Boot Mode Configuration Figure 5-7. Clock Interface 5.10.4.1 Input Clocks / Oscillators • • The source of the internal system clock (SYS_CLK1) could be either: – A CMOS clock that enters on the xi_osc0 ball (with xo_osc0 left unconnected on the CMOS clock case). – A crystal oscillator clock managed by xi_osc0 and xo_osc0. The source of the internal system clock (SYS_CLK2) could be either: – A CMOS clock that enters on the xi_osc1 ball (with xo_osc1 left unconnected on the CMOS clock case). – A crystal oscillator clock managed by xi_osc1 and xo_osc1. 5.10.4.1.1 OSC0 External Crystal An external crystal is connected to the device pins. Figure 5-8 describes the crystal implementation. 188 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Device xo_osc0 xi_osc0 vssa_osc0 Rd (Optional) Crystal Cf2 Cf1 Figure 5-8. Crystal Implementation CL= Cf1Cf2 (Cf1+Cf2) Figure 5-9. Load Capacitance Equation The crystal must be in the fundamental mode of operation and parallel resonant. Table 5-17 summarizes the required electrical constraints. Table 5-17. OSC0 Crystal Electrical Characteristics NAME fp DESCRIPTION MIN Parallel resonance crystal frequency TYP MAX 19.2, 20, 27 UNIT MHz Cf1 Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF Cf2 Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF 100 Ω 19.2 MHz, 20 MHz, 27 MHz 7 pF 19.2 MHz, 20 MHz 7 pF 27 MHz 5 pF 7 pF 5 pF 3 pF ESR(Cf1,Cf2) Crystal ESR ESR = 30 Ω ESR = 40 Ω ESR = 50 Ω CO Crystal shunt capacitance ESR = 60 Ω ESR = 80 Ω ESR = 100 Ω 19.2 MHz, 20 MHz 27 MHz Not Supported 19.2 MHz, 20 MHz 27 MHz Not Supported 19.2 MHz, 20 MHz 27 MHz - Not Supported - LM Crystal motional inductance for fp = 20 MHz 10.16 mH CM Crystal motional capacitance 3.42 fF Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 189 ADVANCE INFORMATION NOTE The load capacitors, Cf1 and Cf2 in Figure 5-8, should be chosen such that the below equation is satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator xi_osc0, xo_osc0, and vssa_osc0 pins. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-17. OSC0 Crystal Electrical Characteristics (continued) NAME tj(xiosc0) DESCRIPTION (1) Frequency accuracy , xi_osc0 MIN TYP MAX Ethernet and MLB not used ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 MLB using derived clock ±50 UNIT ppm (1) Crystal characteristics should account for tolerance+stability+aging. When selecting a crystal, the system design must consider the temperature and aging characteristics of a based on the worst case environment and expected life expectancy of the system. Table 5-18 details the switching characteristics of the oscillator and the requirements of the input clock. Table 5-18. Oscillator Switching Characteristics—Crystal Mode NAME DESCRIPTION ADVANCE INFORMATION fp Oscillation frequency tsX Start-up time MIN TYP MAX 19.2, 20, 27 MHz UNIT MHz 4 ms 5.10.4.1.2 OSC0 Input Clock A 1.8-V LVCMOS-Compatible Clock Input can be used instead of the internal oscillator to provide the SYS_CLKIN1 clock input to the system. The external connections to support this are shown in Figure 510. The xi_osc0 pin is connected to the 1.8-V LVCMOS-Compatible clock source. The xi_osc0 pin is left unconnected. The vssa_osc0 pin is connected to board ground (VSS). Device xi_osc0 xo_osc0 vssa_osc0 NC SPRS85v_CLK_09 Figure 5-10. 1.8-V LVCMOS-Compatible Clock Input Table 5-19 summarizes the OSC0 input clock electrical characteristics. Table 5-19. OSC0 Input Clock Electrical Characteristics—Bypass Mode NAME f 190 DESCRIPTION MIN Frequency CIN Input capacitance IIN Input current (3.3V mode) TYP MAX 19.2, 20, 27 UNIT MHz 2.184 2.384 2.584 pF 4 6 10 µA Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-20 details the OSC0 input clock timing requirements. Table 5-20. OSC0 Input Clock Timing Requirements CK0 CK1 DESCRIPTION 1/ tc(xiosc0) Frequency, xi_osc0 TYP MAX 19.2, 20, 27 UNIT MHz 0.55 * tc(xiosc0) ns 0.01 × tc(xiosc0) ns Rise time, xi_osc0 5 ns Fall time, xi_osc0 5 ns tw(xiosc0) Pulse duration, xi_osc0 low or high tj(xiosc0) Period jitter(1), xi_osc0 tR(xiosc0) tF(xiosc0) tj(xiosc0) MIN Frequency accuracy(2), xi_osc0 0.45 * tc(xiosc0) Ethernet and MLB not used ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 MLB using derived clock ±50 ppm (1) Period jitter is meant here as follows: – The maximum value is the difference between the longest measured clock period and the expected clock period – The minimum value is the difference between the shortest measured clock period and the expected clock period (2) Crystal characteristics should account for tolerance+stability+aging. CK0 CK1 CK1 xi_osc0 Figure 5-11. xi_osc0 Input Clock 5.10.4.1.3 Auxiliary Oscillator OSC1 Input Clock SYS_CLKIN2 is received directly from oscillator OSC1. For more information about SYS_CLKIN2 see Device TRM, Chapter: Power, Reset, and Clock Management. 5.10.4.1.3.1 OSC1 External Crystal An external crystal is connected to the device pins. Figure 5-12 describes the crystal implementation. Device xo_osc1 xi_osc1 Rd (Optional) Crystal Cf1 vssa_osc1 Cf2 Figure 5-12. Crystal Implementation Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 191 ADVANCE INFORMATION NAME DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com NOTE The load capacitors, Cf1 and Cf2 in Figure 5-12, should be chosen such that the below equation is satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components used to implement the oscillator circuit should be placed as close as possible to the associated oscillator xi_osc1, xo_osc1, and vssa_osc1 pins. CL= Cf1Cf2 (Cf1+Cf2) Figure 5-13. Load Capacitance Equation The crystal must be in the fundamental mode of operation and parallel resonant. Table 5-21 summarizes the required electrical constraints. Table 5-21. OSC1 Crystal Electrical Characteristics NAME ADVANCE INFORMATION fp DESCRIPTION MIN Parallel resonance crystal frequency TYP MAX Range from 19.2 to 32 UNIT MHz Cf1 Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF Cf2 Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2 12 24 pF 100 Ω ESR(Cf1,Cf2) Crystal ESR ESR = 30 Ω 19.2 MHz≤fp≤32 MHz 7 pF ESR = 40 Ω 19.2 MHz≤fp≤32 MHz 5 pF 19.2 MHz≤fp≤25 MHz 7 pF 5 pF 7 pF 5 pF 19.2 MHz≤fp≤23 MHz 5 pF 23 MHz≤fp≤25 MHz 3 pF 3 pF ESR = 50 Ω 25 MHz<fp≤27 MHz 27 MHz<fp≤32 MHz Not Supported 19.2 MHz≤fp≤23 MHz CO Crystal shunt capacitance ESR = 60 Ω 23 MHz<fp≤25 MHz 25 MHz<fp≤32 MHz ESR = 80 Ω 25 MHz<fp≤32 MHz ESR = 100 Ω Not Supported - Not Supported 19.2 MHz≤fp≤20 MHz 20 MHz<fp≤32 MHz - - Not Supported - LM Crystal motional inductance for fp = 20 MHz 10.16 mH CM Crystal motional capacitance 3.42 fF tj(xiosc1) Frequency accuracy(1), xi_osc1 Ethernet and MLB not used ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 MLB using derived clock ±50 ppm (1) Crystal characteristics should account for tolerance+stability+aging. When selecting a crystal, the system design must take into account the temperature and aging characteristics of a crystal versus the user environment and expected lifetime of the system. Table 5-22 details the switching characteristics of the oscillator and the requirements of the input clock. 192 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-22. Oscillator Switching Characteristics—Crystal Mode NAME DESCRIPTION fp Oscillation frequency tsX Start-up time MIN TYP MAX UNIT Range from 19.2 to 32 MHz 4 ms 5.10.4.1.3.2 OSC1 Input Clock A 1.8-V LVCMOS-Compatible Clock Input can be used instead of the internal oscillator to provide the SYS_CLKIN2 clock input to the system. The external connections to support this are shown in, Figure 514. The xi_osc1 pin is connected to the 1.8-V LVCMOS-Compatible clock sources. The xo_osc1 pin is left unconnected. The vssa_osc1 pin is connected to board ground (vss). Device xo_osc1 vssa_osc1 ADVANCE INFORMATION xi_osc1 NC SPRS85v_CLK_10 Figure 5-14. 1.8-V LVCMOS-Compatible Clock Input Table 5-23 summarizes the OSC1 input clock electrical characteristics. Table 5-23. OSC1 Input Clock Electrical Characteristics—Bypass Mode NAME f DESCRIPTION MIN Frequency MAX UNIT Range from 12 to 38.4 CI Input capacitance II Input current (3.3V mode) tsX TYP MHz 2.819 3.019 3.219 pF 4 6 10 µA Start-up time(1) See(2) ms (1) To switch from bypass mode to crystal or from crystal mode to bypass mode, there is a waiting time about 100 μs; however, if the chip comes from bypass mode to crystal mode the crystal will start-up after time mentioned in Table 5-22, tsX parameter. (2) Before the processor boots up and the oscillator is set to bypass mode, there is a waiting time when the internal oscillator is in application mode and receives a wave. The switching time in this case is about 100 μs. Table 5-24 details the OSC1 input clock timing requirements. Table 5-24. OSC1 Input Clock Timing Requirements NAME DESCRIPTION MIN CK0 1/ tc(xiosc1) Frequency, xi_osc1 CK1 tw(xiosc1) Pulse duration, xi_osc1 low or high tj(xiosc1) Period jitter(1), xi_osc1 tR(xiosc1) tF(xiosc1) TYP MAX Range from 12 to 38.4 0.45 * tc(xiosc1) UNIT MHz 0.55 * tc(xiosc1) ns 0.01 × tc(xiosc1) ns Rise time, xi_osc1 5 ns Fall time, xi_osc1 5 ns (3) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 193 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-24. OSC1 Input Clock Timing Requirements (continued) NAME DESCRIPTION tj(xiosc1) MIN (2) Frequency accuracy , xi_osc1 TYP MAX Ethernet and MLB not used ±200 Ethernet RGMII and RMII using derived clock ±50 Ethernet MII using derived clock ±100 MLB using derived clock ±50 UNIT ppm (1) Period jitter is meant here as follows: – The maximum value is the difference between the longest measured clock period and the expected clock period – The minimum value is the difference between the shortest measured clock period and the expected clock period (2) Crystal characteristics should account for tolerance+stability+aging. (3) The Period jitter requirement for osc1 can be relaxed to 0.02*tc(xiosc1) under the following constraints: a.The osc1/SYS_CLK2 clock bypasses all device PLLs b.The osc1/SYS_CLK2 clock is only used to source the DSS pixel clock outputs CK0 CK1 CK1 xi_osc1 ADVANCE INFORMATION Figure 5-15. xi_osc1 Input Clock 5.10.4.2 RC On-die Oscillator Clock NOTE The OSC_32K_CLK clock, provided by the On-die 32K RC oscillator, inside of the SoC, is not accurate 32kHz clock. The frequency may significantly vary with temperature and silicon characteristics. For more information about OSC_32K_CLK see the Device TRM, Chapter: Power, Reset, and Clock Management. 5.10.4.3 Output Clocks The device provides three output clocks. Summary of these output clocks are as follows: • clkout1 - Device Clock output 1. Can be used as a system clock for other devices. The source of the clkout1 could be either: – The input system clock and alternate clock (xi_osc0 or xi_osc1) – CORE clock (from CORE output) – 192-MHz clock (from PER DPLL output) • clkout2 - Device Clock output 2. Can be used as a system clock for other devices. The source of the clkout2 could be either: – The input system clock and alternate clock (xi_osc0 or xi_osc1) – CORE clock (from CORE output) – 192-MHz clock (from PER DPLL output) • clkout3 - Device Clock output 3. Can be used as a system clock for other devices. The source of the clkout3 could be either: – The input system clock and alternate clock (xi_osc0 or xi_osc1) – CORE clock (from CORE output) – 192-MHz clock (from PER DPLL output) For more information about Output Clocks see Device TRM, Chapter: Power, Reset, and Clock Management. 194 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10.4.4 DPLLs, DLLs NOTE For more information, see: • Power, Reset and Clock Management / Clock Management Functional / Internal Clock Sources / Generators / Generic DPLL Overview Section and • Display Subsystem / Display Subsystem Overview section of the Device TRM. To generate high-frequency clocks, the device supports multiple on-chip DPLLs controlled directly by the PRCM module. They are of two types: type A and type B DPLLs. They have their own independent power domain (each one embeds its own switch and can be controlled as an independent functional power domain) • They are fed with ALWAYS ON system clock, with independent control per DPLL. The different DPLLs managed by the PRCM are listed below: • DPLL_MPU: It supplies the MPU subsystem clocking internally. • DPLL_IVA: It feeds the IVA subsystem clocking. • DPLL_CORE: It supplies all interface clocks and also few module functional clocks. • DPLL_PER: It supplies several clock sources: a 192-MHz clock for the display functional clock, a 96-MHz functional clock to subsystems and peripherals. • DPLL_ABE: It provides clocks to various modules within the device. • DPLL_USB: It provides 960M clock for USB modules (USB1/2/3/4). • DPLL_GMAC: It supplies several clocks for the Gigabit Ethernet Switch (GMAC_SW). • DPLL_EVE: It provides the Embedded Vision Engine Subsystem (EVE1 and EVE2) clocking. • DPLL_DSP: It feeds the DSP Subsystem clocking. • DPLL_GPU: It supplies clock for the GPU Subsystem. • DPLL_DDR: It generates clocks for the two External Memory Interface (EMIF) controllers and their associated EMIF PHYs. • DPLL_PCIE_REF: It provides reference clock for the APLL_PCIE in PCIE Subsystem. • APLL_PCIE: It feeds clocks for the device Peripheral Component Interconnect Express (PCIe) controllers. NOTE The following DPLLs are controlled by the clock manager located in the always-on Core power domain (CM_CORE_AON): • DPLL_MPU, DPLL_IVA, DPLL_CORE, DPLL_ABE, DPLL_DDR, DPLL_GMAC, DPLL_PCIE_REF, DPLL_PER, DPLL_USB, DPLL_EVE, DPLL_DSP, DPLL_GPU, APLL_PCIE_REF. For more information on CM_CORE_AON and CM_CORE or PRCM DPLLs, see the Power, Reset, and Clock Management (PRCM) chapter of the Device TRM. The following DPLLs are not managed by the PRCM: • • • • • • DPLL_VIDEO1; (It is controlled from DSS) DPLL_VIDEO2; (It is controlled from DSS) DPLL_HDMI; (It is controlled from DSS) DPLL_SATA; (It is controlled from SATA) DPLL_DEBUG; (It is controlled from DEBUGSS) DPLL_USB_OTG_SS; (It is controlled from OCP2SCP1) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 195 ADVANCE INFORMATION • DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com NOTE For more information for not controlled from PRCM DPLL’s see the related chapters in TRM. 5.10.4.4.1 DPLL Characteristics The DPLL has three relevant input clocks. One of them is the reference clock (CLKINP) used to generated the synthesized clock but can also be used as the bypass clock whenever the DPLL enters a bypass mode. It is therefore mandatory. The second one is a fast bypass clock (CLKINPULOW) used when selected as the bypass clock and is optional. The third clock (CLKINPHIF) is explained in the next paragraph. The DPLL has three output clocks (namely CLKOUT, CLKOUTX2, and CLKOUTHIF). CLKOUT and CLKOUTX2 run at the bypass frequency whenever the DPLL enters a bypass mode. Both of them are generated from the lock frequency divided by a post-divider (namely M2 post-divider). The third clock, CLKOUTHIF, has no automatic bypass capability. It is an output of a post-divider (M3 post-divider) with the input clock selectable between the internal lock clock (Fdpll) and CLKINPHIF input of the PLL through an asynchronous multplexing. ADVANCE INFORMATION For more information, see the Power Reset Controller Management chapter of the Device TRM. Table 5-25 summarizes DPLL type described in Section 5.10.4.4, DPLLs, DLLs Specifications introduction. Table 5-25. DPLL Control Type DPLL NAME TYPE CONTROLLED BY PRCM DPLL_ABE Table 5-26 (Type A) Yes(1) DPLL_CORE Table 5-26 (Type A) Yes(1) DPLL_DEBUGSS Table 5-26 (Type A) No(2) DPLL_DSP Table 5-26 (Type A) Yes(1) DPLL_EVE Table 5-26 (Type A) Yes(1) DPLL_GMAC Table 5-26 (Type A) Yes(1) DPLL_HDMI Table 5-27 (Type B) No(2) DPLL_IVA Table 5-26 (Type A) Yes(1) DPLL_MPU Table 5-26 (Type A) Yes(1) DPLL_PER Table 5-26 (Type A) Yes(1) APLL_PCIE Table 5-26 (Type A) Yes(1) DPLL_PCIE_REF Table 5-27 (Type B) Yes(1) DPLL_SATA Table 5-27 (Type B) No(2) DPLL_USB Table 5-27 (Type B) Yes(1) DPLL_USB_OTG_SS Table 5-27 (Type B) No(2) DPLL_VIDEO1 Table 5-26 (Type A) No(2) DPLL_VIDEO2 Table 5-26 (Type A) No(2) DPLL_DDR Table 5-26 (Type A) Yes(1) DPLL_GPU Table 5-26 (Type A) Yes(1) (1) DPLL is in the always-on domain. (2) DPLL is not controlled by the PRCM. Table 5-26 and Table 5-27 summarize the DPLL characteristics and assume testing over recommended operating conditions. Table 5-26. DPLL Type A Characteristics NAME finput 196 DESCRIPTION CLKINP input frequency MIN 0.032 TYP MAX UNIT 52 MHz Specifications COMMENTS FINP Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-26. DPLL Type A Characteristics (continued) MAX UNIT finternal Internal reference frequency 0.15 52 MHz REFCLK fCLKINPHIF CLKINPHIF input frequency 10 1400 MHz FINPHIF 0.001 600 MHz Bypass mode: fCLKOUT = fCLKINPULOW / (M1 + 1) if ulowclken = 1(6) CLKOUT output frequency 20(1) 1800(2) MHz [M / (N + 1)] × FINP × [1 / M2] (in locked condition) CLKOUTx2 output frequency 40(1) 2200(2) MHz 2 × [M / (N + 1)] × FINP × [1 / M2] (in locked condition) 20(3) 1400(4) MHz FINPHIF / M3 if clkinphifsel = 1 40(3) 2200(4) MHz 2 × [M / (N + 1)] × FINP × [1 / M3] if clkinphifsel = 0 40 2800 MHz 2 × [M / (N + 1)] × FINP (in locked condition) fCLKINPULOW fCLKOUT fCLKOUTx2 DESCRIPTION MIN CLKINPULOW input frequency TYP COMMENTS fCLKOUTHIF CLKOUTHIF output frequency fCLKDCOLDO DCOCLKLDO output frequency tlock Frequency lock time 6 + 350 × REFCLK µs plock Phase lock time 6 + 500 × REFCLK µs trelock-L Relock time—Frequency lock(5) (LP relock time from bypass) 6 + 70 × REFCLK µs DPLL in LP relock time: lowcurrstdby = 1 prelock-L Relock time—Phase lock(5) (LP relock time from bypass) 6 + 120 × REFCLK µs DPLL in LP relock time: lowcurrstdby = 1 trelock-F Relock time—Frequency lock(5) (fast relock time from bypass) 3.55 + 70 × REFCLK µs DPLL in fast relock time: lowcurrstdby = 0 prelock-F Relock time—Phase lock(5) (fast relock time from bypass) 3.55 + 120 × REFCLK µs DPLL in fast relock time: lowcurrstdby = 0 (1) The minimum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. For M2 > 1, the minimum frequency on these clocks will further scale down by factor of M2. (2) The maximum frequencies on CLKOUT and CLKOUTX2 are assuming M2 = 1. (3) The minimum frequency on CLKOUTHIF is assuming M3 = 1. For M3 > 1, the minimum frequency on this clock will further scale down by factor of M3. (4) The maximum frequency on CLKOUTHIF is assuming M3 = 1. (5) Relock time assumes typical operating conditions, 10°C maximum temperature drift. (6) Bypass mode: fCLKOUT = FINP if ulowclken = 0. For more information, see the Device TRM. Table 5-27. DPLL Type B Characteristics NAME finput DESCRIPTION MIN TYP MAX UNIT COMMENTS CLKINP input clock frequency 0.62 60 MHz FINP finternal REFCLK internal reference clock frequency 0.62 2.5 MHz [1 / (N + 1)] × FINP fCLKINPULOW CLKINPULOW bypass input clock frequency 0.001 600 MHz Bypass mode: fCLKOUT = fCLKINPULOW / (M1 + 1) If ulowclken = 1(4) fCLKLDOOUT CLKOUTLDO output clock frequency 20(1)(5) 2500(2)(5) MHz M / (N + 1)] × FINP × [1 / M2] (in locked condition) CLKOUT output clock frequency 20(1)(5) 1450(2)(5) MHz [M / (N + 1)] × FINP × [1 / M2] (in locked condition) 750(5) 1500(5) MHz 1250 2500(5) MHz fCLKOUT fCLKDCOLDO Internal oscillator (DCO) output clock frequency (5) [M / (N + 1)] × FINP (in locked condition) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 197 ADVANCE INFORMATION NAME DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-27. DPLL Type B Characteristics (continued) NAME DESCRIPTION MIN TYP MAX UNIT COMMENTS CLKOUTLDO period jitter tJ CLKOUT period jitter –2.5% The period jitter at the output clocks is ± 2.5% peak to peak 2.5% CLKDCOLDO period jitter tlock Frequency lock time 350 × REFCLKs µs plock Phase lock time 500 × REFCLKs µs Relock time—Frequency lock(3) (LP relock time from bypass) 9 + 30 × REFCLKs µs 9 + 125 × REFCLKs µs trelock-L (3) prelock-L Relock time—Phase lock relock time from bypass) (LP (1) The minimum frequency on CLKOUT is assuming M2 = 1. For M2 > 1, the minimum frequency on this clock will further scale down by factor of M2. (2) The maximum frequency on CLKOUT is assuming M2 = 1. (3) Relock time assumes typical operating conditions, 10°C maximum temperature drift. ADVANCE INFORMATION (4) Bypass mode: fCLKOUT = FINP if ULOWCLKEN = 0. For more information, see the Device TRM. (5) For output clocks, there are two frequency ranges according to the SELFREQDCO setting. For more information, see the Device TRM. 5.10.4.4.2 DLL Characteristics Table 5-28 summarizes the DLL characteristics and assumes testing over recommended operating conditions. Table 5-28. DLL Characteristics NAME DESCRIPTION MIN TYP MAX UNIT finput Input clock frequency (EMIF_DLL_FCLK) 266 MHz tlock Lock time 50k cycles Relock time (a change of the DLL frequency implies that DLL must relock) 50k cycles trelock 5.10.4.4.3 DPLL and DLL Noise Isolation NOTE For more information on DPLL and DLL decoupling capacitor requirements, see the External Capacitors / Voltage Decoupling Capacitors / I/O and Analog Voltage Decoupling / VDDA Power Domain section. 5.10.5 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. Monotonic transitions are more easily guaranteed with faster switching signals. Slower input transitions are more susceptible to glitches due to noise and special care should be taken for slow input clocks. 198 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10.6 Peripherals 5.10.6.1 Timing Test Conditions All timing requirements and switching characteristics are valid over the recommended operating conditions unless otherwise specified. 5.10.6.2 Virtual and Manual I/O Timing Modes Some of the timings described in the following sections require the use of Virtual or Manual I/O Timing Modes. Table 5-29 provides a summary of the Virtual and Manual I/O Timing Modes across all device interfaces. The individual interface timing sections found later in this document provide the full description of each applicable Virtual and Manual I/O Timing Mode. Refer to the "Pad Configuration" section of the TRM for the procedure on implementing the Virtual and Manual Timing Modes in a system. Table 5-29. Modes Summary Virtual or Manual IO Mode Name Datasheet Timing Mode VIP1_MANUAL1 VIN1A/1B/2A Rise-Edge Capture Mode Timings VIP1_2B_MANUAL1 VIN2B Rise-Edge Capture Mode Timings VIP1_MANUAL2 VIN1A/1B/2A Fall-Edge Capture Mode Timings VIP1_2B_MANUAL2 VIN2B Fall-Edge Capture Mode Timings VIP2_MANUAL1 VIN3A and VIN3B IOSET1 Rise-Edge Capture Mode Timings VIP2_4A_MANUAL1 VIN4A IOSET1/2 Rise-Edge Capture Mode Timings VIP2_4A_IOSET3_MANUAL1 VIN4A IOSET3 Rise-Edge Capture Mode Timings VIP2_4B_MANUAL1 VIN4B Rise-Edge Capture Mode Timings VIP2_3B_IOSET2_MANUAL1 VIN3B IOSET2 Rise-Edge Capture Mode Timings VIP2_3B_IOSET2_MANUAL2 VIN3B IOSET2 Fall-Edge Capture Mode Timings VIP2_MANUAL2 VIN3A, VIN3B IOSET1 Fall-Edge Capture Mode Timings VIP2_4A_MANUAL2 VIN4A IOSET1/2 Fall-Edge Capture Mode Timings VIP2_4A_IOSET3_MANUAL2 VIN4A IOSET3 Fall-Edge Capture Mode Timings VIP2_4B_MANUAL2 VIN4B Fall-Edge Capture Mode Timings ADVANCE INFORMATION VIP DPI Video Output VOUT1_MANUAL1 DPI1 Video Output Alternate Timings VOUT1_MANUAL2 DPI1 Video Output Default Timings VOUT1_MANUAL3 DPI1 Video Output MANUAL3 Timings VOUT1_MANUAL4 DPI1 Video Output MANUAL4 Timings VOUT2_IOSET1_MANUAL1 DPI2 Video Output IOSET1 Alternate Timings VOUT2_IOSET1_MANUAL2 DPI2 Video Output IOSET1 Default Timings VOUT2_IOSET1_MANUAL3 DPI2 Video Output IOSET1 MANUAL3 Timings VOUT2_IOSET1_MANUAL4 DPI2 Video Output IOSET1 MANUAL4 Timings VOUT2_IOSET2_MANUAL1 DPI2 Video Output IOSET2 Alternate Timings VOUT2_IOSET2_MANUAL2 DPI2 Video Output IOSET2 Default Timings VOUT2_IOSET2_MANUAL3 DPI2 Video Output IOSET2 MANUAL3 Timings VOUT2_IOSET2_MANUAL4 DPI2 Video Output IOSET2 MANUAL4 Timings VOUT3_MANUAL1 DPI3 Video Output Alternate Timings VOUT3_MANUAL2 DPI3 Video Output Default Timings VOUT3_MANUAL3 DPI3 Video Output MANUAL3 Timings VOUT3_MANUAL4 DPI3 Video Output MANUAL4 Timings GPMC No Virtual or Manual IO Timing Mode Required GPMC Asyncronous Mode Timings and Synchronous Mode - Default Timings Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 199 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-29. Modes Summary (continued) Virtual or Manual IO Mode Name Datasheet Timing Mode GPMC_VIRTUAL1 GPMC Synchronous Mode - Alternate Timings McASP ADVANCE INFORMATION No Virtual or Manual IO Timing Mode Required McASP1 Synchronous Transmit Timings MCASP1_VIRTUAL1_ASYNC_TX See Table 5-81 MCASP1_VIRTUAL2_SYNC_RX See Table 5-81 MCASP1_VIRTUAL3_ASYNC_RX See Table 5-81 No Virtual or Manual IO Timing Mode Required McASP2 Synchronous Transmit Timings MCASP2_VIRTUAL1_ASYNC_RX_80M See Table 5-82 MCASP2_VIRTUAL2_ASYNC_RX See Table 5-82 MCASP2_VIRTUAL3_ASYNC_TX See Table 5-82 MCASP2_VIRTUAL4_SYNC_RX See Table 5-82 MCASP2_VIRTUAL5_SYNC_RX_80M See Table 5-82 No Virtual or Manual IO Timing Mode Required McASP3 Synchronous Transmit Timings MCASP3_VIRTUAL2_SYNC_RX See Table 5-83 No Virtual or Manual IO Timing Mode Required McASP4 Synchronous Transmit Timings MCASP4_VIRTUAL1_SYNC_RX See Table 5-84 No Virtual or Manual IO Timing Mode Required McASP5 Synchronous Transmit Timings MCASP5_VIRTUAL1_SYNC_RX See Table 5-85 No Virtual or Manual IO Timing Mode Required McASP6 Synchronous Transmit Timings MCASP6_VIRTUAL1_SYNC_RX See Table 5-86 No Virtual or Manual IO Timing Mode Required McASP7 Synchronous Transmit Timings MCASP7_VIRTUAL2_SYNC_RX See Table 5-87 No Virtual or Manual IO Timing Mode Required McASP8 Synchronous Transmit Timings MCASP8_VIRTUAL1_SYNC_RX See Table 5-88 eMMC/SD/SDIO No Virtual or Manual IO Timing Mode Required MMC1 DS (Pad Loopback) and SDR12 (Pad Loopback) Timings MMC1_VIRTUAL1 MMC1 HS (Internal Loopback and Pad Loopback), SDR12 (Internal Loopback), SDR25 Timings (Internal Loopback and Pad Loopback) MMC1_VIRTUAL2 SDR50 (Pad Loopback) Timings MMC1_VIRTUAL5 MMC1 DS (Internal Loopback) Timings MMC1_VIRTUAL6 MMC1 SDR50 (Internal Loopback) Timings MMC1_VIRTUAL7 MMC1 DDR50 (Internal Loopback) Timings MMC1_DDR_MANUAL1 MMC1 DDR50 (Pad Loopback) Timings MMC1_SDR104_MANUAL1 MMC1 SDR104 Timings No Virtual or Manual IO Timing Mode Required MMC2 Standard (Pad Loopback), High Speed (Pad Loopback), and DDR (Pad Loopback) Timings MMC2_DDR_LB_MANUAL1 MMC2 DDR (Internal Loopback) Timings MMC2_HS200_MANUAL1 MMC2 HS200 Timings MMC2_STD_HS_LB_MANUAL1 MMC2 Standard (Internal Loopback), High Speed (Internal Loopback) Timings MMC3_MANUAL1 MMC3 DS, SDR12, HS, SDR25 Timings MMC3_MANUAL2 MMC3 SDR50 Timings MMC4_MANUAL1 MMC4 SDR12, HS, SDR25 Timings MMC4_DS_MANUAL1 MMC4 DS Timings QSPI No Virtual or Manual IO Timing Mode Required QSPI Mode 3 Boot Timing Mode QSPI_MODE3_MANUAL1 QSPI Mode 3 Default Timing Mode QSPI_MODE0_MANUAL1 QSPI Mode 0 Default Timing Mode GMAC 200 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-29. Modes Summary (continued) Virtual or Manual IO Mode Name Datasheet Timing Mode No Virtual or Manual IO Timing Mode Required GMAC MII0/1 Timings GMAC_RMII0_MANUAL1 GMAC RMII0 Timings GMAC_RMII1_MANUAL1 GMAC RMII1 Timings GMAC_RGMII0_MANUAL1 GMAC RGMII0 Internal Delay Enabled Timings GMAC_RGMII1_MANUAL1 GMAC RGMII1 Internal Delay Enabled Timings MLB MLB_MANUAL1 MLB 3-Pin and 6-Pin Timings HDMI, EMIF, Timers, I2C, HDQ/1-Wire, UART, McSPI, USB, SATA, PCIe, DCAN, GPIO, KBD, PWM, ATL, JTAG, TPIU, SDMA, INTC All Modes ADVANCE INFORMATION No Virtual or Manual IO Timing Mode Required Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 201 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.6.3 VIP The Device includes 2 Video Input Ports (VIP). Table 5-30, Figure 5-16 and Figure 5-17 present timings and switching characteristics of the VIPs. CAUTION The IO timings provided in this section are applicable for all combinations of signals for vin1. However, the timings are only valid for vin2, vin3, and vin4 if signals within a single IOSET are used. The IOSETs are defined in the Table 531, Table 5-32 and Table 5-33. Table 5-30. Timing Requirements for VIP (3)(4)(5) NO. PARAMETER DESCRIPTION V1 tc(CLK) Cycle time, vinx_clki (3) (5) MODE V2 tw(CLKH) Pulse duration, vinx_clki high (3) (5) ADVANCE INFORMATION tw(CLKL) Pulse duration, vinx_clki low V4 tsu(CTL/DATA-CLK) Input setup time, Control (vinx_dei, vinx_vsynci, vinx_fldi, vinx_hsynci) and Data (vinx_dn) valid to vinx_clki transition (3) (4) (5) V5 th(CLK-CTL/DATA) Input hold time, Control (vinx_dei, vinx_vsynci, vinx_fldi, vinx_hsynci) and Data (vinx_dn) valid from vinx_clki transition MAX UNIT ns 0.45P (2) ns 0.45P (2) ns vin1x, vin2x 2.93 ns vin3x, vin4x 3.11 ns -0.05 ns (3) (5) V3 MIN 6.06 (3) (4) (5) (1) For maximum frequency of 165 MHZ. (2) P = vinx_clki period. (3) x in vinx = 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b. (4) n in dn = 0 to 7 when x = 1b, 2b, 3b and 4b; n = 0 to 23 when x = 1a, 2a, 3a and 4a; (5) i in clki, dei, vsynci, hsynci and fldi = 0 or 1. V3 V2 V1 vinx_clki SPRS8xx_VIP_01 Figure 5-16. Video Input Ports clock signal vinx_clki (positive-edge clocking) vinx_clki (negative-edge clocking) V5 V4 vinx_d[23:0]/sig SPRS8xx_VIP_02 Figure 5-17. Video Input Ports timings 202 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 In Table 5-31, Table 5-32 and Table 5-33 are presented the specific groupings of signals (IOSET) for use with vin2, vin3, and vin4. Table 5-31. VIN2 IOSETs Signals IOSET1 BALL IOSET2 MUX IOSET3 BALL MUX BALL MUX vin2a_d0 F2 0 F2 0 U3 4 vin2a_d1 E3 0 E3 0 V2 4 vin2a_d2 E1 0 E1 0 Y1 4 vin2a_d3 E2 0 E2 0 T6 4 vin2a_d4 D2 0 D2 0 U5 4 vin2a_d5 F3 0 F3 0 U4 4 vin2a_d6 D1 0 D1 0 V4 4 vin2a_d7 E4 0 E4 0 W2 4 vin2a_d8 G3 0 G3 0 V3 4 vin2a_d9 C5 0 C5 0 Y2 4 vin2a_d10 D3 0 D3 0 T5 4 vin2a_d11 F4 0 F4 0 U2 4 vin2a_d12 E6 0 E6 0 - - vin2a_d13 C1 0 C1 0 - - vin2a_d14 C2 0 C2 0 - - vin2a_d15 C3 0 C3 0 - - vin2a_d16 B2 0 B2 0 - - vin2a_d17 B5 0 B5 0 - - vin2a_d18 D4 0 D4 0 - - vin2a_d19 A3 0 A3 0 - - vin2a_d20 B3 0 B3 0 - - vin2a_d21 B4 0 B4 0 - - vin2a_d22 C4 0 C4 0 - - vin2a_d23 A4 0 A4 0 - - vin2a_hsync0 G1 0 G1 0 T3 4 vin2a_vsync0 E5 0 E5 0 U6 4 vin2a_de0 G2 0 - - T4 4 vin2a_fld0 D5 0 G2 1 W1 4 vin2a_clk0 F1 0 F1 0 V1 4 2 D5 2 AA5 4 4 ADVANCE INFORMATION vin2a vin2b vin2b_clk1 D5 vin2b_de1 - - G2 3 AB7 vin2b_fld1 G2 2 - - - - vin2b_d0 A4 2 A4 2 AB5 4 vin2b_d1 C4 2 C4 2 AA6 4 vin2b_d2 B4 2 B4 2 AC4 4 vin2b_d3 B3 2 B3 2 AC6 4 vin2b_d4 A3 2 A3 2 W6 4 vin2b_d5 D4 2 D4 2 Y6 4 vin2b_d6 B5 2 B5 2 AC7 4 vin2b_d7 B2 2 B2 2 AC3 4 vin2b_hsync1 G1 3 G1 3 AC5 4 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 203 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-31. VIN2 IOSETs (continued) Signals IOSET1 vin2b_vsync1 IOSET2 IOSET3 BALL MUX BALL MUX BALL MUX E5 3 E5 3 AB4 4 Table 5-32. VIN3 IOSETs Signals IOSET1 BALL IOSET2 MUX BALL IOSET3 IOSET4 MUX BALL MUX BALL MUX vin3a ADVANCE INFORMATION vin3a_d0 N5 2 AE4 6 AE4 6 B7 4 vin3a_d1 M2 2 AE1 6 AE1 6 B8 4 vin3a_d2 L5 2 AD5 6 AD5 6 A6 4 vin3a_d3 M1 2 AD3 6 AD3 6 A7 4 vin3a_d4 K6 2 AD4 6 AD4 6 C9 4 vin3a_d5 L4 2 AE2 6 AE2 6 A8 4 vin3a_d6 L3 2 AD1 6 AD1 6 B9 4 vin3a_d7 L2 2 AD2 6 AD2 6 A9 4 vin3a_d8 L1 2 B2 6 B2 6 E8 4 vin3a_d9 K1 2 B5 6 B5 6 D8 4 vin3a_d10 J1 2 D4 6 D4 6 D6 4 vin3a_d11 J2 2 A3 6 A3 6 D7 4 vin3a_d12 H1 2 B3 6 - - A5 4 vin3a_d13 K2 2 B4 6 - - B6 4 vin3a_d14 H2 2 C4 6 - - C8 4 vin3a_d15 K3 2 A4 6 - - C7 4 vin3a_d16 P6 2 - - - - F9 4 vin3a_d17 J6 2 - - - - E10 4 vin3a_d18 R4 2 - - - - D9 4 vin3a_d19 R5 2 - - - - C6 4 vin3a_d20 M6 2 - - - - E9 4 vin3a_d21 K4 2 - - - - F8 4 vin3a_d22 P5 2 - - - - F7 4 vin3a_d23 N6 2 - - - - E7 4 vin3a_hsync0 N4 2 N4 2 C4 5 A10 4 vin3a_vsync0 R3 2 R3 2 A4 5 D10 4 vin3a_de0 J5 2 J5 2 B3 5 C10 4 vin3a_fld0 K5 2 K5 2 B4 5 D11 4 vin3a_clk0 P1 2 AC8 6 AC8 6 B10 4 vin3b 204 vin3b_clk1 L6 6 M4 4 - - - - vin3b_de1 N3 6 N3 6 - - - - vin3b_fld1 M4 6 - - - - - - vin3b_d0 H6 6 H6 6 - - - - vin3b_d1 G6 6 G6 6 - - - - vin3b_d2 J4 6 J4 6 - - - - vin3b_d3 F5 6 F5 6 - - - - vin3b_d4 G5 6 G5 6 - - - - vin3b_d5 J3 6 J3 6 - - - - vin3b_d6 H4 6 H4 6 - - - - Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-32. VIN3 IOSETs (continued) Signals IOSET1 IOSET2 IOSET3 IOSET4 BALL MUX BALL MUX BALL MUX BALL MUX vin3b_d7 H3 6 H3 6 - - - - vin3b_hsync1 H5 6 H5 6 - - - - vin3b_vsync1 G4 6 G4 6 - - - - Table 5-33. VIN4 IOSETs Signals IOSET1 BALL IOSET2 MUX IOSET3 BALL MUX BALL MUX vin4a_d0 P6 4 B7 3 A13 8 vin4a_d1 J6 4 B8 3 F14 8 vin4a_d2 R4 4 A6 3 E13 8 vin4a_d3 R5 4 A7 3 E11 8 vin4a_d4 M6 4 C9 3 E12 8 vin4a_d5 K4 4 A8 3 D13 8 vin4a_d6 P5 4 B9 3 C11 8 vin4a_d7 N6 4 A9 3 D12 8 vin4a_d8 T2 4 E8 3 E15 8 vin4a_d9 U1 4 D8 3 A19 8 vin4a_d10 P3 4 D6 3 B14 8 vin4a_d11 R1 4 D7 3 A14 8 vin4a_d12 H6 4 A5 3 D15 8 vin4a_d13 G6 4 B6 3 B15 8 vin4a_d14 J4 4 C8 3 B16 8 vin4a_d15 F5 4 C7 3 A16 8 vin4a_d16 - - F9 3 C17 8 vin4a_d17 - - E10 3 A20 8 vin4a_d18 - - D9 3 D16 8 vin4a_d19 - - C6 3 D17 8 vin4a_d20 - - E9 3 AA3 8 vin4a_d21 - - F8 3 AB6 8 vin4a_d22 - - F7 3 AB3 8 vin4a_d23 - - E7 3 AA4 8 vin4a_hsync0 R2/ L6 4/4 A10 3 E21 8 vin4a_vsync0 R6/ N1 4/4 D10 3 F17 8 vin4a_de0 G4/ L6 4/5 C10 3 A22 8 vin4a_fld0 K5/ G5 4/4 D11 3 F18 8 vin4a_clk0 P4 4 B10 3 B25 8 ADVANCE INFORMATION vin4a vin4b vin4b_clk1 J5 6 V1 5 - - vin4b_de1 K5 6 T4 5 - - vin4b_fld1 P4 6 W1 5 - - vin4b_d0 P6 6 U3 5 - - vin4b_d1 J6 6 V2 5 - - vin4b_d2 R4 6 Y1 5 - - vin4b_d3 R5 6 T6 5 - - vin4b_d4 M6 6 U5 5 - Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 205 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-33. VIN4 IOSETs (continued) Signals IOSET1 IOSET2 IOSET3 BALL MUX BALL MUX BALL MUX vin4b_d5 K4 6 U4 5 - - vin4b_d6 P5 6 V4 5 - - vin4b_d7 N6 6 W2 5 - - vin4b_hsync1 N4 6 T3 5 - - vin4b_vsync1 R3 6 U6 5 - - NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module Chapter in the Device TRM. ADVANCE INFORMATION Manual IO Timings Modes must be used to guarantee some IO timings for VIP1. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-34 Manual Functions Mapping for VIP1 for a definition of the Manual modes. Table 5-34 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. 206 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-34. Manual Functions Mapping for VIP1 BALL NAME U2 VIP1_MANUAL1 VIP1_MANUAL2 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) RMII_MHZ_50 _CLK 1973 184 2257 0 N3 gpmc_ben0 2133 486 2582 M4 gpmc_ben1 2034 577 U3 mdio_d 1897 35 V1 mdio_mclk 0 U4 rgmii0_rxc 1945 MUXMODE 0 1 2 3 4 CFG_RMII_MHZ_50_CLK_IN - - - - vin2a_d11 77 CFG_GPMC_BEN0_IN - - - vin1b_hsync1 - 2545 109 CFG_GPMC_BEN1_IN - - - vin1b_de1 - 1999 0 CFG_MDIO_D_IN - - - - vin2a_d0 0 0 0 CFG_MDIO_MCLK_IN - - - - vin2a_clk0 97 2072 0 CFG_RGMII0_RXC_IN - - - - vin2a_d5 V4 rgmii0_rxctl 1939 440 2326 93 CFG_RGMII0_RXCTL_IN - - - - vin2a_d6 W1 rgmii0_rxd0 1990 141 2147 0 CFG_RGMII0_RXD0_IN - - - - vin2a_fld0 Y2 rgmii0_rxd1 1928 527 2298 246 CFG_RGMII0_RXD1_IN - - - - vin2a_d9 V3 rgmii0_rxd2 1901 425 2280 134 CFG_RGMII0_RXD2_IN - - - - vin2a_d8 W2 rgmii0_rxd3 1972 637 2331 362 CFG_RGMII0_RXD3_IN - - - - vin2a_d7 T6 rgmii0_txc 1933 382 2347 28 CFG_RGMII0_TXC_IN - - - - vin2a_d3 U5 rgmii0_txctl 2019 479 2372 217 CFG_RGMII0_TXCTL_IN - - - - vin2a_d4 T5 rgmii0_txd0 1934 203 2205 0 CFG_RGMII0_TXD0_IN - - - - vin2a_d10 U6 rgmii0_txd1 2015 604 2360 362 CFG_RGMII0_TXD1_IN - - - - vin2a_vsync0 T3 rgmii0_txd2 1839 496 2249 158 CFG_RGMII0_TXD2_IN - - - - vin2a_hsync0 T4 rgmii0_txd3 2087 423 2426 108 CFG_RGMII0_TXD3_IN - - - - vin2a_de0 V2 uart3_rxd 1578 0 1530 0 CFG_UART3_RXD_IN - - - - vin2a_d1 Y1 uart3_txd 1869 99 1967 0 CFG_UART3_TXD_IN - - - - vin2a_d2 AD8 vin1a_clk0 0 0 0 0 CFG_VIN1A_CLK0_IN vin1a_clk0 - - - - AE9 vin1a_d0 2051 708 2439 275 CFG_VIN1A_D0_IN vin1a_d0 - - - - AF10 vin1a_d1 1931 812 2337 447 CFG_VIN1A_D1_IN vin1a_d1 - - - - AF3 vin1a_d10 2049 804 2420 448 CFG_VIN1A_D10_IN vin1a_d10 vin1b_d5 - - - AF5 vin1a_d11 1921 766 2331 438 CFG_VIN1A_D11_IN vin1a_d11 vin1b_d4 - - - AE5 vin1a_d12 2078 1220 2397 915 CFG_VIN1A_D12_IN vin1a_d12 vin1b_d3 - - - AF1 vin1a_d13 1986 1138 2366 788 CFG_VIN1A_D13_IN vin1a_d13 vin1b_d2 - - - AD6 vin1a_d14 2077 1242 2403 947 CFG_VIN1A_D14_IN vin1a_d14 vin1b_d1 - - - AE3 vin1a_d15 2070 1581 2337 1407 CFG_VIN1A_D15_IN vin1a_d15 vin1b_d0 - - - AE4 vin1a_d16 2008 1432 2321 1202 CFG_VIN1A_D16_IN vin1a_d16 vin1b_d7 - - - AE1 vin1a_d17 2077 1571 2370 1351 CFG_VIN1A_D17_IN vin1a_d17 vin1b_d6 - - - AD5 vin1a_d18 2075 1527 2357 1292 CFG_VIN1A_D18_IN vin1a_d18 vin1b_d5 - - Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 207 ADVANCE INFORMATION BAL L DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-34. Manual Functions Mapping for VIP1 (continued) BAL L BALL NAME AD3 VIP1_MANUAL1 VIP1_MANUAL2 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) vin1a_d19 2055 1636 2358 1422 CFG_VIN1A_D19_IN MUXMODE 0 1 2 3 4 vin1a_d19 vin1b_d4 - - - ADVANCE INFORMATION AE7 vin1a_d2 1871 1037 2301 620 CFG_VIN1A_D2_IN vin1a_d2 - - - - AD4 vin1a_d20 2046 1452 2351 1163 CFG_VIN1A_D20_IN vin1a_d20 vin1b_d3 - - - AE2 vin1a_d21 2135 1292 2405 1024 CFG_VIN1A_D21_IN vin1a_d21 vin1b_d2 - - - AD1 vin1a_d22 2034 1430 2348 1206 CFG_VIN1A_D22_IN vin1a_d22 vin1b_d1 - - - AD2 vin1a_d23 2191 813 2502 447 CFG_VIN1A_D23_IN vin1a_d23 vin1b_d0 - - - AE8 vin1a_d3 1938 984 2299 658 CFG_VIN1A_D3_IN vin1a_d3 - - - - AE6 vin1a_d4 2034 597 2424 178 CFG_VIN1A_D4_IN vin1a_d4 - - - - AF7 vin1a_d5 1961 927 2359 554 CFG_VIN1A_D5_IN vin1a_d5 - - - - AF8 vin1a_d6 1909 930 2323 549 CFG_VIN1A_D6_IN vin1a_d6 - - - - AF6 vin1a_d7 1999 901 2383 557 CFG_VIN1A_D7_IN vin1a_d7 - - - - AF4 vin1a_d8 2040 856 2426 448 CFG_VIN1A_D8_IN vin1a_d8 vin1b_d7 - - - AF2 vin1a_d9 2133 799 2472 388 CFG_VIN1A_D9_IN vin1a_d9 vin1b_d6 - - - AC9 vin1a_de0 1842 861 2258 352 CFG_VIN1A_DE0_IN vin1a_de0 vin1b_hsync1 - - - AD9 vin1a_fld0 1968 1029 2347 622 CFG_VIN1A_FLD0_IN vin1a_fld0 vin1b_vsync1 - - - AC10 vin1a_hsync0 1871 1264 2257 881 CFG_VIN1A_HSYNC0_IN vin1a_hsync0 vin1b_fld1 - - - AD7 vin1a_vsync0 1798 1000 2243 649 CFG_VIN1A_VSYNC0_IN vin1a_vsync0 vin1b_de1 - - - AC8 vin1b_clk1 160 0 227 0 CFG_VIN1B_CLK1_IN vin1b_clk1 - - - - F1 vin2a_clk0 0 0 0 0 CFG_VIN2A_CLK0_IN vin2a_clk0 - - - - F2 vin2a_d0 1920 227 2180 0 CFG_VIN2A_D0_IN vin2a_d0 - - - - E3 vin2a_d1 1957 476 2326 309 CFG_VIN2A_D1_IN vin2a_d1 - - - - D3 vin2a_d10 1865 337 2297 110 CFG_VIN2A_D10_IN vin2a_d10 - - - - F4 vin2a_d11 1753 19 1938 0 CFG_VIN2A_D11_IN vin2a_d11 - - - - E6 vin2a_d12 1654 487 2135 182 CFG_VIN2A_D12_IN vin2a_d12 - - - - C1 vin2a_d13 1927 132 2134 0 CFG_VIN2A_D13_IN vin2a_d13 - - - - C2 vin2a_d14 1715 0 1753 0 CFG_VIN2A_D14_IN vin2a_d14 - - - - C3 vin2a_d15 1745 381 2222 63 CFG_VIN2A_D15_IN vin2a_d15 - - - - B2 vin2a_d16 1670 319 2137 58 CFG_VIN2A_D16_IN vin2a_d16 - vin2b_d7 - - B5 vin2a_d17 1709 409 2192 79 CFG_VIN2A_D17_IN vin2a_d17 - vin2b_d6 - - D4 vin2a_d18 2033 334 2378 21 CFG_VIN2A_D18_IN vin2a_d18 - vin2b_d5 - - A3 vin2a_d19 1957 193 2207 0 CFG_VIN2A_D19_IN vin2a_d19 - vin2b_d4 - - E1 vin2a_d2 1912 5 2057 0 CFG_VIN2A_D2_IN vin2a_d2 - - - - 208 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-34. Manual Functions Mapping for VIP1 (continued) BALL NAME B3 VIP1_MANUAL1 VIP1_MANUAL2 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) vin2a_d20 1938 619 2325 388 MUXMODE 0 1 2 3 4 CFG_VIN2A_D20_IN vin2a_d20 - vin2b_d3 - - B4 vin2a_d21 1899 546 2320 221 CFG_VIN2A_D21_IN vin2a_d21 - vin2b_d2 - - C4 vin2a_d22 1800 272 2219 30 CFG_VIN2A_D22_IN vin2a_d22 - vin2b_d1 - - A4 vin2a_d23 1807 476 2225 200 CFG_VIN2A_D23_IN vin2a_d23 - vin2b_d0 - - E2 vin2a_d3 2095 421 2440 257 CFG_VIN2A_D3_IN vin2a_d3 - - - - D2 vin2a_d4 2008 0 2142 0 CFG_VIN2A_D4_IN vin2a_d4 - - - - F3 vin2a_d5 2137 406 2455 252 CFG_VIN2A_D5_IN vin2a_d5 - - - - D1 vin2a_d6 1717 0 1883 0 CFG_VIN2A_D6_IN vin2a_d6 - - - - E4 vin2a_d7 1850 171 2229 0 CFG_VIN2A_D7_IN vin2a_d7 - - - - G3 vin2a_d8 1841 340 2250 151 CFG_VIN2A_D8_IN vin2a_d8 - - - - C5 vin2a_d9 1836 289 2279 27 CFG_VIN2A_D9_IN vin2a_d9 - - - - G2 vin2a_de0 1772 316 2202 0 CFG_VIN2A_DE0_IN vin2a_de0 vin2a_fld0 vin2b_fld1 vin2b_de1 - D5 vin2a_fld0 2117 507 2453 357 CFG_VIN2A_FLD0_IN vin2a_fld0 - vin2b_clk1 - - G1 vin2a_hsync0 1969 231 2233 0 CFG_VIN2A_HSYNC0_IN vin2a_hsync0 - - vin2b_hsync1 - E5 vin2a_vsync0 1793 110 1936 0 CFG_VIN2A_VSYNC0_IN vin2a_vsync0 - - vin2b_vsync1 - Manual IO Timings Modes must be used to guarantee some IO timings for VIP1. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-35 Manual Functions Mapping for VIP1 2B for a definition of the Manual modes. Table 5-35 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-35. Manual Functions Mapping for VIP1 2B BALL BALL NAME VIP1_2B_MANUAL1 VIP1_2B_MANUAL2 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 2 3 4 AC5 gpio6_10 2207 0 2288 0 CFG_GPIO6_10_IN - - vin2b_hsync1 AB4 gpio6_11 2183 225 2486 77 CFG_GPIO6_11_IN - - vin2b_vsync1 AC3 mmc3_clk 2262 114 2452 0 CFG_MMC3_CLK_IN - - vin2b_d7 AC7 mmc3_cmd 2228 108 2425 0 CFG_MMC3_CMD_IN - - vin2b_d6 Y6 mmc3_dat0 2137 170 2463 0 CFG_MMC3_DAT0_IN - - vin2b_d5 W6 mmc3_dat1 2116 154 2393 0 CFG_MMC3_DAT1_IN - - vin2b_d4 AC6 mmc3_dat2 1891 0 1945 0 CFG_MMC3_DAT2_IN - - vin2b_d3 AC4 mmc3_dat3 2202 197 2516 22 CFG_MMC3_DAT3_IN - - vin2b_d2 AA6 mmc3_dat4 1966 0 1991 0 CFG_MMC3_DAT4_IN - - vin2b_d1 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 209 ADVANCE INFORMATION BAL L DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-35. Manual Functions Mapping for VIP1 2B (continued) ADVANCE INFORMATION BALL BALL NAME VIP1_2B_MANUAL1 VIP1_2B_MANUAL2 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 2 3 4 AB5 mmc3_dat5 2163 15 2361 0 CFG_MMC3_DAT5_IN - - vin2b_d0 AB7 mmc3_dat6 2162 51 2319 0 CFG_MMC3_DAT6_IN - - vin2b_de1 AA5 mmc3_dat7 0 0 0 0 CFG_MMC3_DAT7_IN - - vin2b_clk1 B2 vin2a_d16 1175 0 1413 0 CFG_VIN2A_D16_IN vin2b_d7 - - B5 vin2a_d17 1323 0 1522 0 CFG_VIN2A_D17_IN vin2b_d6 - - D4 vin2a_d18 1513 0 1580 0 CFG_VIN2A_D18_IN vin2b_d5 - - A3 vin2a_d19 1278 0 1396 0 CFG_VIN2A_D19_IN vin2b_d4 - - B3 vin2a_d20 1676 0 1895 0 CFG_VIN2A_D20_IN vin2b_d3 - - B4 vin2a_d21 1610 0 1774 0 CFG_VIN2A_D21_IN vin2b_d2 - - C4 vin2a_d22 1250 0 1497 0 CFG_VIN2A_D22_IN vin2b_d1 - - A4 vin2a_d23 1434 0 1643 0 CFG_VIN2A_D23_IN vin2b_d0 - - G2 vin2a_de0 1539 147 1793 0 CFG_VIN2A_DE0_IN vin2b_fld1 vin2b_de1 - D5 vin2a_fld0 0 0 0 0 CFG_VIN2A_FLD0_IN vin2b_clk1 - - G1 vin2a_hsync0 1475 0 1542 0 CFG_VIN2A_HSYNC0_IN - vin2b_hsync1 - E5 vin2a_vsync0 1163 0 1218 0 CFG_VIN2A_VSYNC0_IN - vin2b_vsync1 - (1) The CFG_MMC3_CLK_IN register should remain at its Default value, which is programmed automatically by hardware during the recalibration process. Manual IO Timings Modes must be used to guarantee some IO timings for VIP2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-36 Manual Functions Mapping for VIP2 for a definition of the Manual modes. Table 5-36 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-36. Manual Functions Mapping for VIP2 BAL L BALL NAME P6 J6 VIP2_MANUAL 1 VIP2_MANUAL2 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) gpmc_a0 2558 565 2920 260 gpmc_a1 2421 648 2782 349 MUXMODE 2 3 4 5 6 CFG_GPMC_A0_IN vin3a_d16 - vin4a_d0 - - CFG_GPMC_A1_IN vin3a_d17 - vin4a_d1 - - J5 gpmc_a10 2378 477 2765 0 CFG_GPMC_A10_IN vin3a_de0 - - - K5 gpmc_a11 2409 579 2783 295 CFG_GPMC_A11_IN vin3a_fld0 - vin4a_fld0 - - H6 gpmc_a19 1887 0 1735 0 CFG_GPMC_A19_IN - - vin4a_d12 - vin3b_d0 R4 gpmc_a2 2624 893 2882 682 CFG_GPMC_A2_IN vin3a_d18 - vin4a_d2 - - G6 gpmc_a20 1670 0 1508 0 CFG_GPMC_A20_IN - - vin4a_d13 - vin3b_d1 J4 gpmc_a21 1925 0 1763 0 CFG_GPMC_A21_IN - - vin4a_d14 - vin3b_d2 210 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-36. Manual Functions Mapping for VIP2 (continued) BAL L BALL NAME F5 VIP2_MANUAL 1 VIP2_MANUAL2 CFG REGISTER G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 2 3 4 5 6 gpmc_a22 1777 0 1631 0 CFG_GPMC_A22_IN - - vin4a_d15 - vin3b_d3 G5 gpmc_a23 1716 0 1717 J3 gpmc_a24 1758 111 1756 0 CFG_GPMC_A23_IN - - vin4a_fld0 - vin3b_d4 0 CFG_GPMC_A24_IN - - - - H4 gpmc_a25 1805 0 vin3b_d5 1667 0 CFG_GPMC_A25_IN - - - - H3 gpmc_a26 1800 vin3b_d6 54 1699 0 CFG_GPMC_A26_IN - - - - vin3b_d7 H5 gpmc_a27 R5 gpmc_a3 1661 0 1540 0 CFG_GPMC_A27_IN - - - - vin3b_hsync1 2589 902 2855 715 CFG_GPMC_A3_IN vin3a_d19 - vin4a_d3 - M6 - gpmc_a4 2616 808 2874 597 CFG_GPMC_A4_IN vin3a_d20 - vin4a_d4 - - K4 gpmc_a5 2514 733 2842 491 CFG_GPMC_A5_IN vin3a_d21 - vin4a_d5 - - P5 gpmc_a6 2511 417 2837 146 CFG_GPMC_A6_IN vin3a_d22 - vin4a_d6 - - N6 gpmc_a7 2752 618 3035 325 CFG_GPMC_A7_IN vin3a_d23 - vin4a_d7 - - N4 gpmc_a8 2457 603 2812 203 CFG_GPMC_A8_IN vin3a_hsync0 - - - - R3 gpmc_a9 2536 749 2857 409 CFG_GPMC_A9_IN vin3a_vsync0 - - - - N5 gpmc_ad0 2139 232 2444 0 CFG_GPMC_AD0_IN vin3a_d0 - - - - M2 gpmc_ad1 2429 212 2711 0 CFG_GPMC_AD1_IN vin3a_d1 - - - - J1 gpmc_ad10 2294 337 2703 16 CFG_GPMC_AD10_IN vin3a_d10 - - - - J2 gpmc_ad11 2184 327 2600 0 CFG_GPMC_AD11_IN vin3a_d11 - - - - H1 gpmc_ad12 2222 182 2471 0 CFG_GPMC_AD12_IN vin3a_d12 - - - - K2 gpmc_ad13 2179 152 2421 0 CFG_GPMC_AD13_IN vin3a_d13 - - - - H2 gpmc_ad14 2166 16 2263 0 CFG_GPMC_AD14_IN vin3a_d14 - - - - K3 gpmc_ad15 2191 254 2535 0 CFG_GPMC_AD15_IN vin3a_d15 - - - - L5 gpmc_ad2 2412 314 2776 41 CFG_GPMC_AD2_IN vin3a_d2 - - - - M1 gpmc_ad3 2249 227 2503 0 CFG_GPMC_AD3_IN vin3a_d3 - - - - K6 gpmc_ad4 2317 256 2613 0 CFG_GPMC_AD4_IN vin3a_d4 - - - - L4 gpmc_ad5 2254 108 2441 0 CFG_GPMC_AD5_IN vin3a_d5 - - - - L3 gpmc_ad6 2164 279 2533 0 CFG_GPMC_AD6_IN vin3a_d6 - - - - L2 gpmc_ad7 2278 230 2597 0 CFG_GPMC_AD7_IN vin3a_d7 - - - - L1 gpmc_ad8 2246 449 2701 84 CFG_GPMC_AD8_IN vin3a_d8 - - - - ADVANCE INFORMATION A_DELAY (ps) MUXMODE K1 gpmc_ad9 2222 298 2607 0 CFG_GPMC_AD9_IN vin3a_d9 - - - - N3 gpmc_ben0 1767 0 1686 0 CFG_GPMC_BEN0_IN - - - - vin3b_de1 M4 gpmc_ben1 1838 0 1766 0 CFG_GPMC_BEN1_IN - - vin3b_clk1 - vin3b_fld1 L6 gpmc_clk 0 0 0 0 CFG_GPMC_CLK_IN - - vin4a_hsync0 vin4a_de0 vin3b_clk1 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 211 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-36. Manual Functions Mapping for VIP2 (continued) BAL L BALL NAME G4 gpmc_cs1 VIP2_MANUAL 1 VIP2_MANUAL2 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 1611 0 1450 0 MUXMODE 2 3 4 5 6 CFG_GPMC_CS1_IN - - vin4a_de0 - vin3b_vsync1 P1 gpmc_cs3 0 0 0 0 CFG_GPMC_CS3_IN vin3a_clk0 - - - - AE4 vin1a_d16 2152 1311 2633 790 CFG_VIN1A_D16_IN - - - - vin3a_d0 ADVANCE INFORMATION AE1 vin1a_d17 2211 1381 2690 849 CFG_VIN1A_D17_IN - - - - vin3a_d1 AD5 vin1a_d18 2220 1393 2669 879 CFG_VIN1A_D18_IN - - - - vin3a_d2 AD3 vin1a_d19 2186 1418 2680 870 CFG_VIN1A_D19_IN - - - - vin3a_d3 AD4 vin1a_d20 2183 1292 2666 707 CFG_VIN1A_D20_IN - - - - vin3a_d4 AE2 vin1a_d21 2280 1155 2721 601 CFG_VIN1A_D21_IN - - - - vin3a_d5 AD1 vin1a_d22 2144 1098 2664 517 CFG_VIN1A_D22_IN - - - - vin3a_d6 AD2 vin1a_d23 2355 643 2816 0 CFG_VIN1A_D23_IN - - - - vin3a_d7 AC8 vin1b_clk1 0 0 0 0 CFG_VIN1B_CLK1_IN - - - - vin3a_clk0 B2 vin2a_d16 1624 239 1772 0 CFG_VIN2A_D16_IN - - - - vin3a_d8 B5 vin2a_d17 1541 406 1838 0 CFG_VIN2A_D17_IN - - - - vin3a_d9 D4 vin2a_d18 1942 313 2047 0 CFG_VIN2A_D18_IN - - - - vin3a_d10 A3 vin2a_d19 1851 0 1667 0 CFG_VIN2A_D19_IN - - - - vin3a_d11 B3 vin2a_d20 1837 430 2187 0 CFG_VIN2A_D20_IN - - - vin3a_de0 vin3a_d12 B4 vin2a_d21 1805 400 2042 0 CFG_VIN2A_D21_IN - - - vin3a_fld0 vin3a_d13 C4 vin2a_d22 1667 213 1786 0 CFG_VIN2A_D22_IN - - - vin3a_hsync0 vin3a_d14 A4 vin2a_d23 1700 408 2010 0 CFG_VIN2A_D23_IN - - - vin3a_vsync0 vin3a_d15 D11 vout1_clk 2405 379 2780 257 CFG_VOUT1_CLK_IN - vin4a_fld0 vin3a_fld0 - - F9 vout1_d0 2475 548 2806 469 CFG_VOUT1_D0_IN - vin4a_d16 vin3a_d16 - - E10 vout1_d1 2382 554 2771 418 CFG_VOUT1_D1_IN - vin4a_d17 vin3a_d17 - - D6 vout1_d10 2379 420 2784 267 CFG_VOUT1_D10_IN - vin4a_d10 vin3a_d10 - - D7 vout1_d11 2472 453 2810 367 CFG_VOUT1_D11_IN - vin4a_d11 vin3a_d11 - - A5 vout1_d12 2370 401 2777 247 CFG_VOUT1_D12_IN - vin4a_d12 vin3a_d12 - - B6 vout1_d13 2437 375 2819 229 CFG_VOUT1_D13_IN - vin4a_d13 vin3a_d13 - - C8 vout1_d14 2466 433 2785 342 CFG_VOUT1_D14_IN - vin4a_d14 vin3a_d14 - - C7 vout1_d15 2465 383 2846 255 CFG_VOUT1_D15_IN - vin4a_d15 vin3a_d15 - - B7 vout1_d16 2411 236 2733 167 CFG_VOUT1_D16_IN - vin4a_d0 vin3a_d0 - - B8 vout1_d17 2541 435 2840 379 CFG_VOUT1_D17_IN - vin4a_d1 vin3a_d1 - - A6 vout1_d18 2451 244 2761 186 CFG_VOUT1_D18_IN - vin4a_d2 vin3a_d2 - - A7 vout1_d19 2366 0 2564 0 CFG_VOUT1_D19_IN - vin4a_d3 vin3a_d3 - - 212 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-36. Manual Functions Mapping for VIP2 (continued) BALL NAME D9 VIP2_MANUAL 1 VIP2_MANUAL2 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) vout1_d2 2373 639 2740 526 C9 vout1_d20 2381 578 2758 A8 vout1_d21 2349 104 2706 B9 vout1_d22 2372 248 A9 vout1_d23 2088 C6 vout1_d3 E9 vout1_d4 F8 MUXMODE 2 3 4 5 6 CFG_VOUT1_D2_IN - vin4a_d18 vin3a_d18 - - 454 CFG_VOUT1_D20_IN - vin4a_d4 vin3a_d4 - - 0 CFG_VOUT1_D21_IN - vin4a_d5 vin3a_d5 - - 2745 127 CFG_VOUT1_D22_IN - vin4a_d6 vin3a_d6 - - 392 2608 124 CFG_VOUT1_D23_IN - vin4a_d7 vin3a_d7 - - 2475 523 2771 475 CFG_VOUT1_D3_IN - vin4a_d19 vin3a_d19 - - 2481 458 2772 410 CFG_VOUT1_D4_IN - vin4a_d20 vin3a_d20 - - vout1_d5 2335 451 2711 328 CFG_VOUT1_D5_IN - vin4a_d21 vin3a_d21 - - F7 vout1_d6 2485 461 2739 459 CFG_VOUT1_D6_IN - vin4a_d22 vin3a_d22 - - E7 vout1_d7 2496 514 2767 495 CFG_VOUT1_D7_IN - vin4a_d23 vin3a_d23 - - E8 vout1_d8 2459 492 2789 414 CFG_VOUT1_D8_IN - vin4a_d8 vin3a_d8 - - D8 vout1_d9 2463 532 2790 441 CFG_VOUT1_D9_IN - vin4a_d9 vin3a_d9 - - C10 vout1_de 2326 134 2713 0 CFG_VOUT1_DE_IN - vin4a_de0 vin3a_de0 - - B10 vout1_fld 0 0 0 0 CFG_VOUT1_FLD_IN - vin4a_clk0 vin3a_clk0 - - A10 vout1_hsync 2058 180 2456 0 CFG_VOUT1_HSYNC_IN - vin4a_hsync0 vin3a_hsync0 - - D10 vout1_vsync 2226 18 2332 0 CFG_VOUT1_VSYNC_IN - vin4a_vsync0 vin3a_vsync0 - - Manual IO Timings Modes must be used to guarantee some IO timings for VIP2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-37 Manual Functions Mapping for VIP2 4A for a definition of the Manual modes. Table 5-37 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-37. Manual Functions Mapping for VIP2 4A BALL BALL NAME VIP2_4A_MANUAL1 VIP2_4A_MANUAL2 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) P6 gpmc_a0 2108 183 2229 0 MUXMODE 3 4 5 CFG_GPMC_A0_IN - vin4a_d0 - J6 gpmc_a1 1977 152 2082 0 CFG_GPMC_A1_IN - vin4a_d1 - K5 gpmc_a11 1973 0 1964 0 CFG_GPMC_A11_IN - vin4a_fld0 - P4 gpmc_a12 0 0 0 0 CFG_GPMC_A12_IN - vin4a_clk0 - R2 gpmc_a13 2042 263 2251 0 CFG_GPMC_A13_IN - vin4a_hsync0 - R6 gpmc_a14 2124 726 2678 158 CFG_GPMC_A14_IN - vin4a_vsync0 - T2 gpmc_a15 1922 307 2226 0 CFG_GPMC_A15_IN - vin4a_d8 - U1 gpmc_a16 2082 318 2340 0 CFG_GPMC_A16_IN - vin4a_d9 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 213 ADVANCE INFORMATION BAL L DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-37. Manual Functions Mapping for VIP2 4A (continued) BALL BALL NAME VIP2_4A_MANUAL1 VIP2_4A_MANUAL2 CFG REGISTER 3 4 5 P3 gpmc_a17 1987 328 2216 0 CFG_GPMC_A17_IN - vin4a_d10 - R1 gpmc_a18 1428 0 1323 0 CFG_GPMC_A18_IN - vin4a_d11 - H6 gpmc_a19 1755 0 1599 0 CFG_GPMC_A19_IN - vin4a_d12 - R4 gpmc_a2 2202 359 2518 0 CFG_GPMC_A2_IN - vin4a_d2 - G6 gpmc_a20 1561 0 1394 0 CFG_GPMC_A20_IN - vin4a_d13 - A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) MUXMODE ADVANCE INFORMATION J4 gpmc_a21 1795 41 1665 0 CFG_GPMC_A21_IN - vin4a_d14 - F5 gpmc_a22 1637 0 1454 0 CFG_GPMC_A22_IN - vin4a_d15 - G5 gpmc_a23 1489 0 1492 0 CFG_GPMC_A23_IN - vin4a_fld0 - R5 gpmc_a3 2131 389 2502 0 CFG_GPMC_A3_IN - vin4a_d3 - M6 gpmc_a4 2179 275 2403 0 CFG_GPMC_A4_IN - vin4a_d4 - K4 gpmc_a5 2013 281 2248 0 CFG_GPMC_A5_IN - vin4a_d5 - P5 gpmc_a6 1989 0 1920 0 CFG_GPMC_A6_IN - vin4a_d6 - N6 gpmc_a7 2338 106 2348 0 CFG_GPMC_A7_IN - vin4a_d7 - N1 gpmc_advn_ale 1960 0 1927 0 CFG_GPMC_ADVN_ALE_IN - vin4a_vsync0 - L6 gpmc_clk 1941 0 1901 0 CFG_GPMC_CLK_IN - vin4a_hsync0 vin4a_de0 G4 gpmc_cs1 1412 0 1282 0 CFG_GPMC_CS1_IN - vin4a_de0 - D11 vout1_clk 2425 88 2765 20 CFG_VOUT1_CLK_IN vin4a_fld0 - - F9 vout1_d0 2460 555 2772 515 CFG_VOUT1_D0_IN vin4a_d16 - - E10 vout1_d1 2307 500 2725 354 CFG_VOUT1_D1_IN vin4a_d17 - - D6 vout1_d10 2367 275 2755 160 CFG_VOUT1_D10_IN vin4a_d10 - - D7 vout1_d11 2480 337 2788 301 CFG_VOUT1_D11_IN vin4a_d11 - - A5 vout1_d12 2344 290 2744 162 CFG_VOUT1_D12_IN vin4a_d12 - - B6 vout1_d13 2381 184 2779 56 CFG_VOUT1_D13_IN vin4a_d13 - - C8 vout1_d14 2459 533 2752 512 CFG_VOUT1_D14_IN vin4a_d14 - - C7 vout1_d15 2386 263 2811 111 CFG_VOUT1_D15_IN vin4a_d15 - - B7 vout1_d16 2378 197 2705 142 CFG_VOUT1_D16_IN vin4a_d0 - - B8 vout1_d17 2538 171 2837 133 CFG_VOUT1_D17_IN vin4a_d1 - - A6 vout1_d18 2433 69 2749 25 CFG_VOUT1_D18_IN vin4a_d2 - - A7 vout1_d19 2158 0 2412 0 CFG_VOUT1_D19_IN vin4a_d3 - - D9 vout1_d2 2401 291 2753 211 CFG_VOUT1_D2_IN vin4a_d18 - - C9 vout1_d20 2361 401 2741 295 CFG_VOUT1_D20_IN vin4a_d4 - - A8 vout1_d21 2181 0 2454 0 CFG_VOUT1_D21_IN vin4a_d5 - - 214 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-37. Manual Functions Mapping for VIP2 4A (continued) BALL NAME VIP2_4A_MANUAL1 VIP2_4A_MANUAL2 CFG REGISTER MUXMODE 3 4 5 B9 vout1_d22 2276 0 2548 0 CFG_VOUT1_D22_IN vin4a_d6 - - A9 vout1_d23 2070 274 2591 26 CFG_VOUT1_D23_IN vin4a_d7 - - C6 vout1_d3 2419 403 2749 341 CFG_VOUT1_D3_IN vin4a_d19 - - E9 vout1_d4 2465 311 2754 294 CFG_VOUT1_D4_IN vin4a_d20 - - F8 vout1_d5 2306 319 2696 201 CFG_VOUT1_D5_IN vin4a_d21 - - A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) F7 vout1_d6 2450 312 2716 318 CFG_VOUT1_D6_IN vin4a_d22 - - E7 vout1_d7 2477 403 2747 405 CFG_VOUT1_D7_IN vin4a_d23 - - E8 vout1_d8 2407 425 2744 360 CFG_VOUT1_D8_IN vin4a_d8 - - D8 vout1_d9 2512 277 2783 278 CFG_VOUT1_D9_IN vin4a_d9 - - C10 vout1_de 2266 36 2576 0 CFG_VOUT1_DE_IN vin4a_de0 - - B10 vout1_fld 0 0 0 0 CFG_VOUT1_FLD_IN vin4a_clk0 - - A10 vout1_hsync 2016 50 2300 0 CFG_VOUT1_HSYNC_IN vin4a_hsync0 - - D10 vout1_vsync 1953 0 2088 0 CFG_VOUT1_VSYNC_IN vin4a_vsync0 - - Manual IO Timings Modes must be used to guarantee some IO timings for VIP2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-38 Manual Functions Mapping for VIP2 4A IOSET3 for a definition of the Manual modes. Table 5-38 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-38. Manual Functions Mapping for VIP2 4A IOSET3 BALL BALL NAME VIP2_4A_IOSET3_MANUAL1 VIP2_4A_IOSET3_MANUAL2 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 8 E21 gpio6_14 599 0 901 0 CFG_GPIO6_14_IN vin4a_hsync0 F17 gpio6_15 1291 0 1593 0 CFG_GPIO6_15_IN vin4a_vsync0 F18 gpio6_16 926 0 1228 0 CFG_GPIO6_16_IN vin4a_fld0 A13 mcasp1_aclkr 1768 0 2071 0 CFG_MCASP1_ACLKR_IN vin4a_d0 E13 mcasp1_axr2 2326 851 2737 792 CFG_MCASP1_AXR2_IN vin4a_d2 E11 mcasp1_axr3 2406 562 2858 434 CFG_MCASP1_AXR3_IN vin4a_d3 E12 mcasp1_axr4 2219 678 2742 464 CFG_MCASP1_AXR4_IN vin4a_d4 D13 mcasp1_axr5 2226 676 2728 517 CFG_MCASP1_AXR5_IN vin4a_d5 C11 mcasp1_axr6 2265 510 2806 271 CFG_MCASP1_AXR6_IN vin4a_d6 D12 mcasp1_axr7 2302 781 2708 726 CFG_MCASP1_AXR7_IN vin4a_d7 F14 mcasp1_fsr 1901 184 2386 0 CFG_MCASP1_FSR_IN vin4a_d1 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 215 ADVANCE INFORMATION BALL DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-38. Manual Functions Mapping for VIP2 4A IOSET3 (continued) BALL BALL NAME VIP2_4A_IOSET3_MANUAL1 VIP2_4A_IOSET3_MANUAL2 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) E15 mcasp2_aclkr 1555 0 1857 0 CFG_MCASP2_ACLKR_IN vin4a_d8 B14 mcasp2_axr0 1790 658 2407 343 CFG_MCASP2_AXR0_IN vin4a_d10 8 ADVANCE INFORMATION A14 mcasp2_axr1 1939 279 2527 0 CFG_MCASP2_AXR1_IN vin4a_d11 D15 mcasp2_axr4 1924 369 2541 53 CFG_MCASP2_AXR4_IN vin4a_d12 B15 mcasp2_axr5 1719 400 2337 84 CFG_MCASP2_AXR5_IN vin4a_d13 B16 mcasp2_axr6 1116 0 1418 0 CFG_MCASP2_AXR6_IN vin4a_d14 A16 mcasp2_axr7 1477 362 2094 47 CFG_MCASP2_AXR7_IN vin4a_d15 A19 mcasp2_fsr 1521 8 1830 0 CFG_MCASP2_FSR_IN vin4a_d9 C17 mcasp4_aclkx 1258 0 1418 0 CFG_MCASP4_ACLKX_IN vin4a_d16 D16 mcasp4_axr0 2334 227 2813 26 CFG_MCASP4_AXR0_IN vin4a_d18 D17 mcasp4_axr1 2334 529 2777 437 CFG_MCASP4_AXR1_IN vin4a_d19 A20 mcasp4_fsx 2293 0 2570 0 CFG_MCASP4_FSX_IN vin4a_d17 AA3 mcasp5_aclkx 3053 2527 3352 2409 CFG_MCASP5_ACLKX_IN vin4a_d20 AB3 mcasp5_axr0 3058 3254 3315 3285 CFG_MCASP5_AXR0_IN vin4a_d22 AA4 mcasp5_axr1 3090 3358 3331 3446 CFG_MCASP5_AXR1_IN vin4a_d23 AB6 mcasp5_fsx 3060 2699 3329 2686 CFG_MCASP5_FSX_IN vin4a_d21 B25 xref_clk2 0 0 0 0 CFG_XREF_CLK2_IN vin4a_clk0 A22 xref_clk3 962 0 1265 0 CFG_XREF_CLK3_IN vin4a_de0 Manual IO Timings Modes must be used to guarantee some IO timings for VIP2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-39 Manual Functions Mapping for VIP2 4B for a definition of the Manual modes. Table 5-39 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-39. Manual Functions Mapping for VIP2 4B BALL BALL NAME VIP2_4B_MANUAL1 VIP2_4B_MANUAL2 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 5 6 vin4b_d0 P6 gpmc_a0 2199 621 2416 398 CFG_GPMC_A0_IN - J6 gpmc_a1 1989 612 2267 323 CFG_GPMC_A1_IN - vin4b_d1 J5 gpmc_a10 0 0 0 0 CFG_GPMC_A10_IN - vin4b_clk1 K5 gpmc_a11 2133 859 2303 720 CFG_GPMC_A11_IN - vin4b_de1 P4 gpmc_a12 2258 562 2399 393 CFG_GPMC_A12_IN - vin4b_fld1 R4 gpmc_a2 2218 912 2365 720 CFG_GPMC_A2_IN - vin4b_d2 216 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-39. Manual Functions Mapping for VIP2 4B (continued) BALL NAME VIP2_4B_MANUAL1 VIP2_4B_MANUAL2 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 5 6 R5 gpmc_a3 2168 963 2341 781 CFG_GPMC_A3_IN - vin4b_d3 M6 gpmc_a4 2196 813 2362 594 CFG_GPMC_A4_IN - vin4b_d4 K4 gpmc_a5 2082 782 2329 525 CFG_GPMC_A5_IN - vin4b_d5 P5 gpmc_a6 2098 407 2320 171 CFG_GPMC_A6_IN - vin4b_d6 N6 gpmc_a7 2343 585 2522 305 CFG_GPMC_A7_IN - vin4b_d7 N4 gpmc_a8 2030 685 2290 284 CFG_GPMC_A8_IN - vin4b_hsync1 R3 gpmc_a9 2116 832 2335 548 CFG_GPMC_A9_IN - vin4b_vsync1 U3 mdio_d 1860 189 2164 0 CFG_MDIO_D_IN vin4b_d0 - V1 mdio_mclk 0 0 0 0 CFG_MDIO_MCLK_IN vin4b_clk1 - U4 rgmii0_rxc 1965 550 2306 279 CFG_RGMII0_RXC_IN vin4b_d5 - V4 rgmii0_rxctl 1911 605 2235 369 CFG_RGMII0_RXCTL_IN vin4b_d6 - W1 rgmii0_rxd0 1954 304 2294 26 CFG_RGMII0_RXD0_IN vin4b_fld1 - W2 rgmii0_rxd3 1925 835 2252 613 CFG_RGMII0_RXD3_IN vin4b_d7 - T6 rgmii0_txc 1937 849 2291 633 CFG_RGMII0_TXC_IN vin4b_d3 - U5 rgmii0_txctl 1997 872 2272 744 CFG_RGMII0_TXCTL_IN vin4b_d4 - U6 rgmii0_txd1 1989 771 2264 643 CFG_RGMII0_TXD1_IN vin4b_vsync1 - T3 rgmii0_txd2 1788 682 2193 334 CFG_RGMII0_TXD2_IN vin4b_hsync1 - T4 rgmii0_txd3 2091 591 2345 411 CFG_RGMII0_TXD3_IN vin4b_de1 - V2 uart3_rxd 1711 0 1699 0 CFG_UART3_RXD_IN vin4b_d1 - Y1 uart3_txd 1830 318 2176 0 CFG_UART3_TXD_IN vin4b_d2 - Manual IO Timings Modes must be used to guarantee some IO timings for VIP2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-40 Manual Functions Mapping for VIP2 3B IOSET2 for a definition of the Manual modes. Table 5-40 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-40. Manual Functions Mapping for VIP2 3B IOSET2 BALL BALL NAME VIP2_3B_IOSET2_MANUAL1 VIP2_3B_IOSET2_MANUAL2 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 4 6 H6 gpmc_a19 1801 826 2145 501 CFG_GPMC_A19_IN - vin3b_d0 G6 gpmc_a20 1706 697 2037 373 CFG_GPMC_A20_IN - vin3b_d1 J4 gpmc_a21 1767 937 2101 612 CFG_GPMC_A21_IN - vin3b_d2 F5 gpmc_a22 1678 895 1998 584 CFG_GPMC_A22_IN - vin3b_d3 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 217 ADVANCE INFORMATION BALL DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-40. Manual Functions Mapping for VIP2 3B IOSET2 (continued) BALL BALL NAME VIP2_3B_IOSET2_MANUAL1 VIP2_3B_IOSET2_MANUAL2 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 4 6 G5 gpmc_a23 1680 769 2016 619 CFG_GPMC_A23_IN - vin3b_d4 J3 gpmc_a24 1585 1015 1931 690 CFG_GPMC_A24_IN - vin3b_d5 H4 gpmc_a25 1643 893 2001 531 CFG_GPMC_A25_IN - vin3b_d6 H3 gpmc_a26 1627 958 1978 586 CFG_GPMC_A26_IN - vin3b_d7 H5 gpmc_a27 1709 686 2036 412 CFG_GPMC_A27_IN - vin3b_hsync1 vin3b_de1 ADVANCE INFORMATION N3 gpmc_ben0 1993 579 2297 340 CFG_GPMC_BEN0_IN - M4 gpmc_ben1 0 0 0 0 CFG_GPMC_BEN1_IN vin3b_clk1 vin3b_fld1 G4 gpmc_cs1 1492 850 1829 486 CFG_GPMC_CS1_IN - vin3b_vsync1 218 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10.6.4 DSS Three Display Parallel Interfaces (DPI) channels are available in DSS named DPI Video Output 1, DPI Video Output 2 and DPI Video Output 3. NOTE The DPI Video Output i (i = 1 to 3) interface is also referred to as VOUTi. Every VOUT interface consists of: • 24-bit data bus (data[23:0]) • Horizontal synchronization signal (HSYNC) • Vertical synchronization signal (VSYNC) • Data enable (DE) • Field ID (FID) • Pixel clock (CLK) ADVANCE INFORMATION NOTE For more information, see the Display Subsystem chapter of the Device TRM. CAUTION The IO timings provided in this section are only valid if signals within a single IOSET are used. The IOSETs are defined in the Table 5-45 and Table 5-46. CAUTION The IO Timings provided in this section are only valid for some DSS usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. CAUTION All pads/balls configured as vouti_* signals are recommended to use slow slew rate by setting the corresponding CTRL_CORE_PAD_*[SLEWCONTROL] register field to SLOW (0b1). FAST slew setting is allowed, but results in faster edge rates on the VOUTn bus, higher power/ground noise, and higher EMI emissions compared to SLOW slew rate. Table 5-41, Table 5-42 and Figure 5-18 assume testing over the recommended operating conditions and electrical characteristic conditions. Table 5-41. DPI Video Output i (i = 1..3) Default Switching Characteristics NO. PARAMETER DESCRIPTION D1 tc(clk) Cycle time, output pixel clock vouti_clk MODE D2 tw(clkL) D3 tw(clkH) MIN MAX UNIT (2) ns Pulse duration, output pixel clock vouti_clk low P*0.5-1 ns Pulse duration, output pixel clock vouti_clk high P*0.5-1 ns 11.76 (1) (1) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 219 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-41. DPI Video Output i (i = 1..3) Default Switching Characteristics (continued) NO. PARAMETER DESCRIPTION MIN MAX D5 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid MODE -2.5 2.5 UNIT ns D6 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid -2.5 2.5 ns (1) P = output vouti_clk period in ns. (2) SERDES transceivers may be sensitive to the jitter profile of vouti_clk. See Application Note SPRAC62 for additional guidance. Table 5-42. DPI Video Output i (i = 1..3) Alternate Switching Characteristics ADVANCE INFORMATION NO. PARAMETER DESCRIPTION D1 tc(clk) Cycle time, output pixel clock vouti_clk MODE 6.06 MIN (2) MAX ns D2 tw(clkL) Pulse duration, output pixel clock vouti_clk low P*0.5-1 ns D3 tw(clkH) Pulse duration, output pixel clock vouti_clk high P*0.5-1 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid 1.51 4.55 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid 1.51 4.55 ns (1) (1) UNIT (1) P = output vouti_clk period in ns. (2) SERDES transceivers may be sensitive to the jitter profile of vouti_clk. See Application Note SPRAC62 for additional guidance. Table 5-43. DPI Video Output i (i = 1..3) MANUAL3 Switching Characteristics NO. PARAMETER DESCRIPTION D1 tc(clk) Cycle time, output pixel clock vouti_clk MODE 6.06 MIN (2) MAX ns D2 tw(clkL) Pulse duration, output pixel clock vouti_clk low P*0.5-1 ns D3 tw(clkH) Pulse duration, output pixel clock vouti_clk high P*0.5-1 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid 2.85 5.56 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid 2.85 5.56 ns (1) (1) UNIT (1) P = output vouti_clk period in ns. (2) SERDES transceivers may be sensitive to the jitter profile of vouti_clk. See Application Note SPRAC62 for additional guidance. Table 5-44. DPI Video Output i (i = 1..3) MANUAL4 Switching Characteristics NO. PARAMETER DESCRIPTION D1 tc(clk) Cycle time, output pixel clock vouti_clk 6.06 (2) ns D2 tw(clkL) Pulse duration, output pixel clock vouti_clk low P*0.5-1 ns D3 tw(clkH) Pulse duration, output pixel clock vouti_clk high P*0.5-1 ns D5 td(clk-ctlV) Delay time, output pixel clock vouti_clk transition to output data vouti_d[23:0] valid 3.55 6.61 ns D6 td(clk-dV) Delay time, output pixel clock vouti_clk transition to output control signals vouti_vsync, vouti_hsync, vouti_de, and vouti_fld valid 3.55 6.61 ns 220 MODE Specifications MIN MAX (1) (1) UNIT Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (1) P = output vouti_clk period in ns. (2) SERDES transceivers may be sensitive to the jitter profile of vouti_clk. See Application Note SPRAC62 for additional guidance. D2 D1 D3 D4 Falling-edge Clock Reference vouti_clk D6 Rising-edge Clock Reference vouti_clk vouti_vsync D6 vouti_hsync D5 data_1 data_2 data_n ADVANCE INFORMATION vouti_d[23:0] D6 vouti_de D6 vouti_fld even odd SWPS049-018 (1) (2)(3) Figure 5-18. DPI Video Output (1) The configuration of assertion of the data can be programmed on the falling or rising edge of the pixel clock. (2) The polarity and the pulse width of vouti_hsync and vouti_vsync are programmable, refer to the DSS section of the device TRM. (3) The vouti_clk frequency can be configured, refer to the DSS section of the device TRM. NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-33 and described in Device TRM, Chapter 18 - Control Module. In Table 5-45 are presented the specific groupings of signals (IOSET) for use with VOUT2. Table 5-45. VOUT2 IOSETs SIGNALS IOSET1 IOSET2 BALL MUX BALL MUX vout2_d23 F2 4 AA4 6 vout2_d22 E3 4 AB3 6 vout2_d21 E1 4 AB6 6 vout2_d20 E2 4 AA3 6 vout2_d19 D2 4 D17 6 vout2_d18 F3 4 D16 6 vout2_d17 D1 4 A20 6 vout2_d16 E4 4 C17 6 vout2_d15 G3 4 A16 6 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 221 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-45. VOUT2 IOSETs (continued) SIGNALS IOSET1 IOSET2 ADVANCE INFORMATION BALL MUX BALL MUX vout2_d14 C5 4 B16 6 vout2_d13 D3 4 B15 6 vout2_d12 F4 4 D15 6 vout2_d11 E6 4 A14 6 vout2_d10 C1 4 B14 6 vout2_d9 C2 4 A19 6 vout2_d8 C3 4 E15 6 vout2_d7 B2 4 D12 6 vout2_d6 B5 4 C11 6 vout2_d5 D4 4 D13 6 vout2_d4 A3 4 E12 6 vout2_d3 B3 4 E11 6 vout2_d2 B4 4 E13 6 vout2_d1 C4 4 F14 6 vout2_d0 A4 4 A13 6 vout2_vsync E5 4 F17 6 vout2_hsync G1 4 E21 6 vout2_clk D5 4 B25 6 vout2_fld F1 4 F18 6 vout2_de G2 4 A22 6 In Table 5-46 are presented the specific groupings of signals (IOSET) for use with VOUT3. Table 5-46. VOUT3 IOSETs SIGNALS 222 IOSET1 IOSET2 IOSET3 BALL MUX BALL MUX BALL vout3_d23 N6 3 AE9 4 MUX vout3_d22 P5 3 AF10 4 vout3_d21 K4 3 AE7 4 vout3_d20 M6 3 AE8 4 vout3_d19 R5 3 AE6 4 vout3_d18 R4 3 AF7 4 vout3_d17 J6 3 AF8 4 AC9 3 vout3_d16 P6 3 vout3_d15 K3 3 AF6 4 AD8 3 AF4 4 AF4 vout3_d14 H2 4 3 AF2 4 AF2 vout3_d13 4 K2 3 AF3 4 AF3 4 vout3_d12 H1 3 AF5 4 AF5 4 vout3_d11 J2 3 AE5 4 AE5 4 vout3_d10 J1 3 AF1 4 AF1 4 vout3_d9 K1 3 AD6 4 AD6 4 vout3_d8 L1 3 AE3 4 AE3 4 vout3_d7 L2 3 AE4 4 AE9 3 vout3_d6 L3 3 AE1 4 AF10 3 vout3_d5 L4 3 AD5 4 AE7 3 vout3_d4 K6 3 AD3 4 AE8 3 vout3_d3 M1 3 AD4 4 AE6 3 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-46. VOUT3 IOSETs (continued) SIGNALS IOSET1 IOSET2 BALL MUX vout3_d2 L5 vout3_d1 M2 vout3_d0 IOSET3 BALL MUX BALL MUX 3 AE2 4 AF7 3 3 AD1 4 AF8 3 N5 3 AD2 4 AF6 3 vout3_de J5 3 AC9 4 vout3_vsync R3 3 AD7 4 AD7 4 vout3_clk P1 3 AD9 4 AD9 4 vout3_hsync N4 3 AC10 4 AC10 4 vout3_fld K5 3 AD8 4 NOTE The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module Chapter in the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for VOUT1. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-47 Manual Functions Mapping for DSS VOUT1 for a definition of the Manual modes. Table 5-47 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 223 ADVANCE INFORMATION To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-47. Manual Functions Mapping for DSS VOUT1 BALL BALL NAME VOUT1_MANUAL1 VOUT1_MANUAL2 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) VOUT1_MANUAL3 A_DELAY (ps) G_DELAY (ps) VOUT1_MANUAL4 A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 0 ADVANCE INFORMATION D11 vout1_clk 0 29 1281 497 0 0 0 0 CFG_VOUT1_CLK_OUT vout1_clk F9 vout1_d0 1878 0 379 0 3126 0 4185 0 CFG_VOUT1_D0_OUT vout1_d0 E10 vout1_d1 1978 0 475 0 3226 0 4284 0 CFG_VOUT1_D1_OUT vout1_d1 D6 vout1_d10 1943 0 441 0 3191 0 4249 0 CFG_VOUT1_D10_OUT vout1_d10 D7 vout1_d11 1964 0 461 0 3212 0 4271 0 CFG_VOUT1_D11_OUT vout1_d11 A5 vout1_d12 2726 0 1189 0 3974 0 5033 0 CFG_VOUT1_D12_OUT vout1_d12 B6 vout1_d13 1807 0 312 0 3055 0 4114 0 CFG_VOUT1_D13_OUT vout1_d13 C8 vout1_d14 1793 0 298 0 3041 0 4099 0 CFG_VOUT1_D14_OUT vout1_d14 C7 vout1_d15 1778 0 284 0 3026 0 4085 0 CFG_VOUT1_D15_OUT vout1_d15 B7 vout1_d16 1652 0 152 0 2887 0 3946 0 CFG_VOUT1_D16_OUT vout1_d16 B8 vout1_d17 1706 0 216 0 2954 0 4013 0 CFG_VOUT1_D17_OUT vout1_d17 A6 vout1_d18 1908 0 408 0 3156 0 4215 0 CFG_VOUT1_D18_OUT vout1_d18 A7 vout1_d19 2024 0 519 0 3272 0 4330 0 CFG_VOUT1_D19_OUT vout1_d19 D9 vout1_d2 1757 0 264 0 3005 0 4064 0 CFG_VOUT1_D2_OUT vout1_d2 C9 vout1_d20 1811 0 316 0 3059 0 4118 0 CFG_VOUT1_D20_OUT vout1_d20 A8 vout1_d21 1640 0 59 0 2814 0 3850 0 CFG_VOUT1_D21_OUT vout1_d21 B9 vout1_d22 1712 0 221 0 2960 0 4019 0 CFG_VOUT1_D22_OUT vout1_d22 A9 vout1_d23 1581 0 96 0 2829 0 3888 0 CFG_VOUT1_D23_OUT vout1_d23 C6 vout1_d3 1921 0 421 0 3169 0 4228 0 CFG_VOUT1_D3_OUT vout1_d3 E9 vout1_d4 2797 0 1257 0 4045 0 5104 0 CFG_VOUT1_D4_OUT vout1_d4 F8 vout1_d5 1933 0 432 0 3181 0 4240 0 CFG_VOUT1_D5_OUT vout1_d5 F7 vout1_d6 1937 0 436 0 3185 0 4244 0 CFG_VOUT1_D6_OUT vout1_d6 E7 vout1_d7 1941 0 440 0 3189 0 4248 0 CFG_VOUT1_D7_OUT vout1_d7 E8 vout1_d8 1701 0 81 100 2918 0 3977 0 CFG_VOUT1_D8_OUT vout1_d8 D8 vout1_d9 1973 0 471 0 3221 0 4280 0 CFG_VOUT1_D9_OUT vout1_d9 C10 vout1_de 1573 0 0 0 2747 0 3725 0 CFG_VOUT1_DE_OUT vout1_de B10 vout1_fld 1809 0 224 0 2983 0 4004 0 CFG_VOUT1_FLD_OUT vout1_fld A10 vout1_hsync 1514 0 0 0 2688 0 3666 0 CFG_VOUT1_HSYNC_OUT vout1_hsync D10 vout1_vsync 2316 0 815 0 3564 0 4623 0 CFG_VOUT1_VSYNC_OUT vout1_vsync 224 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Manual IO Timings Modes must be used to guarantee some IO timings for VOUT2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-48 Manual Functions Mapping for DSS VOUT2 for a definition of the Manual modes. Table 5-48 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-48. Manual Functions Mapping for DSS VOUT2 IOSET1 BALL NAME VOUT2_IOSET1 _MANUAL1 VOUT2_IOSET1 _MANUAL2 VOUT2_IOSET1 _MANUAL3 VOUT2_IOSET1 _MANUAL4 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 4 F1 vin2a_clk0 2587 0 1178 0 3748 0 4694 0 CFG_VIN2A_CLK0_OUT vout2_fld F2 vin2a_d0 2199 0 449 337 3360 0 4306 0 CFG_VIN2A_D0_OUT vout2_d23 E3 vin2a_d1 2141 0 731 0 3302 0 4248 0 CFG_VIN2A_D1_OUT vout2_d22 D3 vin2a_d10 1649 0 261 0 2810 0 3756 0 CFG_VIN2A_D10_OUT vout2_d13 F4 vin2a_d11 2010 0 425 181 3171 0 4117 0 CFG_VIN2A_D11_OUT vout2_d12 E6 vin2a_d12 2887 291 1649 73 3864 475 4680 605 CFG_VIN2A_D12_OUT vout2_d11 C1 vin2a_d13 2835 363 1594 148 3812 548 4629 677 CFG_VIN2A_D13_OUT vout2_d10 C2 vin2a_d14 2711 364 1456 167 3688 548 4504 678 CFG_VIN2A_D14_OUT vout2_d9 C3 vin2a_d15 2862 128 1542 0 3839 312 4656 441 CFG_VIN2A_D15_OUT vout2_d8 B2 vin2a_d16 2946 56 1554 0 3923 240 4740 370 CFG_VIN2A_D16_OUT vout2_d7 B5 vin2a_d17 2826 130 1510 0 3803 314 4620 444 CFG_VIN2A_D17_OUT vout2_d6 D4 vin2a_d18 2022 0 617 0 3183 0 4129 0 CFG_VIN2A_D18_OUT vout2_d5 A3 vin2a_d19 1826 0 430 0 2987 0 3933 0 CFG_VIN2A_D19_OUT vout2_d4 E1 vin2a_d2 1973 0 571 0 3134 0 4080 0 CFG_VIN2A_D2_OUT vout2_d21 B3 vin2a_d20 1514 0 110 0 2668 0 3618 0 CFG_VIN2A_D20_OUT vout2_d3 B4 vin2a_d21 1454 0 36 0 2608 0 3558 0 CFG_VIN2A_D21_OUT vout2_d2 C4 vin2a_d22 1432 0 0 0 2586 0 3536 0 CFG_VIN2A_D22_OUT vout2_d1 A4 vin2a_d23 1452 0 20 0 2606 0 3556 0 CFG_VIN2A_D23_OUT vout2_d0 E2 vin2a_d3 2007 0 603 0 3168 0 4114 0 CFG_VIN2A_D3_OUT vout2_d20 D2 vin2a_d4 2806 0 1366 0 3967 0 4913 0 CFG_VIN2A_D4_OUT vout2_d19 F3 vin2a_d5 2322 0 904 0 3483 0 4429 0 CFG_VIN2A_D5_OUT vout2_d18 D1 vin2a_d6 2067 0 660 0 3228 0 4174 0 CFG_VIN2A_D6_OUT vout2_d17 E4 vin2a_d7 1940 0 539 0 3101 0 4047 0 CFG_VIN2A_D7_OUT vout2_d16 G3 vin2a_d8 1752 0 359 0 2913 0 3859 0 CFG_VIN2A_D8_OUT vout2_d15 vout2_d14 C5 vin2a_d9 1631 0 46 198 2792 0 3738 0 CFG_VIN2A_D9_OUT G2 vin2a_de0 2136 0 726 0 3297 0 4243 0 CFG_VIN2A_DE0_OUT vout2_de D5 vin2a_fld0 0 274 1409 698 0 161 0 55 CFG_VIN2A_FLD0_OUT vout2_clk Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 225 ADVANCE INFORMATION BALL DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-48. Manual Functions Mapping for DSS VOUT2 IOSET1 (continued) BALL BALL NAME VOUT2_IOSET1 _MANUAL1 VOUT2_IOSET1 _MANUAL2 VOUT2_IOSET1 _MANUAL3 VOUT2_IOSET1 _MANUAL4 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) MUXMODE 4 G1 vin2a_hsync0 2610 0 1200 0 3771 0 4717 0 CFG_VIN2A_HSYNC0_OUT vout2_hsync E5 vin2a_vsync0 2214 0 822 0 3375 0 4321 0 CFG_VIN2A_VSYNC0_OUT vout2_vsync Manual IO Timings Modes must be used to guarantee some IO timings for VOUT2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-49 ADVANCE INFORMATION Manual Functions Mapping for DSS VOUT2 IOSET2 for a definition of the Manual modes. Table 5-49 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-49. Manual Functions Mapping for DSS VOUT2 IOSET2 BAL L BALL NAME VOUT2_IOSET2 _MANUAL1 VOUT2_IOSET2 _MANUAL2 VOUT2_IOSET2 _MANUAL3 VOUT2_IOSET2 _MANUAL4 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 6 E21 gpio6_14 1193 0 274 0 2474 0 3298 0 CFG_GPIO6_14_OUT vout2_hsync F17 gpio6_15 1006 0 27 0 2226 0 3039 0 CFG_GPIO6_15_OUT vout2_vsync F18 gpio6_16 921 0 0 0 2141 0 2955 0 CFG_GPIO6_16_OUT vout2_fld A13 mcasp1_aclkr 3224 0 2192 0 4505 0 5328 0 CFG_MCASP1_ACLKR_OUT vout2_d0 E13 mcasp1_axr2 2197 0 1211 0 3478 0 4302 0 CFG_MCASP1_AXR2_OUT vout2_d2 E11 mcasp1_axr3 1989 0 1013 0 3271 0 4094 0 CFG_MCASP1_AXR3_OUT vout2_d3 E12 mcasp1_axr4 2452 0 1455 0 3733 0 4557 0 CFG_MCASP1_AXR4_OUT vout2_d4 D13 mcasp1_axr5 2507 0 1507 0 3788 0 4612 0 CFG_MCASP1_AXR5_OUT vout2_d5 C11 mcasp1_axr6 2212 0 1225 0 3493 0 4316 0 CFG_MCASP1_AXR6_OUT vout2_d6 D12 mcasp1_axr7 2204 0 1218 0 3485 0 4309 0 CFG_MCASP1_AXR7_OUT vout2_d7 F14 mcasp1_fsr 1933 0 959 0 3214 0 4037 0 CFG_MCASP1_FSR_OUT vout2_d1 E15 mcasp2_aclkr 3074 0 2048 0 4355 0 5178 0 CFG_MCASP2_ACLKR_OUT vout2_d8 B14 mcasp2_axr0 1798 0 830 0 3080 0 3903 0 CFG_MCASP2_AXR0_OUT vout2_d10 A14 mcasp2_axr1 2031 0 542 510 3312 0 4135 0 CFG_MCASP2_AXR1_OUT vout2_d11 D15 mcasp2_axr4 2050 0 1071 0 3331 0 4155 0 CFG_MCASP2_AXR4_OUT vout2_d12 B15 mcasp2_axr5 1627 0 667 0 2908 0 3732 0 CFG_MCASP2_AXR5_OUT vout2_d13 B16 mcasp2_axr6 2924 0 1905 0 4205 0 5028 0 CFG_MCASP2_AXR6_OUT vout2_d14 A16 mcasp2_axr7 1555 0 598 0 2836 0 3660 0 CFG_MCASP2_AXR7_OUT vout2_d15 226 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-49. Manual Functions Mapping for DSS VOUT2 IOSET2 (continued) BALL NAME VOUT2_IOSET2 _MANUAL1 A_DELAY (ps) G_DELAY (ps) VOUT2_IOSET2 _MANUAL2 VOUT2_IOSET2 _MANUAL3 VOUT2_IOSET2 _MANUAL4 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 6 A19 mcasp2_fsr 1689 0 188 539 2971 0 3794 0 CFG_MCASP2_FSR_OUT vout2_d9 C17 mcasp4_aclkx 2607 0 1603 0 3889 0 4712 0 CFG_MCASP4_ACLKX_OUT vout2_d16 D16 mcasp4_axr0 1690 0 727 0 2971 0 3795 0 CFG_MCASP4_AXR0_OUT vout2_d18 D17 mcasp4_axr1 1408 0 457 0 2689 0 3512 0 CFG_MCASP4_AXR1_OUT vout2_d19 A20 mcasp4_fsx 1564 0 606 0 2845 0 3668 0 CFG_MCASP4_FSX_OUT vout2_d17 AA3 mcasp5_aclkx 4355 1633 3732 1100 5399 1869 6062 2030 CFG_MCASP5_ACLKX_OUT vout2_d20 AB3 mcasp5_axr0 4307 1362 3675 853 5352 1599 6014 1759 CFG_MCASP5_AXR0_OUT vout2_d22 AA4 mcasp5_axr1 4276 971 3633 492 5321 1208 5984 1369 CFG_MCASP5_AXR1_OUT vout2_d23 AB6 mcasp5_fsx 4272 981 3628 503 5317 1217 5980 1378 CFG_MCASP5_FSX_OUT vout2_d21 B25 xref_clk2 0 51 2016 507 0 0 0 0 CFG_XREF_CLK2_OUT vout2_clk A22 xref_clk3 2331 0 1339 0 3612 0 4436 0 CFG_XREF_CLK3_OUT vout2_de Manual IO Timings Modes must be used to guarantee some IO timings for VOUT3. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-50 Manual Functions Mapping for DSS VOUT3 for a definition of the Manual modes. Table 5-50 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-50. Manual Functions Mapping for DSS VOUT3 BALL BALL NAME VOUT3_MANUAL1 VOUT3_MANUAL2 VOUT3_MANUAL3 VOUT3_MANUAL4 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) gpmc_a0 1627 0 787 0 2798 0 3781 0 J6 gpmc_a1 1527 0 592 0 2698 0 3680 J5 gpmc_a10 1907 0 1181 0 3122 0 4194 K5 gpmc_a11 2406 0 1676 0 3622 0 R4 gpmc_a2 1508 0 641 0 2679 P6 CFG REGISTER MUXMODE 3 4 CFG_GPMC_A0_OUT vout3_d16 - 0 CFG_GPMC_A1_OUT vout3_d17 - 0 CFG_GPMC_A10_OUT vout3_de - 4693 0 CFG_GPMC_A11_OUT vout3_fld - 0 3661 0 CFG_GPMC_A2_OUT vout3_d18 - R5 gpmc_a3 2222 0 1481 0 3437 0 4508 0 CFG_GPMC_A3_OUT vout3_d19 - M6 gpmc_a4 2529 0 1775 0 3744 0 4815 0 CFG_GPMC_A4_OUT vout3_d20 - K4 gpmc_a5 1492 0 785 0 2708 0 3779 0 CFG_GPMC_A5_OUT vout3_d21 - P5 gpmc_a6 1578 0 848 0 2774 0 3845 0 CFG_GPMC_A6_OUT vout3_d22 - N6 gpmc_a7 1586 0 851 0 2778 0 3849 0 CFG_GPMC_A7_OUT vout3_d23 - N4 gpmc_a8 2519 0 1783 0 3734 0 4805 0 CFG_GPMC_A8_OUT vout3_hsync - Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 227 ADVANCE INFORMATION BAL L DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-50. Manual Functions Mapping for DSS VOUT3 (continued) BALL BALL NAME VOUT3_MANUAL1 VOUT3_MANUAL2 VOUT3_MANUAL3 VOUT3_MANUAL4 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 3 4 R3 gpmc_a9 1686 0 951 0 2864 0 3935 0 CFG_GPMC_A9_OUT vout3_vsync - ADVANCE INFORMATION N5 gpmc_ad0 1813 0 1091 0 3028 0 4099 0 CFG_GPMC_AD0_OUT vout3_d0 - M2 gpmc_ad1 1652 0 937 0 2868 0 3939 0 CFG_GPMC_AD1_OUT vout3_d1 - J1 gpmc_ad10 1746 0 1027 0 2962 0 4033 0 CFG_GPMC_AD10_OUT vout3_d10 - J2 gpmc_ad11 1534 0 824 0 2749 0 3820 0 CFG_GPMC_AD11_OUT vout3_d11 - H1 gpmc_ad12 1923 0 1196 0 3138 0 4209 0 CFG_GPMC_AD12_OUT vout3_d12 - K2 gpmc_ad13 1496 0 754 0 2676 0 3747 0 CFG_GPMC_AD13_OUT vout3_d13 - H2 gpmc_ad14 1379 0 665 0 2582 0 3653 0 CFG_GPMC_AD14_OUT vout3_d14 - K3 gpmc_ad15 1746 0 1027 0 2961 0 4032 0 CFG_GPMC_AD15_OUT vout3_d15 - L5 gpmc_ad2 1894 0 1168 0 3110 0 4181 0 CFG_GPMC_AD2_OUT vout3_d2 - M1 gpmc_ad3 1584 0 872 0 2800 0 3871 0 CFG_GPMC_AD3_OUT vout3_d3 - K6 gpmc_ad4 1815 0 1092 0 3030 0 4101 0 CFG_GPMC_AD4_OUT vout3_d4 - L4 gpmc_ad5 1436 0 576 0 2607 0 3589 0 CFG_GPMC_AD5_OUT vout3_d5 - L3 gpmc_ad6 1837 0 1113 0 3052 0 4123 0 CFG_GPMC_AD6_OUT vout3_d6 - L2 gpmc_ad7 1658 0 943 0 2874 0 3945 0 CFG_GPMC_AD7_OUT vout3_d7 - L1 gpmc_ad8 515 0 0 0 1686 0 2757 0 CFG_GPMC_AD8_OUT vout3_d8 - K1 gpmc_ad9 853 0 0 0 2024 0 3006 0 CFG_GPMC_AD9_OUT vout3_d9 - P1 gpmc_cs3 0 234 1801 948 0 167 0 177 CFG_GPMC_CS3_OUT vout3_clk - AD8 vin1a_clk0 1954 0 1244 0 3240 0 4298 0 CFG_VIN1A_CLK0_OUT vout3_d16 vout3_fld AE9 vin1a_d0 1991 0 1261 0 3277 0 4336 0 CFG_VIN1A_D0_OUT vout3_d7 vout3_d23 AF10 vin1a_d1 1911 0 1185 0 3197 0 4256 0 CFG_VIN1A_D1_OUT vout3_d6 vout3_d22 AF3 vin1a_d10 2460 0 1647 0 3754 0 4813 0 CFG_VIN1A_D10_OUT - vout3_d13 AF5 vin1a_d11 2098 0 1302 0 3392 0 4451 0 CFG_VIN1A_D11_OUT - vout3_d12 AE5 vin1a_d12 2703 0 1880 0 3997 0 5056 0 CFG_VIN1A_D12_OUT - vout3_d11 AF1 vin1a_d13 2049 0 1255 0 3343 0 4402 0 CFG_VIN1A_D13_OUT - vout3_d10 AD6 vin1a_d14 2815 0 1987 0 4109 0 5131 37 CFG_VIN1A_D14_OUT - vout3_d9 AE3 vin1a_d15 1973 0 1183 0 3267 0 4326 0 CFG_VIN1A_D15_OUT - vout3_d8 AE4 vin1a_d16 2084 0 1289 0 3379 0 4437 0 CFG_VIN1A_D16_OUT - vout3_d7 AE1 vin1a_d17 2100 0 1304 0 3394 0 4453 0 CFG_VIN1A_D17_OUT - vout3_d6 AD5 vin1a_d18 2069 0 1274 0 3363 0 4422 0 CFG_VIN1A_D18_OUT - vout3_d5 AD3 vin1a_d19 2171 0 1372 0 3465 0 4524 0 CFG_VIN1A_D19_OUT - vout3_d4 AE7 vin1a_d2 1956 0 1227 0 3241 0 4300 0 CFG_VIN1A_D2_OUT vout3_d5 vout3_d21 228 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-50. Manual Functions Mapping for DSS VOUT3 (continued) BALL NAME VOUT3_MANUAL1 VOUT3_MANUAL2 VOUT3_MANUAL3 VOUT3_MANUAL4 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 0 3546 0 4604 0 AD4 vin1a_d20 2251 0 1448 CFG REGISTER MUXMODE 3 4 CFG_VIN1A_D20_OUT - vout3_d3 AE2 vin1a_d21 2252 0 1449 0 3546 0 4605 0 CFG_VIN1A_D21_OUT - vout3_d2 AD1 vin1a_d22 2199 0 1187 211 3494 0 4552 0 CFG_VIN1A_D22_OUT - vout3_d1 AD2 vin1a_d23 2316 0 1510 0 3610 0 4669 0 CFG_VIN1A_D23_OUT - vout3_d0 AE8 vin1a_d3 2053 0 1320 0 3338 0 4397 0 CFG_VIN1A_D3_OUT vout3_d4 vout3_d20 AE6 vin1a_d4 2760 0 1995 0 4045 0 5015 89 CFG_VIN1A_D4_OUT vout3_d3 vout3_d19 AF7 vin1a_d5 1755 0 1007 0 3010 0 4069 0 CFG_VIN1A_D5_OUT vout3_d2 vout3_d18 AF8 vin1a_d6 1948 0 1220 0 3233 0 4292 0 CFG_VIN1A_D6_OUT vout3_d1 vout3_d17 AF6 vin1a_d7 1925 0 1198 0 3211 0 4270 0 CFG_VIN1A_D7_OUT vout3_d0 vout3_d16 AF4 vin1a_d8 2104 0 1307 0 3398 0 4457 0 CFG_VIN1A_D8_OUT - vout3_d15 AF2 vin1a_d9 2192 0 1392 0 3487 0 4545 0 CFG_VIN1A_D9_OUT - vout3_d14 AC9 vin1a_de0 2202 0 1462 0 3487 0 4546 0 CFG_VIN1A_DE0_OUT vout3_d17 vout3_de AD9 vin1a_fld0 0 0 2007 454 0 0 0 0 CFG_VIN1A_FLD0_OUT - vout3_clk AC10 vin1a_hsync0 2015 0 1240 0 3309 0 4367 0 CFG_VIN1A_HSYNC0_OUT - vout3_hsync AD7 vin1a_vsync0 1829 0 1063 0 3123 0 4182 0 CFG_VIN1A_VSYNC0_OUT - vout3_vsync Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 229 ADVANCE INFORMATION BALL DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.6.5 HDMI The High-Definition Multimedia Interface is provided for transmitting digital television audiovisual signals from DVD players, set-top boxes and other audiovisual sources to television sets, projectors and other video displays. The HDMI interface is aligned with the HDMI TMDS single stream standard v1.4a (720p @60Hz to 1080p @24Hz) and the HDMI v1.3 (1080p @60Hz): 3 data channels, plus 1 clock channel is supported (differential). NOTE For more information, see the High-Definition Multimedia Interface chapter of the device TRM. 5.10.6.6 EMIF ADVANCE INFORMATION The device has a dedicated interface to DDR3 and DDR2 SDRAM. It supports JEDEC standard compliant DDR2 and DDR3 SDRAM devices with the following features: • 16-bit or 32-bit data path to external SDRAM memory • Memory device capacity: 128Mb, 256Mb, 512Mb, 1Gb, 2Gb, 4Gb and 8Gb devices (Single die only) • One interface with associated DDR2/DDR3 PHYs NOTE For more information, see the EMIF Controller section of the Device TRM. 5.10.6.7 GPMC The GPMC is the unified memory controller that interfaces external memory devices such as: • Asynchronous SRAM-like memories and ASIC devices • Asynchronous page mode and synchronous burst NOR flash • NAND flash NOTE For more information, see the General-Purpose Memory Controller section of the Device TRM. 5.10.6.7.1 GPMC/NOR Flash Interface Synchronous Timing CAUTION The IO Timings provided in this section are only valid for some GPMC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-51 and Table 5-52 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-19, Figure 5-20, Figure 5-21, Figure 5-22, Figure 5-23, and Figure 5-24). Table 5-51. GPMC/NOR Flash Interface Timing Requirements - Synchronous Mode - Default Mode NO. PARAMETER DESCRIPTION F12 tsu(dV-clkH) Setup time, read gpmc_ad[15:0] valid before gpmc_clk high F13 th(clkH-dV) Hold time, read gpmc_ad[15:0] valid after gpmc_clk high F21 tsu(waitV-clkH) Setup time, gpmc_wait[1:0] valid before gpmc_clk high 230 Specifications MIN MAX UNIT 1.9 ns 1 ns 1.9 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-51. GPMC/NOR Flash Interface Timing Requirements - Synchronous Mode - Default Mode (continued) NO. F22 PARAMETER th(clkH-waitV) DESCRIPTION MIN Hold Time, gpmc_wait[1:0] valid after gpmc_clk high MAX 1 UNIT ns NOTE Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see General-Purpose Memory Controller section in the Device TRM. Table 5-52. GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Default Mode PARAMETER DESCRIPTION MIN F0 tc(clk) Cycle time, output clock gpmc_clk period (12) 11.3 (14) F2 td(clkH-nCSV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] transition F3 td(clkH-nCSIV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] invalid (14) F-0.8 MAX UNIT ns (6) F+3.17 ns E-0.8 (5) E+3.1 (5) ns (2) B+3.43 ns F4 td(ADDV-clk) Delay time, gpmc_a[27:0] address bus valid to gpmc_clk first edge F5 td(clkH-ADDIV) Delay time, gpmc_clk rising edge to gpmc_a[27:0] gpmc address bus invalid F6 td(nBEV-clk) Delay time, gpmc_ben[1:0] valid to gpmc_clk rising edge B-3.8 B+2.37 ns F7 td(clkH-nBEIV) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] invalid D-0.4 D+1.1 ns F8 td(clkH-nADV) Delay time, gpmc_clk rising edge to gpmc_advn_ale transition G-0.8 (7) G+3.1 (7) ns (4) (4) ns H-0.8 (8) H+2.45 ns E-0.8 (5) E+2.1 (5) ns (9) (9) ns J+4.89 ns (10) ns (14) (14) F9 td(clkH-nADVIV) Delay time, gpmc_clk rising edge to gpmc_advn_ale invalid F10 td(clkH-nOE) Delay time, gpmc_clk rising edge to gpmc_oen_ren transition F11 td(clkH-nOEIV) Delay time, gpmc_clk rising edge to gpmc_oen_ren invalid (14) (14) (14) B-0.8 (6) (2) -0.8 D-0.8 F14 td(clkH-nWE) Delay time, gpmc_clk rising edge to gpmc_wen transition F15 td(clkH-Data) Delay time, gpmc_clk rising edge to gpmc_ad[15:0] data bus transition J-1.1 I-0.8 (10) F17 td(clkH-nBE) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] transition J-1.1 (10) ns D+3.1 (8) I+3.1 (10) J+3.8 F18 tw(nCSV) Pulse duration, gpmc_cs[7:0] low A (1) F19 tw(nBEV) Pulse duration, gpmc_ben[1:0] low C (3) ns F20 tw(nADVV) Pulse duration, gpmc_advn_ale low (11) ns F23 td(CLK-GPIO) Delay time, gpmc_clk transition to gpio6_16 transition K (13) ADVANCE INFORMATION NO. 1.2 6.1 ns ns Table 5-53. GPMC/NOR Flash Interface Timing Requirements - Synchronous Mode - Alternate Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT F12 tsu(dV-clkH) Setup time, read gpmc_ad[15:0] valid before gpmc_clk high 2.5 ns F13 th(clkH-dV) Hold time, read gpmc_ad[15:0] valid after gpmc_clk high 1.9 ns F21 tsu(waitV-clkH) Setup time, gpmc_wait[1:0] valid before gpmc_clk high 2.5 ns F22 th(clkH-waitV) Hold Time, gpmc_wait[1:0] valid after gpmc_clk high 1.9 ns Table 5-54. GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Alternate Mode NO. PARAMETER DESCRIPTION F0 tc(clk) Cycle time, output clock gpmc_clk period (12) F2 td(clkH-nCSV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] transition F3 td(clkH-nCSIV) Delay time, gpmc_clk rising edge to gpmc_cs[7:0] invalid MIN MAX 15.04 (14) (14) F-0.13 (6) E+0.7 (5) ns F+6.1 (6) ns E+6.1 (5) ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P UNIT 231 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-54. GPMC/NOR Flash Interface Switching Characteristics - Synchronous Mode - Alternate Mode (continued) NO. PARAMETER DESCRIPTION F4 td(ADDV-clk) Delay time, gpmc_a[27:0] address bus valid to gpmc_clk first edge F5 td(clkH-ADDIV) Delay time, gpmc_clk rising edge to gpmc_a[27:0] gpmc address bus invalid F6 td(nBEV-clk) Delay time, gpmc_ben[1:0] valid to gpmc_clk rising edge F7 td(clkH-nBEIV) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] invalid F8 td(clkH-nADV) Delay time, gpmc_clk rising edge to gpmc_advn_ale transition F9 td(clkH-nADVIV) Delay time, gpmc_clk rising edge to gpmc_advn_ale invalid (14) F10 td(clkH-nOE) Delay time, gpmc_clk rising edge to gpmc_oen_ren transition F11 td(clkH-nOEIV) Delay time, gpmc_clk rising edge to gpmc_oen_ren invalid (14) F14 td(clkH-nWE) Delay time, gpmc_clk rising edge to gpmc_wen transition MIN MAX B+0.21 B+6.1 (2) (2) 0.7 B-4.9 (14) (14) (14) UNIT ns ns B+0.4 ns D-0.4 D+4.9 ns G+0.7 (7) G+6.1 (7) ns D+0.7 (4) D+6.1 (4) ns H+0.42 H+5.1 (8) ns E+0.7 (5) E+5.1 (5) ns (9) I+6.1 (9) ns (10) ns J+5.63 ns (8) I+0.46 ADVANCE INFORMATION F15 td(clkH-Data) Delay time, gpmc_clk rising edge to gpmc_ad[15:0] data bus transition J-0.4 (10) F17 td(clkH-nBE) Delay time, gpmc_clk rising edge to gpmc_ben[1:0] transition J-0.4 (10) F18 tw(nCSV) Pulse duration, gpmc_cs[7:0] low A (1) ns F19 tw(nBEV) Pulse duration, gpmc_ben[1:0] low C (3) ns F20 tw(nADVV) Pulse duration, gpmc_advn_ale low (11) ns F23 td(CLK-GPIO) Delay time, gpmc_clk transition to gpio6_16 transition K (13) J+4.9 (10) 0.96 6.1 ns (1) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK period For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK period For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK period with n the page burst access number. (2) B = ClkActivationTime × GPMC_FCLK (3) For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK For burst read: C = (RdCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK For Burst write: C = (WrCycleTime + (n – 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK with n the page burst access number. (4) For single read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK For burst read: D = (RdCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK For burst write: D = (WrCycleTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK (5) For single read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK For burst read: E = (CSRdOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK For burst write: E = (CSWrOffTime – AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK (6) For nCS falling edge (CS activated): Case GpmcFCLKDivider = 0 : F = 0.5 × CSExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: F = 0.5 × CSExtraDelay × GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime are even) F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: F = 0.5 × CSExtraDelay × GPMC_FCLK if ((CSOnTime – ClkActivationTime) is a multiple of 3) F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3) F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3) Case GpmcFCLKDivider = 3: F = 0.5 × CSExtraDelay × GPMC_FCLK if ((CSOnTime - ClkActivationTime) is a multiple of 4) F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK if ((CSOnTime - ClkActivationTime - 1) is a multiple of 4) F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK if ((CSOnTime - ClkActivationTime - 2) is a multiple of 4) F = (3 + 0.5 × CSExtraDelay) × GPMC_FCLK if ((CSOnTime - ClkActivationTime - 3) is a multiple of 4) (7) For ADV falling edge (ADV activated): Case GpmcFCLKDivider = 0 : G = 0.5 × ADVExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: G = 0.5 × ADVExtraDelay × GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and ADVOnTime are even) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: G = 0.5 × ADVExtraDelay × GPMC_FCLK if ((ADVOnTime – ClkActivationTime) is a multiple of 3) 232 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3) G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3) For ADV rising edge (ADV deactivated) in Reading mode: Case GpmcFCLKDivider = 0: G = 0.5 × ADVExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: G = 0.5 × ADVExtraDelay × GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and ADVRdOffTime are even) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: G = 0.5 × ADVExtraDelay × GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3) G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3) Case GpmcFCLKDivider = 3: G = 0.5 × ADVExtraDelay × GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime) is a multiple of 4) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 4) G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 4) G = (3 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 3) is a multiple of 4) For ADV rising edge (ADV deactivated) in Writing mode: Case GpmcFCLKDivider = 0: G = 0.5 × ADVExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: G = 0.5 × ADVExtraDelay × GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and ADVWrOffTime are even) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: G = 0.5 × ADVExtraDelay × GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3) G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3) Case GpmcFCLKDivider = 3: G = 0.5 × ADVExtraDelay × GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime) is a multiple of 4) G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 4) G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 4) G = (3 + 0.5 × ADVExtraDelay) × GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 3) is a multiple of 4) (8) For OE falling edge (OE activated): Case GpmcFCLKDivider = 0: - H = 0.5 × OEExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: - H = 0.5 × OEExtraDelay × GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime are even) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - H = 0.5 × OEExtraDelay × GPMC_FCLK if ((OEOnTime – ClkActivationTime) is a multiple of 3) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3) - H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - H = 0.5 × OEExtraDelay × GPMC_FCLK if ((OEOnTime - ClkActivationTime) is a multiple of 4) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOnTime - ClkActivationTime - 1) is a multiple of 4) - H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOnTime - ClkActivationTime - 2) is a multiple of 4) - H = (3 + 0.5 × OEExtraDelay)) × GPMC_FCLK if ((OEOnTime - ClkActivationTime - 3) is a multiple of 4) For OE rising edge (OE deactivated): Case GpmcFCLKDivider = 0: - H = 0.5 × OEExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: - H = 0.5 × OEExtraDelay × GPMC_FCLK if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are even) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - H = 0.5 × OEExtraDelay × GPMC_FCLK if ((OEOffTime – ClkActivationTime) is a multiple of 3) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3) - H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - H = 0.5 × OEExtraDelay × GPMC_FCLK if ((OEOffTime – ClkActivationTime) is a multiple of 4) - H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOffTime – ClkActivationTime – 1) is a multiple of 4) - H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOffTime – ClkActivationTime – 2) is a multiple of 4) - H = (3 + 0.5 × OEExtraDelay) × GPMC_FCLK if ((OEOffTime – ClkActivationTime – 3) is a multiple of 4) (9) For WE falling edge (WE activated): Case GpmcFCLKDivider = 0: - I = 0.5 × WEExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: - I = 0.5 × WEExtraDelay × GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime are even) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 233 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com ADVANCE INFORMATION - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - I = 0.5 × WEExtraDelay × GPMC_FCLK if ((WEOnTime – ClkActivationTime) is a multiple of 3) - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3) - I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - I = 0.5 × WEExtraDelay × GPMC_FCLK if ((WEOnTime - ClkActivationTime) is a multiple of 4) - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOnTime - ClkActivationTime - 1) is a multiple of 4) - I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOnTime - ClkActivationTime - 2) is a multiple of 4) - I = (3 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOnTime - ClkActivationTime - 3) is a multiple of 4) For WE rising edge (WE deactivated): Case GpmcFCLKDivider = 0: - I = 0.5 × WEExtraDelay × GPMC_FCLK Case GpmcFCLKDivider = 1: - I = 0.5 × WEExtraDelay × GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime are even) - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK otherwise Case GpmcFCLKDivider = 2: - I = 0.5 × WEExtraDelay × GPMC_FCLK if ((WEOffTime – ClkActivationTime) is a multiple of 3) - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3) - I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3) Case GpmcFCLKDivider = 3: - I = 0.5 × WEExtraDelay × GPMC_FCLK if ((WEOffTime - ClkActivationTime) is a multiple of 4) - I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOffTime - ClkActivationTime - 1) is a multiple of 4) - I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOffTime - ClkActivationTime - 2) is a multiple of 4) - I = (3 + 0.5 × WEExtraDelay) × GPMC_FCLK if ((WEOffTime - ClkActivationTime - 3) is a multiple of 4) (10) J = GPMC_FCLK period, where GPMC_FCLK is the General Purpose Memory Controller internal functional clock (11) For read: K = (ADVRdOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK For write: K = (ADVWrOffTime – ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK (12) The gpmc_clk output clock maximum and minimum frequency is programmable in the I/F module by setting the GPMC_CONFIG1_CSx configuration register bit fields GpmcFCLKDivider (13) gpio6_16 programmed to MUXMODE=9 (clkout1), CM_CLKSEL_CLKOUTMUX1 programmed to 7 (CORE_DPLL_OUT_DCLK), CM_CLKSEL_CORE_DPLL_OUT_CLK_CLKOUTMUX programmed to 1. (14) CSEXTRADELAY = 0, ADVEXTRADELAY = 0, WEEXTRADELAY = 0, OEEXTRADELAY = 0. Extra half-GPMC_FCLK cycle delay mode is not timed. 234 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 F1 F0 F1 gpmc_clk F2 F3 F18 gpmc_csi F4 Address (MSB) gpmc_a[10:1] gpmc_a[27] F6 F7 F19 gpmc_ben1 F6 F7 F19 gpmc_ben0 F8 F20 ADVANCE INFORMATION F8 F9 gpmc_advn_ale F10 F11 gpmc_oen_ren F13 F4 gpmc_ad[15:0] F5 F12 Address (LSB) D0 F22 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_01 Figure 5-19. GPMC / Multiplexed 16bits NOR Flash - Synchronous Single Read (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 0 to 7. (2) In gpmc_waitj, j = 0 to 1. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 235 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com F1 F0 F1 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[27:1] Address F6 F7 F19 gpmc_ben1 F6 F7 F19 gpmc_ben0 F8 F8 F9 F20 ADVANCE INFORMATION gpmc_advn_ale F10 F11 gpmc_oen_ren F13 F12 D0 gpmc_ad[15:0] F22 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_02 Figure 5-20. GPMC / Nonmultiplexed 16bits NOR Flash - Synchronous Single Read (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 0 to 7. (2) In gpmc_waitj, j = 0 to 1. 236 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[10:1] gpmc_a[27] Address (MSB) F7 F6 F19 Valid gpmc_ben1 F7 F6 F19 Valid gpmc_ben0 F8 F9 F20 gpmc_advn_ale F10 F11 gpmc_oen_ren F12 F4 gpmc_ad[15:0] F5 F13 D0 Address (LSB) F22 D1 F12 D2 D3 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_03 Figure 5-21. GPMC / Multiplexed 16bits NOR Flash - Synchronous Burst Read 4x16 bits (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i= 0 to 7. (2) In gpmc_waitj, j = 0 to 1. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 237 ADVANCE INFORMATION F8 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[27:1] Address F7 F6 F19 Valid gpmc_ben1 F7 F6 F19 Valid gpmc_ben0 F8 F8 ADVANCE INFORMATION F20 F9 gpmc_advn_ale F10 F11 gpmc_oen_ren F12 F13 gpmc_ad[15:0] D0 D1 F12 D2 D3 F21 F22 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_04 Figure 5-22. GPMC / Nonmultiplexed 16bits NOR Flash - Synchronous Burst Read 4x16 bits (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 0 to 7. (2) In gpmc_waitj, j = 0 to 1. 238 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 gpmc_a[10:1] gpmc_a[27] Address (MSB) F17 F6 F17 F6 F17 F17 gpmc_ben1 F17 F17 gpmc_ben0 F8 F20 F9 gpmc_advn_ale F14 F14 gpmc_wen F15 gpmc_ad[15:0] Address (LSB) D0 F22 D1 F15 D2 F15 D3 F21 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_05 Figure 5-23. GPMC / Multiplexed 16bits NOR Flash - Synchronous Burst Write 4x16bits (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 0 to 7. (2) In gpmc_waitj, j = 0 to 1. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 239 ADVANCE INFORMATION F8 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com F1 F1 F0 gpmc_clk F2 F3 F18 gpmc_csi F4 Address gpmc_a[27:1] F17 F6 F17 F17 gpmc_ben1 F17 F6 F17 F17 gpmc_ben0 F8 F8 F20 F9 ADVANCE INFORMATION gpmc_advn_ale F14 F14 gpmc_wen F15 gpmc_ad[15:0] D0 D1 F15 F15 D2 D3 F21 F22 gpmc_waitj F23 F23 gpio6_16.clkout1 GPMC_06 Figure 5-24. GPMC / Nonmultiplexed 16bits NOR Flash - Synchronous Burst Write 4x16bits (GpmcFCLKDivider = 0)(1)(2) (1) In gpmc_csi, i = 1 to 7. (2) In gpmc_waitj, j = 0 to 1. 5.10.6.7.2 GPMC/NOR Flash Interface Asynchronous Timing CAUTION The IO Timings provided in this section are only valid for some GPMC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-55 and Table 5-56 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-25, Figure 5-26, Figure 5-27, Figure 5-28, Figure 5-29, and Figure 5-30). Table 5-55. GPMC/NOR Flash Interface Timing Requirements - Asynchronous Mode NO. FA5 240 PARAMETER tacc(DAT) DESCRIPTION Data Maximum Access Time (GPMC_FCLK cycles) Specifications MIN MAX UNIT (1) cycles H Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-55. GPMC/NOR Flash Interface Timing Requirements - Asynchronous Mode (continued) NO. PARAMETER DESCRIPTION FA20 tacc1-pgmode(DAT) Page Mode Successive Data Maximum Access Time (GPMC_FCLK cycles) FA21 tacc2-pgmode(DAT) Page Mode First Data Maximum Access Time (GPMC_FCLK cycles) - tsu(DV-OEH) Setup time, read gpmc_ad[15:0] valid before gpmc_oen_ren high - th(OEH-DV) Hold time, read gpmc_ad[15:0] valid after gpmc_oen_ren high MIN MAX UNIT P (2) cycles H (1) cycles 1.9 ns 1 ns (1) H = Access Time × (TimeParaGranularity + 1) (2) P = PageBurstAccessTime × (TimeParaGranularity + 1) Table 5-56. GPMC/NOR Flash Interface Switching Characteristics - Asynchronous Mode PARAMETER DESCRIPTION MIN MAX UNIT Pulse duration, gpmc_ben[1:0] valid time N (1) FA0 tw(nBEV) FA1 tw(nCSV) ns Pulse duration, gpmc_cs[7:0] low A (2) FA3 td(nCSV-nADVIV) Delay time, gpmc_cs[7:0] valid to gpmc_advn_ale invalid B-2 ns (3) B+4 (3) FA4 td(nCSV-nOEIV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren invalid (Single read) ns C-2 (4) C+4 (4) ns ns FA9 td(AV-nCSV) Delay time, address bus valid to gpmc_cs[7:0] valid J-2 (5) J+4 (5) FA10 td(nBEV-nCSV) Delay time, gpmc_ben[1:0] valid to gpmc_cs[7:0] valid J-2 (5) J+4 (5) ns FA12 td(nCSV-nADVV) Delay time, gpmc_cs[7:0] valid to gpmc_advn_ale valid K-2 (6) K+4 (6) ns FA13 td(nCSV-nOEV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren valid L-2 (7) L+4 (7) ns FA16 tw(AIV) Pulse duration, address invalid between 2 successive R/W accesses G (8) FA18 td(nCSV-nOEIV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren invalid (Burst read) I-2 (9) I+4 (9) FA20 tw(AV) Pulse duration, address valid : 2nd, 3rd and 4th accesses D (10) FA25 td(nCSV-nWEV) Delay time, gpmc_cs[7:0] valid to gpmc_wen valid E-2 (11) E+4 (11) ns FA27 td(nCSV-nWEIV) Delay time, gpmc_cs[7:0] valid to gpmc_wen invalid F-2 (12) F+4 (12) ns FA28 td(nWEV-DV) Delay time, gpmc_ wen valid to data bus valid 2 ns FA29 td(DV-nCSV) Delay time, data bus valid to gpmc_cs[7:0] valid (5) ns FA37 td(nOEV-AIV) Delay time, gpmc_oen_ren valid to gpmc_ad[15:0] multiplexed address bus phase end 2 ns J-2 ADVANCE INFORMATION NO. ns ns ns J+4 (5) (1) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK (2) For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK For single write: A = (CSWrOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK (3) For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK (4) C = ((OEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK (5) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK (6) K = ((ADVOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK (7) L = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK (8) G = Cycle2CycleDelay × GPMC_FCLK × (TimeParaGranularity +1) (9) I = ((OEOffTime + (n - 1) × PageBurstAccessTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK (10) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK (11) E = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK (12) F = ((WEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 241 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com GPMC_FCLK gpmc_clk FA5 FA1 gpmc_csi FA9 Valid Address gpmc_a[27:1] FA0 FA10 gpmc_ben0 Valid gpmc_ben1 Valid FA0 FA10 FA3 FA12 gpmc_advn_ale FA4 ADVANCE INFORMATION FA13 gpmc_oen_ren gpmc_ad[15:0] Data IN 0 Data IN 0 gpmc_waitj FA15 FA14 OUT DIR IN OUT GPMC_07 Figure 5-25. GPMC / NOR Flash - Asynchronous Read - Single Word Timing(1)(2)(3)(4) (1) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. (2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data will be internally sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. (4) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 242 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 GPMC_FCLK gpmc_clk FA5 FA5 FA1 FA1 gpmc_csi FA16 FA9 FA9 gpmc_a[27:1] Address 0 Address 1 FA0 FA0 FA10 FA10 gpmc_ben0 Valid FA0 FA0 gpmc_ben1 Valid Valid Valid FA10 FA3 FA3 FA12 FA12 gpmc_advn_ale FA4 FA4 FA13 FA13 gpmc_oen_ren gpmc_ad[15:0] Data Upper gpmc_waitj FA15 FA15 FA14 DIR FA14 OUT IN OUT IN GPMC_08 (1)(2)(3)(4) Figure 5-26. GPMC / NOR Flash - Asynchronous Read - 32-bit Timing (1) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. (2) FA5 parameter illustrates amount of time required to internally sample input Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data will be internally sampled by active functional clock edge. FA5 value should be stored inside AccessTime register bits field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. (4) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 243 ADVANCE INFORMATION FA10 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com GPMC_FCLK gpmc_clk FA21 FA20 FA20 FA20 FA1 gpmc_csi FA9 Add0 gpmc_a[27:1] Add1 Add2 Add3 D0 D1 D2 Add4 FA0 FA10 gpmc_ben0 FA0 FA10 gpmc_ben1 FA12 gpmc_advn_ale FA18 ADVANCE INFORMATION FA13 gpmc_oen_ren gpmc_ad[15:0] D3 D3 gpmc_waitj FA15 FA14 DIR OUT IN OUT SPRS91v_GPMC_09 Figure 5-27. GPMC / NOR Flash - Asynchronous Read - Page Mode 4x16-bit Timing(1)(2)(3)(4)(5) (1) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. (2) FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data will be internally sampled by active functional clock edge. FA21 calculation is detailled in a separated application note and should be stored inside AccessTime register bits field. (3) FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of GPMC functional clock cycles. After each access to input Page Data, next input Page Data will be internally sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input Page Data (excluding first input Page Data). FA20 value should be stored in PageBurstAccessTime register bits field. (4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. (5) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 244 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 gpmc_fclk gpmc_clk FA1 gpmc_csi FA9 Valid Address gpmc_a[27:1] FA0 FA10 gpmc_ben0 FA0 FA10 gpmc_ben1 FA3 FA12 gpmc_advn_ale FA27 gpmc_wen FA29 Data OUT gpmc_ad[15:0] gpmc_waitj DIR OUT GPMC_10 Figure 5-28. GPMC / NOR Flash - Asynchronous Write - Single Word Timing(1)(2) (1) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. (2) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 245 ADVANCE INFORMATION FA25 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com GPMC_FCLK gpmc_clk FA1 FA5 gpmc_csi FA9 gpmc_a27 gpmc_a[10:1] Address (MSB) FA0 FA10 gpmc_ben0 Valid FA0 FA10 Valid gpmc_ben1 FA3 FA12 ADVANCE INFORMATION gpmc_advn_ale FA4 FA13 gpmc_oen_ren FA29 gpmc_ad[15:0] FA37 Address (LSB) Data IN Data IN FA15 FA14 DIR OUT IN OUT gpmc_waitj GPMC_11 Figure 5-29. GPMC / Multiplexed NOR Flash - Asynchronous Read - Single Word Timing(1)(2)(3)(4) (1) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1 (2) FA5 parameter illustrates amount of time required to internally sample input Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data will be internally sampled by active functional clock edge. FA5 value should be stored inside AccessTime register bits field. (3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally (4) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 246 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 gpmc_fclk gpmc_clk FA1 gpmc_csi FA9 gpmc_a27 gpmc_a[10:1] Address (MSB) FA0 FA10 gpmc_ben0 FA0 FA10 gpmc_ben1 FA3 FA12 FA27 FA25 gpmc_wen FA29 FA28 Valid Address (LSB) gpmc_ad[15:0] Data OUT gpmc_waitj OUT DIR GPMC_12 Figure 5-30. GPMC / Multiplexed NOR Flash - Asynchronous Write - Single Word Timing(1)(2) (1) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. (2) The "DIR" (direction control) output signal is NOT pinned out on any of the device pads. It is an internal signal only representing a signal direction on the GPMC data bus. 5.10.6.7.3 GPMC/NAND Flash Interface Asynchronous Timing CAUTION The IO Timings provided in this section are only valid for some GPMC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-57 and Table 5-58 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-31, Figure 5-32, Figure 5-33, and Figure 5-34). Table 5-57. GPMC/NAND Flash Interface Timing Requirements NO. GNF12 PARAMETER DESCRIPTION tacc(DAT) Data maximum access time (GPMC_FCLK Cycles) - tsu(DV-OEH) Setup time, read gpmc_ad[15:0] valid before gpmc_oen_ren high - th(OEH-DV) Hold time, read gpmc_ad[15:0] valid after gpmc_oen_ren high MIN MAX UNIT (1) cycles J 1.9 ns 1 ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 247 ADVANCE INFORMATION gpmc_advn_ale DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (1) J = AccessTime × (TimeParaGranularity + 1) Table 5-58. GPMC/NAND Flash Interface Switching Characteristics NO. GNF0 PARAMETER DESCRIPTION tw(nWEV) Pulse duration, gpmc_wen valid time MIN MAX UNIT A (1) ns ns GNF1 td(nCSV-nWEV) Delay time, gpmc_cs[7:0] valid to gpmc_wen valid B-2 (2) B+4 (2) GNF2 td(CLEH-nWEV) Delay time, gpmc_ben[1:0] high to gpmc_wen valid C-2 (3) C+4 (3) ns GNF3 td(nWEV-DV) Delay time, gpmc_ad[15:0] valid to gpmc_wen valid D-2 (4) D+4 (4) ns ns GNF4 td(nWEIV-DIV) Delay time, gpmc_wen invalid to gpmc_ad[15:0] invalid E-2 (5) E+4 (5) GNF5 td(nWEIV-CLEIV) Delay time, gpmc_wen invalid to gpmc_ben[1:0] invalid F-2 (6) F+4 (6) ns GNF6 td(nWEIV-nCSIV) Delay time, gpmc_wen invalid to gpmc_cs[7:0] invalid G-2 (7) G+4 (7) ns GNF7 td(ALEH-nWEV) Delay time, gpmc_advn_ale high to gpmc_wen valid C-2 (3) C+4 (3) ns F-2 (6) F+4 (6) ns H (8) ns I+4 (9) ns ns GNF8 td(nWEIV-ALEIV) Delay time, gpmc_wen invalid to gpmc_advn_ale invalid GNF9 tc(nWE) Cycle time, write cycle time GNF10 td(nCSV-nOEV) Delay time, gpmc_cs[7:0] valid to gpmc_oen_ren valid I-2 (9) ADVANCE INFORMATION GNF13 tw(nOEV) Pulse duration, gpmc_oen_ren valid time K (10) GNF14 tc(nOE) Cycle time, read cycle time L (11) ns GNF15 td(nOEIV-nCSIV) Delay time, gpmc_oen_ren invalid to gpmc_cs[7:0] invalid M+4 (12) ns M-2 (12) (1) A = (WEOffTime – WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK (2) B = ((WEOnTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – CSExtraDelay)) × GPMC_FCLK (3) C = ((WEOnTime – ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay – ADVExtraDelay)) × GPMC_FCLK (4) D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay ) × GPMC_FCLK (5) E = (WrCycleTime – WEOffTime × (TimeParaGranularity + 1) – 0.5 × WEExtraDelay ) × GPMC_FCLK (6) F = (ADVWrOffTime – WEOffTime × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay – WEExtraDelay) × GPMC_FCLK (7) G = (CSWrOffTime – WEOffTime × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay – WEExtraDelay) × GPMC_FCLK (8) H = WrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK (9) I = ((OEOffTime + (n – 1) × PageBurstAccessTime – CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay – CSExtraDelay)) × GPMC_FCLK (10) K = (OEOffTime – OEOnTime) × (1 + TimeParaGranularity) × GPMC_FCLK (11) L = RdCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK (12) M = (CSRdOffTime – OEOffTime × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay – OEExtraDelay) × GPMC_FCLK GPMC_FCLK GNF1 GNF6 GNF2 GNF5 gpmc_csi gpmc_ben0 gpmc_advn_ale gpmc_oen_ren GNF0 gpmc_wen GNF3 gpmc_ad[15:0] GNF4 Command GPMC_13 (1) Figure 5-31. GPMC / NAND Flash - Command Latch Cycle Timing (1) In gpmc_csi, i = 0 to 7. 248 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 GPMC_FCLK GNF1 GNF6 GNF7 GNF8 gpmc_csi gpmc_ben0 gpmc_advn_ale gpmc_oen_ren GNF9 GNF0 gpmc_wen GNF3 GNF4 gpmc_ad[15:0] Address GPMC_14 (1) ADVANCE INFORMATION Figure 5-32. GPMC / NAND Flash - Address Latch Cycle Timing (1) In gpmc_csi, i = 0 to 7. GPMC_FCLK GNF12 GNF10 GNF15 gpmc_csi gpmc_ben0 gpmc_advn_ale GNF14 GNF13 gpmc_oen_ren gpmc_ad[15:0] DATA gpmc_waitj GPMC_15 Figure 5-33. GPMC / NAND Flash - Data Read Cycle Timing(1)(2)(3) (1) GNF12 parameter illustrates amount of time required to internally sample input Data. It is expressed in number of GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field. (2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally. (3) In gpmc_csi, i = 0 to 7. In gpmc_waitj, j = 0 to 1. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 249 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com GPMC_FCLK GNF1 GNF6 gpmc_csi gpmc_ben0 gpmc_advn_ale gpmc_oen_ren GNF9 GNF0 gpmc_wen GNF3 GNF4 gpmc_ad[15:0] DATA GPMC_16 ADVANCE INFORMATION Figure 5-34. GPMC / NAND Flash - Data Write Cycle Timing(1) (1) In gpmc_csi, i = 0 to 7. NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-33 and described in Device TRM, Chapter 18 - Control Module. Virtual IO Timings Modes must be used to guarantee some IO timings for GPMC. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 5-59 Virtual Functions Mapping for GPMC for a definition of the Virtual modes. Table 5-59 presents the values for DELAYMODE bitfield. 250 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-59. Virtual Functions Mapping for GPMC BALL NAME Delay Mode Value MUXMODE[15:0] GPMC_VIRTUAL1 0 N5 gpmc_ad0 11 gpmc_ad0 M2 gpmc_ad1 11 gpmc_ad1 L5 gpmc_ad2 11 gpmc_ad2 M1 gpmc_ad3 11 gpmc_ad3 K6 gpmc_ad4 11 gpmc_ad4 L4 gpmc_ad5 11 gpmc_ad5 L3 gpmc_ad6 11 gpmc_ad6 L2 gpmc_ad7 11 gpmc_ad7 L1 gpmc_ad8 11 gpmc_ad8 K1 gpmc_ad9 11 gpmc_ad9 J1 gpmc_ad10 11 gpmc_ad10 J2 gpmc_ad11 11 gpmc_ad11 H1 gpmc_ad12 11 gpmc_ad12 K2 gpmc_ad13 11 gpmc_ad13 H2 gpmc_ad14 11 gpmc_ad14 K3 gpmc_ad15 11 gpmc_ad15 P6 gpmc_a0 11 gpmc_a0 J6 gpmc_a1 11 gpmc_a1 R4 gpmc_a2 11 gpmc_a2 R5 gpmc_a3 10 gpmc_a3 M6 gpmc_a4 10 gpmc_a4 K4 gpmc_a5 11 gpmc_a5 P5 gpmc_a6 11 gpmc_a6 N6 gpmc_a7 11 gpmc_a7 N4 gpmc_a8 12 gpmc_a8 R3 gpmc_a9 12 gpmc_a9 J5 gpmc_a10 12 gpmc_a10 K5 gpmc_a11 11 gpmc_a11 P4 gpmc_a12 13 gpmc_a12 R2 gpmc_a13 12 gpmc_a13 R6 gpmc_a14 12 gpmc_a14 T2 gpmc_a15 12 gpmc_a15 1 2 3 5 6 14(1) 14(1) gpmc_a26 gpmc_a16 gpmc_a0 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 251 ADVANCE INFORMATION BALL DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-59. Virtual Functions Mapping for GPMC (continued) BALL BALL NAME Delay Mode Value MUXMODE[15:0] GPMC_VIRTUAL1 0 1 2 U1 gpmc_a16 12 gpmc_a16 P3 gpmc_a17 12 gpmc_a17 R1 gpmc_a18 12 gpmc_a18 H6 gpmc_a19 11 gpmc_a19 gpmc_a13 G6 gpmc_a20 11 gpmc_a20 gpmc_a14 3 5 6 14(1) 14(1) gpmc_a23 gpmc_a13 gpmc_a24 gpmc_a14 gpmc_a21 11 gpmc_a21 gpmc_a15 gpmc_a22 11 gpmc_a22 gpmc_a16 G5 gpmc_a23 11 gpmc_a23 gpmc_a17 J3 gpmc_a24 11 gpmc_a24 gpmc_a18 H4 gpmc_a25 11 gpmc_a25 gpmc_a19 H3 gpmc_a26 11 gpmc_a26 gpmc_a20 H5 gpmc_a27 11 gpmc_a27 gpmc_a21 G4 gpmc_cs1 11 gpmc_cs1 gpmc_a22 T1 gpmc_cs0 14 gpmc_cs0 P2 gpmc_cs2 12 gpmc_cs2 P1 gpmc_cs3 10 gpmc_cs3 L6 gpmc_clk 12 gpmc_clk gpmc_cs7 gpmc_wait1 N1 gpmc_advn_ale 13 gpmc_advn_ale gpmc_cs6 gpmc_wait1 M5 gpmc_oen_ren 14 gpmc_oen_ren M3 gpmc_wen 14 gpmc_wen N3 gpmc_ben0 11 gpmc_ben0 gpmc_cs4 M4 gpmc_ben1 11 gpmc_ben1 gpmc_cs5 N2 gpmc_wait0 14 gpmc_wait0 gpmc_a25 gpmc_a15 F1 vin2a_clk0 11 gpmc_a27 gpmc_a17 D5 vin2a_fld0 11 gpmc_a27 gpmc_a18 G1 vin2a_hsync0 9 gpmc_a27 G3 vin2a_d8 9 gpmc_a26 C5 vin2a_d9 9 gpmc_a25 D3 vin2a_d10 9 gpmc_a24 F4 vin2a_d11 9 gpmc_a23 F4 vin2a_d11 9 AF5 vin1a_d11 9 ADVANCE INFORMATION J4 F5 252 gpmc_a1 gpmc_a20 gpmc_a2 gpmc_a23 gpmc_a19 gpmc_a21 gpmc_a3 gpmc_a22 gpmc_a23 gpmc_a23 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-59. Virtual Functions Mapping for GPMC (continued) BALL BALL NAME Delay Mode Value GPMC_VIRTUAL1 MUXMODE[15:0] 0 1 2 3 5 AE5 vin1a_d12 9 gpmc_a24 AF1 vin1a_d13 9 gpmc_a25 AD6 vin1a_d14 9 gpmc_a26 AE3 vin1a_d15 9 gpmc_a27 6 14(1) 14(1) ADVANCE INFORMATION (1) Some signals listed are virtual functions that present alternate multiplexing options. These virtual functions are controlled via CTRL_CORE_ALT_SELECT_MUX or CTRL_CORE_VIP_MUX_SELECT registers. For more information on how to use these options, please refer to Device TRM, Chapter Control Module, Section Pad Configuration Registers. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 253 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.6.8 Timers The device has 16 general-purpose (GP) timers (TIMER1 - TIMER16), two watchdog timers, and a 32-kHz synchronized timer (COUNTER_32K) that have the following features: • Dedicated input trigger for capture mode and dedicated output trigger/pulse width modulation (PWM) signal • Interrupts generated on overflow, compare, and capture • Free-running 32-bit upward counter • Supported modes: – Compare and capture modes – Auto-reload mode – Start-stop mode • On-the-fly read/write register (while counting) ADVANCE INFORMATION The device has two system watchdog timer (WD_TIMER1 and WD_TIMER2) that have the following features: • Free-running 32-bit upward counter • On-the-fly read/write register (while counting) • Reset upon occurrence of a timer overflow condition The device includes one instance of the 32-bit watchdog timer: WD_TIMER2, also called the MPU watchdog timer. The watchdog timer is used to provide a recovery mechanism for the device in the event of a fault condition, such as a non-exiting code loop. NOTE For additional information on the Timer Module, see the Device TRM. 5.10.6.9 I2C The device includes 5 inter-integrated circuit (I2C) modules which provide an interface to other devices compliant with Philips Semiconductors Inter-IC bus (I2C-bus™) specification version 2.1. External components attached to this 2-wire serial bus can transmit/receive 8-bit data to/from the device through the I2C module. NOTE Note that, on I2C1 and I2C2, due to characteristics of the open drain IO cells, HS mode is not supported NOTE Inter-integrated circuit i ( i=1 to 5) module is also referred to as I2Ci NOTE For more information, see the Multimaster High-Speed I2C Controller section of the Device TRM. Table 5-60, Table 5-61 and Figure 5-35 assume testing over the recommended operating conditions and electrical characteristic conditions below. 254 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-60. Timing Requirements for I2C Input Timings(1) I1 PARAMETER STANDARD MODE DESCRIPTION MIN FAST MODE MAX MIN MAX UNIT tc(SCL) Cycle time, SCL 10 2.5 µs I2 tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 µs I3 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 µs I4 tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs I5 tw(SCLH) Pulse duration, SCL high 4 0.6 µs (2) I6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 250 I7 th(SCLL-SDAV) Hold time, SDA valid after SCL low 0(3) I8 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 I9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 300(3) ns I10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb 300(3) ns I11 tf(SDA) Fall time, SDA 300 20 + 0.1Cb 300(3) ns I12 tf(SCL) Fall time, SCL 300 20 + 0.1Cb 300(3) ns I13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) I14 tw(SP) Pulse duration, spike (must be suppressed) I15 (5) Cb 100 3.45(4) 0(3) ns 0.9(4) 1.3 (5) (5) (5) (5) 4 µs 0.6 0 Capacitive load for each bus line 400 µs µs 50 ns 400 pF (1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. (2) A Fast-mode I2C-bus™ device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)? 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH)= 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. (3) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. (4) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal. (5) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. Table 5-61. Timing Requirements for I2C HS-Mode (I2C3/4/5 Only)(1) NO. PARAMETER DESCRIPTION Cb = 400 pF (2) Cb = 100 pF MAX MIN MAX MIN UNIT MAX I1 tc(SCL) Cycle time, SCL 0.294 0.588 µs I2 tsu(SCLH-SDAL) Set-up time, SCL high before SDA low (for a repeated START condition) 160 160 ns I3 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a repeated START condition) 160 160 ns I4 tw(SCLL) LOW period of the SCLH clock 160 320 ns I5 tw(SCLH) HIGH period of the SCLH clock 60 120 ns I6 tsu(SDAV-SCLH) Setup time, SDA valid vefore SCL high 10 10 ns I7 th(SCLL-SDAV) Hold time, SDA valid after SCL low 0 I13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for a STOP condition) 160 (3) 70 0 (3) 150 160 ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ns 255 ADVANCE INFORMATION NO. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-61. Timing Requirements for I2C HS-Mode (I2C3/4/5 Only)(1) (continued) NO. PARAMETER DESCRIPTION Cb = 400 pF (2) Cb = 100 pF MAX UNIT MIN MAX MIN MAX 0 10 0 10 ns I14 tw(SP) Pulse duration, spike (must be suppressed) I15 Cb (2) Capacitive load for SDAH and SCLH lines 100 400 pF I16 Cb Capacitive load for SDAH + SDA line and SCLH + SCL line 400 400 pF (1) I2C HS-Mode is only supported on I2C3/4/5. I2C HS-Mode is not supported on I2C1/2. (2) For bus line loads Cb between 100 and 400 pF the timing parameters must be linearly interpolated. (3) A device must internally provide a Data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time. 9 11 I2Ci_SDA 6 8 14 ADVANCE INFORMATION 4 13 5 10 I2Ci_SCL 1 12 3 7 2 3 Stop Start Repeated Start Stop Figure 5-35. I2C Receive Timing Table 5-62 and Figure 5-36 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 5-62. Switching Characteristics Over Recommended Operating Conditions for I2C Output Timings(2) NO. PARAMETER DESCRIPTION STANDARD MODE MIN MAX FAST MODE MIN MAX UNIT I16 tc(SCL) Cycle time, SCL 10 2.5 µs I17 tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 µs I18 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 µs I19 tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs I20 tw(SCLH) Pulse duration, SCL high 4 0.6 µs I21 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 250 100 ns I22 th(SCLL-SDAV) Hold time, SDA valid after SCL low (for I2C bus devices) I23 tw(SDAH) Pulse duration, SDA high between STOP and START conditions I24 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb 300(3) ns I25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb 300(3) ns I26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb 300(3) ns 256 0 3.45 4.7 Specifications 0 0.9 1.3 (1) (3) (1) (3) (1) (3) µs µs Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-62. Switching Characteristics Over Recommended Operating Conditions for I2C Output Timings(2) (continued) NO. PARAMETER STANDARD MODE DESCRIPTION MIN I27 tf(SCL) Fall time, SCL I28 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) I29 Cp Capacitance for each I2C pin FAST MODE MAX MIN MAX 300 20 + 0.1Cb 300(3) 4 (1) (3) UNIT ns 0.6 µs 10 10 pF (1) Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. (2) Software must properly configure the I2C module registers to achieve the timings shown in this table. See the Device TRM for details. (3) These timings apply only to I2C1 and I2C2. I2C3, I2C4, and I2C5 use standard LVCMOS buffers to emulate open-drain buffers and their rise/fall times should be referenced in the device IBIS model. NOTE ADVANCE INFORMATION I2C emulation is achieved by configuring the LVCMOS buffers to output Hi-Z instead of driving high when transmitting logic-1. 24 26 I2Ci_SDA 21 23 19 28 20 25 I2Ci_SCL 27 16 18 22 17 18 Stop Start Repeated Start Stop Figure 5-36. I2C Transmit Timing 5.10.6.10 HDQ1W The module is intended to work with both HDQ and 1-Wire protocols. The protocols use a single wire to communicate between the master and the slave. The protocols employ an asynchronous return to one mechanism where, after any command, the line is pulled high. NOTE For more information, see the HDQ / 1-Wire section of the Device TRM. 5.10.6.10.1 HDQ / 1-Wire — HDQ Mode Table 5-63 and Table 5-64 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-37, Figure 5-38, Figure 5-39 and Figure 5-40). Table 5-63. HDQ/1-Wire Timing Requirements—HDQ Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT 190 250 µs Read one data valid after HDQ low 32(2) 66(2) µs Read zero data hold after HDQ low (2) (2) µs HDQ1 tCYCH Read bit window timing HDQ2 tHW1 HDQ3 tHW0 70 145 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 257 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-63. HDQ/1-Wire Timing Requirements—HDQ Mode (continued) NO. PARAMETER HDQ4 DESCRIPTION Response time from HDQ slave device(1) tRSPS MIN MAX UNIT 190 320 µs (1) Defined by software. (2) If the HDQ slave device drives a logic-low state after tHW0 maximum, it can be interpreted as a break pulse. For more information see "HDQ / 1-Wire Switching Characteristics - HDQ Mode" and the HDQ/1-Wire chapter of the TRM. Table 5-64. HDQ / 1-Wire Switching Characteristics - HDQ Mode NO. PARAMETER DESCRIPTION HDQ5 tB Break timing HDQ6 tBR Break recovery time HDQ7 tCYCD HDQ8 HDQ9 MIN MAX UNIT 190 µs 40 µs Write bit windows timing 190 µs tDW1 Write one data valid after HDQ low 0.5 50 µs tDW0 Write zero data hold after HDQ low 86 145 µs tB tBR ADVANCE INFORMATION HDQ Figure 5-37. HDQ Break and Break Recovery Timing — HDQ Interface Writing to Slave tCYCH tHW0 tHW1 HDQ Figure 5-38. Device HDQ Interface Bit Read Timing (Data) tCYCD tDW0 tDW1 HDQ Figure 5-39. Device HDQ Interface Bit Write Timing (Command / Address or Data) Command_byte_written tRSPS 0_(LSB) Break Data_byte_received 1 6 7_(MSB) 1 0_(LSB) 6 HDQ Figure 5-40. HDQ Communication Timing 5.10.6.10.2 HDQ/1-Wire—1-Wire Mode Table 5-65 and Table 5-66 assume testing over the recommended operating conditions and electrical characteristic conditions below (see Figure 5-41, Figure 5-42 and Figure 5-43). Table 5-65. HDQ / 1-Wire Timing Requirements - 1-Wire Mode MIN MAX HDQ10 NO. tPDH Presence pulse delay high 15 60 µs HDQ11 tPDL Presence pulse delay low 60 240 µs HDQ12 tRDV Read data valid time tLOWR 15 µs 258 PARAMETER DESCRIPTION Specifications UNIT Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-65. HDQ / 1-Wire Timing Requirements - 1-Wire Mode (continued) NO. PARAMETER HDQ13 tREL DESCRIPTION MIN MAX 0 45 µs MIN MAX UNIT 960 µs Read data release time UNIT Table 5-66. HDQ / 1-Wire Switching Characteristics - 1-Wire Mode NO. PARAMETER DESCRIPTION HDQ14 tRSTL Reset time low 480 HDQ15 tRSTH Reset time high 480 HDQ16 tSLOT Bit cycle time HDQ17 tLOW1 Write bit-one time HDQ18 tLOW0 Write bit-zero time(2) HDQ19 tREC Recovery time 1 HDQ20 tLOWR Read bit strobe time(1) 1 60 µs 120 µs 1 15 µs 60 120 µs µs 15 µs (1) tLOWR (low pulse sent by the master) must be short as possible to maximize the master sampling window. (2) tLOW0 must be less than tSLOT. ADVANCE INFORMATION tRSTH tPDH tRTSL tPDL 1-WIRE Figure 5-41. 1-Wire—Break (Reset) tSLOT_and_tREC tRDV_and_tREL tLOWR 1-WIRE Figure 5-42. 1-Wire—Read Bit (Data) tSLOT_and_tREC tLOW0 tLOW1 1-WIRE Figure 5-43. 1-Wire—Write Bit-One Timing (Command / Address or Data) 5.10.6.11 UART The UART performs serial-to-parallel conversions on data received from a peripheral device and parallelto-serial conversion on data received from the CPU. There are 10 UART modules in the device. Only one UART supports IrDA features. Each UART can be used for configuration and data exchange with a number of external peripheral devices or interprocessor communication between devices The UARTi (where i = 1 to 10) include the following features: • 16C750 compatibility • 64-byte FIFO buffer for receiver and 64-byte FIFO for transmitter • Baud generation based on programmable divisors N (where N = 1…16 384) operating from a fixed functional clock of 48 MHz or 192 MHz Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 259 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • • www.ti.com Break character detection and generation Configurable data format: – Data bit: 5, 6, 7, or 8 bits – Parity bit: Even, odd, none – Stop-bit: 1, 1.5, 2 bit(s) Flow control: Hardware (RTS/CTS) or software (XON/XOFF) Only UART1 module has extended modem control signals (CD, RI, DTR, DSR) Only UART3 supports IrDA NOTE For more information, see the UART section of the Device TRM. Table 5-67, Table 5-68 and Figure 5-44 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 5-67. Timing Requirements for UART ADVANCE INFORMATION NO. PARAMETER DESCRIPTION MIN MAX (1) (1) ns 1.05U(1) ns U1 tw(RX) Pulse width, receive data bit, 15/30/100pF high or low 0.96U U2 tw(CTS) Pulse width, receive start bit, 15/30/100pF high or low 0.96U(1) U3 td(RTS-TX) Delay time, transmit start bit to transmit data U4 td(CTS-TX) Delay time, receive start bit to transmit data 1.05U UNIT P(2) ns (2) ns P (1) U = UART baud time = 1/programmed baud rate (2) P = Clock period of the reference clock (FCLK, usually 48 MHz or 192MHz). Table 5-68. Switching Characteristics Over Recommended Operating Conditions for UART NO. PARAMETER DESCRIPTION MIN MAX 15 pF 12 30 pF 0.23 UNIT f(baud) Maximum programmable baud rate U5 tw(TX) Pulse width, transmit data bit, 15/30/100 pF high or low U(1) - 2 U(1) + 2 ns U6 tw(RTS) Pulse width, transmit start bit, 15/30/100 pF high or low U(1) - 2 U(1) + 2 ns 100 pF MHz 0.115 (1) U = UART baud time = 1/programmed baud rate 3 2 UARTi_TXD Start Bit Data Bits 5 4 UARTi_RXD Start Bit Data Bits Figure 5-44. UART Timing 260 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10.6.12 McSPI The McSPI is a master/slave synchronous serial bus. There are four separate McSPI modules (SPI1, SPI2, SPI3, and SPI4) in the device. All these four modules support up to four external devices (four chip selects) and are able to work as both master and slave. ADVANCE INFORMATION The McSPI modules include the following main features: • Serial clock with programmable frequency, polarity, and phase for each channel • Wide selection of SPI word lengths, ranging from 4 to 32 bits • Up to four master channels, or single channel in slave mode • Master multichannel mode: – Full duplex/half duplex – Transmit-only/receive-only/transmit-and-receive modes – Flexible input/output (I/O) port controls per channel – Programmable clock granularity – SPI configuration per channel. This means, clock definition, polarity enabling and word width • Power management through wake-up capabilities • Programmable timing control between chip select and external clock generation • Built-in FIFO available for a single channel. • Each SPI module supports multiple chip select pins spim_cs[i], where i = 1 to 4. NOTE For more information, see the Serial Communication Interface section of the device TRM. NOTE The McSPIm module (m = 1 to 4) is also referred to as SPIm. CAUTION The IO timings provided in this section are applicable for all combinations of signals for SPI1 and SPI2. However, the timings are only valid for SPI3 and SPI4 if signals within a single IOSET are used. The IOSETS are defined in the Table 5-71. Table 5-69, Figure 5-45 and Figure 5-46 present Timing Requirements for McSPI - Master Mode. Table 5-69. Timing Requirements for SPI - Master Mode (1)(8) NO. PARAMETER DESCRIPTION MODE (1) (2) SPI1/2/3/4 MIN MAX UNIT (3) ns 0.5*P-1 ns 0.5*P-1 ns SM1 tc(SPICLK) Cycle time, spi_sclk SM2 tw(SPICLKL) Typical Pulse duration, spi_sclk low SM3 tw(SPICLKH) Typical Pulse duration, spi_sclk high SM4 tsu(MISO-SPICLK) Setup time, spi_d[x] valid before spi_sclk active edge (1) 4.4 ns SM5 th(SPICLK-MISO) Hold time, spi_d[x] valid after spi_sclk active edge (1) 3.9 ns (1) 20.8 (4) (1) (4) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 261 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-69. Timing Requirements for SPI - Master Mode (1)(8) (continued) NO. PARAMETER DESCRIPTION SM6 td(SPICLK-SIMO) Delay time, spi_sclk active edge to spi_d[x] transition (1) SM7 td(CS-SIMO) Delay time, spi_cs[x] active edge to spi_d[x] transition SM8 td(CS-SPICLK) Delay time, spi_cs[x] active to spi_sclk first edge (1) MODE MIN MAX UNIT SPI1 -4.27 4.27 ns SPI2 -4.32 4.32 ns SPI3 -5.37 4.23 ns SPI4 -3.81 4.41 ns 5 ns MASTER_PHA0 B-4.6 (6) ns MASTER_PHA1 A-4.6 (7) ns MASTER_PHA0 A-4.6 (7) ns MASTER_PHA1 B-4.6 (6) ns (5) (5) SM9 td(SPICLK-CS) Delay time, spi_sclk last edge to spi_cs[x] inactive (1) (5) (5) (1) This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and capture input data. (2) Related to the SPI_CLK maximum frequency. ADVANCE INFORMATION (3) 20.8ns cycle time = 48MHz (4) P = SPICLK period. (5) SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register. (6) B = (TCS + 0.5) * TSPICLKREF * Fratio, where TCS is a bit field of the SPI_CH(i)CONF register and Fratio = Even ≥2. (7) When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. When P > 20.8 ns, A = (TCS + 0.5) * Fratio * TSPICLKREF, where TCS is a bit field of the SPI_CH(i)CONF register. (8) The IO timings provided in this section are applicable for all combinations of signals for spi1 and spi2. However, the timings are only valid for spi3 and spi4 if signals within a single IOSET are used. The IOSETs are defined in the following tables. 262 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 PHA=0 EPOL=1 spim_cs(OUT) SM1 SM3 SM8 spim_sclk(OUT) SM2 SM9 POL=0 SM1 SM3 SM2 POL=1 spim_sclk(OUT) SM6 Bit n-1 spim_d(OUT) SM6 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 spim_cs(OUT) SM1 SM2 SM8 spim_sclk(OUT) SM3 SM9 POL=0 SM1 SM2 SM3 POL=1 spim_sclk(OUT) SM6 Bit n-1 spim_d(OUT) SM6 Bit n-2 SM6 SM6 Bit n-3 Bit 1 Bit0 SPRS906_TIMING_McSPI_01 Figure 5-45. McSPI - Master Mode Transmit Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 263 ADVANCE INFORMATION SM7 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com PHA=0 EPOL=1 spim_cs(OUT) SM1 SM3 SM8 spim_sclk(OUT) SM2 SM9 POL=0 SM1 SM3 SM2 POL=1 spim_sclk(OUT) SM5 SM5 spim_d(IN) SM4 SM4 Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0 ADVANCE INFORMATION PHA=1 EPOL=1 spim_cs(OUT) SM2 SM1 SM8 spim_sclk(OUT) SM3 SM9 POL=0 SM1 SM2 SM3 POL=1 spim_sclk(OUT) SM5 SM4 SM4 Bit n-1 spim_d(IN) SM5 Bit n-2 Bit n-3 Bit 1 Bit 0 SPRS906_TIMING_McSPI_02 Figure 5-46. McSPI - Master Mode Receive Table 5-70, Figure 5-47 and Figure 5-48 present Timing Requirements for McSPI - Slave Mode. Table 5-70. Timing Requirements for SPI - Slave Mode(6) NO. PARAMETER SS1 (2)(1) tc(SPICLK) DESCRIPTION MODE Cycle time, spi_sclk (3) MIN MAX UNIT 62.5 ns ns (1) SS2 tw(SPICLKL) Typical Pulse duration, spi_sclk low 0.45P (4) SS3(1) tw(SPICLKH) Typical Pulse duration, spi_sclk high 0.45P (4) ns SS4(1) tsu(SIMO-SPICLK) Setup time, spi_d[x] valid before spi_sclk active edge 5 ns (1) SS5 th(SPICLK-SIMO) Hold time, spi_d[x] valid after spi_sclk active edge SS6(1) td(SPICLK-SOMI) Delay time, spi_sclk active edge to mcspi_somi transition SS7(5) (1) SS8 264 td(CS-SOMI) Delay time, spi_cs[x] active edge to mcspi_somi transition tsu(CS-SPICLK) Setup time, spi_cs[x] valid before spi_sclk first edge Specifications 5 ns SPI1/2/3 2 26.1 ns SPI4 2 18 ns 20.95 ns 5 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-70. Timing Requirements for SPI - Slave Mode(6) (continued) NO. SS9(1) PARAMETER DESCRIPTION th(SPICLK-CS) Hold time, spi_cs[x] valid after spi_sclk last edge MODE MIN MAX UNIT 5 ns (1) This timing applies to all configurations regardless of SPI_CLK polarity and which clock edges are used to drive output data and capture input data. (2) When operating the SPI interface in RX-only mode, the minimum Cycle time is 26ns (38.4MHz) (3) 62.5ns Cycle time = 16 MHz (4) P = SPICLK period. (5) PHA = 0; SPI_CLK phase is programmable with the PHA bit of the SPI_CH(i)CONF register. (6) The IO timings provided in this section are applicable for all combinations of signals for spi1 and spi2. However, the timings are only valid for spi3 and spi4 if signals within a single IOSET are used. The IOSETs are defined in the following tables. PHA=0 EPOL=1 spim_cs(IN) SS1 SS2 SS3 SS9 ADVANCE INFORMATION SS8 spim_sclk(IN) POL=0 SS1 SS2 SS3 POL=1 spim_sclk(IN) SS7 SS6 Bit n-1 spim_d(OUT) SS6 Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 EPOL=1 spim_cs(IN) SS1 SS2 SS8 spim_sclk(IN) SS3 SS9 POL=0 SS1 SS3 SS2 POL=1 spim_sclk(IN) SS6 Bit n-1 spim_d(OUT) SS6 Bit n-2 SS6 SS6 Bit n-3 Bit 1 Bit 0 SPRS906_TIMING_McSPI_03 Figure 5-47. McSPI - Slave Mode Transmit Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 265 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com PHA=0 EPOL=1 spim_cs(IN) SS1 SS2 SS8 spim_sclk(IN) SS3 SS9 POL=0 SS1 SS2 SS3 POL=1 spim_sclk(IN) SS5 SS4 SS4 SS5 Bit n-1 spim_d(IN) Bit n-2 Bit n-3 Bit n-4 Bit 0 PHA=1 ADVANCE INFORMATION EPOL=1 spim_cs(IN) SS1 SS2 SS8 spim_sclk(IN) SS3 SS9 POL=0 SS1 SS3 SS2 POL=1 spim_sclk(IN) SS4 SS5 spim_d(IN) SS4 SS5 Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0 SPRS906_TIMING_McSPI_04 Figure 5-48. McSPI - Slave Mode Receive In Table 5-71 are presented the specific groupings of signals (IOSET) for use with SPI3 and SPI4. Table 5-71. McSPI3/4 IOSETs Signal IOSET1 IOSET2 IOSET3 BALL MUX BALL MUX BALL spi3_sclk AC9 8 D10 8 spi3_d1 AD9 8 C10 8 IOSET4 IOSET5 IOSET6 MUX BALL MUX BALL MUX BALL MUX V2 7 B11 3 C17 2 AC7 1 Y1 7 A11 3 A20 2 Y6 1 SPI3 spi3_d0 AC10 8 A10 8 T6 7 C12 3 D16 2 W6 1 spi3_cs0 AD7 8 D11 8 U5 7 A12 3 D17 2 AC6 1 spi3_cs1 - - B10 8 - - D14 3 - - AC4 1 spi3_cs2 - - F9 8 - - - - - - - - spi3_cs3 - - A9 8 - - - - - - - - 7 AA3 2 AA6 1 - - SPI4 spi4_sclk 266 N4 8 G1 8 T4 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-71. McSPI3/4 IOSETs (continued) Signal IOSET1 IOSET2 IOSET3 BALL MUX BALL MUX spi4_d1 R3 8 E5 spi4_d0 J5 8 F2 spi4_cs0 K5 8 spi4_cs1 P4 spi4_cs2 R2 spi4_cs3 R6 IOSET4 IOSET5 IOSET6 BALL MUX BALL MUX BALL MUX BALL MUX 8 T3 7 AB6 2 AB5 1 - - 8 U6 7 AB3 2 AB7 1 - - E3 8 T5 7 AA4 2 AA5 1 - - 8 - - Y1 8 - - - - - - 8 - - T6 8 - - - - - - 8 - - U5 8 - - - - - - The Quad SPI (QSPI) module is a type of SPI module that allows single, dual or quad read access to external SPI devices. This module has a memory mapped register interface, which provides a direct interface for accessing data from external SPI devices and thus simplifying software requirements. It works as a master only. There is one QSPI module in the device and it is primary intended for fast booting from quad-SPI flash memories. General SPI features: • Programmable clock divider • Six pin interface (DCLK, CS_N, DOUT, DIN, QDIN1, QDIN2) • 4 external chip select signals • Support for 3-, 4- or 6-pin SPI interface • Programmable CS_N to DOUT delay from 0 to 3 DCLKs • Programmable signal polarities • Programmable active clock edge • Software controllable interface allowing for any type of SPI transfer NOTE For more information, see the Quad Serial Peripheral Interface section of the Device TRM. CAUTION The IO Timings provided in this section are only valid for some QSPI usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. CAUTION The IO Timings provided in this section are only valid when all QSPI Chip Selects used in a system are configured to use the same Clock Mode (either Clock Mode 0 or Clock Mode3). Table 5-72 and Table 5-73 present Timing and Switching Characteristics for Quad SPI Interface. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 267 ADVANCE INFORMATION 5.10.6.13 QSPI DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-72. Switching Characteristics for QSPI No PARAMETER DESCRIPTION Mode Q1 tc(SCLK) Cycle time, sclk Manual IO Timing Modes, Clock Mode 0 10.41 MIN ns Manual IO Timing Modes, Clock Mode 3 13.02 ns Bootmode, Clock Mode 3 20.8 Q2 tw(SCLKL) Pulse duration, sclk low All Y*P-1 (1) Q3 tw(SCLKH) Pulse duration, sclk high All Y*P-1 (1) Q4 td(CS-SCLK) Delay time, sclk falling edge to cs active edge, CS3:0 Manual IO Timing Modes Bootmode Q5 td(SCLK-CS) Delay time, sclk falling edge to cs inactive edge, CS3:0 Manual IO Timing Modes Bootmode ADVANCE INFORMATION Manual IO Timing Modes -M*P-1 (2) (3) MAX UNIT ns ns -M*P+2 (2) (3) ns -M*P-2.5 (2) (3) -M*P+2.5 (2) (3) N*P-1 (2) (3) N*P+2 (2) (3) N*P-2.5 (2) (3) N*P+2.5 (2) (3) -1 2 ns Q6 td(SCLK-D1) Delay time, sclk falling edge to d[0] transition -2.5 2.5 Q7 tena(CS-D1LZ) Enable time, cs active edge to d[0] driven (lo-z) All -P-3.5 -P+2.5 ns Q8 tdis(CS-D1Z) Disable time, cs active edge to d[0] tristated (hi-z) All -P-2.5 -P+2.0 ns Q9 td(SCLK-D0) Delay time, sclk first falling edge to first d[0] transition Manual IO Timing Modes, PHA=0 Only -1-P 2-P ns Bootmode, PHA=0 Only -2.5-P 2.5-P Bootmode ns (1) The Y parameter is defined as follows: If DCLK_DIV is 0 or ODD then, Y equals 0.5. If DCLK_DIV is EVEN then, Y equals (DCLK_DIV/2) / (DCLK_DIV+1). For best performance, it is recommended to use a DCLK_DIV of 0 or ODD to minimize the duty cycle distortion. The HSDIVIDER on CLKOUTX2_H13 output of DPLL_PER can be used to achieve the desired clock divider ratio. All required details about clock division factor DCLK_DIV can be found in the device TRM. (2) P = SCLK period. (3) M = QSPI_SPI_DC_REG.DDx + 1 when Clock Mode 0. M = QSPI_SPI_DC_REG.DDx when Clock Mode 3. N = 2 when Clock Mode 0. N = 3 when Clock Mode 3. 268 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 PHA=1 cs Q5 Q1 POL=1 Q4 Q3 Q2 sclk Q15 Q14 Q6 Q7 Q6 Command Bit n-1 d[0] Command Bit n-2 Q12 Q13 Read Data Bit 1 Read Data Bit 0 Q12 Q13 Read Data Bit 1 d[3:1] Read Data Bit 0 SPRS85v_TIMING_OSPI1_01 Figure 5-49. QSPI Read (Clock Mode 3) PHA=0 cs Q5 Q4 Q1 Q2 POL=0 Q3 sclk POL=0 rtclk Q7 d[0] Q6 Q9 Command Command Bit n-1 Bit n-2 Q12 Q13 Read Data Bit 1 Q12 Q13 d[3:1] Read Data Bit 1 Q12 Q13 Read Data Bit 0 Q12 Q13 Read Data Bit 0 SPRS85v_TIMING_OSPI1_02 Figure 5-50. QSPI Read (Clock Mode 0) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 269 ADVANCE INFORMATION Q15 Q14 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com CAUTION The IO Timings provided in this section are only valid for some QSPI usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-73. Timing Requirements for QSPI(3) No PARAMETER DESCRIPTION Q12 tsu(D-RTCLK) Q13 ADVANCE INFORMATION Q14 Q15 Mode MIN Setup time, d[3:0] valid before falling rtclk edge Manual IO Timing Modes, Clock Mode 0 2.9 ns tsu(D-SCLK) Setup time, d[3:0] valid before falling sclk edge Manual IO Timing Modes, Clock Mode 3 5.7 ns Boot Mode, Clock Mode 3 12.3 ns th(RTCLK-D) Hold time, d[3:0] valid after falling rtclk edge Manual IO Timing Mode, Clock Mode 0 -0.1 ns th(SCLK-D) Hold time, d[3:0] valid after falling sclk edge Manual IO Timing Mode, Clock Mode 3 0.1 ns Boot Mode, Clock Mode 3 0.1 ns tsu(D-SCLK) Setup time, final d[3:0] bit valid before final falling sclk edge Manual IO Timing Mode, Clock Mode 3 5.7-P (1) ns Boot Mode, Clock Mode 3 12.3-P (1) ns Manual IO Timing Mode, Clock Mode 3 0.1+P (1) ns Boot Mode, Clock Mode 3 0.1+P (1) ns th(SCLK-D) Hold time, final d[3:0] bit valid after final falling sclk edge MAX UNIT (1) P = SCLK period. (2) Clock Modes 1 and 2 are not supported. (3) The Device captures data on the falling clock edge in Clock Mode 0 and 3, as opposed to the traditional rising clock edge. Although non-standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that launch data on the falling edge in Clock Modes 0 and 3. PHA=1 cs Q5 POL=1 Q1 Q4 Q3 Q2 sclk Q7 d[0] Command Bit n-1 Command Bit n-2 Q8 Q6 Q6 Q6 Q6 Write Data Bit 1 Write Data Bit 0 d[3:1] SPRS85v_TIMING_OSPI1_03 Figure 5-51. QSPI Write (Clock Mode 3) 270 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 PHA=0 cs Q5 Q4 Q1 Q2 POL=0 Q3 sclk Q7 d[0] Q9 Q6 Command Command Bit n-1 Bit n-2 Q6 Q8 Q6 Write Data Bit 1 Write Data Bit 0 SPRS85v_TIMING_OSPI1_04 Figure 5-52. QSPI Write (Clock Mode 0) NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for QSPI. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-74 Manual Functions Mapping for QSPI for a definition of the Manual modes. Table 5-74 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 271 ADVANCE INFORMATION d[3:1] DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-74. Manual Functions Mapping for QSPI BALL BALL NAME QSPI_MODE0_MANUAL1 QSPI_MODE3_MANUAL1 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 1 ADVANCE INFORMATION R2 gpmc_a13 0 0 0 0 CFG_GPMC_A13_IN qspi1_rtclk R6 gpmc_a14 2149 1052 0 0 CFG_GPMC_A14_IN qspi1_d3 T2 gpmc_a15 2121 997 0 0 CFG_GPMC_A15_IN qspi1_d2 U1 gpmc_a16 2159 1134 0 0 CFG_GPMC_A16_IN qspi1_d0 U1 gpmc_a16 0 0 0 0 CFG_GPMC_A16_OUT qspi1_d0 P3 gpmc_a17 2135 1085 0 0 CFG_GPMC_A17_IN qspi1_d1 R1 gpmc_a18 0 0 151 0 CFG_GPMC_A18_OUT qspi1_sclk R5 gpmc_a3 0 0 0 0 CFG_GPMC_A3_OUT qspi1_cs2 M6 gpmc_a4 0 0 0 0 CFG_GPMC_A4_OUT qspi1_cs3 P2 gpmc_cs2 0 0 0 0 CFG_GPMC_CS2_OUT qspi1_cs0 P1 gpmc_cs3 0 0 22 0 CFG_GPMC_CS3_OUT qspi1_cs1 5.10.6.14 McASP The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized for the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM) stream, Inter-Integrated Sound (I2S) protocols, and inter-component digital audio interface transmission (DIT). The device have integrated 8 McASP modules (McASP1-McASP8) with: • McASP1 and McASP2 modules supporting 16 channels with independent TX/RX clock/sync domain • McASP3 through McASP8 modules supporting 4 channels with independent TX/RX clock/sync domain NOTE For more information, see the Multichannel Audio Serial Port section of the Device TRM. CAUTION The IO Timings provided in this section are only valid for some McASP usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-75, Table 5-76, Table 5-77 and Figure 5-53 present Timing Requirements for McASP1 to McASP8. 272 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-75. Timing Requirements for McASP1 (1) NO. DESCRIPTION tc(AHCLKX) Cycle time, AHCLKX ASP2 tw(AHCLKX) Pulse duration, AHCLKX high or low ASP3 tc(ACLKRX) Cycle time, ACLKR/X ASP4 tw(ACLKRX) Pulse duration, ACLKR/X high or low ASP5 tsu(AFSRX-ACLK) Setup time, AFSR/X input valid before ACLKR/X ASP6 ASP7 ASP8 th(ACLK-AFSRX) tsu(AXR-ACLK) th(ACLK-AXR) MODE MIN MAX 20 0.35P Hold time, AFSR/X input valid after ACLKR/X Hold time, AXR input valid after ACLKR/X ns (2) ns 20 ns 0.5R(3) 3 ns ACLKR/X int 20 ns ACLKR/X ext in ACLKR/X ext out 4 ns ACLKR/X int Setup time, AXR input valid before ACLKR/X UNIT -1 ns ACLKR/X ext in ACLKR/X ext out 2.21 ns ACLKR/X int 21.9 ns ACLKR/X ext in ACLKR/X ext out 4.42 ns -1 ns 2.52 ns ACLKR/X int ACLKR/X ext in ACLKR/X ext out (1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 (2) P = AHCLKX period in ns. (3) R = ACLKR/X period in ns. Table 5-76. Timing Requirements for McASP2 (1) PARAMETER DESCRIPTION ASP1 NO. tc(AHCLKX) Cycle time, AHCLKX MODE ASP2 tw(AHCLKX) Pulse duration, AHCLKX high or low ASP3 tc(ACLKRX) Cycle time, ACLKR/X tw(ACLKRX) 0.35P Any Other Conditions Pulse duration, ACLKR/X high or low tsu(AFSRX-ACLK) th(ACLK-AFSRX) ns (2) ns 20 ns ns 0.5R(3) 3 ns 0.38R (3) ns ACLKR/X int 20.7 ns ACLKR/X ext in ACLKR/X ext out 3.9 ns 3 ns ACLKR/X int -1 ns ACLKR/X ext in ACLKR/X ext out 3.2 ns 3 ns Any Other Conditions Setup time, AFSR/X input valid before ACLKR/X ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes ASP6 UNIT 12.5 ACLKX/AFSX (In Sync Mode), ACLKR/AFSR (In Async Mode), and AXR are all inputs "80M" Virtual IO Timing Modes ASP5 MAX 20 ACLKX/AFSX (In Sync Mode), ACLKR/AFSR (In Async Mode), and AXR are all inputs "80M" Virtual IO Timing Mode ASP4 MIN Hold time, AFSR/X input valid after ACLKR/X ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 273 ADVANCE INFORMATION PARAMETER ASP1 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-76. Timing Requirements for McASP2 (1) (continued) NO. ASP7 PARAMETER DESCRIPTION tsu(AXR-ACLK) Setup time, AXR input valid before ACLKR/X MODE MIN ACLKR/X int 21.4 ns ACLKR/X ext in ACLKR/X ext out 3.9 ns 3 ns ACLKR/X int -1 ns ACLKR/X ext in ACLKR/X ext out 3.2 ns 3 ns ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes ASP8 th(ACLK-AXR) Hold time, AXR input valid after ACLKR/X ACLKR/X ext in ACLKR/X ext out "80M" Virtual IO Timing Modes MAX UNIT ADVANCE INFORMATION (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKX period in ns. (3) R = ACLKR/X period in ns. Table 5-77. Timing Requirements for McASP3/4/5/6/7/8 NO. PARAMETER DESCRIPTION ASP1 tc(AHCLKX) Cycle time, AHCLKX ASP2 tw(AHCLKX) Pulse duration, AHCLKX high or low ASP3 tc(ACLKRX) Cycle time, ACLKR/X ASP4 tw(ACLKRX) Pulse duration, ACLKR/X high or low ASP5 tsu(AFSRX-ACLK) Setup time, AFSR/X input valid before ACLKR/X ASP6 ASP7 ASP8 th(ACLK-AFSRX) tsu(AXR-ACLK) th(ACLK-AXR) (1) MODE Hold time, AFSR/X input valid after ACLKR/X Setup time, AXR input valid before ACLKX Hold time, AXR input valid after ACLKX MIN 20 0.35P MAX UNIT ns (2) ns 20 ns (3) 0.5R 3 ns ACLKR/X int 20.2 ns ACLKR/X ext in ACLKR/X ext out 4.9 ns -1 ns ACLKR/X ext in ACLKR/X ext out ACLKR/X int 2.26 ns ACLKX int (ASYNC=0) 20.8 ns ACLKR/X ext in ACLKR/X ext out 5.75 ns ACLKX int (ASYNC=0) -0.9 ns ACLKR/X ext in ACLKR/X ext out 2.87 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 (NOT SUPPORTED) ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKX period in ns. (3) R = ACLKR/X period in ns. 274 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 ASP2 ASP1 ASP2 ASP4 ASP4 ASP3 ASP6 ADVANCE INFORMATION ASP5 ASP8 ASP7 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 5-53. McASP Input Timing CAUTION The IO Timings provided in this section are only valid for some McASP usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-78, Table 5-79, Table 5-80 and Figure 5-54 present Switching Characteristics Over Recommended Operating Conditions for McASP1 to McASP8. Table 5-78. Switching Characteristics Over Recommended Operating Conditions for McASP1 NO. PARAMETER DESCRIPTION MODE ASP9 tc(AHCLKX) Cycle time, AHCLKX ASP10 tw(AHCLKX) Pulse duration, AHCLKX high or low MIN (1) MAX 20 ns 0.5P 2.5 (2) ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P UNIT 275 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-78. Switching Characteristics Over Recommended Operating Conditions for McASP1 (1) (continued) PARAMETER DESCRIPTION ASP11 NO. tc(ACLKRX) Cycle time, ACLKR/X MODE ASP12 tw(ACLKRX) Pulse duration, ACLKR/X high or low ASP13 td(ACLK-AFSXR) Delay time, ACLKR/X transmit edge to AFSX/R output valid ACLKR/X int ACLKR/X ext in ACLKR/X ext out ASP14 td(ACLK-AXR) Delay time, ACLKR/X transmit edge to AXR output valid ACLKR/X int ACLKR/X ext in ACLKR/X ext out MIN MAX UNIT 20 ns 0.5R(3) 2.5 ns -0.21 6 ns 2 23.9 ns -1.8 6.9 ns 2 25.6 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKX period in ns. ADVANCE INFORMATION (3) R = ACLKR/X period in ns. Table 5-79. Switching Characteristics Over Recommended Operating Conditions for McASP2 PARAMETER DESCRIPTION ASP9 NO. tc(AHCLKX) Cycle time, AHCLKX ASP10 tw(AHCLKX) Pulse duration, AHCLKX high or low ASP11 tc(ACLKRX) Cycle time, ACLKR/X ASP12 tw(ACLKRX) Pulse duration, ACLKR/X high or low ASP13 td(ACLK-AFSXR) Delay time, ACLKR/X transmit edge to AFSX/R output valid ASP14 td(ACLK-AXR) MODE Delay time, ACLKR/X transmit edge to AXR output valid MIN MAX (1) UNIT 20 ns 0.5P 2.5 (2) ns 20 ns 0.5R(3) 2.5 ns ACLKR/X int 0 6 ns ACLKR/X ext in ACLKR/X ext out 2 25.2 ns -1.29 6.11 ns 2 24.8 ns ACLKR/X int ACLKR/X ext in ACLKR/X ext out (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKX period in ns. (3) R = ACLKR/X period in ns. Table 5-80. Switching Characteristics Over Recommended Operating Conditions for McASP3/4/5/6/7/8 NO. PARAMETER DESCRIPTION MODE ASP9 tc(AHCLKX) Cycle time, AHCLKX ASP10 tw(AHCLKX) Pulse duration, AHCLKX high or low ASP11 tc(ACLKRX) Cycle time, ACLKR/X ASP12 tw(ACLKRX) Pulse duration, ACLKR/X high or low ASP13 td(ACLK-AFSXR) Delay time, ACLKR/X transmit edge to AFSX/R output valid ACLKR/X int ACLKR/X ext in ACLKR/X ext out 276 Specifications MIN MAX (1) UNIT 20 ns 0.5P 2.5 (2) ns 20 ns 0.5R(3) 2.5 ns -0.74 6 ns 2 26.4 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-80. Switching Characteristics Over Recommended Operating Conditions for McASP3/4/5/6/7/8 (1) (continued) NO. ASP14 PARAMETER DESCRIPTION td(ACLK-AXR) Delay time, ACLKR/X transmit edge to AXR output valid MODE MIN MAX UNIT ACLKR/X int -1.68 6.97 ns ACLKR/X ext in ACLKR/X ext out 1.07 25.9 ns (1) ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1 ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0 ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1 ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1 ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0 ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1 (2) P = AHCLKX period in ns. ADVANCE INFORMATION (3) R = ACLKR/X period in ns. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 277 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 ASP9 www.ti.com ASP10 ASP10 ASP12 ASP11 ASP12 ASP13 ASP13 ASP13 ASP13 ADVANCE INFORMATION ASP13 ASP13 ASP13 ASP14 ASP15 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 5-54. McASP Output Timing NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-33 and described in Device TRM, Control Module Chapter. Table 5-81 through Table 5-88 explain all cases with Virtual Mode Details for McASP1/2/3/4/5/6/7/8 (see Figure 5-55 through Figure 5-62). 278 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-81. Virtual Mode Case Details for McASP1 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 COIFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP1_VIRTUAL3_ASYNC_RX 2 COIFIO CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP1_VIRTUAL3_ASYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP1_VIRTUAL3_ASYNC_RX AXR(Inputs)/CLKR/FSR MCASP1_VIRTUAL1_ASYNC_TX CIOFOI CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP1_VIRTUAL3_ASYNC_RX AXR(Inputs)/CLKR/FSR MCASP1_VIRTUAL1_ASYNC_TX 3 4 CIOFIO See Figure 5-55 See Figure 5-56 See Figure 5-57 See Figure 5-58 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 6 CO-FOCI-FO- CLKX / FSX: Output FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 5-59 AXR(Outputs)/CLKX/FSX MCASP1_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP1_VIRTUAL2_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP1_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP1_VIRTUAL2_SYNC_RX 8 CO-FI- CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 5-60 See Figure 5-61 See Figure 5-62 Table 5-82. Virtual Mode Case Details for McASP2 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode)(1) AXR(Inputs)/CLKR/FSR Default (No Virtual Mode)(1) AXR(Inputs)/CLKR/FSR MCASP2_VIRTUAL1_ASYNC_RX_80M( See Figure 5-55 2) CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP2_VIRTUAL2_ASYNC_RX See Figure 5-56 CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP2_VIRTUAL2_ASYNC_RX AXR(Inputs)/CLKR/FSR MCASP2_VIRTUAL3_ASYNC_TX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP2_VIRTUAL2_ASYNC_RX AXR(Inputs)/CLKR/FSR MCASP2_VIRTUAL3_ASYNC_TX See Figure 5-57 See Figure 5-58 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP2_VIRTUAL4_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP2_VIRTUAL4_SYNC_RX AXR(Outputs)/CLKX/FSX MCASP2_VIRTUAL4_SYNC_RX(1) 7 CI-FI- CLKX / FSX: Input AXR(Inputs)/CLKX/FSX 8 CO-FI- CLKX: Output FSX: Input Default (No Virtual Mode) MCASP2_VIRTUAL4_SYNC_RX See Figure 5-59 See Figure 5-60 See Figure 5-61 (1) AXR(Inputs)/CLKX/FSX MCASP2_VIRTUAL5_SYNC_RX_80M(2) AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 5-62 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 279 ADVANCE INFORMATION 5 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (1) Used up to 50MHz. Should also be used in a CI-FI- mixed case where AXR operate as both inputs and outputs (that is, AXR are bidirectional). (2) Used in 80MHz input only mode when AXR, CLKX and FSX are all inputs. Table 5-83. Virtual Mode Case Details for McASP3 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 COIFOI COIFIO CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX 3 CIOFIO CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX 4 CIOFOI CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP3_VIRTUAL2_SYNC_RX See Figure 5-55 See Figure 5-56 See Figure 5-57 See Figure 5-58 ADVANCE INFORMATION IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP3_VIRTUAL2_SYNC_RX AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 8 CO-FI- CLKX: Output FSX: Input See Figure 5-59 See Figure 5-60 See Figure 5-61 See Figure 5-62 Table 5-84. Virtual Mode Case Details for McASP4 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 COIFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX 2 COIFIO CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX 3 CIOFIO CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP4_VIRTUAL1_SYNC_RX 4 CIOFOI See Figure 5-55 See Figure 5-56 See Figure 5-57 See Figure 5-58 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP4_VIRTUAL1_SYNC_RX AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 7 8 280 CI-FICO-FI- CLKX: Output FSX: Input Default (No Virtual Mode) Specifications See Figure 5-59 See Figure 5-60 See Figure 5-61 See Figure 5-62 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-85. Virtual Mode Case Details for McASP5 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 COIFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX 2 COIFIO CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP5_VIRTUAL1_SYNC_RX 3 4 CIOFIO CIOFOI See Figure 5-55 See Figure 5-56 See Figure 5-57 See Figure 5-58 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 6 CO-FOCI-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP5_VIRTUAL1_SYNC_RX 8 CO-FI- CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 5-59 See Figure 5-60 See Figure 5-61 See Figure 5-62 Table 5-86. Virtual Mode Case Details for McASP6 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP6_VIRTUAL1_SYNC_RX See Figure 5-55 See Figure 5-56 See Figure 5-57 See Figure 5-58 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP6_VIRTUAL1_SYNC_RX AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 8 CO-FI- CLKX: Output FSX: Input See Figure 5-59 See Figure 5-60 See Figure 5-61 See Figure 5-62 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 281 ADVANCE INFORMATION 5 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-87. Virtual Mode Case Details for McASP7 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 COIFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX 2 COIFIO CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP7_VIRTUAL2_SYNC_RX 3 4 CIOFIO CIOFOI See Figure 5-55 See Figure 5-56 See Figure 5-57 See Figure 5-58 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 6 CO-FOCI-FO- CLKX / FSX: Output FSX: Output CLKX: Input ADVANCE INFORMATION AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP7_VIRTUAL2_SYNC_RX 8 CO-FI- CLKX: Output FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) See Figure 5-59 See Figure 5-60 See Figure 5-61 See Figure 5-62 Table 5-88. Virtual Mode Case Details for McASP8 No. CASE CASE Description Virtual Mode Settings Signals Notes Virtual Mode Value IP Mode : ASYNC 1 2 3 4 COIFOI COIFIO CIOFIO CIOFOI CLKX / FSX: Output CLKR / FSR: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX CLKX / FSR: Output CLKR / FSX: Input AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX CLKR / FSR: Output CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX CLKR / FSX: Output CLKX / FSR: Input AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKR/FSR MCASP8_VIRTUAL1_SYNC_RX See Figure 5-55 See Figure 5-56 See Figure 5-57 See Figure 5-58 IP Mode : SYNC (CLKR / FSR internally generated from CLKX / FSX) 5 CO-FO- CLKX / FSX: Output AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 6 CI-FO- FSX: Output CLKX: Input AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX 7 CI-FI- CLKX / FSX: Input AXR(Outputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Inputs)/CLKX/FSX MCASP8_VIRTUAL1_SYNC_RX AXR(Outputs)/CLKX/FSX Default (No Virtual Mode) AXR(Inputs)/CLKX/FSX Default (No Virtual Mode) 8 282 CO-FI- CLKX: Output FSX: Input Specifications See Figure 5-59 See Figure 5-60 See Figure 5-61 See Figure 5-62 Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 McASP SoC IOs CLKX FSX TXDATA CLKR FSR ADVANCE INFORMATION RXDATA Figure 5-55. McASP1-8 COIFOI – ASYNC Mode McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA Figure 5-56. McASP1-8 COIFIO – ASYNC Mode Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 283 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 McASP www.ti.com SoC IOs CLKX FSX TXDATA CLKR FSR ADVANCE INFORMATION RXDATA Figure 5-57. McASP1-8 CIOFIO – ASYNC Mode McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA Figure 5-58. McASP1-8 CIOFOI – ASYNC Mode 284 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 McASP SoC IOs CLKX FSX TXDATA CLKR FSR ADVANCE INFORMATION RXDATA Figure 5-59. McASP1-8 CO-FO- – SYNC Mode McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA Figure 5-60. McASP1-8 CI-FO- – SYNC Mode Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 285 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com McASP SoC IOs CLKX FSX TXDATA CLKR FSR ADVANCE INFORMATION RXDATA Figure 5-61. McASP1-8 CI-FI- – SYNC Mode McASP SoC IOs CLKX FSX TXDATA CLKR FSR RXDATA Figure 5-62. McASP1-8 CO-FI- – SYNC Mode Virtual IO Timings Modes must be used to guarantee some IO timings for McASP1. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 5-89 Virtual Functions Mapping for McASP1 for a definition of the Virtual modes. Table 5-89 presents the values for DELAYMODE bitfield. 286 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-89. Virtual Functions Mapping for McASP1 BALL NAME Delay Mode Value MUXMODE[15:0] MCASP1_VIRTUAL1 _ASYNC_TX MCASP1_VIRTUAL2 _SYNC_RX MCASP1_VIRTUAL3 _ASYNC_RX 0 1 2 E21 gpio6_14 11 15 14 F17 gpio6_15 11 15 14 mcasp1_axr8 mcasp1_axr9 F18 gpio6_16 11 15 14 mcasp1_axr10 D18 xref_clk0 0 15 14 mcasp1_axr4 E17 xref_clk1 0 15 14 mcasp1_axr5 B25 xref_clk2 5 15 14 mcasp1_axr6 A22 xref_clk3 5 15 14 mcasp1_axr7 B13 mcasp1_aclkx 8 15 14 C13 mcasp1_fsx 12 15 14 mcasp1_fsx A13 mcasp1_aclkr 11 N/A 15 mcasp1_aclkr F14 mcasp1_fsr 11 N/A 15 mcasp1_fsr F10 mcasp1_axr0 8 15 14 mcasp1_axr0 F11 mcasp1_axr1 8 15 14 mcasp1_axr1 E13 mcasp1_axr2 10 15 14 mcasp1_axr2 E11 mcasp1_axr3 10 15 14 mcasp1_axr3 E12 mcasp1_axr4 10 15 14 mcasp1_axr4 D13 mcasp1_axr5 10 15 14 mcasp1_axr5 C11 mcasp1_axr6 10 15 14 mcasp1_axr6 D12 mcasp1_axr7 10 15 14 mcasp1_axr7 B11 mcasp1_axr8 6 15 14 mcasp1_axr8 ADVANCE INFORMATION BALL mcasp1_aclkx A11 mcasp1_axr9 6 15 14 mcasp1_axr9 C12 mcasp1_axr10 6 15 14 mcasp1_axr10 A12 mcasp1_axr11 6 15 14 mcasp1_axr11 D14 mcasp1_axr12 6 15 14 mcasp1_axr12 B12 mcasp1_axr13 6 15 14 mcasp1_axr13 F12 mcasp1_axr14 6 15 14 mcasp1_axr14 E14 mcasp1_axr15 6 15 14 mcasp1_axr15 1. NA in this table stands for Not Applicable. Virtual IO Timings Modes must be used to guarantee some IO timings for McASP2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 5-90 Virtual Functions Mapping for McASP2 for a definition of the Virtual modes. Table 5-90 presents the values for DELAYMODE bitfield. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 287 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-90. Virtual Functions Mapping for McASP2 BALL BALL NAME Delay Mode Value MUXMODE[15:0] MCASP2_ VIRTUAL1_ ASYNC_RX_ 80M MCASP2_ VIRTUAL2_ ASYNC_RX MCASP2_ VIRTUAL3_ ASYNC_TX MCASP2_ VIRTUAL4_ SYNC_RX MCASP2_ VIRTUAL5_ SYNC_RX_8 0M 0 1 2 ADVANCE INFORMATION D18 xref_clk0 10 9 4 8 6 mcasp2_axr8 E17 xref_clk1 10 9 4 8 6 mcasp2_axr9 B25 xref_clk2 13 12 0 11 10 mcasp2_axr10 A22 xref_clk3 13 12 0 11 10 A18 mcasp2_aclkx 15 14 5 10 9 A17 mcasp2_fsx 15 14 5 10 9 mcasp2_fsx E15 mcasp2_aclkr 15 14 10 N/A N/A mcasp2_aclkr A19 mcasp2_fsr 15 14 10 N/A N/A mcasp2_fsr B14 mcasp2_axr0 15 14 9 13 12 mcasp2_axr0 A14 mcasp2_axr1 15 14 9 13 12 mcasp2_axr1 C14 mcasp2_axr2 15 14 4 10 9 mcasp2_axr2 A15 mcasp2_axr3 15 14 4 10 9 mcasp2_axr3 D15 mcasp2_axr4 15 14 7 13 12 mcasp2_axr4 B15 mcasp2_axr5 15 14 7 13 12 mcasp2_axr5 B16 mcasp2_axr6 15 14 7 13 12 mcasp2_axr6 A16 mcasp2_axr7 15 14 7 13 12 mcasp2_axr7 B17 mcasp3_aclkx 15 14 5 10 9 mcasp2_axr12 F13 mcasp3_fsx 15 14 4 10 9 mcasp2_axr13 B18 mcasp3_axr0 15 14 4 10 9 mcasp2_axr14 C16 mcasp3_axr1 15 14 3 10 8 mcasp2_axr15 mcasp2_axr11 mcasp2_aclkx 1. NA in this table stands for Not Applicable. Virtual IO Timings Modes must be used to guarantee some IO timings for McASP3/4/5/6/7/8. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 5-91 Virtual Functions Mapping for McASP3/4/5/6/7/8 for a definition of the Virtual modes. Table 5-91 presents the values for DELAYMODE bitfield. 288 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-91. Virtual Functions Mapping for McASP3/4/5/6/7/8 BALL BALL NAME Delay Mode Value MUXMODE[15:0] 0 1 2 MCASP3_VIRTUAL2_SYNC_RX mcasp2_axr2 8 A15 mcasp2_axr3 8 B17 mcasp3_aclkx 8 mcasp3_axr2 mcasp3_axr3 mcasp3_aclkx mcasp3_aclkr mcasp3_fsr F13 mcasp3_fsx 8 mcasp3_fsx B18 mcasp3_axr0 8 mcasp3_axr0 C16 mcasp3_axr1 6 mcasp3_axr1 E12 mcasp1_axr4 13 D13 mcasp1_axr5 13 C17 mcasp4_aclkx 15 ADVANCE INFORMATION C14 MCASP4_VIRTUAL1_SYNC_RX mcasp4_axr2 mcasp4_axr3 mcasp4_aclkx mcasp4_aclkr mcasp4_fsr A20 mcasp4_fsx 15 mcasp4_fsx D16 mcasp4_axr0 15 mcasp4_axr0 D17 mcasp4_axr1 15 mcasp4_axr1 C11 mcasp1_axr6 13 mcasp5_axr2 D12 mcasp1_axr7 13 mcasp5_axr3 AA3 mcasp5_aclkx 15 mcasp5_aclkx mcasp5_aclkr AB6 mcasp5_fsx 15 mcasp5_fsx mcasp5_fsr AB3 mcasp5_axr0 15 mcasp5_axr0 AA4 mcasp5_axr1 15 mcasp5_axr1 E13 mcasp1_axr2 13 mcasp6_axr2 E11 mcasp1_axr3 13 mcasp6_axr3 B11 mcasp1_axr8 10 mcasp6_axr0 A11 mcasp1_axr9 10 mcasp6_axr1 C12 mcasp1_axr10 10 mcasp6_aclkx mcasp6_aclkr A12 mcasp1_axr11 10 mcasp6_fsx mcasp6_fsr MCASP5_VIRTUAL1_SYNC_RX MCASP6_VIRTUAL1_SYNC_RX MCASP7_VIRTUAL2_SYNC_RX A13 mcasp1_aclkr 14 mcasp7_axr2 F14 mcasp1_fsr 14 mcasp7_axr3 D14 mcasp1_axr12 10 mcasp7_axr0 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 289 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-91. Virtual Functions Mapping for McASP3/4/5/6/7/8 (continued) BALL BALL NAME Delay Mode Value MUXMODE[15:0] B12 mcasp1_axr13 10 mcasp7_axr1 F12 mcasp1_axr14 10 mcasp7_aclkx mcasp7_aclkr E14 mcasp1_axr15 10 mcasp7_fsx mcasp7_fsr 0 1 2 MCASP8_VIRTUAL1_SYNC_RX E15 ADVANCE INFORMATION 290 mcasp2_aclkr 13 mcasp8_axr2 A19 mcasp2_fsr 13 mcasp8_axr3 D15 mcasp2_axr4 11 mcasp8_axr0 B15 mcasp2_axr5 11 mcasp8_axr1 B16 mcasp2_axr6 11 mcasp8_aclkx mcasp8_aclkr A16 mcasp2_axr7 11 mcasp8_fsx mcasp8_fsr Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5.10.6.15 USB SuperSpeed USB DRD Subsystem has four instances in the device providing the following functions: • USB1: SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with integrated SS (USB3.0) PHY and HS/FS (USB2.0) PHY. • USB2: High-Speed (HS) USB 2.0 Dual-Role-Device (DRD) subsystem with integrated HS/FS PHY. • USB3: HS USB 2.0 Dual-Role-Device (DRD) subsystem with ULPI (SDR) interface to external HS/FS PHYs. • USB4: HS USB 2.0 Dual-Role-Device (DRD) subsystem with ULPI (SDR) interface to external HS/FS PHYs. NOTE For more information, see the SuperSpeed USB DRD section of the Device TRM. The USB1 DRD interface supports the following applications: • USB2.0 High-Speed PHY port (1.8 V and 3.3 V): this asynchronous high-speed interface is compliant with the USB2.0 PHY standard with an internal transceiver (USB2.0 standard v2.0), for a maximum data rate of 480 Mbps. • USB3.0 Super-Speed PHY port (1.8 V): this asynchronous differential super-speed interface is compliant with the USB3.0 RX/TX PHY standard (USB3.0 standard v1.0) for a maximum data bit rate of 5Gbps. 5.10.6.15.2 USB2 PHY The USB2 interface supports the following applications: • USB2.0 High-Speed PHY port (1.8 V and 3.3 V): this asynchronous high-speed interface is compliant with the USB2.0 PHY standard with an internal transceiver (USB2.0 standard v2.0), for a maximum data rate of 480 Mbps. 5.10.6.15.3 USB3 and USB4 DRD ULPI—SDR—Slave Mode—12-pin Mode TheUSB3 and USB4 DRD interfaces support the following application: • USB ULPI port: this synchronous interface is compliant with the USB2.0 ULPI SDR standard (UTMI+ v1.22), for alternative off-chip USB2.0 PHY interface; that is, with external transceiver with a maximum frequency of 60 MHz (synchronous slave mode, SDR, 12-pin, 8-data-bit). NOTE The Universal Serial Bus k ULPI modules are also refered as USBk where k = 3, 4. Table 5-92, Table 5-93 and Figure 5-63 assume testing over the recommended operating conditions and electrical characteristic conditions. Table 5-92. Timing Requirements for ULPI SDR Slave Mode NO. PARAMETER DESCRIPTION US1 tc(clk) Cycle time, usb_ulpi_clk period US5 tsu(ctrlV-clkH) Setup time, usb_ulpi_dir/usb_ulpi_nxt valid before usb_ulpi_clk rising edge US6 th(clkH-ctrlV) Hold time, usb_ulpi_dir/usb_ulpi_nxt valid after usb_ulpi_clk rising edge MIN MAX UNIT 16.66 ns 6.73 ns -0.41 ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 291 ADVANCE INFORMATION 5.10.6.15.1 USB1 DRD PHY DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-92. Timing Requirements for ULPI SDR Slave Mode (continued) NO. PARAMETER DESCRIPTION MIN US7 tsu(dV-clkH) Setup time, usb_ulpi_d[7:0] valid before usb_ulpi_clk rising edge US8 th(clkH-dV) Hold time, usb_ulpi_d[7:0] valid after usb_ulpi_clk rising edge MAX UNIT 6.73 ns -0.41 ns Table 5-93. Switching Characteristics for ULPI SDR Slave Mode MIN MAX UNIT US4 NO. td(clkH-stpV) PARAMETER Delay time, usb_ulpi_clk rising edge high to output usb_ulpi_stp valid DESCRIPTION 0.44 8.35 ns US9 td(clkL-doV) Delay time, usb_ulpi_clk rising edge high to output usb_ulpi_d[7:0] valid 0.44 8.35 ns US1 US2 US3 usbk_ulpi_clk US4 US4 ADVANCE INFORMATION usbk_ulpi_stp US6 US5 usbk_ulpi_dir_&_nxt US7 US9 US8 usbk_ulpi_d[7:0] Data_IN US9 Data_OUT Figure 5-63. HS USB3 and USB4 ULPI —SDR—Slave Mode—12-pin Mode In Table 5-94 are presented the specific groupings of signals (IOSET) for use with USB3 and USB4 signals. Table 5-94. USB3 and USB4 IOSETs SIGNALS IOSET1 BALL IOSET2 MUX BALL MUX USB3 usb3_ulpi_d0 AD3 2 AC4 3 usb3_ulpi_d1 AD5 2 AC6 3 usb3_ulpi_d2 AE1 2 W6 3 usb3_ulpi_d3 AE4 2 Y6 3 usb3_ulpi_d4 AE3 2 AC7 3 usb3_ulpi_d5 AD6 2 AC3 3 usb3_ulpi_d6 AF1 2 AB4 3 usb3_ulpi_d7 AE5 2 AC5 3 usb3_ulpi_nxt AD4 2 AA6 3 usb3_ulpi_dir AE2 2 AB5 3 usb3_ulpi_stp AD1 2 AB7 3 usb3_ulpi_clk AD2 2 AA5 3 U6 6 usb4_ulpi_d1 T5 6 usb4_ulpi_d2 U4 6 usb4_ulpi_d3 V4 6 USB4 usb4_ulpi_d0 292 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-94. USB3 and USB4 IOSETs (continued) SIGNALS IOSET1 BALL IOSET2 MUX BALL MUX usb4_ulpi_d4 W2 6 usb4_ulpi_d5 V3 6 usb4_ulpi_d6 Y2 6 usb4_ulpi_d7 W1 6 usb4_ulpi_stp U5 6 usb4_ulpi_clk T6 6 usb4_ulpi_dir T4 6 usb4_ulpi_nxt T3 6 5.10.6.16 SATA NOTE For more information, see the SATA Controller section of the Device TRM. 5.10.6.17 PCIe The device supports connections to PCIe-compliant devices via the integrated PCIe master/slave bus interface. The PCIe module is comprised of a dual-mode PCIe core and a SerDes PHY. Each PCIe subsystem controller has support for PCIe Gen-II mode (5.0 Gbps /lane) and Gen-I mode (2.5 Gbps/lane) (Single Lane and Flexible dual lane configuration). The device PCIe supports the following features: • 16-bit operation @250 MHz on PIPE interface (per 16-bit lane) • Supports 2 ports x 1 lane or 1 port x 2 lanes configuration • Single virtual channel (VC0), single traffic class (TC0) • Single function in end-point mode • Automatic width and speed negotiation • Max payload: 128 byte outbound, 256 byte inbound • Automatic credit management • ECRC generation and checking • Configurable BAR filtering • Legacy interrupt reception (RC) and generation (EP) • MSI generation and reception • PCI Express Active State Power Management (ASPM) state L0s and L1 (with exceptions) • All PCI Device Power Management D-states with the exception of D3cold / L2 state The PCIe controller on this device conforms to the PCI Express Base 3.0 Specification, revision 1.0 and the PCI Local Bus Specification, revision 3.0. NOTE For more information, see the PCIe Controller section of the Device TRM. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 293 ADVANCE INFORMATION The SATA RX/TX PHY interface is compliant with the SATA standard v2.6 for a maximum data rate: • Gen2i, Gen2m, Gen2x: 3Gbps. • Gen1i, Gen1m, Gen1x: 1.5Gbps. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.6.18 CAN 5.10.6.18.1 DCAN The device provides two DCAN interfaces for supporting distributed realtime control with a high level of security. ADVANCE INFORMATION The DCAN interface implements the following features: • Supports CAN protocol version 2.0 part A, B • Bit rates up to 1 MBit/s • 64 message objects • Individual identifier mask for each message object • Programmable FIFO mode for message objects • Programmable loop-back modes for self-test operation • Suspend mode for debug support • Automatic bus on after Bus-Off state by a programmable 32-bit timer • Message RAM single error correction and double error detection (SECDED) mechanism • Direct access to Message RAM during test mode • Support for two interrupt lines: Level 0 and Level 1, plus separate ECC interrupt line • Local power down and wakeup support • Automatic message RAM initialization • Support for DMA access 5.10.6.18.2 MCAN-FD The device supports one MCAN module connecting to the CAN network through external (for the device) transceiver for connection to the physical layer. The MCAN module supports up to 5 Mbit/s data rate and is compliant to ISO 11898-1:2015. The MCAN-FD module implements the following features: • Conforms with ISO 11898-1:2015 • Full CAN FD support (up to 64 data bytes) • AUTOSAR and SAE J1939 support • Up to 32 dedicated Transmit Buffers • Configurable Transmit FIFO, up to 32 elements • Configurable Transmit Queue, up to 32 elements • Configurable Transmit Event FIFO, up to 32 elements • Up to 64 dedicated Receive Buffers • Two configurable Receive FIFOs, up to 64 elements each • Up to 128 filter elements • Internal Loopback mode for self-test • Maskable interrupts, two interrupt lines • Two clock domains (CAN clock/Host clock) • Parity/ECC support - Message RAM single error correction and double error detection (SECDED) mechanism • Local power-down and wakeup support • Timestamp Counter 294 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 NOTE For more information, see the Serial Communication Interfaces / DCAN and MCAN sections of the Device TRM. NOTE The Controller Area Network Interface x (x = 1 to 2) is also referred to as DCANx. Table 5-95, Table 5-96 and Figure 5-64 present timing and switching characteristics for CANx Interface. Table 5-95. Timing Requirements for CANx Receive(1) NO. PARAMETER DESCRIPTION f(baud) Maximum programmable baud rate CAN1 tw(CANRX) Pulse duration, receive data bit (CANx_RX) - td(CANnRX) Delay time, CANnRX pin to receive shift register - MIN H - 15 MAX UNIT 1 Mbps H + 15 ns 12 ns Table 5-96. Switching Characteristics Over Recommended Operating Conditions for CANx Transmit NO. CAN2 - PARAMETER DESCRIPTION f(baud) Maximum programmable baud rate MIN tw(CANTX) Pulse duration, transmit data bit (CANx_TX) H - 15 (2) td(CANnTX) Delay time, Transmit shift register to CANnTX pin (1) MAX UNIT 1 Mbps H + 15 ns 12 ns (1) H = period of baud rate, 1/programmed baud rate. (2) These values do not include rise/fall times of the output buffer. CAN1 CANx_RX CAN2 CANx_TX Figure 5-64. CANx Timings 5.10.6.19 GMAC_SW The three-port gigabit ethernet switch subsystem (GMAC_SW) provides ethernet packet communication and can be configured as an ethernet switch. It provides the Gigabit Media Independent Interface (G/MII) in MII mode, Reduced Gigabit Media Independent Interface (RGMII), Reduced Media Independent Interface (RMII), and the Management Data Input/Output (MDIO) for physical layer device (PHY) management. NOTE For more information, see the Ethernet Subsystem section of the Device TRM. NOTE The Gigabit, Reduced and Media Independent Interface n (n = 0 to 1) are also referred to as MIIn, RMIIn and RGMIIn Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 295 ADVANCE INFORMATION (1) H = period of baud rate, 1/programmed baud rate. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com CAUTION The IO timings provided in this section are only valid if signals within a single IOSET are used. The IOSETs are defined in the Table 5-101, Table 5-104, Table 5-109 and Table 5-116. CAUTION The IO Timings provided in this section are only valid for some GMAC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-97 and Figure 5-65 present timing requirements for MIIn in receive operation. 5.10.6.19.1 GMAC MII Timings ADVANCE INFORMATION Table 5-97. Timing Requirements for miin_rxclk - MII Operation NO. PARAMETER DESCRIPTION SPEED MIN MII1 tc(RX_CLK) Cycle time, miin_rxclk 10 Mbps 400 ns 100 Mbps 40 ns MII2 tw(RX_CLKH) Pulse duration, miin_rxclk high MII3 tw(RX_CLKL) Pulse duration, miin_rxclk low MII4 tt(RX_CLK) Transition time, miin_rxclk MAX UNIT 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 3 ns 100 Mbps 3 ns 4 1 3 2 miin_rxclk 4 Figure 5-65. Clock Timing (GMAC Receive) - MIIn operation Table 5-98 and Figure 5-66 present timing requirements for MIIn in transmit operation. Table 5-98. Timing Requirements for miin_txclk - MII Operation NO. PARAMETER DESCRIPTION MII1 tc(TX_CLK) Cycle time, miin_txclk MII2 MII3 MII4 296 tw(TX_CLKH) tw(TX_CLKL) tt(TX_CLK) Pulse duration, miin_txclk high Pulse duration, miin_txclk low Transition time, miin_txclk Specifications SPEED MIN MAX UNIT 10 Mbps 400 100 Mbps 40 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 140 260 ns 100 Mbps 14 26 ns 10 Mbps 3 ns 100 Mbps 3 ns ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 4 1 3 2 miin_txclk 4 Figure 5-66. Clock Timing (GMAC Transmit) - MIIn operation Table 5-99 and Figure 5-67 present timing requirements for GMAC MIIn Receive 10/100Mbit/s. Table 5-99. Timing Requirements for GMAC MIIn Receive 10/100 Mbit/s NO. PARAMETER DESCRIPTION MIN MAX UNIT tsu(RXD-RX_CLK) MII1 tsu(RX_DV-RX_CLK) Setup time, receive selected signals valid before miin_rxclk 8 ns Hold time, receive selected signals valid after miin_rxclk 8 ns tsu(RX_ER-RX_CLK) th(RX_CLK-RX_DV) th(RX_CLK-RX_ER) 1 2 miin_rxclk (Input) miin_rxd3−miin_rxd0, miin_rxdv, miin_rxer (Inputs) Figure 5-67. GMAC Receive Interface Timing MIIn operation Table 5-100 and Figure 5-68 present timing requirements for GMAC MIIn Transmit 10/100Mbit/s. Table 5-100. Switching Characteristics Over Recommended Operating Conditions for GMAC MIIn Transmit 10/100 Mbits/s NO. MII1 PARAMETER td(TX_CLK-TXD) td(TX_CLK-TX_EN) DESCRIPTION Delay time, miin_txclk to transmit selected signals valid MIN MAX 0 25 UNIT ns 1 miin_txclk (input) miin_txd3 − miin_txd0, miin_txen (outputs) Figure 5-68. GMAC Transmit Interface Timing MIIn operation In Table 5-101 are presented the specific groupings of signals (IOSET) for use with GMAC MII signals. Table 5-101. GMAC MII IOSETs SIGNALS IOSET5 BALL IOSET6 MUX BALL MUX GMAC MII1 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 297 ADVANCE INFORMATION th(RX_CLK-RXD) MII2 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-101. GMAC MII IOSETs (continued) SIGNALS IOSET5 IOSET6 BALL MUX ADVANCE INFORMATION BALL MUX mii1_txd3 D4 8 mii1_txd2 B5 8 mii1_txd1 B2 8 mii0_txd3 V4 3 mii0_txd2 W2 3 mii0_txd1 Y2 3 mii1_txd0 C3 8 mii1_rxd3 G3 8 mii1_rxd2 E4 8 mii1_rxd1 D1 8 mii1_rxd0 C5 8 mii1_col B4 8 mii1_rxer B3 8 mii1_txer A3 8 mii1_txen A4 8 mii1_crs C4 8 mii1_rxclk E6 8 mii1_txclk C2 8 mii1_rxdv C1 8 GMAC MII0 mii0_txd0 W1 3 mii0_rxd3 T6 3 mii0_rxd2 U5 3 mii0_rxd1 U6 3 mii0_rxd0 T5 3 mii0_txclk U4 3 mii0_txer U3 3 mii0_rxer T3 3 mii0_rxdv V2 3 mii0_crs T4 3 mii0_col V1 3 mii0_rxclk Y1 3 mii0_txen V3 3 5.10.6.19.2 GMAC MDIO Interface Timings CAUTION The IO Timings provided in this section are only valid for some GMAC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-102, Table 5-102 and Figure 5-69 present timing requirements for MDIO. 298 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-102. Timing Requirements for MDIO Input No PARAMETER MDIO1 tc(MDC) MDIO2 DESCRIPTION MIN MAX UNIT Cycle time, MDC 400 ns tw(MDCH) Pulse Duration, MDC High 160 ns MDIO3 tw(MDCL) Pulse Duration, MDC Low 160 ns MDIO4 tsu(MDIO-MDC) Setup time, MDIO valid before MDC High 90 ns MDIO5 th(MDIO_MDC) Hold time, MDIO valid from MDC High 0 ns Table 5-103. Switching Characteristics Over Recommended Operating Conditions for MDIO Output NO PARAMETER MDIO6 tt(MDC) MDIO7 td(MDC-MDIO) DESCRIPTION MIN MAX Transition time, MDC Delay time, MDC High to MDIO valid 10 UNIT 5 ns 390 ns 1 MDIO2 MDIO6 MDIO6 MDIO4 MDIO5 MDIO (input) MDIO7 MDIO (output) Figure 5-69. GMAC MDIO diagrams In Table 5-104 are presented the specific groupings of signals (IOSET) for use with GMAC MDIO signals. Table 5-104. GMAC MDIO IOSETs SIGNALS IOSET7 IOSET8 IOSET9 IOSET10 BALL MUX BALL MUX BALL MUX BALL MUX mdio_d F4 3 U3 0 AB4 1 B19 5 mdio_mclk D3 3 V1 0 AC5 1 B20 5 5.10.6.19.3 GMAC RMII Timings The main reference clock REF_CLK (RMII_50MHZ_CLK) of RMII interface is internally supplied from PRCM. The source of this clock could be either externally sourced from the RMII_MHZ_50_CLK pin of the device or internally generated from DPLL_GMAC output clock GMAC_RMII_HS_CLK. Please see the PRCM chapter of the device TRM for full details about RMII reference clock. CAUTION The IO Timings provided in this section are only valid for some GMAC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 299 ADVANCE INFORMATION MDIO3 MDCLK DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-105, Table 5-106 and Figure 5-70 present timing requirements for GMAC RMIIn Receive. Table 5-105. Timing Requirements for GMAC REF_CLK - RMII Operation NO. PARAMETER DESCRIPTION MIN MAX UNIT RMII1 tc(REF_CLK) Cycle time, REF_CLK 20 ns RMII2 tw(REF_CLKH) Pulse duration, REF_CLK high 7 13 ns RMII3 tw(REF_CLKL) Pulse duration, REF_CLK low 7 13 ns RMII4 ttt(REF_CLK) Transistion time, REF_CLK 3 ns Table 5-106. Timing Requirements for GMAC RMIIn Receive NO. PARAMETER DESCRIPTION MIN MAX UNIT RMII5 tsu(RXD-REF_CLK) Setup time, receive selected signals valid before REF_CLK 4 ns Hold time, receive selected signals valid after REF_CLK 2 ns tsu(CRS_DV-REF_CLK) tsu(RX_ER-REF_CLK) RMII6 th(REF_CLK-RXD) th(REF_CLK-CRS_DV) ADVANCE INFORMATION th(REF_CLK-RX_ER) RMII1 RMII3 RMII4 RMII2 RMII5 RMII6 REF_CLK (PRCM) rmiin_rxd1−rmiin_rxd0, rmiin_crs, rmin_rxer (inputs) SPRS8xx_GMAC_RMIIRX_05 Figure 5-70. GMAC Receive Interface Timing RMIIn operation Table 5-107, Table 5-107 and Figure 5-71 present switching characteristics for GMAC RMIIn Transmit 10/100Mbit/s. Table 5-107. Switching Characteristics Over Recommended Operating Conditions for GMAC REF_CLK RMII Operation NO. PARAMETER DESCRIPTION MIN MAX 20 UNIT RMII7 tc(REF_CLK) Cycle time, REF_CLK RMII8 tw(REF_CLKH) Pulse duration, REF_CLK high 7 13 ns ns RMII9 tw(REF_CLKL) Pulse duration, REF_CLK low 7 13 ns RMII10 tt(REF_CLK) Transistion time, REF_CLK 3 ns Table 5-108. Switching Characteristics Over Recommended Operating Conditions for GMAC RMIIn Transmit 10/100 Mbits/s NO. PARAMETER DESCRIPTION td(REF_CLK-TXD) RMII11 tdd(REF_CLK-TXEN) td(REF_CLK-TXD) MIN MAX UNIT RMII0 2 13.5 ns RMII1 2 13.8 ns Delay time, REF_CLK high to selected transmit signals valid tdd(REF_CLK-TXEN) 300 RMIIn Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 RMII7 RMII8 RMII9 RMII11 RMII10 REF_CLK (PRCM) rmiin_txd1−rmiin_txd0, rmiin_txen (Outputs) SPRS8xx_GMAC_RMIITX_06 Figure 5-71. GMAC Transmit Interface Timing RMIIn Operation In Table 5-109 are presented the specific groupings of signals (IOSET) for use with GMAC RMII signals. Table 5-109. GMAC RMII IOSETs SIGNALS IOSET1 BALL IOSET2 MUX BALL MUX U2 0 rmii0_txd1 Y2 1 rmii0_txd0 W1 1 rmii0_rxd1 U6 1 rmii0_rxd0 T5 1 rmii0_txen V3 1 rmii0_rxer T3 1 rmii0_crs T4 1 RMII_MHZ_50_CLK U2 0 rmii1_txd1 V4 2 rmii1_txd0 W2 2 rmii1_rxd1 T6 2 rmii1_rxd0 U5 2 rmii1_rxer Y1 2 rmii1_txen U4 2 rmii1_crs V2 ADVANCE INFORMATION GMAC RMII1 2 GMAC RMII0 RMII_MHZ_50_CLK NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module Chapter in the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for GMAC. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-110 Manual Functions Mapping for GMAC RMII0 for a definition of the Manual modes. Table 5-110 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 301 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-110. Manual Functions Mapping for GMAC RMII0 BALL BALL NAME GMAC_RMII0_MANUAL1 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) 0 CFG_RMII_MHZ_50_CLK_IN U2 RMII_MHZ_50_CLK 0 0 1 RMII_MHZ_50_CLK T5 rgmii0_txd0 500 500 CFG_RGMII0_TXD0_IN rmii0_rxd0 U6 rgmii0_txd1 840 1000 CFG_RGMII0_TXD1_IN rmii0_rxd1 T3 rgmii0_txd2 360 840 CFG_RGMII0_TXD2_IN rmii0_rxer T4 rgmii0_txd3 600 1000 CFG_RGMII0_TXD3_IN rmii0_crs Manual IO Timings Modes must be used to guarantee some IO timings for GMAC. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-111 Manual Functions Mapping for GMAC RMII1 for a definition of the Manual modes. Table 5-111 list the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-111. Manual Functions Mapping for GMAC RMII1 ADVANCE INFORMATION BALL U2 BALL NAME GMAC_RMII1_MANUAL1 A_DELAY (ps) G_DELAY (ps) RMII_MHZ_50_CLK 0 0 CFG REGISTER MUXMODE 0 CFG_RMII_MHZ_50_CLK_IN 2 RMII_MHZ_50_CLK T6 rgmii0_txc 300 1200 CFG_RGMII0_TXC_IN rmii1_rxd1 U5 rgmii0_txctl 300 1000 CFG_RGMII0_TXCTL_IN rmii1_rxd0 V2 uart3_rxd 400 700 CFG_UART3_RXD_IN rmii1_crs Y1 uart3_txd 300 500 CFG_UART3_TXD_IN rmii1_rxer 5.10.6.19.4 GMAC RGMII Timings CAUTION The IO Timings provided in this section are only valid for some GMAC usage modes when the corresponding Virtual IO Timings or Manual IO Timings are configured as described in the tables found in this section. Table 5-112, Table 5-113 and Figure 5-72 present timing requirements for receive RGMIIn operation. Table 5-112. Timing Requirements for rgmiin_rxc - RGMIIn Operation NO. PARAMETER RGMII1 tc(RXC) RGMII2 tw(RXCH) RGMII3 tw(RXCL) RGMII4 tt(RXC) 302 DESCRIPTION SPEED MIN MAX UNIT Cycle time, rgmiin_rxc 10 Mbps 360 440 ns Pulse duration, rgmiin_rxc high Pulse duration, rgmiin_rxc low Transition time, rgmiin_rxc Specifications 100 Mbps 36 44 ns 1000 Mbps 7.2 8.8 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 0.75 ns 100 Mbps 0.75 ns 1000 Mbps 0.75 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-113. Timing Requirements for GMAC RGMIIn Input Receive for 10/100/1000 Mbps NO. MIN (1) PARAMETER DESCRIPTION RGMII5 tsu(RXD-RXCH) Setup time, receive selected signals valid before rgmiin_rxc high/low 1 MAX UNIT ns RGMII6 th(RXCH-RXD) Hold time, receive selected signals valid after rgmiin_rxc high/low 1 ns (1) For RGMII, receive selected signals include: rgmiin_rxd[3:0] and rgmiin_rxctl. 1 4 2 rgmiin_rxc 4 3 (A) 5 1st Half-byte rgmiin_rxd[3:0] rgmiin_rxctl A. B. (B) RGRXD[3:0] RGRXD[7:4] RXDV RXERR (B) rgmiin_rxc must be externally delayed relative to the data and control pins. Data and control information is received using both edges of the clocks. rgmiin_rxd[3:0] carries data bits 3-0 on the rising edge of rgmiin_rxc and data bits 7-4 on the falling edge ofrgmiin_rxc. Similarly, rgmiin_rxctl carries RXDV on rising edge of rgmiin_rxc and RXERR on falling edge of rgmiin_rxc. Figure 5-72. GMAC Receive Interface Timing, RGMIIn operation Table 5-114, Table 5-115 and Figure 5-73 present switching characteristics for transmit - RGMIIn for 10/100/1000Mbit/s. Table 5-114. Switching Characteristics Over Recommended Operating Conditions for rgmiin_txctl RGMIIn Operation for 10/100/1000 Mbit/s NO. PARAMETER RGMII1 tc(TXC) RGMII2 tw(TXCH) RGMII3 tw(TXCL) RGMII4 tt(TXC) DESCRIPTION Cycle time, rgmiin_txc Pulse duration, rgmiin_txc high Pulse duration, rgmiin_txc low Transition time, rgmiin_txc SPEED MIN MAX UNIT 10 Mbps 360 440 ns 100 Mbps 36 44 ns 1000 Mbps 7.2 8.8 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 160 240 ns 100 Mbps 16 24 ns 1000 Mbps 3.6 4.4 ns 10 Mbps 0.75 ns 100 Mbps 0.75 ns 1000 Mbps 0.75 ns Table 5-115. Switching Characteristics for GMAC RGMIIn Output Transmit for 10/100/1000 Mbps NO. PARAMETER RGMII5 tosu(TXD-TXC) DESCRIPTION Output Setup time, transmit selected signals valid to rgmiin_txc high/low MAX (1) MODE MIN RGMII0, Internal Delay Enabled, 1000 Mbps 1.05 ns RGMII0, Internal Delay Enabled, 10/100 Mbps 1.2 ns RGMII1, Internal Delay Enabled, 1000 Mbps 1.05 ns RGMII1, Internal Delay Enabled, 10/100 Mbps 1.2 ns (2) (3) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P UNIT 303 ADVANCE INFORMATION 6 2nd Half-byte DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-115. Switching Characteristics for GMAC RGMIIn Output Transmit for 10/100/1000 Mbps (1) (continued) NO. PARAMETER DESCRIPTION RGMII6 toh(TXC-TXD) Output Hold time, transmit selected signals valid after rgmiin_txc high/low MODE MIN RGMII0, Internal Delay Enabled, 1000 Mbps 1.05 MAX UNIT ns RGMII0, Internal Delay Enabled, 10/100 Mbps 1.2 ns RGMII1, Internal Delay Enabled, 1000 Mbps 1.05 ns RGMII1, Internal Delay Enabled, 10/100 Mbps 1.2 ns (2) (3) (1) For RGMII, transmit selected signals include: rgmiin_txd[3:0] and rgmiin_txctl. (2) RGMII0 1000Mbps operation requires that the 4 data pins rgmii0_txd[3:0] and rgmii0_txctl have their board propagation delays matched within 50pS of rgmii0_txc. (3) RGMII1 1000Mbps operation requires that the 4 data pins rgmii1_txd[3:0] and rgmii1_txctl have their board propagation delays matched within 50pS of rgmii1_txc. 1 4 ADVANCE INFORMATION 2 3 4 (A) rgmiin_txc [internal delay enabled] 5 (B) 1st Half-byte rgmiin_txd[3:0] 2nd Half-byte 6 (B) rgmiin_txctl A. B. TXEN TXERR TXC is delayed internally before being driven to the rgmiin_txc pin. This internal delay is always enabled. Data and control information is transmitted using both edges of the clocks. rgmiin_txd[3:0] carries data bits 3-0 on the rising edge of rgmiin_txc and data bits 7-4 on the falling edge of rgmiin_txc. Similarly, rgmiin_txctl carries TXEN on rising edge of rgmiin_txc and TXERR of falling edge of rgmiin_txc. Figure 5-73. GMAC Transmit Interface Timing RGMIIn operation In Table 5-116 are presented the specific groupings of signals (IOSET) for use with GMAC RGMII signals. Table 5-116. GMAC RGMII IOSETs SIGNALS IOSET3 BALL IOSET4 MUX BALL MUX GMAC RGMII1 rgmii1_txd3 C2 3 rgmii1_txd2 C3 3 rgmii1_txd1 B2 3 rgmii1_txd0 B5 3 rgmii1_rxd3 B3 3 rgmii1_rxd2 B4 3 rgmii1_rxd1 C4 3 rgmii1_rxd0 A4 3 rgmii1_rxctl A3 3 rgmii1_txc E6 3 rgmii1_txctl C1 3 rgmii1_rxc D4 3 GMAC RGMII0 304 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-116. GMAC RGMII IOSETs (continued) IOSET3 IOSET4 BALL MUX BALL MUX rgmii0_txd3 T4 0 rgmii0_txd2 T3 0 rgmii0_txd1 U6 0 rgmii0_txd0 T5 0 rgmii0_rxd3 W2 0 rgmii0_rxd2 V3 0 rgmii0_rxd1 Y2 0 rgmii0_rxd0 W1 0 rgmii0_txc T6 0 rgmii0_rxctl V4 0 rgmii0_rxc U4 0 rgmii0_txctl U5 0 NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module Chapter in the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for GMAC. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-117 Manual Functions Mapping for GMAC RGMII0 for a definition of the Manual modes. Table 5-118 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-117. Manual Functions Mapping for GMAC RGMII0 BALL U4 BALL NAME GMAC_RGMII0_MANUAL1 CFG REGISTER MUXMODE 0 CFG_RGMII0_RXC_IN rgmii0_rxc A_DELAY (ps) G_DELAY (ps) rgmii0_rxc 451 0 V4 rgmii0_rxctl 127 1571 CFG_RGMII0_RXCTL_IN rgmii0_rxctl W1 rgmii0_rxd0 165 1178 CFG_RGMII0_RXD0_IN rgmii0_rxd0 Y2 rgmii0_rxd1 136 1302 CFG_RGMII0_RXD1_IN rgmii0_rxd1 V3 rgmii0_rxd2 0 1520 CFG_RGMII0_RXD2_IN rgmii0_rxd2 W2 rgmii0_rxd3 28 1690 CFG_RGMII0_RXD3_IN rgmii0_rxd3 T6 rgmii0_txc 121 0 CFG_RGMII0_TXC_OUT rgmii0_txc U5 rgmii0_txctl 60 0 CFG_RGMII0_TXCTL_OUT rgmii0_txctl T5 rgmii0_txd0 153 0 CFG_RGMII0_TXD0_OUT rgmii0_txd0 U6 rgmii0_txd1 35 0 CFG_RGMII0_TXD1_OUT rgmii0_txd1 T3 rgmii0_txd2 0 0 CFG_RGMII0_TXD2_OUT rgmii0_txd2 T4 rgmii0_txd3 172 0 CFG_RGMII0_TXD3_OUT rgmii0_txd3 Manual IO Timings Modes must be used to guarantee some IO timings for GMAC. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-118 Manual Functions Mapping for GMAC RGMII1 for a definition of the Manual modes. Table 5-118 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 305 ADVANCE INFORMATION SIGNALS DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-118. Manual Functions Mapping for GMAC RGMII1 BALL BALL NAME GMAC_RGMII1_MANUAL1 A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 3 D4 vin2a_d18 417 0 CFG_VIN2A_D18_IN rgmii1_rxc A3 vin2a_d19 156 843 CFG_VIN2A_D19_IN rgmii1_rxctl B3 vin2a_d20 223 1413 CFG_VIN2A_D20_IN rgmii1_rxd3 B4 vin2a_d21 169 1415 CFG_VIN2A_D21_IN rgmii1_rxd2 C4 vin2a_d22 43 1150 CFG_VIN2A_D22_IN rgmii1_rxd1 A4 vin2a_d23 0 1210 CFG_VIN2A_D23_IN rgmii1_rxd0 E6 vin2a_d12 147 0 CFG_VIN2A_D12_OUT rgmii1_txc C1 vin2a_d13 110 0 CFG_VIN2A_D13_OUT rgmii1_txctl C2 vin2a_d14 18 0 CFG_VIN2A_D14_OUT rgmii1_txd3 C3 vin2a_d15 82 0 CFG_VIN2A_D15_OUT rgmii1_txd2 B2 vin2a_d16 33 0 CFG_VIN2A_D16_OUT rgmii1_txd1 B5 vin2a_d17 0 0 CFG_VIN2A_D17_OUT rgmii1_txd0 ADVANCE INFORMATION 5.10.6.20 MLB The MLBSS allows connection to a MOST (Media Oriented Systems Transport) network controller for transport of media and control data between multimedia nodes. The MLBSS supports the following features: • 3 pin mode compliant to MediaLB Physical Layer Specification v4.0 • 6 pin mode (3 differential pairs) compliant to MediaLB Physical Layer Specification v4.0 • Supports 256/512/1024Fs in 3 pin mode and 4096Fs in 6 pin mode • Supports all types of transfer (Sync, Isoc, Async/Packet, Control) over 64 logical channels • 16KB buffering for synchronous /isochronous/control/packet data in the subsystem NOTE For more information, see the Media Local Bus (MLB) section of the Device TRM. NOTE MLB in 6-pin mode may require pullups/ pulldowns on SIG and DAT bus signals. For additional details, please consult the MLB bus interface specification. Table 5-119 and Figure 5-74 present Timing Requirements for MLBCLK 3-Pin Option. Table 5-119. Timing Requirements for MLBCLK 3-Pin Option (1) NO. PARAMETER DESCRIPTION MODE MIN 1 tc(MLBCLK) Cycle time, MLB_CLK 512FS 39 ns 1024FS 19.5 ns 2 tw(MLBCLK) Pulse duration, MLB_CLK high 512FS 14 ns 1024FS 9.3 ns 512FS 14 ns 1024FS 6.1 ns 3 306 tw(MLBCLK) Pulse duration, MLB_CLK low Specifications MAX UNIT Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (1) The reference points for the rise and fall transitions are measured at VIL MAX and VIH MIN. 2 4 1 MLB_CLK 3 4 Figure 5-74. MLB_CLK Timing Table 5-120 and Table 5-121 present Timing Requirements and Switching Characteristics for MLB 3-Pin Option. Table 5-120. Timing Requirements for Receive Data for the MLB 3-Pin Option PARAMETER DESCRIPTION MODE MIN 5 tsu(MLBDAT-MLBCLKL) Setup time, MLB_DAT/MLB_SIG input valid before MLB_CLK low 512FS 1 MAX UNIT ns 1024FS 1 ns 6 th(MLBCLKL-MLBDAT) Hold time, MLB_DAT/MLB_SIG input valid after MLB_CLK low 512FS 4 ns 1024FS 2 ns Table 5-121. Switching Characteristics Over Recommended Operating Conditions for MLB 3-Pin Option NO. PARAMETER DESCRIPTION MODE MIN MAX 7 td(MLBCLKH-MLBDATV) Delay time, MLBCLKH rising to MLB_DAT/MLB_SIG valid 512FS 0 10 ns 1024FS 0 7 ns 8 tdis(MLBCLKL- Disable time, MLBCLKH falling to MLB_DAT/MLB_SIG Hi-Z 512FS 0 14 ns 1024FS 0 6.1 ns MIN MAX MLBDATZ) UNIT Table 5-122 and Figure 5-74 present Timing Requirements for MLKCLK 6-Pin Option. Table 5-122. Timing Requirements for MLBCLK 6-Pin Option MODE (1) NO. PARAMETER DESCRIPTION 1 tc(MLBCLKx) Cycle time, MLB_CLKP/N 2048FS, 4096FS 10 UNIT ns 2 tw(MLBCLKx) Pulse duration, MLB_CLKP/N high 2048FS, 4096FS 4.5 ns 3 tw(MLBCLKx) Pulse duration, MLB_CLKP/N low 2048FS, 4096FS 4.5 ns (1) The reference points for the rise and fall transitions are measured at 20%/80% of VIN ±. Table 5-123 and Table 5-124 present Timing Requirements and Switching Characteristics for MLB 6-Pin Option. Table 5-123. Timing Requirements for Receive Data for the MLB 6-Pin Option NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT 5 tsu(DATx-CLKxH) Setup time, MLBP_DATx/MLBP_SIGx input valid before MLBP_CLKx rising 2048FS 1 ns 4096FS 0.5 n*P/2 (1) ns 2048FS 0.5 ns 4096FS 0.6 + n*P/2 (1) ns (2) 6 th(CLKxH-DATx) Hold time, MLBP_DATx/MLBP_SIGx input valid after MLBP_CLKx rising (2) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 307 ADVANCE INFORMATION NO. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (1) P= tc(MLBCLKx) period. (2) n=0 or 1, corresponding to two captures per clock cycle. Table 5-124. Switching Characteristics Over Recommended Operating Conditions for MLB 6-Pin Option (1) NO. PARAMETER DESCRIPTION MODE MIN MAX 5 tsu(DATx-CLKxH) Setup time, MLBP_DATx/MLBP_SIGx input valid before MLBP_CLKx rising 2048FS 0.5 7 ns 4096FS 0.6 +n*P/2 (1) 2.5 +n*P/2 ns (2) 6 th(CLKxH-DATx) Hold time, MLBP_DATx/MLBP_SIGx input valid after MLBP_CLKx rising UNIT 2048FS 0.5 7 ns 4096FS 0.6 +n*P/2 (1) 3.5 +n*P/2 ns (2) (1) P= tc(MLBCLKx) period. (2) n=0 or 1, corresponding to two captures per clock cycle. NOTE ADVANCE INFORMATION To configure the desired Manual IO Timing Mode the user must follow the steps described in section "Manual IO Timing Modes" of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information please see the Control Module Chapter in the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for MLB. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-125 Manual Functions Mapping for MLB for a definition of the Manual modes. Table 5-125 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-125. Manual Functions Mapping for MLB BALL BALL NAME MLB_MANUAL 1 A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 0 5 mlb_clk AA3 mcasp5_aclkx 175 0 CFG_MCASP5_ACLKX_IN - AA3 mcasp5_aclkx 430 411 CFG_MCASP5_ACLKX_OUT - mlb_clk AB3 mcasp5_axr0 0 0 CFG_MCASP5_AXR0_IN - mlb_sig AB3 mcasp5_axr0 0 0 CFG_MCASP5_AXR0_OEN - mlb_sig AB3 mcasp5_axr0 0 0 CFG_MCASP5_AXR0_OUT - mlb_sig AA4 mcasp5_axr1 0 0 CFG_MCASP5_AXR1_IN - mlb_dat AA4 mcasp5_axr1 0 0 CFG_MCASP5_AXR1_OEN - mlb_dat AA4 mcasp5_axr1 0 0 CFG_MCASP5_AXR1_OUT - mlb_dat AB1 mlbp_clk_p 0 0 CFG_MLBP_CLK_P_IN mlbp_clk_p - AB1 mlbp_clk_p 321 43 CFG_MLBP_CLK_P_OUT mlbp_clk_p - AA2 mlbp_dat_n 30 1170 CFG_MLBP_DAT_N_IN mlbp_dat_n - AA2 mlbp_dat_n 0 0 CFG_MLBP_DAT_N_OEN mlbp_dat_n - AA2 mlbp_dat_n 0 0 CFG_MLBP_DAT_N_OUT mlbp_dat_n - AA1 mlbp_dat_p 30 1170 CFG_MLBP_DAT_P_IN mlbp_dat_p - AA1 mlbp_dat_p 0 0 CFG_MLBP_DAT_P_OEN mlbp_dat_p - AA1 mlbp_dat_p 0 0 CFG_MLBP_DAT_P_OUT mlbp_dat_p - AC2 mlbp_sig_n 55 1223 CFG_MLBP_SIG_N_IN mlbp_sig_n - AC2 mlbp_sig_n 0 0 CFG_MLBP_SIG_N_OEN mlbp_sig_n - AC2 mlbp_sig_n 0 0 CFG_MLBP_SIG_N_OUT mlbp_sig_n - 308 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-125. Manual Functions Mapping for MLB (continued) BALL BALL NAME MLB_MANUAL 1 A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 0 5 AC1 mlbp_sig_p 55 1223 CFG_MLBP_SIG_P_IN mlbp_sig_p - AC1 mlbp_sig_p 0 0 CFG_MLBP_SIG_P_OEN mlbp_sig_p - AC1 mlbp_sig_p 0 0 CFG_MLBP_SIG_P_OUT mlbp_sig_p - 5.10.6.21 eMMC/SD/SDIO The Device includes the following external memory interfaces 4 MultiMedia Card/Secure Digital/Secure Digital Input Output Interface (MMC/SD/SDIO). NOTE The eMMC/SD/SDIOi (i = 1 to 4) controller is also referred to as MMCi. MMC1 interface is compliant with the SD Standard v3.01 and it supports the following SD Card applications: • Default speed, 4-bit data, SDR, half-cycle • High speed, 4-bit data, SDR, half-cycle • SDR12, 4-bit data, half-cycle • SDR25, 4-bit data, half-cycle • UHS-I SDR50, 4-bit data, half-cycle • UHS-I SDR104, 4-bit data, half-cycle • UHS-I DDR50, 4-bit data NOTE For more information, see the eMMC/SD/SDIO chapter of the Device TRM. 5.10.6.21.1.1 Default speed, 4-bit data, SDR, half-cycle Table 5-126 and Table 5-127 present Timing requirements and Switching characteristics for MMC1 Default Speed in receiver and transmitter mode (see Figure 5-75 and Figure 5-76) Table 5-126. Timing Requirements for MMC1 - SD Card Default Speed Mode PARAMETER DESCRIPTION MIN DSSD5 NO. tsu(cmdV-clkH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 5.11 MAX UNIT ns DSSD6 th(clkH-cmdV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 20.46 ns DSSD7 tsu(dV-clkH) Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 5.11 ns DSSD8 th(clkH-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge 20.46 ns Table 5-127. Switching Characteristics for MMC1 - SD Card Default Speed Mode PARAMETER DESCRIPTION DSSD0 NO. fop(clk) Operating frequency, mmc1_clk MIN DSSD1 tw(clkH) Pulse duration, mmc1_clk high 0.5P0.185(1) ns DSSD2 tw(clkL) Pulse duration, mmc1_clk low 0.5P0.185 (1) ns DSSD3 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -14.93 MAX UNIT 24 MHz 14.93 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ns 309 ADVANCE INFORMATION 5.10.6.21.1 MMC1—SD Card Interface DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-127. Switching Characteristics for MMC1 - SD Card Default Speed Mode (continued) NO. DSSD4 PARAMETER DESCRIPTION td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition MIN MAX UNIT -14.93 14.93 ns (1) P = output mmc1_clk period in ns DSSD2 DSSD1 DSSD0 mmc1_clk DSSD6 DSSD5 mmc1_cmd DSSD8 DSSD7 mmc1_dat[3:0] MMC1_01 ADVANCE INFORMATION Figure 5-75. MMC/SD/SDIO in - Default Speed - Receiver Mode DSSD2 DSSD1 DSSD0 mmcx_clk DSSD3 mmcx_cmd DSSD4 mmcx_dat[3:0] MMC1_02 Figure 5-76. MMC/SD/SDIO in - Default Speed - Transmitter Mode 5.10.6.21.1.2 High speed, 4-bit data, SDR, half-cycle Table 5-128 and Table 5-129 present Timing requirements and Switching characteristics for MMC1 - High Speed in receiver and transmitter mode (see Figure 5-77 and Figure 5-78) Table 5-128. Timing Requirements for MMC1 - SD Card High Speed Mode PARAMETER DESCRIPTION HSSD3 NO. tsu(cmdV-clkH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge MIN 5.3 MAX UNIT ns HSSD4 th(clkH-cmdV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 2.6 ns HSSD7 tsu(dV-clkH) Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 5.3 ns HSSD8 th(clkH-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge 2.6 ns Table 5-129. Switching Characteristics for MMC1 - SD Card High Speed Mode NO. HSSD1 PARAMETER DESCRIPTION fop(clk) Operating frequency, mmc1_clk MIN MAX UNIT 48 MHz HSSD2H tw(clkH) Pulse duration, mmc1_clk high 0.5P0.185 (1) ns HSSD2L tw(clkL) Pulse duration, mmc1_clk low 0.5P0.185 (1) ns 310 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-129. Switching Characteristics for MMC1 - SD Card High Speed Mode (continued) PARAMETER DESCRIPTION MIN MAX HSSD5 NO. td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -7.6 3.6 UNIT ns HSSD6 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -7.6 3.6 ns (1) P = output mmc1_clk period in ns HSSD1 HSSD2L HSSD2H mmc1_clk HSSD3 HSSD4 mmc1_cmd HSSD7 HSSD8 mmc1_dat[3:0] Figure 5-77. MMC/SD/SDIO in - High Speed - Receiver Mode HSSD1 HSSD2H HSSD2L mmc1_clk HSSD5 HSSD5 mmc1_cmd HSSD6 HSSD6 mmc1_dat[3:0] MMC1_04 Figure 5-78. MMC/SD/SDIO in - High Speed - Transmitter Mode 5.10.6.21.1.3 SDR12, 4-bit data, half-cycle Table 5-130 and Table 5-131 present Timing requirements and Switching characteristics for MMC1 SDR12 in receiver and transmitter mode(see Figure 5-79 and Figure 5-80). Table 5-130. Timing Requirements for MMC1 - SD Card SDR12 Mode NO. PARAMETER DESCRIPTION MODE SDR125 tsu(cmdV-clkH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge SDR126 th(clkH-cmdV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge SDR127 tsu(dV-clkH) Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge SDR128 th(clkH-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge MIN MAX UNIT 25.99 ns 1.6 ns 25.99 ns 1.6 ns Table 5-131. Switching Characteristics for MMC1 - SD Card SDR12 Mode PARAMETER DESCRIPTION SDR120 NO. fop(clk) Operating frequency, mmc1_clk MIN MAX UNIT 24 MHz SDR121 tw(clkH) Pulse duration, mmc1_clk high 0.5P0.185 (1) ns SDR122 tw(clkL) Pulse duration, mmc1_clk low 0.5P0.185 (1) ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 311 ADVANCE INFORMATION MMC1_03 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-131. Switching Characteristics for MMC1 - SD Card SDR12 Mode (continued) PARAMETER DESCRIPTION MIN MAX UNIT SDR123 NO. td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -19.13 16.93 ns SDR124 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -19.13 16.93 ns (1) P = output mmc1_clk period in ns SDR122 SDR121 SDR120 mmc1_clk SDR126 SDR125 mmc1_cmd SDR128 SDR127 mmc1_dat[3:0] ADVANCE INFORMATION MMC1_05 Figure 5-79. MMC/SD/SDIO in - High Speed SDR12 - Receiver Mode SDR122 SDR121 SDR120 mmc1_clk SDR123 mmc1_cmd SDR124 mmc1_dat[3:0] MMC1_06 Figure 5-80. MMC/SD/SDIO in - High Speed SDR12 - Transmitter Mode 5.10.6.21.1.4 SDR25, 4-bit data, half-cycle Table 5-132 and Table 5-133 present Timing requirements and Switching characteristics for MMC1 SDR25 in receiver and transmitter mode (see Figure 5-81 and Figure 5-82). Table 5-132. Timing Requirements for MMC1 - SD Card SDR25 Mode NO. PARAMETER DESCRIPTION MODE MIN MAX UNIT SDR253 tsu(cmdV-clkH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge 5.3 ns SDR254 th(clkH-cmdV) Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 1.6 ns SDR257 tsu(dV-clkH) Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 5.3 ns SDR258 th(clkH-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge 1.6 ns 312 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-133. Switching Characteristics for MMC1 - SD Card SDR25 Mode PARAMETER DESCRIPTION SDR251 NO. fop(clk) Operating frequency, mmc1_clk MIN MAX UNIT 48 SDR252 H tw(clkH) Pulse duration, mmc1_clk high 0.5P0.185 (1) MHz ns SDR252L tw(clkL) Pulse duration, mmc1_clk low 0.5P0.185 (1) ns SDR255 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -8.8 6.6 ns SDR256 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -8.8 6.6 ns (1) P = output mmc1_clk period in ns SDR251 SDR252L SDR252H mmc1_clk SDR253 SDR254 mmc1_cmd SDR258 ADVANCE INFORMATION SDR257 mmc1_dat[3:0] MMC1_07 Figure 5-81. MMC/SD/SDIO in - High Speed SDR25 - Receiver Mode SDR251 SDR252H SDR252L mmc1_clk HSSDR255 SDR255 mmc1_cmd SDR256 SDR256 mmc1_dat[3:0] MMC1_08 Figure 5-82. MMC/SD/SDIO in - High Speed SDR25 - Transmitter Mode 5.10.6.21.1.5 UHS-I SDR50, 4-bit data, half-cycle Table 5-134 and Table 5-135 present Timing requirements and Switching characteristics for MMC1 SDR50 in receiver and transmitter mode (see Figure 5-83 and Figure 5-84). Table 5-134. Timing Requirements for MMC1 - SD Card SDR50 Mode NO. PARAMETER DESCRIPTION MODE SDR503 tsu(cmdV-clkH) Setup time, mmc1_cmd valid before mmc1_clk rising clock edge SDR504 th(clkH-cmdV) MIN MAX UNIT 1.48 ns Hold time, mmc1_cmd valid after mmc1_clk rising clock edge 1.6 ns SDR507 tsu(dV-clkH) Setup time, mmc1_dat[3:0] valid before mmc1_clk rising clock edge 1.48 ns SDR508 th(clkH-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk rising clock edge 1.6 ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 313 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-135. Switching Characteristics for MMC1 - SD Card SDR50 Mode PARAMETER DESCRIPTION SDR501 NO. fop(clk) Operating frequency, mmc1_clk MIN MAX UNIT 96 SDR502 H tw(clkH) Pulse duration, mmc1_clk high 0.5P0.185 (1) MHz ns SDR502L tw(clkL) Pulse duration, mmc1_clk low 0.5P0.185 (1) ns SDR505 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -3.66 1.46 ns SDR506 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -3.66 1.46 ns (1) P = output mmc1_clk period in ns SDR501 SDR502L SDR502H mmc1_clk SDR503 SDR504 mmc1_cmd ADVANCE INFORMATION SDR507 SDR508 mmc1_dat[3:0] MMC1_09 Figure 5-83. MMC/SD/SDIO in - High Speed SDR50 - Receiver Mode SDR501 SDR502H SDR502L mmc1_clk SDR505 SDR505 mmc1_cmd SDR506 SDR506 mmc1_dat[3:0] MMC1_10 Figure 5-84. MMC/SD/SDIO in - High Speed SDR50 - Transmitter Mode 5.10.6.21.1.6 UHS-I SDR104, 4-bit data, half-cycle Table 5-136 presents Timing requirements and Switching characteristics for MMC1 - SDR104 in receiver and transmitter mode (see Figure 5-85 and Figure 5-86) Table 5-136. Switching Characteristics for MMC1 - SD Card SDR104 Mode NO. PARAMETER DESCRIPTION MIN MAX UNIT 192 MHz SDR1041 fop(clk) Operating frequency, mmc1_clk SDR1042 tw(clkH) H Pulse duration, mmc1_clk high 0.5P0.185 (1) ns SDR1042 tw(clkL) L Pulse duration, mmc1_clk low 0.5P0.185 (1) ns SDR1045 td(clkL-cmdV) Delay time, mmc1_clk falling clock edge to mmc1_cmd transition -1.09 0.49 ns SDR1046 td(clkL-dV) Delay time, mmc1_clk falling clock edge to mmc1_dat[3:0] transition -1.09 0.49 ns 314 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (1) P = output mmc1_clk period in ns SDR1041 SDR1042L SDR1042H mmc1_clk SDR1043 SDR1044 mmc1_cmd SDR1047 SDR1048 mmc1_dat[3:0] MMC1_11 Figure 5-85. MMC/SD/SDIO in - High Speed SDR104 - Receiver Mode SDR1041 SDR1042H SDR1042L SDR1045 SDR1045 mmc1_cmd SDR1046 SDR1046 mmc1_dat[3:0] MMC1_12 Figure 5-86. MMC/SD/SDIO in - High Speed SDR104 - Transmitter Mode 5.10.6.21.1.7 UHS-I DDR50, 4-bit data Table 5-137 and Table 5-138 present Timing requirements and Switching characteristics for MMC1 DDR50 in receiver and transmitter mode (see Figure 5-87 and Figure 5-88). Table 5-137. Timing Requirements for MMC1 - SD Card DDR50 Mode NO. PARAMETER DESCRIPTION MODE DDR505 tsu(cmdV-clk) Setup time, mmc1_cmd valid before mmc1_clk transition DDR506 th(clk-cmdV) Hold time, mmc1_cmd valid after mmc1_clk transition DDR507 tsu(dV-clk) Setup time, mmc1_dat[3:0] valid before mmc1_clk transition DDR508 th(clk-dV) Hold time, mmc1_dat[3:0] valid after mmc1_clk transition MIN MAX UNIT 1.79 ns 1.6 ns 1.79 ns 1.6 ns Table 5-138. Switching Characteristics for MMC1 - SD Card DDR50 Mode PARAMETER DESCRIPTION DDR500 NO. fop(clk) Operating frequency, mmc1_clk MIN MAX UNIT 48 DDR501 tw(clkH) Pulse duration, mmc1_clk high 0.5P0.185 (1) MHz ns DDR502 tw(clkL) Pulse duration, mmc1_clk low 0.5P0.185 (1) ns DDR503 td(clk-cmdV) Delay time, mmc1_clk transition to mmc1_cmd transition 1.225 6.6 DDR504 td(clk-dV) Delay time, mmc1_clk transition to mmc1_dat[3:0] transition 1.225 6.6 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ns 315 ADVANCE INFORMATION mmc1_clk DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (1) P = output mmc1_clk period in ns DDR500 DDR502 DDR501 mmc1_clk DDR505 DDR506 mmc1_cmd DDR507 DDR507 DDR508 DDR508 mmc1_dat[3:0] MMC1_13 Figure 5-87. SDMMC - High Speed SD - DDR - Data/Command Receive DDR500 DDR501 DDR502 ADVANCE INFORMATION mmc1_clk DDR503(max) DDR503(min) mmc1_cmd DDR504(max) DDR504(max) DDR504(min) DDR504(min) mmc1_dat[3:0] MMC1_14 Figure 5-88. SDMMC - High Speed SD - DDR - Data/Command Transmit NOTE To configure the desired virtual mode the user must set MODESELECT bit and DELAYMODE bitfield for each corresponding pad control register. The pad control registers are presented in Table 4-33 and described in Device TRM, Control Module Chapter. Virtual IO Timings Modes must be used to guarantee some IO timings for MMC1. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Virtual IO Timings Modes. See Table 5-139 Virtual Functions Mapping for MMC1 for a definition of the Virtual modes. Table 5-139 presents the values for DELAYMODE bitfield. Table 5-139. Virtual Functions Mapping for MMC1 BALL Delay Mode Value MUXMODE[15: 0] MMC1_ VIRTUAL1 MMC1_ VIRTUAL2 MMC1_ VIRTUAL5 MMC1_ VIRTUAL6 MMC1_ VIRTUAL7 0 mmc1_clk 11 10 7 6 5 mmc1_clk W5 mmc1_cmd 11 10 7 6 5 mmc1_cmd V5 mmc1_dat0 11 10 7 6 5 mmc1_dat0 Y4 mmc1_dat1 11 10 7 6 5 mmc1_dat1 Y5 mmc1_dat2 11 10 7 6 5 mmc1_dat2 Y3 mmc1_dat3 11 10 7 6 5 mmc1_dat3 W3 316 BALL NAME Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for MMC1. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-140 Manual Functions Mapping for MMC1 for a definition of the Manual modes. ADVANCE INFORMATION Table 5-140 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 317 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-140. Manual Functions Mapping for MMC1 BALL W3 BALL NAME MMC1_DDR_MANUAL1 MMC1_SDR104_MANUAL1 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 489 0 - - mmc1_clk CFG REGISTER MUXMODE CFG_MMC1_CLK_IN mmc1_clk 0 ADVANCE INFORMATION W5 mmc1_cmd 0 0 - - CFG_MMC1_CMD_IN mmc1_cmd V5 mmc1_dat0 374 0 - - CFG_MMC1_DAT0_IN mmc1_dat0 Y4 mmc1_dat1 31 0 - - CFG_MMC1_DAT1_IN mmc1_dat1 Y5 mmc1_dat2 56 0 - - CFG_MMC1_DAT2_IN mmc1_dat2 Y3 mmc1_dat3 0 0 - - CFG_MMC1_DAT3_IN mmc1_dat3 W3 mmc1_clk 1355 0 892 0 CFG_MMC1_CLK_OUT mmc1_clk W5 mmc1_cmd 0 0 0 0 CFG_MMC1_CMD_OEN mmc1_cmd W5 mmc1_cmd 0 0 0 0 CFG_MMC1_CMD_OUT mmc1_cmd V5 mmc1_dat0 0 0 0 0 CFG_MMC1_DAT0_OEN mmc1_dat0 V5 mmc1_dat0 0 4 0 0 CFG_MMC1_DAT0_OUT mmc1_dat0 Y4 mmc1_dat1 0 0 0 0 CFG_MMC1_DAT1_OEN mmc1_dat1 Y4 mmc1_dat1 0 0 0 0 CFG_MMC1_DAT1_OUT mmc1_dat1 Y5 mmc1_dat2 0 0 0 0 CFG_MMC1_DAT2_OEN mmc1_dat2 Y5 mmc1_dat2 0 0 0 0 CFG_MMC1_DAT2_OUT mmc1_dat2 Y3 mmc1_dat3 0 0 0 0 CFG_MMC1_DAT3_OEN mmc1_dat3 Y3 mmc1_dat3 0 0 0 0 CFG_MMC1_DAT3_OUT mmc1_dat3 5.10.6.21.2 MMC2 — eMMC MMC2 interface is compliant with the JC64 eMMC Standard v4.5 and it supports the following eMMC applications: • Standard JC64 SDR, 8-bit data, half cycle • High-speed JC64 SDR, 8-bit data, half cycle • High-speed JC64 DDR, 8-bit data • High-speed HS200 JC64 SDR, 8-bit data, half cycle NOTE For more information, see the eMMC/SD/SDIO chapter of the Device TRM. 5.10.6.21.2.1 Standard JC64 SDR, 8-bit data, half cycle Table 5-141 and Table 5-142 present Timing requirements and Switching characteristics for MMC2 - Standard SDR in receiver and Transmitter mode (see Figure 5-89 and Figure 5-90). 318 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-141. Timing Requirements for MMC2 - JC64 Standard SDR Mode NO. DESCRIPTION tsu(cmdV-clkH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge MIN SSDR6 th(clkH-cmdV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge SSDR7 tsu(dV-clkH) Setup time, mmc2_dat[7:0] valid before mmc2_clk rising clock edge SSDR8 th(clkH-dV) Hold time, mmc2_dat[7:0] valid after mmc2_clk rising clock edge MAX UNIT 13.19 ns 8.4 ns 13.19 ns 8.4 ns ADVANCE INFORMATION PARAMETER SSDR5 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 319 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-142. Switching Characteristics for MMC2 - JC64 Standard SDR Mode NO. SSDR1 PARAMETER DESCRIPTION fop(clk) Operating frequency, mmc2_clk MIN MAX UNIT 24 MHz SSDR2H tw(clkH) Pulse duration, mmc2_clk high 0.5P0.172 (1) ns SSDR2L tw(clkL) Pulse duration, mmc2_clk low 0.5P0.172 (1) ns SSDR3 td(clkL-cmdV) Delay time, mmc2_clk falling clock edge to mmc2_cmd transition -16.96 16.96 ns SSDR4 td(clkL-dV) Delay time, mmc2_clk falling clock edge to mmc2_dat[7:0] transition -16.96 16.96 ns (1) P = output mmc2_clk period in ns SSDR2 SSDR2 SSDR1 mmc2_clk SSDR6 ADVANCE INFORMATION SSDR5 mmc2_cmd SSDR8 SSDR7 mmc2_dat[7:0] MMC2_01 Figure 5-89. MMC/SD/SDIO in - Standard JC64 - Receiver Mode SSDR2 SSDR2 SSDR1 mmc2_clk SSDR3 mmc2_cmd SSDR4 mmc2_dat[7:0] MMC2_02 Figure 5-90. MMC/SD/SDIO in - Standard JC64 - Transmitter Mode 5.10.6.21.2.2 High-speed JC64 SDR, 8-bit data, half cycle Table 5-143 and Table 5-144 present Timing requirements and Switching characteristics for MMC2 - High speed SDR in receiver and transmitter mode (see Figure 5-91 and Figure 5-92). Table 5-143. Timing Requirements for MMC2 - JC64 High Speed SDR Mode PARAMETER DESCRIPTION JC643 NO. tsu(cmdV-clkH) Setup time, mmc2_cmd valid before mmc2_clk rising clock edge 5.6 ns JC644 th(clkH-cmdV) Hold time, mmc2_cmd valid after mmc2_clk rising clock edge 2.6 ns JC647 tsu(dV-clkH) Setup time, mmc2_dat[7:0] valid before mmc2_clk rising clock edge 5.6 ns JC648 th(clkH-dV) Hold time, mmc2_dat[7:0] valid after mmc2_clk rising clock edge 2.6 ns 320 Specifications MIN MAX UNIT Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-144. Switching Characteristics for MMC2 - JC64 High Speed SDR Mode PARAMETER DESCRIPTION JC641 NO. fop(clk) Operating frequency, mmc2_clk MIN MAX UNIT 48 JC642H tw(clkH) Pulse duration, mmc2_clk high 0.5P0.172 (1) MHz ns JC642L tw(clkL) Pulse duration, mmc2_clk low 0.5P0.172 (1) ns JC645 td(clkL-cmdV) Delay time, mmc2_clk falling clock edge to mmc2_cmd transition -6.64 6.64 ns JC646 td(clkL-dV) Delay time, mmc2_clk falling clock edge to mmc2_dat[7:0] transition -6.64 6.64 ns (1) P = output mmc2_clk period in ns JC641 JC642L JC642H mmc2_clk JC643 JC644 JC647 JC648 mmc2_dat[7:0] MMC2_03 Figure 5-91. MMC/SD/SDIO in - High Speed JC64 - Receiver Mode JC641 JC642L JC642H mmc2_clk JC645 JC645 mmc2_cmd JC646 JC646 mmc2_dat[7:0] MMC2_04 Figure 5-92. MMC/SD/SDIO in - High Speed JC64 - Transmitter Mode 5.10.6.21.2.3 High-speed HS200 JC64 SDR, 8-bit data, half cycle Table 5-145 presents Timing requirements and Switching characteristics for MMC2 - HS200 in receiver and transmitter mode (see Figure 5-93). Table 5-145. Switching Characteristics for MMC2 - JEDS84 HS200 Mode NO. HS2001 PARAMETER DESCRIPTION fop(clk) Operating frequency, mmc2_clk MIN MAX UNIT 192 MHz HS2002H tw(clkH) Pulse duration, mmc2_clk high 0.5P0.172 (1) ns HS2002L tw(clkL) Pulse duration, mmc2_clk low 0.5P0.172 (1) ns HS2005 td(clkL-cmdV) Delay time, mmc2_clk falling clock edge to mmc2_cmd transition -1.136 0.536 ns HS2006 td(clkL-dV) Delay time, mmc2_clk falling clock edge to mmc2_dat[7:0] transition -1.136 0.536 ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 321 ADVANCE INFORMATION mmc2_cmd DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (1) P = output mmc2_clk period in ns HS2001 HS2002H HS2002L mmc2_clk HS2005 HS2005 mmc2_cmd HS2006 HS2006 mmc2_dat[7:0] MMC2_05 Figure 5-93. eMMC in - HS200 SDR - Transmitter Mode 5.10.6.21.2.4 High-speed JC64 DDR, 8-bit data ADVANCE INFORMATION Table 5-146 and Table 5-147 present Timing requirements and Switching characteristics for MMC2 - High speed DDR in receiver and transmitter mode (see Figure 5-94 and Figure 5-95). Table 5-146. Timing Requirements for MMC2 - JC64 High Speed DDR Mode PARAMETER DESCRIPTION DDR3 NO. tsu(cmdV-clk) Setup time, mmc2_cmd valid before mmc2_clk transition MODE MIN 1.8 MAX UNIT ns DDR4 th(clk-cmdV) Hold time, mmc2_cmd valid after mmc2_clk transition 1.6 ns DDR7 tsu(dV-clk) Setup time, mmc2_dat[7:0] valid before mmc2_clk transition 1.8 ns DDR8 th(clk-dV) Hold time, mmc2_dat[7:0] valid after mmc2_clk transition 1.6 ns Table 5-147. Switching Characteristics for MMC2 - JC64 High Speed DDR Mode PARAMETER DESCRIPTION DDR1 NO. fop(clk) Operating frequency, mmc2_clk MIN MAX UNIT 48 DDR2H tw(clkH) Pulse duration, mmc2_clk high 0.5P0.172 (1) MHz ns DDR2L tw(clkL) Pulse duration, mmc2_clk low 0.5P0.172 (1) ns DDR5 td(clk-cmdV) Delay time, mmc2_clk transition to mmc2_cmd transition 2.9 7.14 ns DDR6 td(clk-dV) Delay time, mmc2_clk transition to mmc2_dat[7:0] transition 2.9 7.14 ns (1) P = output mmc2_clk period in ns Table 5-148 and Table 5-149 present Timing requirements and Switching characteristics for MMC2 - High speed DDR in receiver and transmitter mode During Boot (see Figure 5-94 and Figure 5-95). Table 5-148. Timing Requirements for MMC2 - JC64 High Speed DDR Mode During Boot PARAMETER DESCRIPTION MODE MIN DDR3 NO. tsu(cmdV-clk) Setup time, mmc2_cmd valid before mmc2_clk transition Boot 1.8 ns DDR4 th(clk-cmdV) Hold time, mmc2_cmd valid after mmc2_clk transition Boot 1.6 ns DDR7 tsu(dV-clk) Setup time, mmc2_dat[7:0] valid before mmc2_clk transition Boot 1.8 ns DDR8 th(clk-dV) Hold time, mmc2_dat[7:0] valid after mmc2_clk transition Boot 1.6 ns 322 Specifications MAX UNIT Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-149. Switching Characteristics for MMC2 - JC64 High Speed DDR Mode During Boot PARAMETER DESCRIPTION DDR1 NO. fop(clk) Operating frequency, mmc2_clk MODE Boot MIN MAX UNIT 48 DDR2H tw(clkH) Pulse duration, mmc2_clk high Boot 0.5P0.172 MHz ns DDR2L tw(clkL) Pulse duration, mmc2_clk low Boot 0.5P0.172 ns DDR5 td(clk-cmdV) Delay time, mmc2_clk transition to mmc2_cmd transition Boot 2.9 7.14 ns DDR6 td(clk-dV) Delay time, mmc2_clk transition to mmc2_dat[7:0] transition Boot 2.9 7.14 ns DDR1 DDR2H DDR2L mmc2_clk DDR3 DDR4 mmc2_cmd DDR7 DDR8 DDR7 DDR7 DDR7 mmc2_dat[7:0] MMC2_07 Figure 5-94. MMC/SD/SDIO in - High Speed DDR JC64 - Receiver Mode DDR1 DDR2 DDR2 mmc2_clk DDR5 DDR5 DDR5 DDR5 mmc2_cmd DDR6 DDR6 DDR6 DDR6 DDR6 DDR6 mmc2_dat[7:0] MMC2_08 Figure 5-95. MMC/SD/SDIO in - High Speed DDR JC64 - Transmitter Mode NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for MMC2. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-150 Manual Functions Mapping for MMC2 with Internal Loopback Clock and for HS200 for a definition of the Manual modes. Table 5-150 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 323 ADVANCE INFORMATION DDR8 DDR8 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-150. Manual Functions Mapping for MMC2 With Internal Loopback Clock and for HS200 BALL BALL NAME MMC2_DDR_LB_MANUAL1 MMC2_STD_HS_LB_MANUAL1 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) MMC2_HS200_MANUAL1 G_DELAY (ps) CFG REGISTER MUXMODE 1 H6 gpmc_a19 124 0 850 0 - - CFG_GPMC_A19_IN mmc2_dat4 G6 gpmc_a20 62 0 1264 0 - - CFG_GPMC_A20_IN mmc2_dat5 J4 gpmc_a21 0 0 786 0 - - CFG_GPMC_A21_IN mmc2_dat6 mmc2_dat7 ADVANCE INFORMATION F5 gpmc_a22 0 0 902 0 - - CFG_GPMC_A22_IN G5 gpmc_a23 1145 3054 0 2764 - - CFG_GPMC_A23_IN mmc2_clk J3 gpmc_a24 48 0 1185 0 - - CFG_GPMC_A24_IN mmc2_dat0 H4 gpmc_a25 0 0 670 0 - - CFG_GPMC_A25_IN mmc2_dat1 H3 gpmc_a26 0 0 972 0 - - CFG_GPMC_A26_IN mmc2_dat2 H5 gpmc_a27 0 0 1116 0 - - CFG_GPMC_A27_IN mmc2_dat3 G4 gpmc_cs1 0 0 250 0 - - CFG_GPMC_CS1_IN mmc2_cmd H6 gpmc_a19 0 0 0 0 384 0 CFG_GPMC_A19_OEN mmc2_dat4 H6 gpmc_a19 135 0 0 0 0 174 CFG_GPMC_A19_OUT mmc2_dat4 G6 gpmc_a20 0 0 0 0 410 0 CFG_GPMC_A20_OEN mmc2_dat5 G6 gpmc_a20 47 0 0 0 85 0 CFG_GPMC_A20_OUT mmc2_dat5 J4 gpmc_a21 0 0 0 0 468 0 CFG_GPMC_A21_OEN mmc2_dat6 J4 gpmc_a21 101 0 0 0 139 0 CFG_GPMC_A21_OUT mmc2_dat6 F5 gpmc_a22 0 0 0 0 676 0 CFG_GPMC_A22_OEN mmc2_dat7 mmc2_dat7 F5 gpmc_a22 30 0 0 0 69 0 CFG_GPMC_A22_OUT G5 gpmc_a23 423 0 0 0 1062 154 CFG_GPMC_A23_OUT mmc2_clk J3 gpmc_a24 0 0 0 0 640 0 CFG_GPMC_A24_OEN mmc2_dat0 J3 gpmc_a24 0 0 0 0 0 0 CFG_GPMC_A24_OUT mmc2_dat0 H4 gpmc_a25 0 0 0 0 356 0 CFG_GPMC_A25_OEN mmc2_dat1 H4 gpmc_a25 0 0 0 0 0 0 CFG_GPMC_A25_OUT mmc2_dat1 H3 gpmc_a26 0 0 0 0 579 0 CFG_GPMC_A26_OEN mmc2_dat2 H3 gpmc_a26 0 0 0 0 0 0 CFG_GPMC_A26_OUT mmc2_dat2 H5 gpmc_a27 0 0 0 0 435 0 CFG_GPMC_A27_OEN mmc2_dat3 H5 gpmc_a27 0 0 0 0 36 0 CFG_GPMC_A27_OUT mmc2_dat3 G4 gpmc_cs1 0 0 0 0 759 0 CFG_GPMC_CS1_OEN mmc2_cmd G4 gpmc_cs1 0 0 0 0 72 0 CFG_GPMC_CS1_OUT mmc2_cmd 324 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 ADVANCE INFORMATION www.ti.com Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 325 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.6.21.3 MMC3 and MMC4—SDIO/SD MMC3 and MMC4 interfaces are compliant with the SDIO3.0 standard v1.0, SD Part E1 and for generic SDIO devices, it supports the following applications: • MMC3 8-bit data and MMC4 4-bit data, SD Default speed, SDR • MMC3 8-bit data and MMC4 4-bit data, SD High speed, SDR • MMC3 8-bit data and MMC4 4-bit data, UHS-1 SDR12 (SD Standard v3.01), 4-bit data, SDR, half cycle • MMC3 8-bit data and MMC4 4-bit data, UHS-I SDR25 (SD Standard v3.01), 4-bit data, SDR, half cycle • MMC3 8-bit data, UHS-I SDR50 NOTE The eMMC/SD/SDIOj (j = 3 to 4) controller is also referred to as MMCj. NOTE For more information, see the MMC/SDIO chapter of the Device TRM. ADVANCE INFORMATION 5.10.6.21.3.1 MMC3 and MMC4, SD Default Speed Figure 5-96, Figure 5-97, and Table 5-151 through Table 5-154 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD Default speed in receiver and transmitter mode. Table 5-151. Timing Requirements for MMC3 - Default Speed Mode (1) NO. PARAMETER DESCRIPTION MIN DS5 tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge 5.11 MAX UNIT ns DS6 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 20.46 ns DS7 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 5.11 ns DS8 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge 20.46 ns (1) i in [i:0] = 7 Table 5-152. Switching Characteristics for MMC3 - SD/SDIO Default Speed Mode (2) NO. PARAMETER DESCRIPTION DS0 fop(clk) Operating frequency, mmc3_clk MIN MAX UNIT 24 DS1 tw(clkH) Pulse duration, mmc3_clk high 0.5P0.270 (2) MHz ns DS2 tw(clkL) Pulse duration, mmc3_clk low 0.5P0.270 (2) ns DS3 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -14.93 14.93 ns DS4 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -14.93 14.93 ns MAX UNIT (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 Table 5-153. Timing Requirements for MMC4 - Default Speed Mode (1) NO. PARAMETER DESCRIPTION DS5 tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge DS6 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge DS7 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge DS8 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge 326 Specifications MIN 5.11 ns 20.46 ns 5.11 ns 20.46 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (1) i in [i:0] = 3 Table 5-154. Switching Characteristics for MMC4 - Default Speed Mode (2) NO. PARAMETER DESCRIPTION DS0 fop(clk) Operating frequency, mmc4_clk MIN MAX UNIT 24 MHz DS1 tw(clkH) Pulse duration, mmc4_clk high 0.5P0.270 (1) ns DS2 tw(clkL) Pulse duration, mmc4_clk low 0.5P0.270 (1) ns DS3 td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -14.93 14.93 ns DS4 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -14.93 14.93 ns (1) P = output mmc4_clk period in ns (2) i in [i:0] = 3 DS2 DS1 ADVANCE INFORMATION DS0 mmcj_clk DS6 DS5 mmcj_cmd DS8 DS7 mmcj_dat[i:0] MMC3/4_07 Figure 5-96. MMC/SD/SDIOj in - Default Speed - Receiver Mode DS2 DS1 DS0 mmcj_clk DS3 mmcj_cmd DS4 mmcj_dat[i:0] MMC3/4_08 Figure 5-97. MMC/SD/SDIOj in - Default Speed - Transmitter Mode 5.10.6.21.3.2 MMC3 and MMC4, SD High Speed Figure 5-98, Figure 5-99, and Table 5-155 through Table 5-158 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD and SDIO High speed in receiver and transmitter mode. Table 5-155. Timing Requirements for MMC3 - SD/SDIO High Speed Mode (1) NO. PARAMETER DESCRIPTION MIN MAX HS3 tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge 5.3 ns HS4 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 2.6 ns HS7 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 5.3 ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P UNIT 327 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-155. Timing Requirements for MMC3 - SD/SDIO High Speed Mode (1) (continued) NO. PARAMETER DESCRIPTION HS8 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge MIN MAX 2.6 UNIT ns (1) i in [i:0] = 7 Table 5-156. Switching Characteristics for MMC3 - SD/SDIO High Speed Mode (2) NO. PARAMETER DESCRIPTION HS1 fop(clk) Operating frequency, mmc3_clk MIN MAX UNIT 48 HS2H tw(clkH) Pulse duration, mmc3_clk high 0.5P0.270 (1) MHz ns HS2L tw(clkL) Pulse duration, mmc3_clk low 0.5P0.270 (1) ns HS5 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -7.6 3.6 ns HS6 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -7.6 3.6 ns (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 ADVANCE INFORMATION Table 5-157. Timing Requirements for MMC4 - High Speed Mode (1) NO. PARAMETER DESCRIPTION MIN MAX UNIT HS3 tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge 5.3 ns HS4 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge 1.6 ns HS7 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge 5.3 ns HS8 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge 1.6 ns (1) i in [i:0] = 3 Table 5-158. Switching Characteristics for MMC4 - High Speed Mode (2) NO. PARAMETER DESCRIPTION HS1 fop(clk) Operating frequency, mmc4_clk MIN MAX UNIT 48 MHz HS2H tw(clkH) Pulse duration, mmc4_clk high 0.5P0.270 (1) ns HS2L tw(clkL) Pulse duration, mmc4_clk low 0.5P0.270 (1) ns HS5 td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -8.8 6.6 ns HS6 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -8.8 6.6 ns (1) P = output mmc4_clk period in ns (2) i in [i:0] = 3 HS1 HS2L HS2H mmcj_clk HS3 HS4 mmcj_cmd HS7 HS8 mmcj_dat[i:0] MMC3/4_09 Figure 5-98. MMC/SD/SDIOj in - High Speed - Receiver Mode 328 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 HS1 HS2H HS2L mmcj_clk HS5 HS5 mmcj_cmd HS6 HS6 mmcj_dat[i:0] MMC3/4_10 Figure 5-99. MMC/SD/SDIOj in - High Speed - Transmitter Mode 5.10.6.21.3.3 MMC3 and MMC4, SD and SDIO SDR12 Mode Figure 5-100, Figure 5-101, and Table 5-159, through Table 5-162 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD and SDIO SDR12 in receiver and transmitter mode. PARAMETER DESCRIPTION SDR125 NO. tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge SDR126 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge SDR127 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge SDR128 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge MIN MAX UNIT 25.99 ns 1.6 ns 25.99 ns 1.6 ns (1) i in [i:0] = 7 Table 5-160. Switching Characteristics for MMC3 - SDR12 Mode (2) PARAMETER DESCRIPTION SDR120 NO. fop(clk) Operating frequency, mmc3_clk MIN MAX UNIT 24 MHz SDR121 tw(clkH) Pulse duration, mmc3_clk high 0.5P0.270 (1) ns SDR122 tw(clkL) Pulse duration, mmc3_clk low 0.5P0.270 (1) ns SDR123 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -19.13 16.93 ns SDR124 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -19.13 16.93 ns MAX UNIT (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 Table 5-161. Timing Requirements for MMC4 - SDR12 Mode (1) PARAMETER DESCRIPTION SDR125 NO. tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge SDR126 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge SDR127 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge SDR128 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge MIN 25.99 ns 1.6 ns 25.99 ns 1.6 ns (1) j in [i:0] = 3 Table 5-162. Switching Characteristics for MMC4 - SDR12 Mode (2) NO. PARAMETER DESCRIPTION MIN MAX UNIT SDR120 fop(clk) Operating frequency, mmc4_clk SDR121 tw(clkH) Pulse duration, mmc4_clk high 0.5P0.270 (1) 24 MHz ns SDR122 tw(clkL) Pulse duration, mmc4_clk low 0.5P0.270 (1) ns Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 329 ADVANCE INFORMATION Table 5-159. Timing Requirements for MMC3 - SDR12 Mode (1) DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-162. Switching Characteristics for MMC4 - SDR12 Mode (2) (continued) PARAMETER DESCRIPTION MIN MAX UNIT SDR125 NO. td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -19.13 16.93 ns SDR126 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -19.13 16.93 ns (1) P = output mmc4_clk period in ns (2) j in [i:0] = 3 SDR122 SDR121 SDR120 mmcj_clk SDR126 SDR125 mmcj_cmd SDR128 SDR127 ADVANCE INFORMATION mmcj_dat[i:0] MMC3/4_11 Figure 5-100. MMC/SD/SDIOj in - SDR12 - Receiver Mode SDR122 SDR121 SDR120 mmcj_clk SDR123 mmcj_cmd SDR124 mmcj_dat[i:0] MMC3/4_12 Figure 5-101. MMC/SD/SDIOj in - SDR12 - Transmitter Mode 5.10.6.21.3.4 MMC3 and MMC4, SD SDR25 Mode Figure 5-102, Figure 5-103, and Table 5-163 through Table 5-166 present Timing requirements and Switching characteristics for MMC3 and MMC4 - SD and SDIO SDR25 in receiver and transmitter mode. Table 5-163. Timing Requirements for MMC3 - SDR25 Mode (1) PARAMETER DESCRIPTION SDR253 NO. tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge MIN 5.3 MAX UNIT ns SDR254 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 1.6 ns SDR257 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 5.3 ns SDR258 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge 1.6 ns (1) i in [i:0] = 7 Table 5-164. Switching Characteristics for MMC3 - SDR25 Mode (2) NO. SDR251 330 PARAMETER DESCRIPTION fop(clk) Operating frequency, mmc3_clk Specifications MIN MAX UNIT 48 MHz Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-164. Switching Characteristics for MMC3 - SDR25 Mode (2) (continued) NO. PARAMETER DESCRIPTION tw(clkH) Pulse duration, mmc3_clk high 0.5P(1)0.270 ns SDR252L tw(clkL) Pulse duration, mmc3_clk low 0.5P(1)0.270 ns SDR255 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -8.8 6.6 ns SDR256 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -8.8 6.6 ns MIN MAX SDR252 H MIN MAX UNIT (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 Table 5-165. Timing Requirements for MMC4 - SDR25 Mode (1) PARAMETER DESCRIPTION UNIT SDR255 tsu(cmdV-clkH) Setup time, mmc4_cmd valid before mmc4_clk rising clock edge 5.3 ns SDR256 th(clkH-cmdV) Hold time, mmc4_cmd valid after mmc4_clk rising clock edge 1.6 ns SDR257 tsu(dV-clkH) Setup time, mmc4_dat[i:0] valid before mmc4_clk rising clock edge 5.3 ns SDR258 th(clkH-dV) Hold time, mmc4_dat[i:0] valid after mmc4_clk rising clock edge 1.6 ns (1) i in [i:0] = 3 Table 5-166. Switching Characteristics for MMC4 - SDR25 Mode (2) PARAMETER DESCRIPTION SDR251 NO. fop(clk) Operating frequency, mmc4_clk MIN MAX UNIT 48 MHz SDR252 H tw(clkH) Pulse duration, mmc4_clk high 0.5P0.270 (1) ns SDR252L tw(clkL) Pulse duration, mmc4_clk low 0.5P0.270 (1) ns SDR255 td(clkL-cmdV) Delay time, mmc4_clk falling clock edge to mmc4_cmd transition -8.8 6.6 ns SDR256 td(clkL-dV) Delay time, mmc4_clk falling clock edge to mmc4_dat[i:0] transition -8.8 6.6 ns (1) P = output mmc4_clk period in ns (2) i in [i:0] = 3 SDR251 SDR252L SDR252H mmcj_clk SDR253 SDR254 mmcj_cmd SDR257 SDR258 mmcj_dat[i:0] MMC3/4_13 Figure 5-102. MMC/SD/SDIOj in - SDR25 - Receiver Mode Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 331 ADVANCE INFORMATION NO. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com SDR251 SDR252H SDR252L mmcj_clk SDR255 SDR255 mmcj_cmd SDR256 SDR256 mmcj_dat[i:0] MMC3/4_14 Figure 5-103. .MMC/SD/SDIOj in - SDR25 - Transmitter Mode 5.10.6.21.3.5 MMC3 SDIO High-Speed UHS-I SDR50 Mode, Half Cycle Figure 5-104, Figure 5-105, Table 5-167, and Table 5-168 present Timing requirements and Switching characteristics for MMC3 - SDIO High speed SDR50 in receiver and transmitter mode. Table 5-167. Timing Requirements for MMC3 - SDR50 Mode (1) ADVANCE INFORMATION PARAMETER DESCRIPTION MIN SDR503 NO. tsu(cmdV-clkH) Setup time, mmc3_cmd valid before mmc3_clk rising clock edge 1.48 MAX UNIT ns SDR504 th(clkH-cmdV) Hold time, mmc3_cmd valid after mmc3_clk rising clock edge 1.6 ns SDR507 tsu(dV-clkH) Setup time, mmc3_dat[i:0] valid before mmc3_clk rising clock edge 1.48 ns SDR508 th(clkH-dV) Hold time, mmc3_dat[i:0] valid after mmc3_clk rising clock edge 1.6 ns (1) i in [i:0] = 7 Table 5-168. Switching Characteristics for MMC3 - SDR50 Mode (2) PARAMETER DESCRIPTION SDR501 NO. fop(clk) Operating frequency, mmc3_clk MIN MAX UNIT 96 MHz SDR502 H tw(clkH) Pulse duration, mmc3_clk high 0.5P0.270 (1) ns SDR502L tw(clkL) Pulse duration, mmc3_clk low 0.5P0.270 (1) ns SDR505 td(clkL-cmdV) Delay time, mmc3_clk falling clock edge to mmc3_cmd transition -3.66 1.46 ns SDR506 td(clkL-dV) Delay time, mmc3_clk falling clock edge to mmc3_dat[i:0] transition -3.66 1.46 ns (1) P = output mmc3_clk period in ns (2) i in [i:0] = 7 SDR501 SDR502L SDR502H mmcj_clk SDR503 SDR504 mmcj_cmd SDR507 SDR508 mmcj_dat[7:0] MMC3/4_05 Figure 5-104. MMC/SD/SDIOj in - High Speed SDR50 - Receiver Mode 332 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SDR501 SDR502H SDR502L mmcj_clk SDR505 SDR505 mmcj_cmd SDR506 SDR506 mmcj_dat[7:0] MMC3/4_06 Figure 5-105. MMC/SD/SDIOj in - High Speed SDR50 - Transmitter Mode NOTE To configure the desired Manual IO Timing Mode the user must follow the steps described in section Manual IO Timing Modes of the Device TRM. Manual IO Timings Modes must be used to guarantee some IO timings for MMC3. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-169 Manual Functions Mapping for MMC3 for a definition of the Manual modes. Table 5-169 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. Table 5-169. Manual Functions Mapping for MMC3 BALL BALL NAME MMC3_MANUAL1 MMC3_MANUAL2 CFG REGISTER MUXMODE A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) mmc3_clk 0 386 852 0 CFG_MMC3_CLK_IN AC3 mmc3_clk 605 0 94 0 CFG_MMC3_CLK_OUT mmc3_clk AC7 mmc3_cmd 0 0 122 0 CFG_MMC3_CMD_IN mmc3_cmd AC7 mmc3_cmd 0 0 0 0 CFG_MMC3_CMD_OEN mmc3_cmd AC3 0 mmc3_clk AC7 mmc3_cmd 0 0 0 0 CFG_MMC3_CMD_OUT mmc3_cmd Y6 mmc3_dat0 171 0 91 0 CFG_MMC3_DAT0_IN mmc3_dat0 Y6 mmc3_dat0 0 0 0 0 CFG_MMC3_DAT0_OEN mmc3_dat0 Y6 mmc3_dat0 0 0 0 0 CFG_MMC3_DAT0_OUT mmc3_dat0 W6 mmc3_dat1 221 0 57 0 CFG_MMC3_DAT1_IN mmc3_dat1 W6 mmc3_dat1 0 0 0 0 CFG_MMC3_DAT1_OEN mmc3_dat1 W6 mmc3_dat1 0 0 0 0 CFG_MMC3_DAT1_OUT mmc3_dat1 AC6 mmc3_dat2 0 0 0 0 CFG_MMC3_DAT2_IN mmc3_dat2 AC6 mmc3_dat2 0 0 0 0 CFG_MMC3_DAT2_OEN mmc3_dat2 AC6 mmc3_dat2 0 0 0 0 CFG_MMC3_DAT2_OUT mmc3_dat2 AC4 mmc3_dat3 474 0 375 0 CFG_MMC3_DAT3_IN mmc3_dat3 AC4 mmc3_dat3 0 0 0 0 CFG_MMC3_DAT3_OEN mmc3_dat3 AC4 mmc3_dat3 0 0 0 0 CFG_MMC3_DAT3_OUT mmc3_dat3 AA6 mmc3_dat4 792 0 213 0 CFG_MMC3_DAT4_IN mmc3_dat4 AA6 mmc3_dat4 0 0 0 0 CFG_MMC3_DAT4_OEN mmc3_dat4 AA6 mmc3_dat4 0 0 0 0 CFG_MMC3_DAT4_OUT mmc3_dat4 AB5 mmc3_dat5 782 0 355 0 CFG_MMC3_DAT5_IN mmc3_dat5 AB5 mmc3_dat5 0 0 0 0 CFG_MMC3_DAT5_OEN mmc3_dat5 AB5 mmc3_dat5 0 0 0 0 CFG_MMC3_DAT5_OUT mmc3_dat5 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 333 ADVANCE INFORMATION The associated registers to configure are listed in the CFG REGISTER column. For more information see the Control Module chapter in the Device TRM. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 5-169. Manual Functions Mapping for MMC3 (continued) BALL BALL NAME MMC3_MANUAL1 MMC3_MANUAL2 A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) CFG REGISTER MUXMODE 0 AB7 mmc3_dat6 942 0 437 0 CFG_MMC3_DAT6_IN mmc3_dat6 AB7 mmc3_dat6 0 0 0 0 CFG_MMC3_DAT6_OEN mmc3_dat6 AB7 mmc3_dat6 0 0 0 0 CFG_MMC3_DAT6_OUT mmc3_dat6 AA5 mmc3_dat7 636 0 224 0 CFG_MMC3_DAT7_IN mmc3_dat7 AA5 mmc3_dat7 0 0 0 0 CFG_MMC3_DAT7_OEN mmc3_dat7 AA5 mmc3_dat7 0 0 0 0 CFG_MMC3_DAT7_OUT mmc3_dat7 Manual IO Timings Modes must be used to guarantee some IO timings for MMC4. See Table 5-29 Modes Summary for a list of IO timings requiring the use of Manual IO Timings Modes. See Table 5-170 Manual Functions Mapping for MMC4 for a definition of the Manual modes. Table 5-170 lists the A_DELAY and G_DELAY values needed to calculate the correct values to be set in the CFG_x registers. ADVANCE INFORMATION Table 5-170. Manual Functions Mapping for MMC4 BALL BALL NAME MMC4_MANUAL1 MMC4_DS_MANUAL1 CFG REGISTER A_DELAY (ps) G_DELAY (ps) A_DELAY (ps) G_DELAY (ps) 0 0 CFG_UART1_CTSN_IN F21 uart1_ctsn 0 0 MUXMODE 3 mmc4_clk F21 uart1_ctsn 1147 0 0 0 CFG_UART1_CTSN_OUT mmc4_clk E23 uart1_rtsn 1834 0 307 0 CFG_UART1_RTSN_IN mmc4_cmd E23 uart1_rtsn 0 0 0 0 CFG_UART1_RTSN_OEN mmc4_cmd E23 uart1_rtsn 0 0 0 0 CFG_UART1_RTSN_OUT mmc4_cmd F20 uart2_ctsn 2165 0 785 0 CFG_UART2_CTSN_IN mmc4_dat2 F20 uart2_ctsn 0 0 0 0 CFG_UART2_CTSN_OEN mmc4_dat2 F20 uart2_ctsn 0 0 0 0 CFG_UART2_CTSN_OUT mmc4_dat2 C22 uart2_rtsn 1929 64 613 0 CFG_UART2_RTSN_IN mmc4_dat3 C22 uart2_rtsn 0 0 0 0 CFG_UART2_RTSN_OEN mmc4_dat3 C22 uart2_rtsn 0 0 0 0 CFG_UART2_RTSN_OUT mmc4_dat3 D22 uart2_rxd 1935 128 683 0 CFG_UART2_RXD_IN mmc4_dat0 D22 uart2_rxd 0 0 0 0 CFG_UART2_RXD_OEN mmc4_dat0 D22 uart2_rxd 0 0 0 0 CFG_UART2_RXD_OUT mmc4_dat0 E22 uart2_txd 2172 44 835 0 CFG_UART2_TXD_IN mmc4_dat1 E22 uart2_txd 0 0 0 0 CFG_UART2_TXD_OEN mmc4_dat1 E22 uart2_txd 0 0 0 0 CFG_UART2_TXD_OUT mmc4_dat1 5.10.6.22 GPIO The general-purpose interface combines eight general-purpose input/output (GPIO) banks. Each GPIO module provides 32 dedicated general-purpose pins with input and output capabilities; thus, the generalpurpose interface supports up to 245 pins. These pins can be configured for the following applications: • Data input (capture)/output (drive) • Keyboard interface with a debounce cell • Interrupt generation in active mode upon the detection of external events. Detected events are processed by two parallel independent interrupt-generation submodules to support biprocessor operations • Wake-up request generation in idle mode upon the detection of external events 334 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 NOTE For more information, see the General-Purpose Interface chapter of the Device TRM. NOTE The general-purpose input/output i (i = 1 to 8) bank is also referred to as GPIOi. 5.10.6.23 ATL The device contains four ATL modules that can be used for asynchronous sample rate conversion of audio. The ATL calculates the error between two time bases, such as audio syncs, and optionally generates an averaged clock using cycle stealing via software. NOTE NOTE Audio Tracking Logic x (x= 1 to 4) module is also referred to as ATLx. 5.10.6.23.1 ATL Electrical Data/Timing Table 5-171 and Figure 5-106 present switching characteristics for ATL Table 5-171. Switching Characteristics Over Recommended Operating Conditions for ATL_CLKOUTx NO. PARAMETER DESCRIPTION MIN MAX UNIT 1 tc(ATLCLKOUT) Cycle time, ATL_CLKOUTx 20 ns 2 tw(ATLCLKOUTL) Pulse Duration, ATL_CLKOUTx low 0.45P - M(1) ns 3 tw(ATLCLKOUTH) Pulse Duration, ATL_CLKOUTx high 0.45P - M(1) ns (1) P = ATL_CLKOUTx period. M = internal ATL PCLK period. 1 2 atl_clkx 3 ATL_01 Figure 5-106. ATL_CLKOUTx Timing 5.10.6.24 System and Miscellaneous interfaces The Device includes the following System and Miscellaneous interfaces: • Sysboot Interface • System DMA Interface • Interrupt Controllers (INTC) Interface • Observability Signal (OBS) Interface 5.10.7 Emulation and Debug Subsystem The Device includes the following Test interfaces: • IEEE 1149.1 Standard-Test-Access Port (JTAG) Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 335 ADVANCE INFORMATION For more detailed information on the ATL peripheral, see the Audio Tracking Logic (ATL) chapter of the device-specific Technical Reference Manual. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • www.ti.com Trace Port Interface Unit (TPIU) Advanced Event Triggering Interface (AET) 5.10.7.1 JTAG The JTAG (IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture) interface is used for BSDL testing and emulation of the device. The trstn pin only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. For maximum reliability, the device includes an internal Pulldown (IPD) on the trstn pin to ensure that trstn is always asserted upon power up and the device's internal emulation logic is always properly initialized. JTAG controllers from Texas Instruments actively drive trstn high. However, some third-party JTAG controllers may not drive trstn high but expect the use of a Pullup resistor on trstn. When using this type of JTAG controller, assert trstn to initialize the device after powerup and externally drive trstn high before attempting any emulation or boundary-scan operations. ADVANCE INFORMATION The main JTAG features include: • 32KB embedded trace buffer (ETB) • 5-pin system trace interface for debug • Supports Advanced Event Triggering (AET) • All processors can be emulated via JTAG ports • All functions on EMU pins of the device: – EMU[1:0] - cross-triggering, boot mode (WIR), STM trace – EMU[4:2] - STM trace only (single direction) 5.10.7.1.1 JTAG Electrical Data/Timing Table 5-172, Table 5-173 and Figure 5-107 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 5-172. Timing Requirements for IEEE 1149.1 JTAG NO. J1 PARAMETER DESCRIPTION MIN MAX UNIT tc(TCK) Cycle time, TCK 62.29 ns J1H tw(TCKH) Pulse duration, TCK high (40% of tc) 24.92 ns J1L tw(TCKL) Pulse duration, TCK low (40% of tc) 24.92 ns tsu(TDI-TCK) Input setup time, TDI valid to TCK high 6.23 ns tsu(TMS-TCK) Input setup time, TMS valid to TCK high 6.23 ns th(TCK-TDI) Input hold time, TDI valid from TCK high 31.15 ns th(TCK-TMS) Input hold time, TMS valid from TCK high 31.15 ns J3 J4 Table 5-173. Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG NO. J2 336 PARAMETER td(TCKL-TDOV) DESCRIPTION Delay time, TCK low to TDO valid Specifications MIN MAX UNIT 0 30.5 ns Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 1 1a 1b TCK 2 TDO 3 4 TDI/TMS JTAG_01 Figure 5-107. JTAG Timing Table 5-174, Table 5-175 and Figure 5-108 assume testing over the recommended operating conditions and electrical characteristic conditions below. NO. JR1 PARAMETER DESCRIPTION MIN MAX UNIT tc(TCK) Cycle time, TCK 62.29 ns JR1H tw(TCKH) Pulse duration, TCK high (40% of tc) 24.92 ns JR1L tw(TCKL) Pulse duration, TCK low (40% of tc) 24.92 ns tsu(TDI-TCK) Input setup time, TDI valid to TCK high 6.23 ns tsu(TMS-TCK) Input setup time, TMS valid to TCK high 6.23 ns th(TCK-TDI) Input hold time, TDI valid from TCK high 31.15 ns th(TCK-TMS) Input hold time, TMS valid from TCK high 31.15 ns JR3 JR4 Table 5-175. Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG With RTCK NO. PARAMETER DESCRIPTION MIN MAX 0 27 UNIT JR5 td(TCK-RTCK) Delay time, TCK to RTCK with no selected subpaths (i.e. ICEPick is the only tap selected - when the ARM is in the scan chain, the delay time is a function of the ARM functional clock). JR6 tc(RTCK) Cycle time, RTCK 62.29 ns JR7 tw(RTCKH) Pulse duration, RTCK high (40% of tc) 24.92 ns JR8 tw(RTCKL) Pulse duration, RTCK low (40% of tc) 24.92 ns ns 5 TCK 6 7 8 RTCK JTAG_02 Figure 5-108. JTAG With RTCK Timing Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 337 ADVANCE INFORMATION Table 5-174. Timing Requirements for IEEE 1149.1 JTAG With RTCK DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 5.10.7.2 TPIU CAUTION The I/O timings provided in this section are valid only if signals within a single IOSET are used. The IOSETs are defined in Table 5-177. 5.10.7.2.1 TPIU PLL DDR Mode Table 5-176 and Figure 5-109 assume testing over the recommended operating conditions and electrical characteristic conditions below. Table 5-176. Switching Characteristics for TPIU NO. PARAMETER DESCRIPTION MIN MAX UNIT ADVANCE INFORMATION TPIU1 tc(clk) Cycle time, TRACECLK period 5.56 TPIU4 td(clk-ctlV) Skew time, TRACECLK transition to TRACECTL transition -0.96 0.96 ns ns TPIU5 td(clk-dataV) Skew time, TRACECLK transition to TRACEDATA[17:0] -0.96 0.96 ns TPIU1 TPIU2 TPIU3 TRACECLK TPIU4 TPIU4 TRACECTL TPIU5 TPIU5 TRACEDATA[X:0] TPIU_01 (1) Figure 5-109. TPIU—PLL DDR Transmit Mode (1) In d[X:0], X is equal to 15 or 17. In Table 5-177 are presented the specific groupings of signals (IOSET) for use with TPIU signals. Table 5-177. TPIU IOSETs SIGNALS 338 IOSET1 IOSET2 BALL MUX BALL MUX emu0 F19 0 F19 0 emu1 C23 0 C23 0 emu2 D9 2 D9 2 emu3 D6 2 D6 2 emu4 A6 2 A6 2 emu5 F1 5 C6 2 emu6 G2 5 E9 2 emu7 D5 5 F8 2 emu8 G1 5 F7 2 emu9 E5 5 E7 2 emu10 F2 5 D7 2 emu11 E3 5 A5 2 emu12 E1 5 B6 2 Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 5-177. TPIU IOSETs (continued) SIGNALS IOSET1 IOSET2 MUX BALL MUX emu13 E2 5 C8 2 emu14 D2 5 C7 2 emu15 F3 5 A7 2 emu16 D1 5 C9 2 emu17 E4 5 A8 2 emu18 G3 5 B9 2 emu19 C5 5 A9 2 ADVANCE INFORMATION BALL Specifications Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 339 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 6 Detailed Description 6.1 Description DRA77x and DRA76x (Jacinto 6 Plus) automotive applications processors are built to meet the intense processing needs of the modern digital cockpit automobile experiences. The device enables Original-Equipment Manufacturers (OEMs) and Original-Design Manufacturers (ODMs) to quickly implement innovative connectivity technologies, speech recognition, audio streaming, and more. Jacinto 6 Plus devices bring high processing performance through the maximum flexibility of a fully integrated mixed processor solution. The devices also combine programmable video processing with a highly integrated peripheral set. Programmability is provided by dual-core ARM Cortex-A15 RISC CPUs with Neon™ extension, TI C66x VLIW floating-point DSP core, and Vision AccelerationPac (with one or more EVEs). The ARM allows developers to keep control functions separate from other algorithms programmed on the DSP and coprocessors, thus reducing the complexity of the system software. Additionally, TI provides a complete set of development tools for the ARM, DSP, and EVE coprocessor, including C compilers and a debugging interface for visibility into source code. ADVANCE INFORMATION Cryptographic acceleration is available in all devices. All other supported security features, including support for secure boot, debug security and support for trusted execution environment are available on High-Security (HS) devices. For more information about HS devices, contact your TI representative. The DRA77x and DRA76x Jacinto 6 Plus processor family is qualified according to the AEC-Q100 standard. 6.2 Functional Block Diagram Figure 1-1 is functional block diagram for the device. 340 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 DRA77x / DRA76x IVA HD 1080p Video (2x ARM Cortex–A15) Co-Processor DSP1 C66x Co-Processors GPU (Dual-Core SGX544 3D) DSP2 C66x Co-Processors BB2D IPU1 (Dual Cortex–M4) (GC 320 2D) ISS ISP CAL_B EDMA CAL HD ATL 2x VCP SDMA Display Subsystem LCD1 1xGFX / 3xVID LCD2 Blend / Scale LCD3 IPU2 (Dual Cortex–M4) WDR & Mesh LDC Radio Accelerators 2x EVE Analytic Processors Secure Boot Debug Security TEE (HS devices) HDMI 1.4a CSI2 x2 2x MMU VIP1 VPE VIP2 ADVANCE INFORMATION MPU High-Speed Interconnect Connectivity System Spinlock Timers x16 1x USB 3.0 Mailbox x13 WDT FS/HS/SS Dual Mode w/PHY GPIO x8 PWM SS x3 HDQ KBD 3x USB 2.0 Dual Mode FS/HS 1x w/ PHY 2x w/ ULPI Serial Interfaces QSPI McSPI x4 McASP x8 MediaLB / MOST150 GMAC AVB Program/Data Storage I2C x5 UART x10 PCIe SS x2 MMC / SD x4 256KiB ROM SATA DCAN x2 MCAN-FD x1 DMM up to 2.5MiB RAM w/ ECC GPMC / ELM OCMC EMIF x2 2x 32b (NAND/NOR/ DDR2/3(L) w/ ECC(1) Async) intro_001 Copyright © 2016, Texas Instruments Incorporated Figure 6-1. DRA77x, DRA76x Block Diagram (1) ECC is only available on EMIF1. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 341 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 6.3 www.ti.com MPU The dual Cortex®-A15 microprocessor unit (MPU) subsystem serves the applications processing role by running the high-level operating system (HLOS) and application code. The MPU subsystem incorporates two Cortex-A15 MPU cores (MPU_C0 and MPU_C1), individual level 1 (L1) caches, level 2 (L2) cache (MPU_L2CACHE) shared between them, and various other shared peripherals. To aid software development, the processor cores can be kept cache-coherent with each other and with the L2 cache. The MPU subsystem provides a high-performance computing platform with high peak-computing performance and low memory latency. The MPU subsystem integrates the following: ADVANCE INFORMATION 342 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 ARM® Cortex-A15 MP Core™ (MPU_CLUSTER) – Two Cortex-A15 MPU cores (revision r2p2, SMP architecture), each of them having the following features: • Superscalar, dynamic multi-issue technology – Out-of-order (OoO) instruction dispatch and completion – Dynamic branch prediction with branch target buffer (BTB), global history buffer (GHB), and 48-entry return stack – Continuous fetch and decoding of three instructions per clock cycle – Dispatch of up to four instructions and completion of eight instructions per clock cycle – Provides optimal performance from binaries compiled for previous ARM processors – Five execution units handle simple instructions, branch instructions, Neon™ and floating point instructions, multiply instructions, and load and store instructions. – Simple instructions take two cycles from dispatch, while complex instructions take up to 11 cycles. – Can issue two simple instructions in a cycle – Can issue a load and a store instruction in the same cycle • Integrated Neon processing engine to include the ARM Neon Advanced SIMD (single instruction, multiple data) support for accelerated media and signal processing computation • Includes VFPv4-compatible hardware to support single- and double-precision add, subtract, divide, multiply and accumulate, and square root operations • Extensive support to accelerate virtualization using a hypervisor • 32-KiB L1 instruction (L1I) and 32-KiB L1 data (L1D) cache: – 64-byte line size – 2-way set associative • Memory management unit (MMU): – Two-level translation lookaside buffer (TLB) organization – First level is an 32-entry, fully associative micro-TLB implemented for each of instruction fetch, load, and store. – Second level is a unified, 4-way associative, 512-entry main TLB – Supports hardware TLB table-walk for backward-compatible and new 64-bit entry page table formats – New page table format can produce 40-bit physical addresses – Two-stage translation where first stage is HLOS-controlled and the second level may be controlled by a hypervisor. Second stage always uses the new page table format – Integrated L2 cache (MPU_L2CACHE) and snoop control unit (SCU): • 2-MiB of unified (instructions and data) cache organized as 16 ways of 2048 sets of 64-byte lines • Redundant L1 data (cache) tags to perform snoop filtering (L1 instruction cache tags are not duplicated) • Operates at Cortex-A15 MPU core clock rate • Integrated L2 cache controller (MPU_L2CACHE_CTRL): – Sixteen 64-byte line buffers that handle evictions, line fills and snoop transfers – One 128-bit AMBA4 Coherent Bus (AXI4-ACE) port – Auto-prefetch buffer for up to 16 streams per core and detecting forward and backward strides – Generalized interrupt controller (GIC, also referred to as MPU_INTC): An interrupt controller supplied by ARM. The single GIC in the MPU_CLUSTER routes interrupts to each of the MPU cores. The GIC supports: • Number of shared peripheral interrupts (SPI): 160 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 343 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com • • • • ADVANCE INFORMATION • • • • • • • 344 Number of software generated interrupts (SGI): 16 Number of CPU interfaces: 2 Virtual CPU interface for virtualization support. This allows the majority of guest operating system (OS) interactions with the GIC to be handled in hardware, but with physical interrupts still requiring hypervisor intervention to assign them to the appropriate virtual machine. – Integrated timer counter and one timer block per MPU core – ARM CoreSight ™ debug and trace modules. For more information, see chapter On-Chip Debug Support of the Device TRM. MPU_AXI2OCP bridge (local interconnect): – Connected to Memory Adapter (MPU_MA), which routes the non-EMIF address space transactions to MPU_AXI2OCP – Single request multiple data (SRMD) protocol on L3_MAIN port – Multiple targets: • 64-bit port to the L3_MAIN interconnect. Interface frequency is 1/4 or 1/8 of core frequency • MPU_ROM • Internal MPU subsystem peripheral targets, including Memory Adapter LISA Section Manager (MA_LSM), wake-up generator (MPU_WUGEN), watchdog timer (MPU_WD_TIMER), and local PRCM module (MPU_PRCM) configuration • Internal AXI target, CoreSight System Trace Module (CS_STM) Memory adapter (MPU_MA): Helps decrease the latency of accesses between the MPU_L2CACHE and the two EMIFs (EMIF0 and EMIF1) by providing a direct path between the MPU subsystem and the EMIFs: – Connected to 128-bit AMBA4 interface of MPU_CLUSTER – Direct 128-bit interface to each of EMIF0 and EMIF1 – Interface speed between MPU_CLUSTER and MPU_MA is at half-speed of MPU_CLUSTER internal core frequency – Quarter-speed interface to EMIF – Uses firewall logic to check access rights of incoming addressess Local PRCM (MPU_PRCM): – Handles MPU_C0 and MPU_C1 power domains – Supports SR3-APG (SmartReflex3 Automatic Power Gating) power management technology inside the MPU_CLUSTER – MPU subsystem has six power domains Wake-up generator (MPU_WUGEN) – Responsible for waking up the MPU cores Standby controller: Handles the power transitions inside the MPU subsystem Realtime (master) counter (COUNTER_REALTIME): Produces the count used by the private timer peripherals in the MPU_CLUSTER Watchdog timer (MPU_WD_TIMER): Used to generate a chip-level watchdog reset request to global PRCM On-chip boot ROM (MPU_ROM): The MPU_ROM size is 48-KiB, and the address range is from 0x4003 8000 to 0x4004 3FFF. For more information about booting from this memory, see chapter Initialization of the Device TRM. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Interfaces: – 128-bit interface to each of EMIF0 and EMIF1 – 64-bit master port to the L3_MAIN interconnect – 32-bit slave port from the L4_CFG_EMU interconnect (debug subsystem) for configuration of the MPU subsystem debug modules – 32-bit slave port from the L4_CFG interconnect for memory adapter firewall (MPU_MA_NTTP_FW) configuration – 32-bit ATB output for transmitting debug and trace data – 160 peripheral interrupt inputs For more information, see chapter Dual Cortex-A15 MPU Subsystem of the device TRM. 6.4 DSP Subsystem The TMS320C66x DSP core enhances the TMS320C674x™ core, which merges the C674x™ floating point and the C64x+™ fixed-point instruction set architectures. The C66x DSP is object-code compatible with the C64x+/C674x DSPs. For more information on the TMS320C66x core CPU, see the TMS320C66x DSP CPU and Instruction Set Reference Guide, (SPRUGH7). The DSP subsystem integrated in the device includes the following components: • A TMS320C66x™ CorePac DSP core that encompasses: – L1 program-dedicated (L1P) cacheable memory – L1 data-dedicated (L1D) cacheable memory – L2 (program and data) cacheable memory – Extended Memory Controller (XMC) – External Memory Controller (EMC) – DSP CorePac located interrupt controller (INTC) – DSP CorePac located power-down controller (PDC) • Dedicated enhanced data memory access engine - EDMA, to transfer data from/to memories and peripherals external to the DSP subsystems and to local DSP memory (most commonly L2 SRAM). The external DMA requests are passed through DSP system level (SYS) wakeup logic, and collected from the DSP1 / DSP2 dedicated outputs of the device DMA Events Crossbar for each of the two subsystems. • A level 2 (L2) interconnect network (DSP NoC) to allow connectivity between different modules of the subsystem or the remainder of the device via the device L3_MAIN interconnect. • Two memory management units (on EDMA L2 interconnect and DSP MDMA paths) for accessing the device L3_MAIN interconnect address space • Dedicated system control logic (DSP_SYSTEM) responsible for power management, clock generation, and connection to the device power, reset, and clock management (PRCM) module The TMS320C66x Instruction Set Architecture (ISA) is the latest for the C6000 family. As with its predecessors (C64x, C64x+ and C674x), the C66x is an advanced VLIW architecture with 8 functional units (two multiplier units and six arithmetic logic units) that operate in parallel. The C66x CPU has a total of 64 general-purpose 32-bit registers. Some features of the DSP C6000 family devices are: • Advanced VLIW CPU with eight functional units (two multipliers and six ALUs) which: – Executes up to eight instructions per cycle for up to ten times the performance of typical DSPs – Allows designers to develop highly effective RISC-like code for fast development time Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 345 ADVANCE INFORMATION The device includes two identical instances (DSP1 and DSP2) of a digital signal processor (DSP) subsystem, based on the TI's standard TMS320C66x™ DSP CorePac core. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • • • • www.ti.com Instruction packing – Gives code size equivalence for eight instructions executed serially or in parallel – Reduces code size, program fetches, and power consumption Conditional execution of most instructions – Reduces costly branching – Increases parallelism for higher sustained performance Efficient code execution on independent functional units – Industry's most efficient C compiler on DSP benchmark suite – Industry's first assembly optimizer for fast development and improved parallelization 8-/16-/32-bit/64-bit data support, providing efficient memory support for a variety of applications 40-bit arithmetic options which add extra precision for vocoders and other computationally intensive applications Saturation and normalization to provide support for key arithmetic operations Field manipulation and instruction extract, set, clear, and bit counting support common operation found in control and data manipulation applications. ADVANCE INFORMATION The C66x CPU has the following additional features: • Each multiplier can perform two 16 × 16-bit or four 8 × 8 bit multiplies every clock cycle. • Quad 8-bit and dual 16-bit instruction set extensions with data flow support • Support for non-aligned 32-bit (word) and 64-bit (double word) memory accesses • Special communication-specific instructions have been added to address common operations in errorcorrecting codes. • Bit count and rotate hardware extends support for bit-level algorithms. • Compact instructions: Common instructions (AND, ADD, LD, MPY) have 16-bit versions to reduce code size. • Protected mode operation: A two-level system of privileged program execution to support highercapability operating systems and system features such as memory protection. • Exceptions support for error detection and program redirection to provide robust code execution • Hardware support for modulo loop operation to reduce code size and allow interrupts during fullypipelined code • Each multiplier can perform 32 × 32 bit multiplies • Additional instructions to support complex multiplies allowing up to eight 16-bit multiply/add/subtracts per clock cycle The TMS320C66x has the following key improvements to the ISA: • 4x Multiply Accumulate improvement for both fixed and floating point • Improvement of the floating point arithmetic • Enhancement of the vector processing capability for fixed and floating point • Addition of domain-specific instructions for complex arithmetic and matrix operations On the C66x ISA, the vector processing capability is improved by extending the width of the SIMD instructions. The C674x DSP supports 2-way SIMD operations for 16-bit data and 4-way SIMD operations for 8-bit data. C66x enhances this capabilities with the addition of SIMD instructions for 32-bit data allowing operation on 128-bit vectors. For example the QMPY32 instruction is able to perform the element to element multiplication between two vectors of four 32-bit data each. C66x ISA includes a set of specific instructions to handle complex arithmetic and matrix operations. 346 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P • • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 TMS320C66x DSP CorePac memory components: – A 32-KiB L1 program memory (L1P) configurable as cache and/or SRAM: • When configured as a cache, the L1P is a 1-way set-associative cache with a 32-byte cache line • The DSP CorePac L1P memory controller provides bandwidth management, memory protection, and power-down functions • The L1P is capable of cache block and global coherence operations • The L1P controller has an Error Detection (ED) mechanism, including necessary SRAM • The L1P memory can be fully configured as a cache or SRAM • Page size for L1P memory is 2KB – A 32-KiB L1 data memory (L1D) with ECC, configurable as cache and / or SRAM: • When configured as a cache, the L1D is a 2-way set-associative cache with a 64-byte cache line • The DSP CorePac L1D memory controller provides bandwidth management, memory protection, and power-down functions • The L1D memory can be fully configured as a cache or SRAM • No support for error correction or detection • Page size for L1D memory is 2KB – A 288-KiB (program and data) L2 memory, only part of which is cacheable: • When configured as a cache, the L2 memory is a 4-way set associative cache with a 128-byte cache line • Only 256 KiB of L2 memory can be configured as cache or SRAM • 32 KiB of the L2 memory is always mapped as SRAM • The L2 memory controller has an Error Correction Code (ECC) and ED mechanism, including necessary SRAM • The L2 memory controller supports hardware prefetching and also provides bandwidth management, memory protection, and power-down functions. • Page size for L2 memory is 16KB The External Memory Controller (EMC) is a bridge from the C66x CorePac to the rest of the DSP subsystem and device. It has : – a 32-bit configuration port (CFG) providing access to local subsystem resources (like DSP_EDMA, DSP_SYSTEM, and so forth) or to L3_MAIN resources accessible via the CFG address range. – a 128-bit slave-DMA port (SDMA) which provides accesses of system masters outside the DSP subsystem to resources inside the DSP subsystem or C66x DSP CorePac memories, i.e. when the DSP subsystem is the slave in a transaction. The Extended Memory Controller (XMC) processes requests from the L2 Cache Controller (which are a result of CPU instruction fetches, load/store commands, cache operations) to device resources via the C66x DSP CorePac 128-bit master DMA (MDMA) port: – Memory protection for addresses outside C66x DSP CorePac generated over device L3_MAIN on the MDMA port – Prefetch, multi-in-flight requests A DSP local Interrupt Controller (INTC) in the DSP C66x CorePac, interfaces the system events to the DSP C66x core CPU interrupt and exceptions inputs. Each DSP subsystem C66x CorePac interrupt controller supports up to 128 system events of which 64 interrupts are external to DSP subsystems, collected from the DSP1 /DSP2 dedicated outputs of the device Interrupt Crossbar. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 347 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • ADVANCE INFORMATION • • • www.ti.com Local Enhanced Direct Memory Access (EDMA) controller features: – Channel controller (CC) : 64-channel, 128 PaRAM, 2 Queues – 2 x Third-party Transfer Controllers (TPTC0 and TPTC1): • Each TC has a 128-bit read port and a 128-bit write port • 2KiB FIFOs on each TPTC – 1-dimensional/2-dimensional (1D/2D) addressing – Chaining capability DSP subsystem integrated MMUs: – Two MMUs are integrated: • The MMU0 is located between DSP MDMA master port and the device L3_MAIN interconnect and can be optionally bypassed • The MMU1 is located between the EDMA master port and the device L3_MAIN interconnect A DSP local Power-Down Controller (PDC) is responsible to power-down various parts of the DSP C66x CorePac, or the entire DSP C66x CorePac. The DSP subsystem System Control logic provides: – Slave idle and master standby protocols with device PRCM for powerdown – OCP Disconnect handshake for init and target busses – Asynchronous reset – Power-down modes: • "Clockstop" mode featuring wake-up on interrupt event. The DMA event wake-up is managed in software. The device DSP subsystems are supplied by a PRCM DPLL, but each DSP1/2 has integrated its own PLL module outside the C66x CorePac for clock gating and division. The device DSP subsystem has following port instances to connect to remaining part of the device. See also : – A 128-bit initiator (DSP MDMA master) port for MDMA/Cache requests – A 128-bit initiator (DSP EDMA master) port for EDMA requests – A 32-bit initiator (DSP CFG master) port for configuration requests – A 128-bit target (DSP slave) port for requests to DSP memories and various peripherals C66x DSP subsystem (DSPSS) safety aspects: – Above mentioned memory ECC/ED mechanisms – MMUs enable mapping of only the necessary application space to the processor – Memory Protection Units internal to the DSPSS (in L1P, L1D and L2 memory controllers) and external to DSPSS (firewalls) to help define legal accesses and raise exceptions on illegal accesses – Exceptions: Memory errors, various DSP errors, MMU errors and some system errors are detected and cause exceptions. The exceptions could be handled by the DSP or by a designated safety processor at the chip level. Note that it may not be possible for the safety processor to completely handle some exceptions Unsupported features on the C66x DSP core for the device are: • The Extended Memory Controller MPAX (memory protection and address extension) 36-bit addressing is NOT supported Known DSP subsystem powermode restrictions for the device are: • "Full logic / RAM retention" mode featuring wake-up on both interrupt or DMA event (logic in “always on” domain). Only OFF mode is supported by DSP subsystem, requiring full boot. For more information about C66x debug/trace support, see chapter On-Chip Debug Support of the device TRM. 348 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 6.5 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 ISS The Imaging Subsystem (ISS) deals with the processing of pixel data coming from memory (image format encoding and decoding can be done to and from memory). ISS is mainly composed of an Image Signal Processor (ISP), a block based imaging accelerator (SIMCOP), and Camera Adapter Layer (CAL) module. ISS is tightly coupled with a low-interrupt latency microprocessor subsystem (Cortex-M4 IPU), which runs a real-time operating system (OS) to reach optimal performance, and can quickly change the ISS configuration during frame blanking periods and run some sequencing tasks. ISS targets the following major use cases: • Video / Preview – Up to 1080p60 – Up to 2x 1080p30 • Stereo Video / Preview – Up to 2x 1080p30 • Multi-camera use cases, with capabilty of up to 4 simultaneous cameras (ISP is time shared) ISS offers the following main features: • ISS interfaces: – One Camera Adapter Layer (CAL) module supporting DMA function for data read from system memory – 128-bit data interface to L3_MAIN system interconnect • Image Signal Processor (ISP): – Memory-to-memory processing – Up to 532 MPix/s throughput – Statistic data collection – Image pipe interface (IPIPEIF) front-end RAW data processing – IPIPE back-end RGB and YUV data processing – High-ISO video noise filtering (NSF3V) – Global and local contrast enhancement accelerator (GLBCE) – Two image continuous real-time resizers (RSZ) – Chroma noise filter (CNF) • Still Image Coprocessor (SIMCOP): – Memory-to-memory operation – Warping accelerator (LDC) – Temporal video noise filter (VTNF) – Direct memory access (DMA) controller – Hardware sequencer – Mesh based lens distortion and perspective correction For more information, see chapter Imaging Subsystem of the device TRM. 6.6 IVA The IVA supports resolutions up to 1080 p/i with full performance of 60 fps (or 120 fields), achievable for encode or decode only (not for simultaneous encode and decode). The IVA subsystem is composed of: • A primary sequencer, including its memories and an imaging controller: ICONT1 • A video direct memory access (VDMA) processor, which can be used as a secondary sequencer: ICONT2 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 349 ADVANCE INFORMATION ISS is a key component for Rear View Camera, Front View Stereo Camera, and Surround View Camera applications. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • • • • • • • • • www.ti.com A VDMA engine: DMA_IVA An entropy codec: ECD3 A motion compensation engine: MC3 A transform and quantization calculation engine: CALC3 A loop filter acceleration engine: ILF3 A motion estimation acceleration engine: IME3 An intraprediction estimation engine: IPE3 Shared level 2 (L2) interface and memory Local interconnect (L4_IVA) A message interface for communication between SYNCBOXes Mailbox A debug module for trace event and software instrumentation: SMSET For more information, see chapter IVA Subsystem of the device TRM. 6.7 EVE ADVANCE INFORMATION The embedded vision engine (EVE) module is a programmable imaging and vision processing engine, intended for use in devices that serve customer electronics imaging and vision applications. Its programmability meets late-in-development or post-silicon processing requirements, and lets third parties or customers add differentiating features in imaging and vision products. The device includes two instances of the EVE engine. A single EVE module consists of an ARP32 scalar core, a vector coprocessor (VCOP) vector core, and an Enhanced DMA (EDMA3) controller. The EVE engine includes the following main features: • Two 128-bit interconnect initiator ports used for: – Paging between system-level memory (L3 SRAM/DDR) and EVE memory (primarily IBUF, WBUF) – ARP32 program fetches to system memory (through program cache) – ARP32 load or store requests to system memory – ARP32 program cache-related read requests, including prefetch/preload requests • 128-bit interconnect target port used for system-level host or DMA access to EVE memory or MMR space • Scalar core (ARP32) with the following features: – 32KB program cache (direct mapped and prefetch) – 32KB data memory (DMEM) • Vector core (VCOP): – 32KB working buffer (WBUF) – 16KB image buffer low copy A (IBUFLA) – 16KB image buffer low copy B (IBUFLB) – 16KB image buffer high copy A (IBUFHA) – 16KB image buffer high copy B (IBUFHB) • EDMA channel controller (EDMACC): 128 PaRAM entries, 2 Queues • EDMA transfer controllers: two instances, 2k FIFO each • Memory Management Units (MMUs): – 32-entry TLB per MMU – Page walking with hardware – EDMA accesses and ARP32 program or data accesses to system memory space – Can limit EVE accesses to desired subset of system addresses • Configuration interconnect for MMR and debug accesses 350 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P • • • • • • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 High-performance interconnect for high throughput and high concurrency data transfers between connected endpoints Multiple interrupts for interrupt mapping, DMA event mapping, and interprocessor handshaking Support for slave idle and master standby protocols for clock gating No support for retention and memory array off modes Error detection on all memories: – Single bit error detect on DMEM, WBUF, IBUFLA, IBUFLB, IBUFHA, and IBUFHB – Double bit error detect on program cache Invalid instruction detection in the two processor units (ARP32 and VCOP) Debug support: – Subsystem Counter Timer Module (SCTM) for counting and measuring of VCOP, EVE program cache, and EDMA performance-related state – Software Messaging System Event Trace (SMSET) for trace of software messages and hardware events – ARP32 debug support: State visibility, breakpoint, run control, cross-triggering – VCOP debug support: State visibility and run control Interprocessor communication: Internal Mailbox for DSP/EVE communication For more information, see chapter Embedded Vision Engine (EVE) of the device TRM. 6.8 IPU Each IPU subsystem contains two ARM® Cortex-M4 processors (IPUx_C0 and IPUx_C1) that share a common level 1 (L1) cache (called unicache [IPUx_UNICACHE]). The two Cortex-M4 cores are completely homogeneous to one another. Any task possible using one Cortex-M4 core is also possible using the other Cortex-M4 core. It is software responsibility to distribute the various tasks between each Cortex-M4 core for optimal performance. The key features of the IPU subsystem are: • Two ARM Cortex-M4 microprocessors (IPUx_C0 and IPUx_C1): – ARMv7-M and Thumb®-2 instruction set architecture (ISA) – ARMv6 SIMD and digital signal processor (DSP) extensions – Single-cycle MAC – Integrated nested vector interrupt controller (NVIC) (also called IPUx_Cx_INTC, where x = 0, 1) – Integrated bus matrix – Registers: • Thirteen general-purpose 32-bit registers • Link register (LR) • Program counter (PC) • Program status register, xPSR • Two banked SP registers – Integrated power management – Extensive debug capabilities • Unicache interface: – Instruction and data interface – Supports paralleled accesses • Level 2 (L2) master interface (MIF) splitter for access to memory or configuration port • Configuration port: Used for unicache maintenance and unicache memory management unit (IPUx_UNICACHE_MMU) configuration Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 351 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • • • • www.ti.com ADVANCE INFORMATION Unicache: – 32 KiB divided into 16 banks – 4-way – Cache configuration lock/freeze/preload – Internal MMU: • 16-entry region-based address translation • Read/write control and access type control • Execute Never (XN) MMU protection policy • Little-endian format Subsystem counter timer module (IPUx_UNICACHE_SCTM, or just SCTM) On-chip ROM (IPUx_ROM) and banked RAM (IPUx_RAM) memory Emulation/debug: Emulation feature embedded in Cortex-M4 L2 MMU (IPUx_MMU): 32 entries with table walking logic Wake-up generator (IPUx_WUGEN): Generates wake-up request from external interrupts Power management: – Local power-management control: Configurable through the IPUx_WUGEN registers. – Three sleep modes supported, controlled by the local power-management module. – IPUx is clock-gated in all sleep modes. – IPUx_Cx_INTC interrupt interface stays awake. For more information, see chapter Dual Cortex-M4 IPU Subsystem of the device TRM. 6.9 VPE VPE Features: • Supports memory to memory operations only. • VPE consist of a single memory to memory path which can perform the following operations: – Read of raster or tiled YUV420 coplanar, YUV422 coplanar or YUV422 interleaved video – Deinterlacing of the input video using a 4 field motion based algorithm – Scaling of the input video up to 1080p (1920x1080) resolution – Write of the resulting video in YUV420 coplanar (raster or tiled), YUV422 coplanar (raster or tiled), YUV422 interleaved (raster or tiled), YUV444 single plane (raster only) or RGB888 (raster only) – Deinterlacing up to two 1080i video sources. – The single data path performs operations in the following order • Chroma Upsampling from 420 to 422 (if needed) • Deinterlacing of 422 video from interlaced to progressive (if needed) • Scaling of 422 video after deinterlace • Conversion of 422 video to 420, 444 or RGB (if needed) – VC-1 Range Mapping and Range Reduction support on input video before Chroma Upsampling (if needed) • Chroma Upsampling Features – 4 line Catmull-Rom based implementation – Programmable coefficients for interlaced or progressive conversion. Separate coefficients can be provided for top and bottom fields 352 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P • • • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Deinterlacer Features – 8-bit, YCbCr 4:2:2 – Motion-adaptive deinterlacing (MDT) • Motion detection is based on Luma only • 4-field data is used • Motion values adaptive to the frequency of luma texture – Edge-Directed Interpolation (EDI) • Edge detection using luma pixels in a 2x7 window • Seven edge vectors: -1.5, -1, -0.5, 0, 0.5, 1, 1.5 • Edge-directed chroma interpolation • Soft-switch between edge directed interpolation and vertical interpolation depending on the confidence factor – Film Mode Detection (FMD • 3-2 pull down detection • 2-2 pull down detection • Hysteresis controls how fast FMD can enter/exit film mode (software function) • Bad Edit Detection (BED) – Progessive Inpu • For Progressive Input, the module passes input to output. No internal processing is performed. This is essentially a bypass mode – Interlace Bypass • For Interlace Input, the module can pass the inputs data directly to the outputs in a bypass configuration. No internal processing is performed Scaler Features – Vertical and horizontal up/down scaling • Polyphase filter upscaling – Running average vertical down scaling for memory optimization – Decimation and polyphase filtering for horizontal scaling – Non-linear scaling for stretched/compressed left and right sides – Input image trimmer for pan/scan support – Pre-scaling peaking filter for enhanced sharpness – Scale field as frame – Interlacing of scaled output – Full 1080p input and output support – YCbCr422 input and output – Minimum horizontal scaling ratio = 1/8x – Maximum horizontal scaling ratio – limited by output line buffer (2014 pixels) – Scaling filter Coefficient memory download Chroma Downsampler Features – Simple two-line averager capable of converting from YUV422 to YUV420 space 422 to 444 Features – Catmull-Rom based filter – 4 pixel, fixed coefficient Color Space Converter Features – Fully programmable 3x3 matrix multiplier with offset control For more information, see chapter Video Processing Engine of the device TRM. 6.10 GPU Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 353 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com The 3D graphics processing unit (GPU) accelerates 2-dimensional (2D) and 3-dimensional (3D) graphics and compute applications. It is based on the POWERVR® SGX544-MP2 core from Imagination Technologies. The SGX544-MP2 core is a multicore (dual-core) evolution of the POWERVR SGX544 GPU. SGX is a new generation of programmable POWERVR graphics and video IP cores. The POWERVR SGX is a scalable architecture which efficiently processes a number of differing multimedia data types concurrently: • Pixel Data • Vertex Data • General Purpose Processing The dual core GPU splits geometry and pixel rendering among the cores to improve performance proportional to the number of cores. ADVANCE INFORMATION GPU Features: • API support for industry standards: – OpenGL® - ES 1.1 and 2.0 • Multicore GPU architecture: – 2 × SGX544 cores – Shared system level cache of 128 KiB (64 KiB per SGX-544 core) • Tile-based deferred rendering architecture: – Reduces external bandwidth to SDRAM • Universal Scalable Shader Engine (USSE™): – Multithreaded engine incorporating vertex and pixel shader functionality – Automatic load balancing of vertex and pixel processing tasks • Present and texture load accelerator (PTLA): – Enables to move, rotate, twiddle, and scale texture surfaces – Supports RGB, ARGB, YUV4:2:2, and YUV4:2:0 surface formats – Supports bilinear upscale – Supports source color key • Fully virtualized memory addressing for operating system (OS) in a unified memory architecture: – Memory management unit (MMU) – Up to 4-GiB virtual address space For more information, see chapter 3D Graphics Accelerator of the device TRM. 6.11 ATL Overview The audio tracking logic (ATL) is used by HD Radio™ applications to synchronize the digital audio output to the baseband clock. This same IP can also be used generically to track errors between two reference signals (such as frame syncs) and generate a modulated clock output (using software-controlled cycle stealing) which averages to some desired frequency. This process can be used as a hardware assist for asynchronous sample rate conversion algorithms. The tracking range is limited, so direct conversion between the two standard sample rate groups frequencies from 44.1 to 48 kHz is not possible. The ATL includes the following main features: • One ATL module, containing four ATL instances, for HD Radio support and asynchronous sample rate conversion assistance • Each instance tracks the time error between two syncs (local audio word select [AWS] and baseband word select [BWS]) • Each instance selects between 16 mux choices for each of AWS and BWS. • Each instance generates modulated ATCLK_OUT clock signal with software-initiated pulse stealing. 354 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Selection between INTERCONNECT clock or functional ATLPCLK to run error couting timers and to derive modulated ATCLK_OUT clock outputs Clock and reset management: Receives clock and reset signals from the device PRCM module, and has its own dedicated clock domain (CD_ATL) within the PRCM. The ATL module receives hardware reset from the CORE_RST reset domain. Power management: The ATL belongs to the PD_COREAON power domain. ADVANCE INFORMATION For more information, see chapter Audio Tracking Logic of the device TRM. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 355 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 6.12 Memory Subsystem 6.12.1 EMIF The EMIF module provides connectivity between DDR memory types and manages data bus read/write accesses between external memory and device subsystems which have master access to the L3_MAIN interconnect and DMA capability. ADVANCE INFORMATION The EMIF module has the following capabilities: • Supports JEDEC standard-compliant DDR3/DDR3L-SDRAM memory types • 2-GiB SDRAM address range over one chip-select. This range is configurable through the dynamic memory manager (DMM) module • Supports SDRAM devices with one, two, four or eight internal banks • Supports SDRAM devices with single or dual die packages • Data bus widths: – 128-bit L3_MAIN (system) interconnect data bus width – 128-bit port for direct connection with MPU subsystem – 32-bit SDRAM data bus width – 16-bit SDRAM data bus width used in narrow mode • Supported CAS latencies: – DDR3: 5, 6, 7, 8, 9, 10 and 11 • Supports 256-, 512-, 1024-, and 2048-word page sizes • Supported burst length: 8 • Supports sequential burst type • SDRAM auto initialization from reset or configuration change • Supports self refresh and power-down modes for low power • Partial array self-refresh mode for low power. • Output impedance (ZQ) calibration for DDR3 • Supports on-die termination (ODT) DDR3 • Supports prioritized refresh • Programmable SDRAM refresh rate and backlog counter • Programmable SDRAM timing parameters • Write and read leveling/calibration and data eye training for DDR3 The EMIF module does not support: • Burst chop for DDR3 • Interleave burst type • Auto precharge because of better Bank Interleaving performance • DLL disabling from EMIF side • SDRAM devices with more than one die, or topologies which require more than one chip select on a single EMIF channel For more information, see section EMIF Controller in chapter Memory Subsystem of the device TRM. 6.12.2 GPMC The General Purpose Memory Controller (GPMC) is an external memory controller of the device. Its data access engine provides a flexible programming model for communication with all standard memories. The GPMC supports the following various access types: • Asynchronous read/write access • Asynchronous read page access (4, 8, and 16 Word16) 356 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • • • • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Synchronous read/write access Synchronous read/write burst access without wrap capability (4, 8 and 16 Word16) Synchronous read/write burst access with wrap capability (4, 8 and 16 Word16) Address-data-multiplexed (AD) access Address-address-data (AAD) multiplexed access Little- and big-endian access The main features of the GPMC are: • 8- or 16-bit-wide data path to external memory device • Supports up to eight CS regions of programmable size and programmable base addresses in a total address space of 1 GiB • Supports transactions controlled by a firewall • On-the-fly error code detection using the Bose-ChaudhurI-Hocquenghem (BCH) (t = 4, 8, or 16) or Hamming code to improve the reliability of NAND with a minimum effect on software (NAND flash with 512-byte page size or greater) • Fully pipelined operation for optimal memory bandwidth use • The clock to the external memory is provided from GPMC functional clock divided by 1, 2, 3, or 4 • Supports programmable autoclock gating when no access is detected • Independent and programmable control signal timing parameters for setup and hold time on a per-chip basis. Parameters are set according to the memory device timing parameters, with a timing granularity of one GPMC functional clock cycle. • Flexible internal access time control (WAIT state) and flexible handshake mode using external WAIT pin monitoring • Support bus keeping • Support bus turnaround • Prefetch and write posting engine associated with to achieve full performance from the NAND device with minimum effect on NOR/SRAM concurrent access For more information, see section General-Purpose Memory Controller in chapter Memory Subsystem of the device TRM. 6.12.3 ELM In the case of NAND modules with no internal correction capability, sometimes referred to as bare NAND, the correction process can be delegated to the error location module (ELM) used in conjunction with the GPMC. The ELM supports the following features: • 4, 8, and 16 bits per 512-byte block error location based on BCH algorithm • Eight simultaneous processing contexts • Page-based and continuous modes Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 357 ADVANCE INFORMATION The GPMC can communicate with a wide range of external devices: • External asynchronous or synchronous 8-bit wide memory or device (non burst device) • External asynchronous or synchronous 16-bit wide memory or device • External 16-bit non-multiplexed NOR flash device • External 16-bit address and data multiplexed NOR Flash device • External 8-bit and 16-bit NAND flash device • External 16-bit pseudo-SRAM (pSRAM) device DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • www.ti.com Interrupt generation when error location process completes: – When the full page has been processed in page mode – For each syndrome polynomial (checksum-like information) in continuous mode For more information, see section Error Location Module in chapter Memory Subsystem of the device TRM. 6.12.4 OCMC There is one on-chip memory controller (OCMC) in the device. ADVANCE INFORMATION The OCM Controller supports the following features: • L3_MAIN data interface: – Used for maximum throughput performance – 128-bit data bus width – Burst supported • L4 interface (OCMC_RAM only): – Used for access to configuration registers – 32-bit data bus width – Only single accesses supported – The L4 associated OCMC clock is two times lower than the L3 associated OCMC clock • Error correction and detection: – Single error correction and dual error detection – 9-bit Hamming error correction code (ECC) calculated on 128-bit data word which is concatenated with memory address bits – Hamming distance of 4 – Enable/Disable mode control through a dedicated register – Single bit error correction on a read transaction – Exclusion of repeated addresses from correctable error address trace history – ECC valid for all write transactions to an enabled region – Sub-128-bit writes supported via read modify write • ECC Error Status Reporting: – Trace history buffer (FIFO) with depth of 4 for corrected error address – Trace history buffer with depth of 4 for non correctable error address and also including double error detection – Interrupt generation for correctable and uncorrectable detected errors • ECC Diagnostics Configuration: – Counters for single error correction (SEC), double error detection (DED) and address error events (AEE) – Programmable threshold registers for exeptions associated with SEC, DED and AEE counters – Register control for enabling and disabling of diagnostics – Configuration registers and ECC status accessible through L4 interconnect • Circular buffer for sliced based VIP frame transfers: – Up to 12 programmable circular buffers mapped with unique virtual frame addresses – On the fly (with no additional latency) address translation from virtual to OCMC circular buffer memory space – Virtual frame size up to 8 MiB and circular buffer size up to 1 MiB – Error handling and reporting of illegal CBUF addressing – Underflow and Overflow status reporting and error handling – Last access read/write address history 358 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Two Interrupt outputs configured independently to service either ECC or CBUF interrupt events The OCM controller does not have a memory protection logic and does not support endianism conversion. For more information, see section On-Chip Memory (OCM) Subsystem in chapter Memory Subsystem of the device TRM. 6.13 Interprocessor Communication 6.13.1 Mailbox Communication between the on-chip processors of the device uses a queued mailbox-interrupt mechanism. The device implements the following mailbox types: • System mailbox: – Number of instances: 13 – Used for communication between: MPU, DSP1, IPU1, and IPU2 subsystems – Reference name: MAILBOX(1..13) • IVA mailbox: – Number of instances: 1 – Used for communication between: IVA local user (ICONT1, or ICONT2) and three external users (selected among MPU, DSP1, IPU1, and IPU2 subsystems) – Reference name: IVA_MBOX Each mailbox module supports the following features: • Parameters configurable at design time – Number of users – Number of mailbox message queues – Number of messages (FIFO depth) for each message queue • 32-bit message width • Message reception and queue-not-full notification using interrupts • Support of 16-/32-bit addressing scheme • Power management support For more information, see chapter Mailbox of the device TRM. 6.13.2 Spinlock The Spinlock module provides hardware assistance for synchronizing the processes running on multiple processors in the device: • Dual Cortex®-A15 microprocessor unit (MPU) subsystem • Digital signal processor (DSP) subsystems – DSP1 and DSP2 • Dual Cortex-M4 image processing unit (IPU) subsystems – IPU1 and IPU2 The Spinlock module implements 256 spinlocks (or hardware semaphores), which provide an efficient way to perform a lock operation of a device resource using a single read-access, avoiding the need of a readmodify- write bus transfer that the programmable cores are not capable of. For more information, see chapter Spinlock of the device TRM. 6.14 Interrupt Controller Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 359 ADVANCE INFORMATION The queued mailbox-interrupt mechanism allows the software to establish a communication channel between two processors through a set of registers and associated interrupt signals by sending and receiving messages (mailboxes). DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com The device has a large number of interrupts to service the needs of its many peripherals and subsystems. The MPU, DSP (x2), and IPU (x2) subsystems are capable of servicing these interrupts via their integrated interrupt controllers. In addition, each processor's interrupt controller is preceded by an Interrupt Controller Crossbar (IRQ_CROSSBAR) that provides flexibility in mapping the device interrupts to processor interrupt inputs. For more information about IRQ crossbar, see chapter Control Module of the Device TRM. Dual Cortex®-A15 MPU Subsystem Interrupt Controller (MPU_INTC) The MPU_INTC module (also called Generalized Interrupt Controller [GIC]) is a single functional unit that is integrated in the ARM ® Cortex-A15 multiprocessor core (MPCore) alongside Cortex-A15 processors. It provides: • 160 hardware interrupt inputs • Generation of interrupts by software • Prioritization of interrupts • Masking of any interrupts • Distribution of the interrupts to the target Cortex-A15 processor(s) • Tracking the status of interrupts ADVANCE INFORMATION Each Cortex-A15 processor supports three main groups of interrupt sources, with each interrupt source having a unique ID: • Software Generated Interrupts (SGIs): SGIs are generated by writing to the Cortex-A15 Software Generated Interrupt Register (GICD_SGIR). A maximum of 16 SGIs (ID0–ID15) can be generated for each CPU interface. An SGI has edge-triggered properties. The software triggering of the interrupt is equivalent to the edge transition of the interrupt signal on a peripheral input. • Private Peripheral Interrupts (PPIs): A PPI is an interrupt generated by a peripheral that is specific to a single processor. Although interrupts ID16–ID31 are dedicated to PPIs in general, only seven PPIs are actually used for each CPU interface (ID25–ID31). Interrupts ID16–ID24 are reserved (not used). • Shared Peripheral Interrupts (SPIs): SPIs are triggered by events generated on associated interrupt input lines. In this device, the GIC is configured to support 160 SPIs corresponding to its external IRQS[159:0] signals. For detailed information about this module and description of SGIs and PPIs, see the ARM Cortex-A15 MP Core Technical Reference Manual (available at infocenter.arm.com/help/index.jsp). C66x DSP Subsystem Interrupt Controller (DSPx_INTC, where x = 1, 2) There are two Digital Signal Processing (DSP) subsystems in the device - DSP1, and DSP2. Each DSP subsystem integrates an interrupt controller - DSPx_INTC, which interfaces the system events to the C66x core interrupt and exceptions inputs. It combines up to 128 interrupts into 12 prioritized interrupts presented to the C66x CPU. For detailed information about this module, see chapter DSP Subsystems of the Device TRM. Dual Cortex-M4 IPU Subsystem Interrupt Controller (IPUx_Cx_INTC, where x = 1, 2) There are two Image Processing Unit (IPU) subsystems in the device - IPU1, and IPU2. Each IPU subsystem integrates two ARM Cortex-M4 cores. A Nested Vectored Interrupt Controller (NVIC) is integrated within each Cortex-M4. The interrupt mapping is the same (per IPU) for the two cores to facilitate parallel processing. The NVIC supports: • 64 external interrupts (in addition to 16 Cortex-M4 internal interrupts), which are dynamically prioritized with 16 levels of priority defined for each core • Low-latency exception and interrupt handling • Prioritization and handling of exceptions • Control of the local power management • Debug accesses to the processor core 360 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 For detailed information about this module, refer to ARM Cortex-M4 Technical Reference Manual (available at infocenter.arm.com/help/index.jsp). 6.15 EDMA The primary purpose of the Enhanced Direct Memory Access (EDMA) controller is to service userprogrammed data transfers between two memory-mapped slave endpoints on the device. The EDMA controller consists of two major principle blocks: • EDMA Channel Controller • EDMA Transfer Controller(s) The EDMA Channel Controller (EDMACC) serves as the user interface for the EDMA controller. The EDMACC includes parameter RAM (PaRAM), channel control registers, and interrupt control registers. The EDMACC serves to prioritize incoming software requests or events from peripherals and submits transfer requests (TR) to the EDMA transfer controller. The EDMA Transfer Controller (EDMATC) is responsible for data movement. The transfer request packets (TRP) submitted by the EDMACC contain the transfer context, based on which the transfer controller issues read/write commands to the source and destination addresses programmed for a given transfer. There are two EDMA controllers present on this device: • EDMA_0, integrating: – 1 Channel Controller, referenced as: EDMACC_0 – 2 Transfer Controllers, referenced as: EDMACC_0_TC_0 (or EDMATC_0) and EDMACC_0_TC_1 (or EDMATC_1) • EDMA_1, integrating: – 1 Channel Controller, referenced as: EDMACC_1 – 2 Transfer Controllers, referenced as: EDMACC_1_TC_0 (or EDMATC_2) and EDMACC_1_TC_1 (or EDMATC_3) The two EDMA channel controllers (EDMACC_0 and EDMACC_1) are functionally identical. For simplification, the unified name EDMACC shall be regularly used throughout this chapter when referring to EDMA Channel Controllers functionality and features. The four EDMA transfer controllers (EDMACC_0_TC_0, EDMACC_0_TC_1, EDMACC_1_TC_0 and EDMACC_1_TC_1) are functionally identical. For simplification, the unified name EDMATC shall be regularly used throughout this chapter when referring to EDMA Transfer Controllers functionality and features. Each EDMACC has the following features: • Fully orthogonal transfer description – 3 transfer dimensions: • Array (multiple bytes) • Frame (multiple arrays) • Block (multiple frames) – Single event can trigger transfer of array, frame, or entire block – Independent indexes on source and destination Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 361 ADVANCE INFORMATION Typical usage of the EDMA controller includes: • Servicing software-driven paging transfers (for example, data movement between external memory [such as SDRAM] and internal memory [such as DSP L2 SRAM]) • Servicing event-driven peripherals, such as a serial port • Performing sorting or sub-frame extraction of various data structures • Offloading data transfers from the main device CPUs, such as the C66x DSP CorePac or the ARM CorePac DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • ADVANCE INFORMATION • • • • www.ti.com Flexible transfer definition – Increment or constant addressing modes – Linking mechanism allows automatic PaRAM set update – Chaining allows multiple transfers to execute with one event 64 DMA channels – Channels triggered by either: • Event synchronization • Manual synchronization (CPU write to event set register) • Chain synchronization (completion of one transfer triggers another transfer) – Support for programmable DMA Channel to PaRAM mapping 8 Quick DMA (QDMA) channels – QDMA channels are triggered automatically upon writing to PaRAM set entry – Support for programmable QDMA channel to PaRAM mapping 512 PaRAM sets – Each PaRAM set can be used for a DMA channel, QDMA channel, or link set 2 transfer controllers/event queues – 16 event entries per event queue Interrupt generation based on: – Transfer completion – Error conditions Debug visibility – Queue water marking/threshold – Error and status recording to facilitate debug Memory protection support – Proxied memory protection for TR submission – Active memory protection for accesses to PaRAM and registers Each EDMATC has the following features: • Supports 2-dimensional (2D) transfers with independent indexes on source and destination (EDMACC manages the 3rd dimension) • Up to 4 in-flight transfer requests (TR) • Programmable priority levels • Support for increment or constant addressing mode transfers • Interrupt and error support • Supports only little-endian operation in this device • Memory mapped register (MMR) bit fields are fixed position in 32-bit MMR For more information, see section Enhanced DMA in chapter DMA Controllers of the device TRM. 6.16 Peripherals 6.16.1 VIP The VIP module provides video capture functions for the device. VIP incorporates a multi-channel raw video parser, various video processing blocks, and a flexible Video Port Direct Memory Access (VPDMA) engine to store incoming video in various formats. The device uses three instantiations of the VIP module giving the ability of capturing up to six video streams. A VIP module includes the following main features: 362 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P • • • • • • • • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Two independently configurable external video input capture slices (Slice 0 and Slice 1) each of which has two video input ports, Port A and Port B, where Port A can be configured as a 24/16/8-bit port, and Port B is a fixed 8-bit port. Each video Port A can be operated as a port with clock independent input channels (with interleaved or separated Y/C data input). Embedded sync and external sync modes are supported for all input configurations. Support for a single external asynchronous pixel clock, up to 165MHz per port. Pixel Clock Input Domain Port A supports up to one 24-bit input data bus, including BT.1120 style embedded sync for 16-bit and 24-bit data. Embedded Sync data interface mode supports single or multiplexed sources Discrete Sync data interface mode supports only single source input 24-bit data input plus discrete syncs can be configured to include: – 8-bit YUV422 (Y and U/V time interleaved) – 16-bit YUV422 (CbY and CrY time interleaved) – 24-bit YUV444 – 16-bit RGB565 – 24-bit RGB888 – 12/16-bit RAW Capture – 24-bit RAW capture Discrete sync modes include: – VSYNC + HSYNC (FID determined by FID signal pin or HSYNC/VSYNC skew) – VSYNC + ACTVID + FID – VBLANK + ACTVID (ACTVID toggles in VBLANK) + FID – VBLANK + ACTVID (no ACTVID toggles in VBLANK) + FID VBLANK + ACTVID (no ACTVID toggles in VBLANK) + FID – Embedded syncs only – Pixel (2x or 4x) or Line multiplexed modes supported – Performs demultiplexing and basic error checking – Supports maximum of 9 channels in Line Mux (8 normal + 1 split line) Ancillary data capture support – For 16-bit or 24-bit input, ancillary data may be extracted from any single channel – For 8-bit time interleaved input, ancillary data can be chosen from the Luma channel, the Chroma channel, or both channels – Horizontal blanking interval data capture only supported when using discrete syncs (VSYNC + HSYNC or VSYNC + HBLANK) – Ancillary data extraction supported on multichannel capture as well as single source streams Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 363 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • ADVANCE INFORMATION • • www.ti.com Format conversion and scaling – Programmable color space conversion – YUV422 to YUV444 conversion – YUV444 to YUV422 conversion – YUV422 to YUV420 conversion – YUV444 Source: YUV444 to YUV444, YUV444 to RGB888, YUV444 to YUV422, YUV444 to YUV420 – RGB888 Source: RGB888 to RGB888, RGB888 to YUV444, RGB888 to YUV422, RGB888 to YUV420 – YUV422 Source: YUV422 to YUV422, YUV422 to YUV420, YUV422 to YUV444, YUV422 to RGB888 – Supports RAW to RAW (no processing) – Scaling and format conversions do not work for multiplexed input Supports up to 2047 pixels wide input - when scaling is engaged Supports up to 3840 pixels wide input - when only chroma up/down sampling is engaged, without scaling Supports up to 4095 pixels wide input - without scaling and chroma up/down sampling The maximum supported input resolution is further limited by: – Pixel clock and feature-dependent constraints – For RGB24-bit format (RAW data), the maximum frame width is limited to 2730 pixels A VPDMA module includes the following main features: • VPDMA output buffer size restriction feature, which ensures that writes do not exceed allocated memory buffer size • Support for Tiled (2D) and raster addressing without bandwidth penalty • Dual clients per channel allows for capture of scaled and nonscaled versions of the data stream (nonmultiplexed mode only) • Start on new frame capability • Interrupt every X number of frames • Interrupt every X lines (synced to frame start) For more information, see chapter Video Input Port of the device TRM. 6.16.2 DSS Display Port Interfaces (DPI) is available in DSS named DPI Video Output (VOUT). VOUT interface consists of: • 24-bit data bus (data[23:0]) • Horizontal synchronization signal (HSYNC) • Vertical synchronization signal (VSYNC) • Data enable (DE) • Field ID (FID) • Pixel clock (CLK) For more information, see section Display Subsystem of the device TRM. 6.16.3 Timers The device has 16 general-purpose (GP) timers (TIMER1 - TIMER16), two watchdog timers, and a 32-kHz synchronized timer (COUNTER_32K) that have the following features: • Dedicated input trigger for capture mode and dedicated output trigger/pulse width modulation (PWM) signal 364 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Interrupts generated on overflow, compare, and capture Free-running 32-bit upward counter Supported modes: – Compare and capture modes – Auto-reload mode – Start-stop mode On-the-fly read/write register (while counting) The device has two system watchdog timer (WD_TIMER1 and WD_TIMER2) that have the following features: • Free-running 32-bit upward counter • On-the-fly read/write register (while counting) • Reset upon occurrence of a timer overflow condition The watchdog timer is used to provide a recovery mechanism for the device in the event of a fault condition, such as a non-exiting code loop. For more information, see section General-Purpose Timers in chapter Timers of the device TRM. 6.16.4 I2C The device contains five multimaster high-speed (HS) inter-integrated circuit (I2C) controllers (I2Ci modules, where i = 1, 2, 3, 4, 5) each of which provides an interface between a local host (LH), such as a digital signal processor (DSP), and any I2C-bus-compatible device that connects through the I2C serial bus. External components attached to the I2C bus can serially transmit and receive up to 8 bits of data to and from the LH device through the 2-wire I2C interface. Each multimaster HS I2C controller can be configured to act like a slave or master I2C-compatible device. I2C1 and I2C2 controllers have dedicated I2C compliant open drain buffers, and support Fast mode (up to 400Kbps). I2C3, I2C4 and I2C5 controllers are multiplexed with standard LVCMOS IO and connected to emulate open drain. I2C emulation is achieved by configuring the LVCMOS buffers to output Hi-Z instead of driving high when transmitting logic 1. These controllers support HS mode (up to 3.4Mbps). For more information, see section Multimaster High-Speed I2C Controller (I2C) in chapter Serial Communication Interfaces of the device TRM. 6.16.5 HDQ1W The HDQ1W module implements the hardware protocol of the master functions of the TI/Benchmarq HDQ and the Dallas Semiconductor 1-Wire® protocols. These protocols use a single wire for communication between the master (HDQ1W controller) and the slaves (HDQ/1-Wire external compliant devices). The HDQ1W has a generic L4 interface and is intended to be used in an interrupt-driven fashion. The 1pin interface is implemented as an open-drain output at the device level. The main features supported by the HDQ1W are the following: • Benchmarq HDQ protocol • Dallas Semiconductor 1-Wire protocol • Power-down mode The HDQ1W provides a communication rate of 5 Kbps over an address space of 128 bytes. A typical application of the HDQ1W is the communication with battery monitor (gas gauge) integrated circuits. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 365 ADVANCE INFORMATION The device includes one instance of the 32-bit watchdog timer: WD_TIMER2, also called the MPU watchdog timer. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com For more information, see section HDQ/1-Wire in chapter Serial Communication Interfaces of the device TRM. 6.16.6 UART The UART is a simple L4 slave peripheral that utilizes the DMA_SYSTEM or EDMA for data transfer or IRQ polling via CPU. There are 10 UART modules in the device. Only one UART supports IrDA features. Each UART can be used for configuration and data exchange with a number of external peripheral devices or interprocessor communication between devices. 6.16.6.1 UART Features The UARTi (where i = 1 to 10) include the following features: • 16C750 compatibility • 64-byte FIFO buffer for receiver and 64-byte FIFO for transmitter • Programmable interrupt trigger levels for FIFOs • Baud generation based on programmable divisors N (where N = 1…16,384) operating from a fixed functional clock of 48 MHz or 192 MHz ADVANCE INFORMATION Oversampling is programmed by software as 16 or 13. Thus, the baud rate computation is one of two options: • Baud rate = (functional clock / 16) / N • Baud rate = (functional clock / 13) / N • This software programming mode enables higher baud rates with the same error amount without changing the clock source • Break character detection and generation • Configurable data format: – Data bit: 5, 6, 7, or 8 bits – Parity bit: Even, odd, none – Stop-bit: 1, 1.5, 2 bit(s) • Flow control: Hardware (RTS/CTS) or software (XON/XOFF) • The 48 MHz functional clock option allows baud rates up to 3.6Mbps • The 192 MHz functional clock option allows baud rates up to 12Mbps • UART1 module has extended modem control signals (DCD, RI, DTR, DSR) • UART3 supports IrDA 6.16.6.2 IrDA Features UART3 supports the following IrDA key features: • Support of IrDA 1.4 slow infrared (SIR), medium infrared (MIR), and fast infrared (FIR) communications: – Frame formatting: Addition of variable beginning-of-frame (xBOF) characters and end-of-frame (EOF) characters – Uplink/downlink cyclic redundancy check (CRC) generation/detection – Asynchronous transparency (automatic insertion of break character) – Eight-entry status FIFO (with selectable trigger levels) to monitor frame length and frame errors – Framing error, CRC error, illegal symbol (FIR), and abort pattern (SIR, MIR) detection 366 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 6.16.6.3 CIR Features The CIR mode uses a variable pulse-width modulation (PWM) technique (based on multiples of a programmable t period) to encompass the various formats of infrared encoding for remote-control applications. The CIR logic transmits data packets based on a user-definable frame structure and packet content. The CIR (UART3 only) includes the following features to provide CIR support for remote-control applications: • Transmit mode only (receive mode is not supported) • Free data format (supports any remote-control private standards) • Selectable bit rate • Configurable carrier frequency • 1/2, 5/12, 1/3, or 1/4 carrier duty cycle 6.16.7 McSPI The McSPI is a master/slave synchronous serial bus. There are four separate McSPI modules (McSPI1, McSPI2, McSPI3, and McSPI4) in the device. All these four modules support up to four external devices (four chip selects) and are able to work as both master and slave. The McSPI modules include the following main features: • Serial clock with programmable frequency, polarity, and phase for each channel • Wide selection of McSPI word lengths, ranging from 4 to 32 bits • Up to four master channels, or single channel in slave mode • Master multichannel mode: – Full duplex/half duplex – Transmit-only/receive-only/transmit-and-receive modes – Flexible input/output (I/O) port controls per channel – Programmable clock granularity – McSPI configuration per channel. This means, clock definition, polarity enabling and word width • Single interrupt line for multiple interrupt source events • Power management through wake-up capabilities • Enable the addition of a programmable start-bit for McSPI transfer per channel (start-bit mode) • Supports start-bit write command • Supports start-bit pause and break sequence • Programmable timing control between chip select and external clock generation • Built-in FIFO available for a single channel For more information, see section Multichannel Serial Peripheral Interface in chapter Serial Communication Interfaces of the device TRM. 6.16.8 QSPI The quad serial peripheral interface (QSPI™) module is a kind of SPI module that allows single, dual, or quad read access to external SPI devices. This module has a memory mapped register interface, which provides a direct interface for accessing data from external SPI devices and thus simplifying software requirements. The QSPI works as a master only. The QSPI supports the following features: Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 367 ADVANCE INFORMATION For more information, see section UART/IrDA/CIR in chapter Serial Communication Interfaces of the device TRM. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • www.ti.com ADVANCE INFORMATION General SPI features: – Programmable clock divider – Six pin interface – Programmable length (from 1 to 128 bits) of the words transferred – Programmable number (from 1 to 4096) of the words transferred – 4 external chip-select signals – Support for 3-, 4-, or 6-pin SPI interface – Optional interrupt generation on word or frame (number of words) completion – Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles – Programmable signal polarities – Programmable active clock edge – Software-controllable interface allowing for any type of SPI transfer – Control through L3_MAIN configuration port Serial flash interface (SFI) features: – Serial flash read/write interface – Additional registers for defining read and write commands to the external serial flash device – 1 to 4 address bytes – Fast read support, where fast read requires dummy bytes after address bytes; 0 to 3 dummy bytes can be configured. – Dual read support – Quad read support – Little-endian support only – Linear increment addressing mode only The QSPI supports only dual and quad reads. Dual or quad writes are not supported. In addition, there is no "pass through" mode supported where the data present on the QSPI input is sent to its output. For more information, see section Quad Serial Peripheral Interface in chapter Serial Communication Interfaces of the device TRM. 6.16.9 McASP The McASP functions as a general-purpose audio serial port optimized to the requirements of various audio applications. The McASP module can operate in both transmit and receive modes. The McASP is useful for time-division multiplexed (TDM) stream, Inter-IC Sound (I2S) protocols reception and transmission as well as for an intercomponent digital audio interface transmission (DIT). The McASP has the flexibility to gluelessly connect to a Sony/Philips digital interface (S/PDIF) transmit physical layer component. Although intercomponent digital audio interface reception (DIR) mode (i.e. S/PDIF stream receiving) is not natively supported by the McASP module, a specific TDM mode implementation for the McASP receivers allows an easy connection to external DIR components (for example, S/PDIF to I2S format converters). The device have integrated 8 McASP modules (McASP1-McASP8) with: • McASP1 and McASP2 supporting 16 channels with independent TX/RX clock/sync domain • McASP3 through McASP8 modules supporting 4 channels with independent TX/RX clock/sync domain For more information, see section Multichannel Audio Serial Port in chapter Serial Communication Interfaces of the device TRM. 6.16.10 USB SuperSpeed USB DRD Subsystem has three instances in the device providing the following functions: 368 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • USB1: SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with integrated SS (USB3.0) PHY and HS/FS (USB2.0) PHY USB2: High-Speed (HS) USB 2.0 Dual-Role-Device (DRD) subsystem with integrated HS/FS PHY SuperSpeed USB DRD Subsystem has the following features: • Dual-role-device (DRD) capability: – Supports USB Peripheral (or Device) mode at speeds SS (5Gbps)(USB1 only), HS (480 Mbps), and FS (12 Mbps) – Supports USB Host mode at speeds SS (5Gbps)(USB1 only), HS (480 Mbps), FS (12 Mbps), and LS (1.5 Mbps) – USB static peripheral operation – USB static host operation – Flexible stream allocation – Stream priority – External Buffer Control • Each instance contains single xHCI controller with the following features: – Internal DMA controller – Descriptor caching and data prefetching – Interrupt moderation and blocking – Power management USB3.0 states for U0, U1, U2, and U3 – Dynamic FIFO memory allocation for all endpoints – Supports all modes of transfers (control, bulk, interrupt, and isochronous) – Supports high bandwidth ISO mode • Connects to an external charge pump for VBUS 5 V generation • USB-HS PHY (USB2PHY1 and USB2PHY2 for USB1 and USB2, respectively): contain the USB functions, drivers, receivers, and pads for correct D+/D– signalling For more information, see section SuperSpeed USB DRD in chapter Serial Communication Interfaces of the device TRM. 6.16.11 SATA The SATA host controller handles data interactions between a local host system memory and a SATA mass storage device with minimal local host (LH) intervention. In contrast to the parallel 16-bit - ATA (PATA) interface, the SATA interface takes advantage of serial data transmission/reception over a differential pair of conductors. SATA uses the command set from the ATA/ATAPI-6 standard augmented with native command queuing (NCQ) commands optimized for the serialized interface. The device has one embedded SATA host bus adapter (HBA) controller with a single port. For more information, see section SATA Controller in chapter Serial Communication Interface of the device TRM. 6.16.12 PCIe The Peripheral Component Interconnect Express (PCIe) module is a multi-lane I/O interconnect that provides low pin-count, high reliability, and high-speed data transfer at rates of up to 5.0 Gbps per lane, per direction, for serial links on backplanes and printed wiring boards. It is a 3-rd Generation I/O Interconnect technology succeeding PCI and ISA bus that is designed to be used as a general-purpose serial I/O interconnect. It is also used as a bridge to other interconnects like USB2/3.0, GbE MAC, and so forth. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 369 ADVANCE INFORMATION • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com The PCI Express standard predecessor - PCI, is a parallel bus architecture that is increasingly difficult to scale-up in bandwidth, which is usually performed by increasing the number of data signal lines. The PCIe architecture was developed to help minimize I/O bus bottlenecks within systems and to provide the necessary bandwidth for high-speed, chip-to-chip, and board-to-board communications within a system. It is designed to replace the PCI-based shared, parallel bus signaling technology that is approaching its practical performance limits while simplifying the interface design. The device instantiates two PCIe subsystems (PCIe_SS1 and PCIe_SS2). The PCIe controller is capable to operate either in Root Complex (RC) or in End Point (EP) PCIe mode. The device PCIe_SS1 controller supports up to two 16-bit data lanes on its PIPE port. The device PCIe_SS2 controller supports only one 16-bit data lane on its PIPE port. ADVANCE INFORMATION When the PCIe_SS1 controller PIPE port is configured to operate in a single-lane mode, it operates on a single pair of PCIe PHY serializer and deserializer - PCIe1_PHY_TX/PCIe1_PHY_RX. When PCIe_SS1 PIPE is configured to operate in dual-lane mode, it operates on two pairs of PCIe PHY serializer and deserializer - PCIe1_PHY_TX/PCIe1_PHY_RX and PCIe2_PHY_TX/PCIe2_PHY_RX, respectively. The single-lane PCIe_SS2 controller PIPE port (if enabled) can operate only on the PCIe2_PHY_TX/PCIe2_PHY_RX pair. Hereby, if PCIe_SS2 controller is used, the PCIe_SS1 can operate only in a single-lane mode on the PCIe1_PHY_TX/PCIe1_PHY_RX. In addition, PCIe PHY subsystem encompasses a PCIe PCS (physical coding sublayer), a PCIe power management logic, APLL, a DPLL reference clock generator and an APLL clock low-jitter buffer. • The PCIe Controller implements the transport and link layers of the PCIe interface protocol. • PCIe PCS (a physical coding sublayer component) converts a 8-bit portion of parallel data over a PCIe lane to a 10-bit parallel data to adapt the process of serialization and deserialization in the TX/RX PHYs to various requirements. At the same time it transforms the transmission rate to maintain the PCIe Gen2 bandwidth (5 Gbps) on both sides (PCIe controller and PHY). • A multiplexer logic which adds flexibility to connect a PCIe controller hardware mapped PCS logic output to a single (for the single-lane PCIe_SS2 controller) or to a couple (for the 2-lane PCIe_SS1 controller) of PHY ports at a time • Physical layer (PHY) serializer/deserializer components with associated power control logic, building the so called PMA (physical media attachment) part of the PCIe_PHY transceiver, as follows: – PCIe physical port 0 associated serializer (TX) - PCIe1_PHY_TX and deserializer (RX) PCIe1_PHY_RX – PCIe physical port 1 associated serializer (TX) - PCIe2_PHY_TX and deserializer (RX) PCIe2_PHY_RX • DPLL_PCIe_REF is a DPLL clock source, controlled from the device PRCM, that provides a 100-MHz clock to the PCIe PHY serializer/deserializer components reference clock inputs. • Both the PCIe_SS1 and PCIe_SS2 share the same APLL (APLLPCIe) which by default multiplies the DPLL_PCIe_REF (typically 100 MHz or 20 MHz) clock to 2.5 GHz. • The APLLPCIe low-jitter buffer (ACSPCIE) and additional logic takes care to provide the PCIe APLL reference input clock. PCIe module supports the following features: • PCI Local Bus Specification revision 3.0 • PCI Express Base 3.0 Specification, revision 1.0. At system level the device supports PCI express interface in the following configurations: • Each PCIe subsystem controller has support for PCIe Gen2 mode (5.0 Gbps per lane) and Gen1 mode (2.5 Gbps per lane). • One PCIe (PCIe_SS1) operates as Gen2 2-lanes supporting in either root-complex (RC) or end-point EP. • Two PCIe (PCIe_SS1 and PCIe_SS2) operates Gen2 1-lane supporting either RC or EP with the possibility of one operating in Gen1 and one in Gen2. 370 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • PCIe_SS1 can be configured to operate in either 2-Lane (dual lane) or 1-Lane (single lane) mode, as follows: – Single Lane - lane 0 mapped to the PCIe port 0 of the device – Flexible dual lane configuration - lanes 0 and 1 can be swapped on the two PCIe ports PCIe_SS2 can only operate in 1-Lane mode, as follows: – Single Lane - lane 0 mapped to the device PCIe port 1 When PCie_SS1 is configured to operate in dual-lane mode, PCIe_SS2 is in-operable as both PCIe1_PHY_RX/TX and PCIe2_PHY_RX/TX are assigned to PCIe_SS1, and thereby NOT available to PCIe_SS2. The main features of a device PCIe controller are: • 16-bit operation at 250 MHz on PIPE interface (per 16-bit lane) • One master port on the L3_MAIN supporting 32-bit address and 64-bit data bus. • PCIe_SS1/PCIe_SS2 master port dedicated MMU (device MMU2) on L3_MAIN path, to which PCIe traffic can be optionally mapped. • One slave port on the L3_MAIN supporting 29-bit address and 64-bit data bus. • Maximum outbound payload size of 64 Bytes (the L3 Interconnect PCIe1/2 target ports split bursts of size >64 Bytes to the into multiple 64 Byte bursts) • Maximum inbound payload size of 256 Bytes (internally converted to 128 Byte - bursts) • No remote read request size limit: implicit support for 4 KiB-size and greater • Support of EP legacy mode • Support of inbound I/O accesses in EP legacy mode • PIPE interface features fixed-width (16-bit data per lane) and dynamic frequency to switch between PCIe Gen1 and Gen2. • Ultra-low transmit and receive latency • Automatic Lane reversal as specified in the PCI Express Base 3.0 Specification, revision 1.0 (transmit and receive) • Polarity inversion on receive • Single Virtual Channel (VC0) and Single Traffic Class (TC0) • Single Function in End point mode • Automatic credit management • ECRC generation and checking • All PCI Device Power Management D-states with the exception of D3cold/L2 state • PCI Express Active State Power Management (ASPM) state L0s and L1 (with exceptions) • PCI Express Link Power Management states except for L2 state • PCI Express Advanced Error Reporting (AER) • PCI Express messages for both transmit and receive • Filtering for Posted, Non-Posted, and Completion traffic • Configurable BAR filtering, I/O filtering, configuration filtering and completion lookup/timeout • Access to configuration space registers and external application memory mapped registers through ECAM mechanism. • Legacy PCI Interrupts reception (RC) and generation (EP) • 2 x hardware interrupts per PCIe_SS1 and PCIe_SS2 controller mapped via the device Interrupt Crossbar (IRQ_CROSSBAR) to multiple device host (MPU, DSP, and so forth) interrupt controllers in the device • MSIs generation and reception • PCIe_PHY Loopback in RC mode Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 371 ADVANCE INFORMATION • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com For more information, see section PCIe Controller in chapter Serial Communication Interfaces of the device TRM. 6.16.13 CAN The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed real-time applications. CAN has high immunity to electrical interference and the ability to selfdiagnose and repair data errors. In a CAN network, many short messages are broadcast to the entire network, which provides for data consistency in every node of the system. ADVANCE INFORMATION The device provides two DCAN interfaces for supporting distributed realtime control with a high level of security. The DCAN interfaces implement the following features: • Support one CAN 2.0B Protocol • Support one CAN 2.0B Protocol with available FD (Flexible Data Rate) functionality • Bit rates up to 1 MBit/s • 64 message objects • Individual identifier mask for each message object • Programmable FIFO mode for message objects • Programmable loop-back modes for self-test operation • Suspend mode for debug support • Software module reset • Automatic bus on after Bus-Off state by a programmable 32-bit timer • Direct access to Message RAM during test mode • CAN Rx/Tx pins are configurable as general-purpose IO pins • Two interrupt lines (plus additional parity-error interrupts line) • RAM initialization • DMA support For more information, see section DCAN in chapter Serial Communication Interfaces of the device TRM. 6.16.14 GMAC_SW The three-port gigabit ethernet switch subsystem (GMAC_SW) provides ethernet packet communication and can be configured as an ethernet switch. It provides the gigabit media independent interface (G/MII) in MII mode, reduced gigabit media independent interface (RGMII), reduced media independent interface (RMII), and the management data input output (MDIO) for physical layer device (PHY) management. The GMAC_SW subsystem provides the following features: • Two Ethernet ports (port 1 and port 2) with selectable RGMII, RMII, and G/MII (in MII mode only) interfaces plus internal Communications Port Programming Interface (CPPI 3.1) on port 0 • Synchronous 10/100/1000 Mbit operation • Wire rate switching (802.1d) • Non-blocking switch fabric • Flexible logical FIFO-based packet buffer structure • Four priority level Quality Of Service (QOS) support (802.1p) • CPPI 3.1 compliant DMA controllers • Support for Audio/Video Bridging (P802.1Qav/D6.0) • Support for IEEE 1588 Clock Synchronization (2008 Annex D and Annex F) – Timing FIFO and time stamping logic embedded in the subsystem • Device Level Ring (DLR) Support • Energy Efficient Ethernet (EEE) support (802.3az) • Flow Control Support (802.3x) 372 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P • • • • • • • • • • • • • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Address Lookup Engine (ALE) – 1024 total address entries plus VLANs – Wire rate lookup – Host controlled time-based aging – Multiple spanning tree support (spanning tree per VLAN) – L2 address lock and L2 filtering support – MAC authentication (802.1x) – Receive-based or destination-based multicast and broadcast rate limits – MAC address blocking – Source port locking – OUI (Vendor ID) host accept/deny feature – Remapping of priority level of VLAN or ports VLAN support – 802.1Q compliant • Auto add port VLAN for untagged frames on ingress • Auto VLAN removal on egress and auto pad to minimum frame size Ethernet Statistics: – EtherStats and 802.3Stats Remote network Monitoring (RMON) statistics gathering (shared) – Programmable statistics interrupt mask when a statistic is above one half its 32-bit value • Flow Control Support (802.3x) Digital loopback and FIFO loopback modes supported Maximum frame size 2016 bytes (2020 with VLAN) 8k (2048 × 32) internal CPPI buffer descriptor memory Management Data Input/Output (MDIO) module for PHY Management Programmable interrupt control with selected interrupt pacing Emulation support Programmable Transmit Inter Packet Gap (IPG) Reset isolation (switch function remains active even in case of all device resets except for POR pin reset and ICEPICK cold reset) Full duplex mode supported in 10/100/1000 Mbps. Half-duplex mode supported only in 10/100 Mbps. IEEE 802.3 gigabit Ethernet conformant For more information, see section Gigabit Ethernet Switch (GMAC_SW) in chapter Serial Communication Interfaces of the device TRM. 6.16.15 MLB The Media Local Bus sub system (MLB) is based on a module designed by SMSC. This module provides a MediaLB/MediaLB+ controller and an interface to other MediaLB/MediaLB+ devices. The MediaLB/MediaLB+ interface allows also connection to a MOST (Media Oriented Systems Transport) network controller. MOST network is used to transport media and control data between various multimedia nodes in the car. The MLBSS supports the following features: • 3-pin MediaLB 3.3V LVCMOS I/Os compliant to MediaLB Physical Layer Specification v4.0 • 6-pin MediaLB+ low-voltage differential signaling (LVDS) I/Os (3 differential pairs) compliant to MediaLB Physical Layer Specification v4.0 • MediaLB core functionality compliant to MediaLB Physical and Link layer specification v4.0 • Supports 256/512/1024Fs in 3-pin mode and 4096Fs in 6-pin mode. To support 4096Fs the frequency of the MLB clock line is doubled through a dedicated circuit. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 373 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • • www.ti.com Supports all types of transfer (synchronous stream data, asynchronous packet data, control message data, and isochronous data) over 64 logical channels Supports single 32-bit L4 slave interface for configuration Supports single 32-bit L3_MAIN master interface with burst capability for DMA transfers into system memory. The maximum burst size is 32 Bytes Has 16 KiB buffer for all types of transfers in the subsystem Support of pressure bits for controlling the MLBSS priority on the L3_MAIN interconnect The MLBSS does not support: • 400 MHz clock mode which enable half and full entitlement of MediaLB+ and MOST150 • 5-pin mode For more information, see section Media Local Bus (MLB) in chapter Serial Communication Interfaces of the device TRM. 6.16.16 CSI2 ADVANCE INFORMATION NOTE For more information, see the Camera Serial Interface 2 CAL Bridge chapter of the device TRM The camera adaptation layer (CAL) deals with the processing of the pixel data coming from an external image sensor, data from memory. The CAL is a key component for the following multimedia applications: camera viewfinder, video record, and still image capture. The CAL has two serial camera interfaces (primary and secondary): • The primary serial interface (CSI2 Port A) is compliant with MIPI CSI-2 protocol with four data lanes. • The secondary serial interface (CSI2 Port B) is compliant with MIPI CSI-2 protocol with two data lanes. 6.16.16.1 CSI-2 MIPI D-PHY The CSI-2 port A is compliant with the MIPI D-PHY RX specification v1.00.00 and the MIPI CSI-2 specification v1.00, with 4 data differential lanes plus 1 clock differential lane in synchronous mode, double data rate: • 1.5 Gbps (750 MHz) @OPP_NOM for each lane. The CSI-2 port B is compliant with the MIPI D-PHY RX specification v1.00.00 and the MIPI CSI-2 specification v1.00, with 2 data lanes plus 1 clock lane (differential) in synchronous mode, double data rate: • 1.5 Gbps (750 MHz) @OPP_NOM for each lane, in synchronous mode. 6.16.17 eMMC/SD/SDIO The eMMC/SD/SDIO host controller provides an interface between a local host (LH) such as a microprocessor unit (MPU) or digital signal processor (DSP) and either eMMC, SD® memory cards, or SDIO cards and handles eMMC/SD/SDIO transactions with minimal LH intervention. Optionally, the controller is connected to the L3_MAIN interconnect to have a direct access to system memory. It also supports two direct memory access (DMA) slave channels or a DMA master access (in this case, slave DMA channels are deactivated) depending on its integration. The eMMC/SD/SDIO host controller deals with eMMC/SD/SDIO protocol at transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit, and checking for syntactical correctness. The application interface can send every eMMC/SD/SDIO command and poll for the status of the adapter or wait for an interrupt request, which is sent back in case of exceptions or to warn of end of operation. 374 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 The application interface can read card responses or flag registers. It can also mask individual interrupt sources. All these operations can be performed by reading and writing control registers. The eMMC/SD/SDIO host controller also supports two DMA channels. There are four eMMC/SD/SDIO host controllers inside the device. gives an overview of the eMMC/SD/SDIOi (i = 1 to 4) controllers. Each controller has the following data width: • eMMC/SD/SDIO1 - 4-bit wide data bus • eMMC/SD/SDIO2 - 8-bit wide data bus • eMMC/SD/SDIO3 - 8-bit wide data bus • eMMC/SD/SDIO4 - 4-bit wide data bus Compliance with standards: • Full compliance with MMC/eMMC command/response sets as defined in the JC64 MMC/eMMC Standard Specification, v4.5. • Full compliance with SD command/response sets as defined in the SD Physical Layer Specification v3.01 • Full compliance with SDIO command/response sets and interrupt/read-wait suspend-resume operations as defined in the SD part E1 Specification v3.00 • Full compliance with SD Host Controller Standard Specification sets as defined in the SD card Specification Part A2 v3.00 Main features of the eMMC/SD/SDIO host controllers: • Flexible architecture allowing support for new command structure • 32-bit wide access bus to maximize bus throughput • Designed for low power • Programmable clock generation • Dedicated DLL to support SDR104 mode (MMC1 only) • Dedicated DLL to support HS200 mode (MMC2 only) • Card insertion/removal detection and write protect detection • L4 slave interface supports: – 32-bit data bus width – 8/16/32 bit access supported – 9-bit address bus width – Streaming burst supported only with burst length up to 7 – WNP supported • L3 initiator interface Supports: – 32-bit data bus width – 8/16/32 bit access supported – 32-bit address bus width – Burst supported • Built-in 1024-byte buffer for read or write • Two DMA channels, one interrupt line • Support JC 64 v4.4.1 boot mode operations • Support SDA 3.00 Part A2 programming model • Support SDA 3.00 Part A2 DMA feature (ADMA2) Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 375 ADVANCE INFORMATION The eMMC/SD/SDIOi controller is also referred to as MMCi. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • www.ti.com Supported data transfer rates: – MMCi supports the following SD v3.0 data transfer rates: • DS mode (3.3V IOs): up to 12 MBps (24 MHz clock) • HS mode (3.3V IOs): up to 24 MBps (48 MHz clock) • SDR12 (1.8V IOs): up to 12 MBps (24 MHz clock) • SDR25 (1.8V IOs): up to 24 MBps (48 MHz clock) • SDR50 (1.8V IOs): up to 48 MBps (96 MHz clock) - MMC1 and MMC3 only • DDR50 (1.8V IOs): up to 48 MBps (48 MHz clock) - MMC1 only • SDR104 (1.8V IOs) cards can be supported up to 192 MHz clock (96 MBps max) - MMC1 only – MMCi supports the Default SD mode 1-bit data transfer up to 24Mbps (3MBps) – Only MMC2 supports also the following JC64 v4.5 data transfer rates: • Up to 192 MBps in eMMC mode, 8-bit SDR mode (192 MHz clock frequency) • Up to 96 MBps in eMMC mode, 8-bit DDR mode (48 MHz clock frequency) All eMMC/SD/SDIO controllers are connected to 1.8V/3.3V compatible I/Os to support 1.8V/3.3V signaling ADVANCE INFORMATION NOTE eMMC functionality is supported fully by MMC2 only. The other MMC modules are capable of eMMC functionality, but are not timing-optimized for eMMC. The differences between the eMMC/SD/SDIO host controllers and a standard SD host controller defined by the SD Card Specification, Part A2, SD Host Controller Standard Specification, v3.0 are: • The clock divider in the eMMC/SD/SDIO host controller supports a wider range of frequency than specified in the SD Memory Card Specifications, v3.0. The eMMC/SD/SDIO host controller supports odd and even clock ratio. • The eMMC/SD/SDIO host controller supports configurable busy time-out. • ADMA2 64-bit mode is not supported. • There is no external LED control. NOTE Only even ratios are supported in DDR mode. For more information, see chapter eMMC/SD/SDIO of the device TRM. 6.16.18 GPIO The general-purpose interface combines eight general-purpose input/output (GPIO) banks. Each GPIO module provides 32 dedicated general-purpose pins with input and output capabilities; thus, the general-purpose interface supports up to 247 pins. These pins can be configured for the following applications: • Data input (capture)/output (drive) • Keyboard interface with a debounce cell • Interrupt generation in active mode upon the detection of external events. Detected events are processed by two parallel independent interrupt-generation submodules to support biprocessor operations • Wake-up request generation in idle mode upon the detection of external events 376 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 NOTE The general-purpose input/output i (i = 1 to 8) bank is also referred to as GPIOi. For more information, see chapter General-Purpose Interface of the device TRM. 6.16.19 ePWM Each ePWM module supports the following features: • Dedicated 16-bit time-base counter with period and frequency control • Two PWM outputs (EPWMxA and EPWMxB) that can be used in the following configurations: – Two independent PWM outputs with single-edge operation – Two independent PWM outputs with dual-edge symmetric operation – One independent PWM output with dual-edge asymmetric operation • Asynchronous override control of PWM signals through software. • Programmable phase-control support for lag or lead operation relative to other ePWM modules. • Hardware-locked (synchronized) phase relationship on a cycle-by-cycle basis. • Dead-band generation with independent rising and falling edge delay control. • Programmable trip zone allocation of both cycle-by-cycle trip and one-shot trip on fault conditions. • A trip condition can force either high, low, or high-impedance state logic levels at PWM outputs. • Programmable event prescaling minimizes CPU overhead on interrupts. • PWM chopping by high-frequency carrier signal, useful for pulse transformer gate drives. For more information, see section Enhanced PWM (ePWM) Module in chapter Pulse-Width Modulation Subsystem of the device TRM. 6.16.20 eCAP Uses for eCAP include: • Sample rate measurements of audio inputs • Speed measurements of rotating machinery (for example, toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor pulses • 4 stage sequencer (Mod4 counter) which is synchronized to external events (ECAPx pin edges) • Period and duty cycle measurements of pulse train signals • Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors The eCAP module includes the following features: • 32-bit time base counter • 4-event time-stamp registers (each 32 bits) • Edge polarity selection for up to four sequenced time-stamp capture events • Interrupt on either of the four events • Single shot capture of up to four event time-stamps • Continuous mode capture of time-stamps in a four-deep circular buffer Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 377 ADVANCE INFORMATION An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand and use. The ePWM unit described here addresses these requirements by allocating all needed timing and control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided; instead, the ePWM is built up from smaller single channel modules with separate resources and that can operate together as required to form a system. This modular approach results in an orthogonal architecture and provides a more transparent view of the peripheral structure, helping users to understand its operation quickly. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • • www.ti.com Absolute time-stamp capture Difference (Delta) mode time-stamp capture All above resources dedicated to a single input pin When not used in capture mode, the ECAP module can be configured as a single channel PWM output For more information, see section Enhanced Capture (eCAP) Module in chapter Pulse-Width Modulation Subsystem of the device TRM. 6.16.21 eQEP A single track of slots patterns the periphery of an incremental encoder disk. These slots create an alternating pattern of dark and light lines. The disk count is defined as the number of dark/light line pairs that occur per revolution (lines per revolution). As a rule, a second track is added to generate a signal that occurs once per revolution (index signal: QEPI), which can be used to indicate an absolute position. Encoder manufacturers identify the index pulse using different terms such as index, marker, home position, and zero reference. ADVANCE INFORMATION To derive direction information, the lines on the disk are read out by two different photo-elements that "look" at the disk pattern with a mechanical shift of 1/4 the pitch of a line pair between them. This shift is realized with a reticle or mask that restricts the view of the photo-element to the desired part of the disk lines. As the disk rotates, the two photo-elements generate signals that are shifted 90 degrees out of phase from each other. These are commonly called the quadrature QEPA and QEPB signals. The clockwise direction for most encoders is defined as the QEPA channel going positive before the QEPB channel. The encoder wheel typically makes one revolution for every revolution of the motor or the wheel may be at a geared rotation ratio with respect to the motor. Therefore, the frequency of the digital signal coming from the QEPA and QEPB outputs varies proportionally with the velocity of the motor. For example, a 2000-line encoder directly coupled to a motor running at 5000 revolutions per minute (rpm) results in a frequency of 166.6 KHz, so by measuring the frequency of either the QEPA or QEPB output, the processor can determine the velocity of the motor. For more information, see section Enhanced Quadrature Encoder Pulse (eQEP) Module in chapter PulseWidth Modulation Subsystem of the device TRM. 6.17 On-Chip Debug Debugging a system that contains an embedded processor involves an environment that connects highlevel debugging software running on a host computer to a low-level debug interface supported by the target device. Between these levels, a debug and trace controller (DTC) facilitates communication between the host debugger and the debug support logic on the target chip. The DTC is a combination of hardware and software that connects the host debugger to the target system. The DTC uses one or more hardware interfaces and/or protocols to convert actions dictated by the debugger user to JTAG® commands and scans that execute the core hardware. The debug software and hardware components let the user control multiple central processing unit (CPU) cores embedded in the device in a global or local manner. This environment provides: • Synchronized global starting and stopping of multiple processors • Starting and stopping of an individual processor • Each processor can generate triggers that can be used to alter the execution flow of other processors System topics include but are not limited to: • System clocking and power-down issues • Interconnection of multiple devices • Trigger channels For more information, see chapter On-chip Debug of the device TRM. 378 Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 The device deploys Texas Instrument's CTools debug technology for on-chip debug and trace support. It provides the following features: • External debug interfaces: – Primary debug interface - IEEE1149.1 (JTAG) or IEEE1149.7 (complementary superset of JTAG) • Used for debugger connection • Default mode is IEEE1149.1 but debugger can switch to IEEE1149.7 via an IEEE1149.7 adapter module • Controls ICEPick™ (generic test access port [TAP] for dynamic TAP insertion) to allow the debugger to access several debug resources through its secondary (output) JTAG ports (for more information, see ICEPick Secondary TAPs section of the Device TRM). – Debug (trace) port • Can be used to export processor or system trace off-chip (to an external trace receiver) • Can be used for cross-triggering with an external device • Configured through debug resources manager (DRM) module instantiated in the debug subsystem • For more information about debug (trace) port, see Debug (Trace) Port and Concurrent Debug Modes sections of the Device TRM. • JTAG based processor debug on: – Cortex-A15 in MPU – C66x in DSP1 – Cortex-M4 (x2) in IPU1, IPU2 – ARM968 (x2) in IVA • Dynamic TAP insertion – Controlled by ICEPick – For more information, see , Dynamic TAP Insertion. • Power and clock management – Debugger can get the status of the power domain associated to each TAP. – Debugger may prevent the application software switching off the power domain. – Application power management behavior can be preserved during debug across power transitions. – For more information, see Power and Clock Management section of the Device TRM. • Reset management – Debugger can configure ICEPick to assert, block, or extend the reset of a given subsystem. – For more information, see Reset Management section of the Device TRM. • Cross-triggering – Provides a way to propagate debug (trigger) events from one processor, subsystem, or module to another: • Subsystem A can be programmed to generate a debug event, which can then be exported as a global trigger across the device. • Subsystem B can be programmed to be sensitive to the trigger line input and to generate an action on trigger detection. – Two global trigger lines are implemented – Device-level cross-triggering is handled by the XTRIG (TI cross-trigger) module implemented in the debug subsystem – Various ARM® CoreSight™ cross-trigger modules implemented to provide support for CoreSight triggers distribution • CoreSight Cross-Trigger Interface (CS_CTI) modules • CoreSight Cross-Trigger Matrix (CS_CTM) modules – For more information about cross-triggering, see Cross-Triggering section of the Device TRM. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 379 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • • ADVANCE INFORMATION 380 www.ti.com Suspend – Provides a way to stop a closely coupled hardware process running on a peripheral module when the host processor enters debug state – For more information about suspend, see Suspend section of the Device TRM. MPU watchpoint – Embedded in MPU subsystem – Provides visibility on MPU to EMIF direct paths – For more information, see MPU Memory Adaptor (MPU_MA) Watchpoint section of the Device TRM. Processor trace – Cortex-A15 (MPU) and C66x (DSP) processor trace is supported – Program trace only for MPU (no data trace) – MPU trace supported by a CoreSight Program Trace Macrocell (CS_PTM) module – Three exclusive trace sinks: • CoreSight Trace Port Interface Unit (CS_TPIU) – trace export to an external trace receiver • CTools Trace Buffer Router (CT_TBR) in system bridge mode – trace export through USB • CT_TBR in buffer mode – trace history store into on-chip trace buffer – For more information, see Processor Trace section of the Device TRM. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P • • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 System instrumentation (trace) – Supported by a CTools System Trace Module (CT_STM), implementing MIPI System Trace Protocol (STP) (rev 2.0) – Real-time software trace • MPU software instrumentation through CoreSight STM (CS_STM) (STP2.0) • System-on-chip (SoC) software instrumentation through CT_STM (STP2.0) – OCP watchpoint (OCP_WP_NOC) • OCP target traffic monitoring: OCP_WP_NOC can be configured to generate a trigger upon watchpoint match (that is, when target transaction attributes match the user-defined attributes). • SoC events trace • DMA transfer profiling – Statistics collector (performance probes) • Computes traffic statistics within a user-defined window and periodically reports to the user through the CT_STM interface • Embedded in the L3_MAIN interconnect • 10 instances: – 1 instance dedicated to target (SDRAM) load monitoring – 9 instances dedicated to master latency monitoring – IVA instrumentation (hardware accelerator [HWA] profiling) • Supported through a software message and system trace event (SMSET) module embedded in the IVA subsystem – Power-management events profiling (PM instrumentation [PMI]) • Monitoring major power-management events. The PM state changes are handled as generic events and encapsulated in STP messages. – Clock-management events profiling (CM instrumentation [CMI]) • Monitoring major clock management events. The CM state changes are handled as generic events and encapsulated in STP messages. • Two instances, one per CM – CM1 Instrumentation (CMI1) module mapped in the PD_CORE_AON power domain – CM2 Instrumentation (CMI2) module mapped in the PD_CORE power domain – For more information, see System Instrumentation section of the Device TRM. Performance monitoring – Supported by subsystem counter timer module (SCTM) for IPU – Supported by performance monitoring unit (PMU) for MPU subsystem For more information, see chapter On-Chip Debug Support of the device TRM. Detailed Description Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 381 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 7 Applications, Implementation, and Layout NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test design implementation to confirm system functionality. 7.1 Introduction This chapter is intended to communicate, guide and illustrate a PCB design strategy resulting in a PCB that can support TI’s latest Application Processor. This Processor is a high-performance processor designed for automotive Infotainment and Advanced Driver Assistance Systems based on enhanced OMAP™ architecture integrated on a 28-nm CMOS process technology. ADVANCE INFORMATION These guidelines first focus on designing a robust Power Delivery Network (PDN) which is essential to achieve the desirable high performance processing available on Device. The general principles and stepby-step approach for implementing good power integrity (PI) with specific requirements will be described for the key Device power domains. TI strongly believes that simulating a PCB’s proposed PDN is required for first pass PCB design success. Key Device processor high-current power domains need to be evaluated for Power Rail IR Drop, Decoupling Capacitor Loop-Inductance and Power Rail Target Impedance. Only then can a PCB’s PDN performance be truly accessed by comparing these model PI parameters vs. TI’s recommended values. Ultimately for any high-volume product, TI recommends conducting a “Processor PDN Validation” test on prototype PCBs across processor “split lots” to verify PDN robustness meets desired performance goals for each customer’s worst-case scenario. Please contact your TI representative to receive guidance on PDN PI modeling and validation testing. Likewise, the methodology and requirements needed to route Device high-speed, differential interfaces (i.e. USB2.0, USB3.0, HDMI, PCI, SATA), single-ended interfaces (i.e. DDR2/DDR3, QSPI) and general purpose interfaces using LVCMOS drivers that meet timing requirements while minimizing signal integrity (SI) distortions on the PCB’s signaling traces. Signal trace lengths and flight times are aligned with FR-4 standard specification for PCBs. Several different PCB layout stack-up examples have been presented to illustrate a typical number of layers, signal assignments and controlled impedance requirements. Different Device interface signals demand more or less complexity for routing and controlled impedance stack-ups. Optimizing the PCB’s PDN stack-up needs with all of these different types of signal interfaces will ultimately determine the final layer count and layer assignments in each customer’s PCB design. This guideline must be used as a supplement in complement to TI’s Application Processor, Power Management IC (PMIC) and Audio Companion components along with other TI component technical documentation (i.e. Technical Reference Manual, Data Manual, Data Sheets, Silicon Errata, Pin-Out Spreadsheet, Application Notes, etc.). NOTE Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of merchantability of fitness for a specific purpose, for customer boards. The data described in this appendix are intended as guidelines only. 382 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 NOTE These PCB guidelines are in a draft maturity and consequently, are subject to change depending on design verification testing conducted during IC development and validation. Note also that any references to Application Processor’s ballout or pin muxing are subject to change following the processor’s ballout maturity. 7.1.1 Initial Requirements and Guidelines Unless otherwise specified, the characteristic impedance for single-ended interfaces is recommended to be between 35 Ω and 65 Ω to minimize the overshoot or undershoot on far-end loads. Characteristic impedance for differential interfaces must be routed as differential traces on the same layer. The trace width and spacing must be chosen to yield the recommended differential impedance. For more information see Section 7.5.1. An external interface using a connector must be protected following the IEC61000-4-2 level 4 system ESD. 7.2 Power Optimizations This section describes the necessary steps for designing a robust Power Distribution Network (PDN): • Section 7.2.1, Step 1: PCB Stack-up • Section 7.2.2, Step 2: Physical Placement • Section 7.2.3, Step 3: Static Analysis • Section 7.2.4, Step 4: Frequency Analysis 7.2.1 Step 1: PCB Stack-up The PCB stack-up (layer assignment) is an important factor in determining the optimal performance of the power distribution system. An optimized PCB stack-up for higher power integrity performance can be achieved by following these recommendations: • Power and ground plane pairs must be closely coupled together. The capacitance formed between the planes can decouple the power supply at high frequencies. Whenever possible, the power and ground planes must be solid to provide continuous return path for return current. • Use a thin dielectric between the power and ground plane pair. Capacitance is inversely proportional to the separation of the plane pair. Minimizing the separation distance (the dielectric thickness) maximizes the capacitance. • Optimize the power and ground plane pair carrying high current supplies to key component power domains as close as possible to the same surface where these components are placed (see Figure 71). This will help to minimize “loop inductance” encountered between supply decoupling capacitors and component supply inputs and between power and ground plane pairs. NOTE 1-2oz Cu weight for power / ground plane is preferred to enable better PCB heat spreading, helping to reduce Processor junction temperatures. In addition, it is preferable to have the power / ground planes be adjacent to the PCB surface on which the Processor is mounted. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 383 ADVANCE INFORMATION The PDN must be optimized for low trace resistance and low trace inductance for all high-current power nets from PMIC to the device. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Capacitor Trace DIE Package Via 3 1 Power/Ground 2 Ground/Power Note: 1. BGA via pair loop inductance 2. Power/Ground net spreading inductance 3. Capacitor trace inductance Loop inductance SPRABP6-001 Figure 7-1. Minimize Loop Inductance With Proper Layer Assignment ADVANCE INFORMATION The placement of power and ground planes in the PCB stackup (determined by layer assignment) has a significant impact on the parasitic inductances of power current path as shown in Figure 7-1. For this reason, it is recommended to consider layer order in the early stages of the PCB PDN design cycle, putting high-priority supplies in the top half of the stackup (assuming high load and priority components are mounted on the top-side of PCB) and low-priority supplies in the bottom half of the stackup as shown in the examples below (vias have parasitic inductances which impact the bottom layers more, so it is advised to put the sensitive and high-priority power supplies on the top/same layers). Two PCB stack-ups with layer assignments and via types that can enable an optimize PDN are shown in Figure 7-2 and Figure 7-3. TOP/SIGNAL1 GROUND POWER SIGNAL2 SIGNAL3 POWER GROUND BOTTOM/SIGNAL4 SPRABP6-002 Figure 7-2. Layer PCB With High Density Interconnect (HDI) Vias 384 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 TOP/SIGNAL1 POWER GROUND SIGNAL2 SIGNAL3 GROUND POWER BOTTOM/SIGNAL4 Figure 7-3. Layer PCB With Plated Through Holes (PTH) Vias 7.2.2 Step 2: Physical Placement A critical step in designing an optimized PDN is that proper care must be taken to making sure that the initial floor planning of the PCB layout is done with good power integrity design guidelines in mind. The following points are important for optimizing a PCB’s PDN: • Minimizing the physical distance between power sources and key high load components is the first step toward optimization. Placing source and load components on the same side of the PCB is desirable. This will minimize via inductance impact for high current loads and steps • External trace routing between components must be as wide as possible. The wider the traces, the lower the DC resistance and consequently the lower the static IR drop. • Whenever possible for the internal layers (routing and plane), wide traces and copper area fills are preferred for PDN layout. The routing of power nets in plane provide for more interplane capacitance and improved high frequency performance of the PDN. • Whenever possible, use a via to component pin/pad ratio of 1:1 or better (i.e. especially decoupling capacitors, power inductors and current sensing resistors). Do not share vias among multiple capacitors for connecting power supply and ground planes. • Placement of vias must be as close as possible or even within a component’s solder pad if the PCB technology you are using provides this capability. Figure 7-4 shows an example of acceptable width for power net routing but with poor via placement. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 385 ADVANCE INFORMATION SPRABP6-003 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com SWPS040-211 ADVANCE INFORMATION Figure 7-4. Poor Via Assignment for PDN Figure 7-5 shows an improved power net routing with better via assignment and placement, respectively. SWPS040-212 • 386 Figure 7-5. Improved Via Assignment for PDN To avoid any “ampacity” issue – maximum current-carrying capacity of each transitional via should be evaluated to determine the appropriate number of vias required to connect components. Figure 7-6 and Figure 7-7 show examples of “via starvation” on a power net transitioning from top routing layer to internal layers and the improved layout, respectively. Adding vias to bring the “via-topad” ratio to 1:1 will improve PDN performance. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 SWPS040-213 One via for 5 capacitor pads is NOT good practice Figure 7-6. Via Starvation SWPS040-214 Added vias • Figure 7-7. Improved Layout With More Transitional Vias For noise sensitive power supplies (i.e. Phase Lock-Loops, analog signals like audio and video), a Gnd shield can be used to isolate coplanar supplies that may have high step currents or high frequency switching transitions from coupling into low-noise supplies. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 387 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com vdd_mpu vss vdd PCB_PO_8 Figure 7-8. Coplanar Shielding of Power Net Using Ground Guard-band 7.2.3 Step 3: Static Analysis ADVANCE INFORMATION Delivering reliable power to circuits is always of critical importance because voltage drops (also known as IR drops) can happen at every level within an electronic system, on-chip, within a package, and across the board. Robust system performance can only be ensured by understanding how the system elements will perform under typical stressful Use Cases. Therefore, it is a good practice to perform a Static or DC Analysis. Static or DC analysis and design methodology results in a PDN design that minimizes voltage or IR drops across power and ground planes, traces and vias. This ensures the application processor’s internal transistors will be operating within their specified voltage ranges for proper functionality. The amount of IR drop that will be encounter is based upon amount power drawn for a desired Use Case and PCB trace (widths, geometry and number of parallel traces) and via (size, type and number) characteristics. Components that are distant from their power source are particularly susceptible to IR drop. Designs that rely on battery power must minimize voltage drops to avoid unacceptable power loss that can negatively impact system performance. Early assessments a PDN’s static (DC) performance helps to determine basic power distribution parameters such as best system input power point, optimal PCB layer stackup, and copper area needed for load currents. The resistance Rs of a plane conductor for a unit length and unit width is called the surface resistivity (ohms per square). L r 1 = σ ×t t l R = Rs × w Rs = W t SWPS040-178 Figure 7-9. Depiction of Sheet Resistivity and Resistance Ohm’s Law (V = I × R) relates conduction current to voltage drop. At DC, the relation coefficient is a constant and represents the resistance of the conductor. Even current carrying conductors will dissipate power at high currents even though their resistance may be very small. Both voltage drop and power dissipation are proportional to the resistance of the conductor. Figure 7-10 shows a PCB-level static IR drop budget defined between the power management device (PMIC) pins and the application processor’s balls when the PMIC is supplying power. • It is highly recommended to physically place the PMIC as close as possible to the processor and on the same side. The orientation of the PMIC vs. processor should be aligned to minimize distance for the highest current rail. 388 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 PCB Static IR drop and Effective Resistance Load Component Source Component BGA pad on PCB PCB_PO_10 The system-level IR drop budget is made up of three portions: on-chip, package, and PCB board. Static IR or DC analysis/design methodology consists of designing the PDN such that the voltage drop (under DC operating conditions) across power and ground pads of the transistors of the application processor device is within a specified value of the nominal voltage for proper functionality of the device. A PCB system-level voltage drop budget for proper device functionality is typically 1.5% of nominal voltage. For a 1.35-V supply, this would be ≤20 mV. To accurately analyze PCB static IR drop, the actual geometry of the PDN must be modeled properly and simulated to accurately characterize long distribution paths, copper weight impacts, electro-migration violations of current-carrying vias, and “Swiss-cheese” effects via placement has on power rails. It is recommended to perform the following analyses: • Lumped resistance/IR drop analysis • Distributed resistance/IR drop analysis NOTE The PMIC companion device supporting Processor has been designed with voltage sensing feedback loop capabilities that enable a remote sense of the SMPS output voltage at the point of use. The NOTE above means the SMPS feedback signals and returns must be routed across PCB and connected to the Device input power ball for which a particular SMPS is supplying power. This feedback loop provides compensation for some of the voltage drop encountered across the PDN within limits. As such, the effective resistance of the PDN within this loop should be determined in order to optimize voltage compensation loop performance. The resistance of two PDN segments are of interest: one from the power inductor/bulk power filtering capacitor node to the Processor’s input power and second is the entire PDN route from SMPS output pin/ball to the Processor input power. In the following sections each methodology is described in detail and an example has been provided of analysis flow that can be used by the PCB designer to validate compliance to the requirements on their PCB PDN design. 7.2.3.1 PDN Resistance and IR Drop Lumped methodology consists of grouping all of the power pins on both the PMIC (voltage source) and processor (current sink) devices. Then the PMIC source is set to an expected Use Case voltage level and the processor load has its Use Case current sink value set as well. Now the lumped/effective resistance for the power rail trace/plane routes can be determine based upon the actual layout’s power rail etch wide, shape, length, via count and placement Figure 7-11 illustrates the pin-grouping/lumped concept. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 389 ADVANCE INFORMATION Figure 7-10. Static IR Drop Budget for PCB Only DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com The lumped methodology consists of importing the PCB layout database (from Cadence Allegro tool or any other layout design tool) into the static IR drop modeling and simulation tool of preference for the PCB designer. This is followed by applying the correct PCB stack-up information (thickness, material properties) of the PCB dielectric and metallization layers. The material properties of dielectric consist of permittivity (Dk) and loss tangent (Df). For the conductor layers, the correct conductivity needs to be programmed into the simulation tool. This is followed by pin-grouping of the power and ground nets, and applying appropriate voltage/current sources. The current and voltage information can be obtained from the power and voltage specifications of the device under different operating conditions / Use Cases. Sources Multiport net Sources Branch Grouped Power/Ground pins to create 1 equivalent resistive branch Port/Pin Sinks Sinks SWPS040-179 ADVANCE INFORMATION Figure 7-11. Pin-grouping concept: Lumped and Distributed Methodologies 7.2.4 Step 4: Frequency Analysis Delivering low noise voltage sources are very important to allowing a system to operate at the lowest possible Operational Performance Point (OPP) for any one Use Case. An OPP is a combination of the supply voltage level and clocking rate for key internal processor domains. A SCH and PCB designed to provide low noise voltage supplies will then enable the processor to enter optimal OPPs for each Use Case that in turn will minimize power dissipation and junction temperatures on-die. Therefore, it is a good engineering practice to perform a Frequency Analysis over the key power domains. Frequency analysis and design methodology results in a PDN design that minimizes transient noise voltages at the processor’s input power balls. This allows the processor’s internal transistors to operate near the minimum specified operating supply voltage levels. To accomplish this one must evaluate how a voltage supply will change due to impedance variations over frequency. This analysis will focus on the decoupling capacitor network (VDD_xxx and VSS/Gnd rails) at the load. Sufficient capacitance with a distribution of self-resonant points will provide for an overall lower impedance vs frequency response for each power domain. Decoupling components that are distant from their load’s input power are susceptible to encountering spreading loop inductance from the PCB design. Early analysis of each key power domain’s frequency response helps to determine basic decoupling capacitor placement, optimal footprint, layer assignment, and types needed for minimizing supply voltage noise/fluctuations due to switching and load current transients. NOTE Evaluation of loop inductance values for decoupling capacitors placed ~300mils closer to the load’s input power balls has shown an 18% reduction in loop inductance due to reduced distance. • 390 Decoupling capacitors must be carefully placed in order to minimize loop inductance impact on supply voltage transients. A real capacitor has characteristics not only of capacitance but also inductance and resistance. Figure 7-12 shows the parasitic model of a real capacitor. A real capacitor must be treated as an RLC circuit with effective series resistance (ESR) and effective series inductance (ESL). Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 C ESL ESR SWPS040-175 Figure 7-12. Characteristics of a Real Capacitor With ESL and ESR The magnitude of the impedance of this series model is given as: Z = 1 ö æ ESR 2 +ωESL ç ωESL - ωC ÷ ø è 2 where : w = 2π¦ SWPS040-e002 Figure 7-13. Series Model Impedance Equation ADVANCE INFORMATION Figure 7-14 shows the resonant frequency response of a typical capacitor with a self-resonant frequency of 55 MHz. The impedance of the capacitor is a combination of its series resistance and reactive capacitance and inductance as shown in the equation above. S-Parameter Magnitude Job: GCM155R71E153KA55_15NF; 1.0e+01 1.0e+00 1.0e–01 1.0e–02 XC=1/ωC XL=ωL 1.0e–03 Resonant frequency (55 MHz) (minimum) 1.0e–04 1.00e–002 1.00e+000 1.00e+002 1.00e+004 1.00e+006 1.00e+008 Frequency (MHz) SWPS040-176 Figure 7-14. Typical Impedance Profile of a Capacitor Because a capacitor has series inductance and resistance that impacts its effectiveness, it is important that the following recommendations are adopted in placing capacitors on the PDN. Wherever possible, mount the capacitor with the geometry that minimizes the mounting inductance and resistance. This was shown earlier in Figure 7-1. The capacitor mounting inductance and resistance values include the inductance and resistance of the pads, trace, and vias. Whenever possible, use footprints that have the lowest inductance configuration as shown in Figure 7-15 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 391 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com The length of a trace used to connect a capacitor has a big impact on parasitic inductance and resistance of the mounting. This trace must be as short and as wide as possible. wherever possible, minimize distance to supply and Gnd vias by locating vias nearby or within the capacitor’s solder pad landing. Further improvements can be made to the mounting by placing vias to the side of capacitor lands or doubling the number of vias as shown in Figure 7-15. If the PCB manufacturing processes allow it and if cost-effective, via-in-pad (VIP) geometries are strongly recommended. In addition to mounting inductance and resistance associated with placing a capacitor on the PCB, the effectiveness of a decoupling capacitor also depends on the spreading inductance and resistance that the capacitor sees with respect to the load. The spreading inductance and resistance is strongly dependent on the layer assignment in the PCB stack-up. Therefore, try to minimize X, Y and Z dimensions where the Z is due to PCB thickness (as shown in Figure 7-2). ADVANCE INFORMATION From left (highest inductance) to right (lowest inductance) the capacitor footprint types shown in Figure 715 are known as: • 2-via, Skinny End Exit (2vSEE) • 2-via, Wide End Exit (2vWEE) • 2-via, Wide Side Exit (2vWSE) • 4-via, Wide Side Exit (4vWSE) • 2-via, In-Pad (2vIP) Via Via-in-pad Pad Trace Mounting geometry for reduced inductance SWPS040-177 Figure 7-15. Capacitor Placement Geometry for Improved Mounting Inductance NOTE Evaluation of loop inductance values for decoupling capacitor footprints 2vSEE (worst case) vs 4vWSE (2nd best) has shown a 30% reduction in inductance when 4vWSE footprint was used in place of 2vSEE. Decoupling Capacitor (Dcap) Strategy: 1. Use lowest inductance footprint and trace connection scheme possible for given PCB technology and layout area in order to minimize Dcap loop inductance to power pin as much as possible (see Figure 715). 2. Place Dcaps on “same-side” as component within their power plane outline to minimize “decoupling loop inductance”. Target distance to power pin should be less than ~500mils depending upon PCB layout characteristics (plane's layer assignment and solid nature). Use PI modeling CAD tool to verify 392 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 minimum inductance for top vs bottom-side placement. 3. Place Dcaps on “opposite-side” as component within their power plane outline if “same-side” is not feasible or if distance to power pin is greater than ~500mils for top-side location. Use PI modeling CAD tool to verify minimum inductance for top vs bottom-side placement. 4. Use minimum 10mil trace width for all voltage and gnd planes connections (i.e. Dcap pads, component power pins, etc.). 5. Place all voltage and gnd plane vias “as close as possible” to point of use (i.e. Dcap pads, component power pins, etc.). 6. Use a “Power/Gnd pad/pin to via” ratio of 1:1 whenever possible. Do not exceed 2:1 ratio for small number of vias within restricted PCB areas (i.e. underneath BGA components). Frequency analysis for the MPU power domain has yielded the vdd_mpu Impedance vs Frequency response shown in Section 7.3.7.2, vdd_mpu Example Analysis. As the example shows the overall MPU PDN Reff meets the maximum recommended PDN resistance of 10mΩ. System ESD Generic Guidelines 7.2.5.1 System ESD Generic PCB Guideline Protection devices must be placed close to the ESD source which means close to the connector. This allows the device to subtract the energy associated with an ESD strike before it reaches the internal circuitry of the application board. To help minimize the residual voltage pulse that will be built-up at the protection device due to its nonzero turn-on impedance, it is mandatory to route the ESD device with minimum stub length so that the lowresistive, low-inductive path from the signal to the ground is granted and not increasing the impedance between signal and ground. For ESD protection array being railed to a power supply when no decoupling capacitor is available in close vicinity, consider using a decoupling capacitor (≥ 0.1 µF) tight to the VCC pin of the ESD protection. A positive strike will be partially diverted to this capacitance resulting in a lower residual voltage pulse. Ensure that there is sufficient metallization for the supply of signals at the interconnect side (VCC and GND in Figure 7-16) from connector to external protection because the interconnect may see between 15A to 30-A current in a short period of time during the ESD event. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 393 ADVANCE INFORMATION 7.2.5 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Bypass capacitor 0.1 mf (minimum) Stub inductance Connector Stub inductance Interconnection inductance vcc Signal VCC VCC Protected circuit Stub inductance Minimize such inductance by optimizing layout ESD strike External protection ADVANCE INFORMATION Ground inductance Keep distance between protected circuit and external protection Signal Keep external protection closed by connector SPRABP6-004 Figure 7-16. Placement Recommendation for an ESD External Protection NOTE To ensure normal behavior of the ESD protection (unwanted leakage), it is better to ground the ESD protection to the board ground rather than any local ground (example isolated shield or audio ground). 7.2.5.2 • • • • • • • • 394 Miscellaneous EMC Guidelines to Mitigate ESD Immunity Avoid running critical signal traces (clocks, resets, interrupts, control signals, and so forth) near PCB edges. Add high frequency filtering: Decoupling capacitors close to the receivers rather than close to the drivers to minimize ESD coupling. Put a ground (guard) ring around the entire periphery of the PCB to act as a lightning rod. Connect the guard ring to the PCB ground plane to provide a low impedance path for ESD-coupled current on the ring. Fill unused portions of the PCB with ground plane. Minimize circuit loops between power and ground by using multilayer PCB with dedicated power and ground planes. Shield long line length (strip lines) to minimize radiated ESD. Avoid running traces over split ground planes. It is better to use a bridge connecting the two planes in one area. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 BAD BETTER SWPS040-220 7.2.6 Figure 7-17. Trace Examples Always route signal traces and their associated ground returns as close to one another as possible to minimize the loop area enclosed by current flow: – At high frequencies current follows the path of least inductance. – At low frequencies current flows through the path of least resistance. EMI / EMC Issues Prevention All high-speed digital integrated circuits can be sources of unwanted radiation, which can affect nearby sensitive circuitry and cause the final product to have radiated emissions levels above the limits allowed by the EMC regulations if some preventative steps are not taken. Likewise, analog and digital circuits can be susceptible to interference from the outside world and picked up by the circuitry interconnections. To minimize the potential for EMI/EMC issues, the following guidelines are recommended to be followed. 7.2.6.1 Signal Bandwidth To evaluate the frequency of a digital signal, an estimated rule of thumb is to consider its bandwidth fBW with respect to its rise time, tR: fBW ≈ 0.35 / tR This frequency actually corresponds to the break point in the signal spectrum, where the harmonics start to decay at 40 dB per decade instead of 20 dB per decade. 7.2.6.2 Signal Routing 7.2.6.2.1 Signal Routing—Sensitive Signals and Shielding Keep radio frequency (RF) sensitive circuitry (like GPS receivers, GSM/WCDMA, Bluetooth/WLAN transceivers, frequency modulation (FM) radio) away from high-speed ICs (the device, power and audio manager, chargers, memories, and so forth) and ideally on the opposite side of the PCB. For improved protection it is recommended to place these emission sources in a shield can. If the shield can have a removable lid (two-piece shield), ensure there is low contact impedance between the fence and the lid. Leave some space between the lid and the components under it to limit the high-frequency currents induced in the lid. Limit the shield size to put any potential shield resonances above the frequencies of interest; see Figure 7-14, Typical Impedance Profile of a Capacitor. 7.2.6.2.2 Signal Routing—Outer Layer Routing In case there is a need to use the outer layers for routing outside of shielded areas, it is recommended to route only static signals and ensure that these static signals do not carry any high-frequency components (due to parasitic coupling with other signals). In case of long traces, make provision for a bypass capacitor near the signal source. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 395 ADVANCE INFORMATION • DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Routing of high-frequency clock signals on outer layers, even for a short distance, is discouraged, because their emissions energy is concentrated at the discrete harmonics and can become significant even with poor radiators. Coplanar shielding of traces on outer layers (placing ground near the sides of a track along its length) is effective only if the distance between the trace sides and the ground is smaller that the trace height above the ground reference plane. For modern multilayer PCBs this is often not possible, so coplanar shielding will not be effective. Do not route high-frequency traces near the periphery of the PCB, as the lack of a ground reference near the trace edges can increase EMI: see Section 7.2.6.3, Ground Guidelines. 7.2.6.3 Ground Guidelines 7.2.6.3.1 PCB Outer Layers Ideally the areas on the top and bottom layers of the PCB that are not enclosed by a shield should be filled with ground after the routing is completed and connected with an adequate number of vias to the ground on the inner ground planes. 7.2.6.3.2 Metallic Frames ADVANCE INFORMATION Ensure that all metallic parts are well connected to the PCB ground (like LCD screens metallic frames, antennas reference planes, connector cages, flex cables grounds, and so forth). If using flex PCB ribbon cables to bring high-frequency signals off the PCB, ensure they are adequately shielded (coaxial cables or flex ribbons with a solid reference ground). 7.2.6.3.3 Connectors For high-frequency signals going to connectors choose a fully shielded connector, if possible (for example, SD card connectors). For signals going to external connectors or which are routed over long distances, it is recommended to reduce their bandwidth by using low-pass filters (resistor, capacitor (RC) combinations or lossy ferrite inductors). These filters will help to prevent emissions from the board and can also improve the immunity from external disturbances. 7.2.6.3.4 Guard Ring on PCB Edges The major advantage of a multilayer PCB with ground-plane is the ground return path below each and every signal or power trace. As shown in Figure 7-18 the field lines of the signal return to PCB ground as long as an infinite ground is available. Traces near the PCB-edges do not have this infinite ground and therefore may radiate more than the others. Thus, signals (clocks) or power traces (core power) identified to be critical must not be routed in the vicinity of PCB edges, or, if not avoidable, must be accompanied by a guard ring on the PCB edge. SWPS040-199 Figure 7-18. Field Lines of a Signal Above Ground 396 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Signal Power Ground Signal SWPS040-200 Figure 7-19. Guard Ring Routing The intention of the guard ring is that HF-energy, that otherwise would have been emitted from the PCB edge, is reflected back into the board where it partially will be absorbed. For this purpose ground traces on the borders of all layers (including power layer) must be applied as shown in Figure 7-19. As these traces must have the same (HF–) potential as the ground plane they must be connected to the ground plane at least every 10 mm. For the optimum solution, the AGND and the DGND planes must be connected together at the power supply source in a same point. This ensures that both planes are at the same potential, while the transfer of noise from the digital to the analog domain is minimized. 7.3 Core Power Domains This section provides boundary conditions and theoretical background to be applied as a guide for optimizing a PCB design. The decoupling capacitor and PDN characteristics tables shown below give recommended capacitors and PCB parameters to be followed for schematic and PCB designs. Board designs that meet the static and dynamic PDN characteristics shown in tables below will be aligned to the expected PDN performance needed to optimize SoC performance. 7.3.1 General Constraints and Theory • • • • • • Max PCB static/DC voltage drop (IRd) budget can be relaxed to 7.5% of supply voltage when using PMICs with remote sensing at the load as measured from PMIC’s power inductor and filter capacitor node to Device’s supply input including any ground return losses. TI highly recommends remote sensing. Max PCB static/DC voltage drop (IRd) budget of 1.5% of supply voltage when using PMICs without remote sensing as measured from PMIC’s power inductor and filter capacitor node to Processor input including any ground return losses. PMIC component DM and guidelines should be referenced for the following: – Routing remote feedback sensing to optimize per each SMPS’s implementation – Selecting power filtering capacitor values and PCB placement. Max Effective Resistance (Reff) budget can range from 4 – 100mΩ for key Device power rails not including ground returns depending upon maximum load currents and maximum DC voltage drop budget (as discussed above). Max Device supply input voltage difference budget of 5mV under max current loading shall be maintained across all balls connected to a common power rail. This represents any voltage difference that may exist between a remote sense point to any power input. Max PCB Loop Inductance (LL) budget between Device’s power inputs and local bulk and high frequency decoupling capacitors including ground returns should range from 0.4 – 2.5nH depending upon maximum transient load currents. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 397 ADVANCE INFORMATION 7.2.6.3.5 Analog and Digital Ground DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • ADVANCE INFORMATION 398 www.ti.com Max PCB dynamic/AC peak-to-peak transient noise voltage budgets between PMIC and Device including ground returns are as follows: – +/-3% of nominal supply voltage for frequencies below the PMIC bandwidth (typ Fpmic ~ 200kHz) – +/-5% of nominal supply voltage for frequencies between Fpmic to Fpcb (typ 20 – 100MHz) Max PCB Impedance (Z) vs Frequency (F) budget between Device’s power inputs and PMIC’s output power filter node including ground return is determined by applying the Frequency Domain Target Impedance Method to determine the PCB’s maximum frequency of interest (Fpcb). Ideally a properly designed and decoupled PDN will exhibit smoothly increasing Z vs. F curve. There are 2 general regions of interest as can be seen in Figure 7-20. – 1st area is from DC (0Hz) up to Fpmic (typ a few 100 kHz) where a PMIC’s transient response characteristic (i.e. Switching Freq, Compensation Loop BW) dominate. A PDN’s Z is typically very low due to power filtering & bulk capacitor values when PDN has very low trace resistance (i.e. good Reff performance). The goal is to maintain a smoothly increasing Z that is less than Zt1 over this low frequency range. This will ensure that a max transient current event will not cause a voltage drop more than the PMIC’s current step response can support (typ 3%). – 2nd area is from Fpmic up to Fpcb (typ 20-100MHz) where a PCB’s inherent characteristics (i.e. parasitic capacitance, planar spreading inductances) dominate. A PDN’s Z will naturally increase with frequency. At frequencies between Fpmic up to Fpcb, the goal is to maintain a smoothly increasing Z to be less than Zt2. This will ensue that the high frequency content of a max transient current event will not cause a voltage drop to be more than 5% of the min supply voltage. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Figure 7-20. PDN’s Target impedance 1.Voltage Rail Drop includes regulation accuracy, voltage distribution drops, and all dynamic events such as transient noise, AC ripple, voltage dips etc. 2.Typical max transient current is defined as 50% of max current draw possible. 7.3.2 Voltage Decoupling Recommended power supply decoupling capacitors main characteristics for commercial products whose ambient temperature is not to exceed +85C are shown in table below: Table 7-1. Commercial Applications Recommended Decoupling Capacitors Characteristics(1)(2)(3) Value Voltage [V] Package Stability Dielectric Capacitan ce Tolerance Temp Range [°C] Temp Sensitivity [%] REFERENCE 22µF 6,3 0603 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM188R60J226MEA0L 10µF 4,0 0402 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM155R60G106ME44 4.7µF 6,3 0402 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM155R60J475ME95 2.2µF 6,3 0402 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM155R60J225ME95 1µF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60J105MEA2 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 399 ADVANCE INFORMATION www.ti.com DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 7-1. Commercial Applications Recommended Decoupling Capacitors Characteristics(1)(2)(3) (continued) Value Voltage [V] Package Stability Dielectric Capacitan ce Tolerance Temp Range [°C] Temp Sensitivity [%] REFERENCE 470nF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60G474ME90 220nF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60J224ME90 100nF 6,3 0201 Class 2 X5R - / + 20% -55 to + 85 - / + 15 GRM033R60J104ME19 (1) Minimum value for each PCB capacitor: 100 nF. (2) Among the different capacitors, 470 nF is recommended (not required) to filter at 5-MHz to 10-MHz frequency range. (3) In comparison with the EIA Class 1 dielectrics, Class 2 dielectric capacitors tend to have severe temperature drift, high dependence of capacitance on applied voltage, high voltage coefficient of dissipation factor, high frequency coefficient of dissipation, and problems with aging due to gradual change of crystal structure. Aging causes gradual exponential loss of capacitance and decrease of dissipation factor. Recommended power supply decoupling capacitors main characteristics for automotive products are shown in table below: Table 7-2. Automotive Applications Recommended Decoupling Capacitors Characteristics (1)(2) ADVANCE INFORMATION Value Voltage [V] Package Stability Dielectric Capacitan ce Tolerance Temp Range [°C] Temp Sensitivity [%] REFERENCE 22µF 6,3 1206 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM31CR70J226ME23 10µF 6,3 0805 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM21BR70J106ME22 4.7µF 10 0805 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM21BC71A475MA73 2.2µF 6,3 0603 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM188R70J225ME22 1µF 16 0603 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM188R71C105MA64 LLL215C70G105MA11L 1µF 4 0508 Class 2 X7S - / + 20% -55 to + 125 - / + 20 470nF 10 0402 Class 2 X7S - / + 10% -55 to + 125 - / + 20 GCM155C71A474KE36 470nF 16 0603 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM188R71C474MA55 220nF 25 0603 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM188L81C224MA37 100nF 16 0402 Class 2 X7R - / + 20% -55 to + 125 - / + 15 GCM155R71C104MA55 (1) Minimum value for each PCB capacitor: 100 nF. (2) Among the different capacitors, 470 nF is recommended (not required) to filter at 5-MHz to 10-MHz frequency range. 7.3.3 Static PDN Analysis One power net parameter derived from a PCB’s PDN static analysis is the Effective Resistance (Reff). This is the total PCB power net routing resistance that is the sum of all the individual power net segments used to deliver a supply voltage to the point of load and includes any series resistive elements (i.e. current sensing resistor) that may be installed between the PMIC outputs and Processor inputs. 7.3.4 Dynamic PDN Analysis Three power net parameters derived from a PCB’s PDN dynamic analysis are the Loop Inductance (LL), Impedance (Z) and PCB Frequency of Interest (Fpcb). • LL values shown are the recommended max PCB trace inductance between a decoupling capacitor’s power supply and ground reference terminals when viewed from the decoupling capacitor with a “theoretical shorted” applied across the Processor’s supply inputs to ground reference. • Z values shown are the recommended max PCB trace impedances allowed between Fpmic up to Fpcb frequency range that limits transient noise drops to no more than 5% of min supply voltage during max transient current events. 400 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Fpcb (Frequency of Interest) is defined to be a power rail’s max frequency after which adding a reasonable number of decoupling capacitors no longer significantly reduces the power rail impedance below the desired impedance target (Zt2). This is due to the dominance of the PCB’s parasitic planar spreading and internal package inductances. Table 7-3. Recommended PDN Characteristics and EVM Decoupling Capacitors (1)(2)(3)(4)(5) Static Supply Max Reff EVM Decoupling Capacitor Scheme per Supply(6) Dynamic [mΩ] Max Dec. Cap. LL [nH] Max Impedance(8) [mΩ] Frequency of Interest [MHz] 100 nF vdd_mpu (1.8GHz)(9) 18 1.5 22 20 vdd_mpu (≤1.5GHz) 18 2 57 20 vdd_dspeve 22 1.6 40 30 vdd 32 1.6 43 30 vdd_gpu 22 2.1 48 30 vdd_iva 48 2.1 179 30 vdds_ddr1 18 1.5 130 vdds_ddr2 18 1.5 cap_vbbldo_dspeve N/A 6 cap_vbbldo_gpu N/A cap_vbbldo_iva cap_vbbldo_mpu 470 nF 1μF 2 4 5 2 2 4 5 2 2 4 5 2 5 4 1 2 4 3 1 2 2 2 1 100 8 1 1 130 100 8 1 1 N/A N/A 1 6 N/A N/A 1 N/A 6 N/A N/A 1 N/A 6 N/A N/A 1 cap_vddram_core1 N/A 6 N/A N/A 1 cap_vddram_core2 N/A 6 N/A N/A 1 cap_vddram_core3 N/A 6 N/A N/A 1 cap_vddram_core4 N/A 6 N/A N/A 1 cap_vddram_core5 N/A 6 N/A N/A 1 cap_vddram_dspeve1 N/A 6 N/A N/A 1 cap_vddram_dspeve2 N/A 6 N/A N/A 1 cap_vddram_gpu N/A 6 N/A N/A 1 cap_vddram_iva N/A 6 N/A N/A 1 cap_vddram_mpu1 N/A 6 N/A N/A 1 cap_vddram_mpu2 N/A 6 N/A N/A 1 (7) 220 nF 2.2 μF 4.7 μF 10 μF 22 μF ADVANCE INFORMATION PDN Analysis: (1) For more information on peak-to-peak noise values, see the Recommended Operating Conditions table of the Specifications chapter. (2) ESL must be as low as possible and must not exceed 0.5 nH. (3) The PDN (Power Delivery Network) impedance characteristics are defined versus the device activity (that runs at different frequency) based on the Recommended Operating Conditions table of the Specifications chapter. (4) The static drop requirement drives the maximum acceptable PCB resistance between the PMIC or the external SMPS and the processor power balls. (5) Assuming that the external SMPS (power IC) feedback sense is taken close to processor power balls. (6) Decoupling capacitor (Dcap) scheme optimized for EVM PCB design. Each PCB design could have a different optimal Dcap scheme depending upon stackup, routing, placement & Dcap footprint to via connections. (7) Maximum Reff from SMPS to Processor. (8) Maximum impedance value at the Frequency of Interest and below. (9) In order to support 1.8 GHz MPU frequency, the PCB power distribution network should be very carefully optimized to meet the Dynamic PDN specification, including consideration for the following PCB optimization techniques: – Place PMIC for MPU domain as close as possible to the SoC – Use capacitors with low inductance such as X7R & X7S Dielectric Dcap Components that are Auto qualified AEC-Q200, -55 to +125C. These are available in 0201, Reverse Geometry (0204, 0306, 0508) & 3-Terminal package sizes & types – Place Power Segments on Signal Layers to Reduce Power Rail Loop Inductance. Consider additional PCB layers if needed. – Use Through-Hole Via-In-Pad (thVIP) for Dcap power & Gnd pads outside SoC. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 401 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com NOTE For power IC which can support more than 10µF close to processor, a bulk capacitor of at least 22µF is strongly recommended for VDD_MPU power domains. 7.3.5 Power Supply Mapping TPS65917 or TPS659039 are the Power Management ICs (PMICs) that should be used for the Device designs. TI requires use of these PMICs for the following reasons: • TI has validated their use with the Device • Board level margins including transient response and output accuracy are analyzed and optimized for the entire system • Support for power sequencing requirements (refer to Section 5.10.3 Power Supply Sequences) • Support for Adaptive Voltage Scaling (AVS) Class 0 requirements, including TI provided software Whenever we allow for combining of rails mapped on any of the SMPSes, the PDN guidelines that are the most stringent of the rails combined should be implemented for the particular supply rail. ADVANCE INFORMATION It is possible that some voltage domains on the device are unused in some systems. In such cases, to ensure device reliability, it is still required that the supply pins for the specific voltage domains are connected to some core power supply output. These unused supplies though can be combined with any of the core supplies that are used (active) in the system. e.g. if IVA and GPU domains are not used, they can be combined with the CORE domain, thereby having a single power supply driving the combined CORE, IVA and GPU domains. For the combined rail, the following relaxations do apply: • The AVS voltage of active rail in the combined rail needs to be used to set the power supply • The decoupling capacitance should be set according to the active rail in the combined rail Table 7-4 illustrates the approved and validated power supply connections to the Device for the SMPS outputs of the TPS659039 PMIC. Table 7-4. TPS659039 Power Supply Connections(1) SMPS SMPS1/2/3(2) Valid Combination 1: Reference Platform Valid Combination 2: MPU Centric Valid Combination 3: DSPEVE Centric(3) Valid Combination 4: IVA Centric TPS659039 Current Rating Limitation (4) vdd_mpu vdd_mpu vdd_mpu, vdd_gpu, vdd_iva vdd_mpu SMPS12: 6A SMPS123: 9A (5) SMPS3(2) vdds_ddr1 vdds_ddr1 vdds_ddr1 vdds_ddr1 SMPS3: 3A SMPS4/5 vdd_dspeve vdd_dspeve, vdd_gpu, vdd_iva vdd_dspeve vdd_dspeve, vdd_gpu SMPS45: 4A SMPS6 vdd_gpu vdd vdd vdd SMPS6: 2-3A (BOOST_CURRENT =0/1) SMPS7 vdd Free Free Free 2A SMPS8 vdd_iva Free Free vdd_iva 1A SMPS9 vdds18v vdds18v vdds18v vdds18v 1A (1) Power consumption is highly application-specific. Separate analysis must be performed to ensure output current ratings (average and peak) is within the limits of the PMIC for all rails of the device (2) Dual phase (SMPS1/2) can be used as long as the peak power consumption is maintained below the SMPS1/2 capacity a. For the latest rated output current specifications for the TPS659039 device, please refer to the PMIC data manual. b. MPU power consumption is highly system dependent. A detailed power consumption estimate must be performed to confirm compatibility. Example: Single vs Dual MPU, OPP_NOM vs OPP_OD vs OPP_HIGH, TPS659039 configured with VI≥3V vs VI<3V, etc. Contact your TI representative for details. (3) Combination 3 must only be used in systems where the MPU frequency is 1 GHz or lower. If greater than 1 GHz MPU is required, then the vdd_mpu domain must be powered independently. 402 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (4) Refer to the PMIC data manual for the latest TPS659039 specifications (5) A product’s maximum ambient temperature, thermal system design & heat spreading performance could limit the maximum power dissipation below the full PMIC capacity in order to not exceed recommended SoC max Tj Table 7-5 illustrates the approved and validated power supply connections to the Device for the SMPS outputs of the TPS65917 PMIC. Table 7-5. TPS65917 Power Supply Connections TPS65917 Valid Combination 1: Valid Combination 2 TPS65917 Current Rating Limitation (1) (3) SMPS1 vdd_mpu vdd_mpu SMPS1: 3.5A ≤ OPP_NOM (dual or single) OR ≤ OPP_OD (single ONLY) 3.5A SMPS2 (2) vdd_dspeve, vdd_gpu, vdd_iva vdd SMPS3 (2) vdd vdd_dspeve, vdd_gpu, vdd_iva 3A SMPS4 (3) vdds18v vdds18v 1.5A SMPS5 (4) vdds_ddr1 vdds_ddr1 2A (2) DSP, EVE, GPU, and IVAHD power consumption is highly application-specific. Separate analysis must be performed to ensure output current ratings (average and peak) is within the limits of the PMIC. VDD only supports OPP_NOM. (3) Highly application-specific. Separate analysis must be performed to ensure average and peak power is within the limits of the PMIC. (4) Furthermore, if SMPS5 is used for DDR power, both total memory + SoC power must be within the PMIC limits. 7.3.6 DPLL Voltage Requirement The voltage input to the DPLLs has a low noise requirement. Board designs should supply these voltage inputs with a low noise LDO to ensure they are isolated from any potential digital switching noise. The TPS65917 and TPS659039 PMIC LDOLN outputs are specifically designed to meet this low noise requirement. NOTE For more information about Input Voltage Sources, see Section 5.10.4.4 DPLLs, DLLs Specifications. Table 7-4 presents the voltage inputs that supply the DPLLs. Table 7-6. Input Voltage Power Supplies for the DPLLs POWER SUPPLY DPLLs vdda_abe_per DPLL_PER, DPLL_ABE and PER HSDIVIDER analog power supply vdda_ddr DPLL_DDR and DDR HSDIVIDER analog power supply vdda_debug DPLL_DEBUG analog power supply vdda_dsp_eve DPLL_DSP and DPLL_EVE analog power supply vdda_gmac_core DPLL_CORE and HSDIVIDER analog power supply vdda_gpu DPLL_GPU analog power supply vdda_iva DPLL_IVA analog power supply vdda_video DPLL_VIDEO1 and DPLL_VIDEO2 analog power supply vdda_mpu DPLL_MPU analog power supply vdda_osc not DPLL input but is required to be supplied by low noise input voltage Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 403 ADVANCE INFORMATION (1) Refer to the TPS65917 Data Manual for exact current rating limitations, including assumed VIN and other parameters. Values provided in this table are for comparison purposes. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.3.7 www.ti.com Example PCB Design The following sections describe an example PCB design and its resulting PDN performance for the vdd_mpu key processor power domain. 7.3.7.1 Example Stack-up ADVANCE INFORMATION Layer Assignments: • Layer Top: Signal and Segmented Power Plane – Processor and PMIC components placed on Top-side • Layer 2: Gnd Plane1 • Layer 3: Signals • Layer n: Power Plane1 • Layer n+1: Power Plane 2 • Layer n+2: Signal • Layer n+3: Gnd Plane2 • Layer Bottom: Signal and Segmented Power Planes – Decoupling caps, etc. Via Technology: Through-hole Copper Weight: • ½ oz for all signal layers. • 1-2oz for all power plane for improved PCB heat spreading. • Total PCB Thickness 0.080inches. 7.3.7.2 vdd_mpu Example Analysis Maximum acceptable PCB resistance (Reff) between the PMIC and Processor input power balls should not exceed 10mΩ. Maximum decoupling capacitance loop inductance (LL) between Processor input power balls and decoupling capacitances should not exceed 2.0nH (ESL NOT included) Impedance target for key frequency of interest between Processor input power balls and PMIC’s SMPS output power balls should not exceed 57mΩ at 20MHz. Table 7-7. Example PCB vdd_mpu PI Analysis Summary Parameter 404 Recommendation Processor OPP High Clocking Rate 1.5 GHz Example PCB Voltage Level 1.22V 1.22V Max Current Draw 5.12 A 5.12 A Max Effective Resistance: Power Inductor Segment Total Reff 10mΩ 9.0mΩ Max Loop Inductance 2.0nH 1.0 – 1.4nH Impedance Target 57mΩ F<20Mhz 57mΩ F<20Mhz Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Figure 7-21, Figure 7-22, Figure 7-23, and Figure 7-24 show a PCB layout example and the resulting PI analysis results. U45 SMPS (3000mA) SW1 SMPS1_SW L17 1.0uH, 4.5A, 1616 IHLP-1616ABER1R0M11 PCB – Top-side C410 22uF, 4V, 0603 GRM188R60G226MEA0L PCB – Bottom-side (E11, E12, E13) SMPS2 (3000mA) SMPS1_SW SW2 U52 R181 0.001ohm, 1%, 4W, 2725 CSS2725FT1L00 PCB – Top-side 6A C365, 366, 368, 369, 370, 384, 385, 387, 389, 391, 392, 396 0.1uF, 6.3V, X5R, 0201 GRM033R60J104KE19D PCB – Bottom-side C378 22uF, 4V, 0603 GRM188R60G226MEA0L PCB – Bottom-side SMPS3 (3000mA) SW3 Device SoC vdd_mpu vdd_mpu (N18, K18, L19 L15 1.0uH, 4.5A, 1616 IHLP-1616ABER1R0M11 PCB – Top-side (E11, E12, E13) SMPS1_SW SMPS_1_2_3 N17, M17, L17 M18, L18, P18 K17, L15, L16 M15, M16, P17 R18) C92, 96 0.22uF, 6.3V, X5R, 0201 ECJ-ZEB0J224M PCB – Top-side L13x 1.0uH, 4.5A, 1616 IHLP-1616ABER1R0M11 PCB – Top-side C93, 94 (E11, E12, E13) 0.47uF, 4V, X5R, 0201 AMK063BJ474MP-F PCB – Top-side C350 22uF, 4V, 0603 GRM188R60G226MEA0L PCB – Bottom-side ADVANCE INFORMATION PMIC C91, 95, 367 PS_EVM_3V3 1.0uF, 6.3V, X5R, 0201 GRM033R60J105MEA2D PCB – 2 Top-side & 1 Bottom U39 INA226 A0 VIN+ C359 A1 VIN- 2.2uF, 6.3V, X5R, 0402 C1005X5R0J225M PCB – Bottom-side PM I2C Addr: 100 0001 C360 4.7uF, 6.3V, X5R, 0402 GRM155R60J475ME8 7D PCB – Bottom-side C356 22uF, 4V, X5R, 0603 GRM188R60G226ME A0L PCB – Bottom-side Figure 7-21. vdd_mpu Simplified SCH Diagram Sense Resistor (R181; 2725) PMIC (U45) Device (U52) Power Inductors (L13, 15 & 17; 1616) vdd_mpu “Ball-Field” Top -side segmented planes (vdd_mpu = Green) 4 of 22 Decoupling Caps (C96, 385, 387, 389; 0201) Multiple vias connecting power segments on different layers Figure 7-22. vdd_mpu routing [Top Layer] Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 405 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Interior Power Plane #2, Layer 9 of 16 (vdd_mpu = Green) Figure 7-23. vdd_mpu routing [Internal Power Plane #2] ADVANCE INFORMATION Bulk Caps underneath power inductors (C410, C378, C350; 0603) Larger Value Decoupling Caps (2.2uF C359, 4.7uF C360 & 22uF C356; 0402 & 0603) Remaining 15 of 22 Decoupling Caps (C96, 385, 387, 389; 0201) PCB_CPD_4 Figure 7-24. vdd_mpu routing and cap placements [Bottom Layer] Table 7-8. PCB Etch Resistance Breakdown - From PMIC Source to Device Load Net[from] Component [from]: Net[to] Component [to]: Etch Resistance (Ω) % of Total Etch Resistance SW1 L17 SW1 U45 0,001038 13% SW2 L15 SW2 U45 0,000898 12% SW3 L13 SW3 U45 0,000861 11% SW1 L17 SMPS_1_2_3 R181 0,000696 9% SW2 L15 SMPS_1_2_3 R181 0,000541 7% SW3 L13 SMPS_1_2_3 R181 0,000526 7% vdd_mpu R181 vdd_mpu U52 0,006311 78% vdd_mpu R181 vdd_mpu U52 0,006311 81% vdd_mpu R181 vdd_mpu U52 0,006311 82% Total Etch Resistance from SW1 = 0,008045 100% Total Etch Resistance from SW2 = 0,00775 100% Total Etch Resistance from SW3 = 0,007698 100% Max Value = 0,008045 Table 7-9. PCB Etch Resistance Breakdown - From Power Inductor to Device Load Net[from] Component [from]: Net[to] Component [to]: Etch Resistance (Ω) % of Total Etch Resistance SMPS_1_2_3 L17 SMPS_1_2_3 R181 0,000696 10% SMPS_1_2_3 L15 SMPS_1_2_3 R181 0,000541 8% SMPS_1_2_3 L13 SMPS_1_2_3 R181 0,000526 8% 406 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 7-9. PCB Etch Resistance Breakdown - From Power Inductor to Device Load (continued) Net[from] Component [from]: Net[to] Component [to]: Etch Resistance (Ω) % of Total Etch Resistance vdd_mpu R181 vdd_mpu U52 0,006311 90% vdd_mpu R181 vdd_mpu U52 0,006311 92% vdd_mpu R181 vdd_mpu U52 0,006311 92% Total Etch Resistance = 0,007007 100% Total Etch Resistance = 0,006852 100% Total Etch Resistance = 0,006837 100% Max Value = 0,007007 Table 7-10. PDN Effective Resistance - From PMIC Source to Device Load Etch PDN Effective Resistance (Ω) % of Total Etch Resistance 0,008045 89% 0 0% Inductor Sense Resistor Max PDN Effectiv Resistance from Source IR • • • • 0,001 11% 0,009045 100% ADVANCE INFORMATION PDN Elements Drop: vdd_mpu (PCB RevJan14, Sentinel PSI) Source Conditions: 1.22V @ 5,12A Recommended Reff < 10mΩ Reff = Total Trace Resistance + Sence Resistor = 8,04mΩ + 1mΩ = 9,04mΩ Voltage / IR Drop: 1,22 - 1,179 = 52,6 mV PCB_CPD_5 Figure 7-25. vdd_mpu Voltage/IR Drop [All Layers] Dynamic analysis of this PCB design for the MPU power domain determined the vdd_mpu decoupling capacitor loop inductance and impedance vs frequency analysis shown below. As you can see, the loop inductance values ranged from 1.0 to 1.4nH and were less than maximum 2.0nH recommended. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 407 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com NOTE Comparing loop inductances for capacitors at different distances from the processor’s input power balls shows an 18% reduction for caps placed closer. This was derived by averaging the inductances for the 3 caps with distances over 800mils (Avg LL = 1.33nH) vs the 3 caps with distances less than 600mils (Avg LL = 1.096nH). Table 7-11. Rail - vdd_mpu ADVANCE INFORMATION Cap Ref Des Model Port # Loop Inductacne [nH] Footprint Types PCB Side Distance to Ball-Field [mils] Value [μF] Size C356 1 1,4 4vWSE Bottom 897 22 0603 C359 2 1,26 4vWSE Bottom 855 2,2 0402 C360 3 1,33 4vWSE Bottom 850 4,7 0402 C365 4 1,14 4vWSE Bottom 817 0,1 0201 C366 5 1,13 4vWSE Bottom 755 0,1 0201 C367 6 1,07 4vWSE Bottom 758 1 0201 C368 7 1,12 4vWSE Bottom 811 0,1 0201 C369 8 1,06 4vWSE Bottom 690 0,1 0201 C370 9 1,12 4vWSE Bottom 680 0,1 0201 C384 10 1,04 4vWSE Bottom 686 0,1 0201 C385 11 1,07 4vWSE Top 686 0,1 0201 C387 12 1,16 4vWSE Top 755 0,1 0201 C389 13 1,18 4vWSE Top 693 0,1 0201 C391 14 1,14 4vWSE Bottom 693 0,1 0201 C392 15 1,18 4vWSE Bottom 542 0,1 0201 C396 16 1,11 4vWSE Bottom 745 0,1 0201 C91 17 1,1 4vWSE Bottom 515 1 0201 C92 18 1,09 4vWSE Bottom 622 0,22 0201 C93 19 1,01 4vWSE Bottom 504 0,47 0201 C94 20 1,13 4vWSE Bottom 604 0,47 0201 C95 21 1,04 4vWSE Bottom 612 1 0201 C96 22 1,08 4vWSE Top 612 0,22 0201 408 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 ADVANCE INFORMATION Loop Inductance range: 1,01 - 1,40 nH PCB_CPD_6 Figure 7-26. vdd_mpu Decoupling Cap Loop Inductances Figure 7-27 shows vdd_mpu Impedance vs Frequency characteristics. 310mΩ @ 100MHz 30mΩ @ 10MHz 160mΩ @ 50MHz 56,6mΩ @ 20MHz PCB_CPD_7 Figure 7-27. vdd_mpu Impedance vs Frequency 7.4 7.4.1 Single-Ended Interfaces General Routing Guidelines The following paragraphs detail the routing guidelines that must be observed when routing the various functional LVCMOS interfaces. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 409 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • www.ti.com Line spacing: – For a line width equal to W, the spacing between two lines must be 2W, at least. This minimizes the crosstalk between switching signals between the different lines. On the PCB, this is not achievable everywhere (for example, when breaking signals out from the device package), but it is recommended to follow this rule as much as possible. When violating this guideline, minimize the length of the traces running parallel to each other (see Figure 7-28). W D+ S = 2 W = 200 µm ADVANCE INFORMATION SWPS040-185 • • • 7.4.2 Figure 7-28. Ground Guard Illustration Length matching (unless otherwise specified): – For bus or traces at frequencies less than 10 MHz, the trace length matching (maximum length difference between the longest and the shortest lines) must be less than 25 mm. – For bus or traces at frequencies greater than 10 MHz, the trace length matching (maximum length difference between the longest and the shortest lines) must be less than 2.5 mm. Characteristic impedance – Unless otherwise specified, the characteristic impedance for single-ended interfaces is recommended to be between 35-Ω and 65-Ω. Multiple peripheral support – For interfaces where multiple peripherals have to be supported in the star topology, the length of each branch has to be balanced. Before closing the PCB design, it is highly recommended to verify signal integrity based on simulations including actual PCB extraction. QSPI Board Design and Layout Guidelines The following section details the routing guidelines that must be observed when routing the QSPI interfaces. • The qspi1_sclk output signal must be looped back into the qspi1_rtclk input. • The signal propagation delay from the qspi1_sclk ball to the QSPI device CLK input pin (A to C) must be approximately equal to the signal propagation delay from the QSPI device CLK pin to the qspi1_rtclk ball (C to D). • The signal propagation delay from the QSPI device CLK pin to the qspi1_rtclk ball (C to D) must be approximately equal to the signal propagation delay of the control and data signals between the QSPI device and the SoC device (E to F, or F to E). • The signal propagation delay from the qspi1_sclk signal to the series terminators (R2 = 10 Ω) near the QSPI device must be < 450pS (~7cm as stripline or ~8cm as microstrip) • 50 Ω PCB routing is recommended along with series terminations, as shown in Figure 7-29. 410 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com • SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Propagation delays and matching: – A to C = C to D = E to F. – Matching skew: < 60pS – A to B < 450pS – B to C = as small as possible (<60pS) Locate both R2 resistors close together near the QSPI device A B C R1 R2 0 Ω* 10 Ω R2 10 Ω qspi1_sclk QSPI device clock input ADVANCE INFORMATION D qspi1_rtclk E F QSPI device IOx, CS# qspi1_d[x], qspi1_cs[y] SPRS906_PCB_QSPI_01 Figure 7-29. QSPI Interface High Level Schematic NOTE *0 Ω resistor (R1), located as close as possible to the qspi1_sclk pin, is placeholder for finetuning if needed. 7.5 7.5.1 Differential Interfaces General Routing Guidelines To maximize signal integrity, proper routing techniques for differential signals are important for high-speed designs. The following general routing guidelines describe the routing guidelines for differential lanes and differential signals. • As much as possible, no other high-frequency signals must be routed in close proximity to the differential pair. • Must be routed as differential traces on the same layer. The trace width and spacing must be chosen to yield the differential impedance value recommended. • Minimize external components on differential lanes (like external ESD, probe points). • Through-hole pins are not recommended. • Differential lanes mustn’t cross image planes (ground planes). • No sharp bend on differential lanes. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 411 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 • • 7.5.2 www.ti.com Number of vias on the differential pairs must be minimized, and identical on each line of the differential pair. In case of multiple differential lanes in the same interface, all lines should have the same number of vias. Shielded routing is to be promoted as much as possible (for instance, signals must be routed on internal layers that are inside power and/or ground planes). USB 2.0 Board Design and Layout Guidelines This section discusses schematic guidelines when designing a universal serial bus (USB) system. 7.5.2.1 Background Clock frequencies generate the main source of energy in a USB design. The USB differential DP/DM pairs operate in high-speed mode at 480 Mbps. System clocks can operate at 12 MHz, 48 MHz, and 60 MHz. The USB cable can behave as a monopole antenna; take care to prevent RF currents from coupling onto the cable. ADVANCE INFORMATION When designing a USB board, the signals of most interest are: • Device interface signals: Clocks and other signal/data lines that run between devices on the PCB. • Power going into and out of the cable: The USB connector socket pin 1 (VBUS ) may be heavily filtered and need only pass low frequency signals of less than ~100 KHz. The USB socket pin 4 (analog ground) must be able to return the current during data transmission, and must be filtered sparingly. • Differential twisted pair signals going out on cable, DP and DM: Depending upon the data transfer rate, these device terminals can have signals with fundamental frequencies of 240 MHz (high speed), 6 MHz (full speed), and 750 kHz (low speed). • External crystal circuit (device terminals XI and X0): 12 MHz, 19.2 MHz, 24 MHz, and 48 MHz fundamental. When using an external crystal as a reference clock, a 24 MHz and higher crystal is highly recommended. 7.5.2.2 USB PHY Layout Guide The following sections describe in detail the specific guidelines for USB PHY Layout. 7.5.2.2.1 General Routing and Placement Use the following routing and placement guidelines when laying out a new design for the USB physical layer (PHY). These guidelines help minimize signal quality and electromagnetic interference (EMI) problems on a four-or-more layer evaluation module (EVM). • Place the USB PHY and major components on the un-routed board first. For more details, see Section 7.5.2.2.2.3. • Route the high-speed clock and high-speed USB differential signals with minimum trace lengths. • Route the high-speed USB signals on the plane closest to the ground plane, whenever possible. • Route the high-speed USB signals using a minimum of vias and corners. This reduces signal reflections and impedance changes. • When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal traces by minimizing impedance discontinuities. • Do not route USB traces under or near crystals, oscillators, clock signal generators, switching regulators, mounting holes, magnetic devices or IC’s that use or duplicate clock signals. • Avoid stubs on the high-speed USB signals because they cause signal reflections. If a stub is unavoidable, then the stub should be less than 200 mils. • Route all high-speed USB signal traces over continuous planes (VCC or GND), with no interruptions. Avoid crossing over anti-etch, commonly found with plane splits. 412 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.5.2.2.2 Specific Guidelines for USB PHY Layout The following sections describe in detail the specific guidelines for USB PHY Layout. 7.5.2.2.2.1 Analog, PLL, and Digital Power Supply Filtering To minimize EMI emissions, add decoupling capacitors with a ferrite bead at power supply terminals for the analog, phase-locked loop (PLL), and digital portions of the chip. Place this array as close to the chip as possible to minimize the inductance of the line and noise contributions to the system. An analog and digital supply example is shown in Figure 7-30. In case of multiple power supply pins with the same function, tie them up to a single low-impedance point in the board and then add the decoupling capacitors, in addition to the ferrite bead. This array of caps and ferrite bead improve EMI and jitter performance. Take both EMI and jitter into account before altering the configuration. Ferrite Bead 0.1 µF Digital Power Supply 0.01 µF 0.001 µF 1 µF 0.01 µF 0.001 µF 1 µF SoC Board ADVANCE INFORMATION Analog Power Supply AGND Ferrite Bead 0.1 µF DGND SPRS906_PCB_USB20_01 Figure 7-30. Suggested Array Capacitors and a Ferrite Bead to Minimize EMI Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 413 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Consider the recommendations listed below to achieve proper ESD/EMI performance: • Use a 0.01 μF cap on each cable power VBUS line to chassis GND close to the USB connector pin. • Use a 0.01 μF cap on each cable ground line to chassis GND next to the USB connector pin. • If voltage regulators are used, place a 0.01 μF cap on both input and output. This is to increase the immunity to ESD and reduce EMI. For other requirements, see the device-specific datasheet. 7.5.2.2.2.2 Analog, Digital, and PLL Partitioning If separate power planes are used, they must be tied together at one point through a low-impedance bridge or preferably through a ferrite bead. Care must be taken to capacitively decouple each power rail close to the device. The analog ground, digital ground, and PLL ground must be tied together to the lowimpedance circuit board ground plane. 7.5.2.2.2.3 Board Stackup Because of the high frequencies associated with the USB, a printed circuit board with at least four layers is recommended; two signal layers separated by a ground and power layer as shown in Figure 7-31. ADVANCE INFORMATION Signal 1 GND Plane Power Plane Signal 2 Figure 7-31. Four-Layer Board Stack-Up The majority of signal traces should run on a single layer, preferably SIGNAL1. Immediately next to this layer should be the GND plane, which is solid with no cuts. Avoid running signal traces across a split in the ground or power plane. When running across split planes is unavoidable, sufficient decoupling must be used. Minimizing the number of signal vias reduces EMI by reducing inductance at high frequencies. 7.5.2.2.2.4 Cable Connector Socket Short the cable connector sockets directly to a small chassis ground plane (GND strap) that exists immediately underneath the connector sockets. This shorts EMI (and ESD) directly to the chassis ground before it gets onto the USB cable. This etch plane should be as large as possible, but all the conductors coming off connector pins 1 through 6 must have the board signal GND plane run under. If needed, scoop out the chassis GND strap etch to allow for the signal ground to extend under the connector pins. Note that the etches coming from pins 1 and 4 (VBUS power and GND) should be wide and via-ed to their respective planes as soon as possible, respecting the filtering that may be in place between the connector pin and the plane. See Figure 7-32 for a schematic example. Place a ferrite in series with the cable shield pins near the USB connector socket to keep EMI from getting onto the cable shield. The ferrite bead between the cable shield and ground may be valued between 10 Ω and 50 Ω at 100 MHz; it should be resistive to approximately 1 GHz. To keep EMI from getting onto the cable bus power wire (a very large antenna) a ferrite may be placed in series with cable bus power, VBUS, near the USB connector pin 1. The ferrite bead between connector pin 1 and bus power may be valued between 47 Ω and approximately 1000 Ω at 100 MHz. It should continue being resistive out to approximately 1 GHz, as shown in Figure 7-32. 414 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 5 SHIELD_GND 4 GND 3 DP 2 DM 1 VBUS Ferrite Bead +5 V U2 6 SHIELD_GND USB Socket U1 Figure 7-32. USB Connector 7.5.2.2.2.5 Clock Routings To address the system clock emissions between devices, place a ~10 to 130 Ω resistor in series with the clock signal. Use a trial and error method of looking at the shape of the clock waveform on a high-speed oscilloscope and of tuning the value of the resistance to minimize waveform distortion. The value on this resistor should be as small as possible to get the desired effect. Place the resistor close to the device generating the clock signal. If an external crystal is used, follow the guidelines detailed in the Selection and Specification of Crystals for Texas Instruments USB 2.0 Devices (SLLA122). When routing the clock traces from one device to another, try to use the 3W spacing rule. The distance from the center of the clock trace to the center of any adjacent signal trace should be at least three times the width of the clock trace. Many clocks, including slow frequency clocks, can have fast rise and fall times. Using the 3W rule cuts down on crosstalk between traces. In general, leave space between each of the traces running parallel between the devices. Avoid using right angles when routing traces to minimize the routing distance and impedance discontinuities. For further protection from crosstalk, run guard traces beside the clock signals (GND pin to GND pin), if possible. This lessens clock signal coupling, as shown in Figure 7-33. 3W 3W W Trace Figure 7-33. 3W Spacing Rule Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 415 ADVANCE INFORMATION Ferrite Bead DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 7.5.2.2.2.6 Crystals/Oscillator Keep the crystal and its load capacitors close to the USB PHY pins, XI and XO (see Figure 7-34). Note that frequencies from power sources or large capacitors can cause modulations within the clock and should not be placed near the crystal. In these instances, errors such as dropped packets occur. A placeholder for a resistor, in parallel with the crystal, can be incorporated in the design to assist oscillator startup. Power is proportional to the current squared. The current is I = C*dv/dt, because dv/dt is a function of the PHY, current is proportional to the capacitive load. Cutting the load to 1/2 decreases the current by 1/2 and the power to 1/4 of the original value. For more details on crystal selection, see the Selection and Specification of Crystals for Texas Instruments USB 2.0 Devices (SLLA122). X1 0.1 µF Power Pins XTAL X0 ADVANCE INFORMATION 0.001 µF USB PHY Figure 7-34. Power Supply and Clock Connection to the USB PHY 7.5.2.2.2.7 DP/DM Trace Place the USB PHY as close as possible to the USB 2.0 connector. The signal swing during high-speed operation on the DP/DM lines is relatively small (400 mV ± 10%), so any differential noise picked up on the twisted pair can affect the received signal. When the DP/DM traces do not have any shielding, the traces tend to behave like an antenna and picks up noise generated by the surrounding components in the environment. To minimize the effect of this behavior: • DP/DM traces should always be matched lengths and must be no more than 4 inches in length; otherwise, the eye opening may be degraded (see Figure 7-35). • Route DP/DM traces close together for noise rejection on differential signals, parallel to each other and within two mils in length of each other. The measurement for trace length must be started from device's balls. • A high-speed USB connection is made through a shielded, twisted pair cable with a differential characteristic impedance of 90 Ω ±15%. In layout, the impedance of DP and DM should each be 45 Ω ± 10%. • DP/DM traces should not have any extra components to maintain signal integrity. For example, traces cannot be routed to two USB connectors. 416 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Minimize This Distance VBUS GND D+ USB PHY Cable Connector D+ Connector D- Figure 7-35. USB PHY Connector and Cable Connector 7.5.2.2.2.8 DP/DM Vias When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal’s transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points on twisted pair lines; through-hole pins are not recommended. 7.5.2.2.2.9 Image Planes An image plane is a layer of copper (voltage plane or ground plane), physically adjacent to a signal routing plane. Use of image planes provides a low impedance, shortest possible return path for RF currents. For a USB board, the best image plane is the ground plane because it can be used for both analog and digital circuits. • Do not route traces so they cross from one plane to the other. This can cause a broken RF return path resulting in an EMI radiating loop as shown in Figure 7-36. This is important for higher frequency or repetitive signals. Therefore, on a multi-layer board, it is best to run all clock signals on the signal plane above a solid ground plane. • Avoid crossing the image power or ground plane boundaries with high-speed clock signal traces immediately above or below the separated planes. This also holds true for the twisted pair signals (DP, DM). Any unused area of the top and bottom signal layers of the PCB can be filled with copper that is connected to the ground plane through vias. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 417 ADVANCE INFORMATION D- DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Do Don't • ADVANCE INFORMATION Figure 7-36. Do Not Cross Plane Boundaries Do not overlap planes that do not reference each other. For example, do not overlap a digital power plane with an analog power plane as this produces a capacitance between the overlapping areas that could pass RF emissions from one plane to the other, as shown in Figure 7-37. Analog Power Plane Unwanted Capacitance Digital Power Plane • 418 Figure 7-37. Do Not Overlap Planes Avoid image plane violations. Traces that route over a slot in an image plane results in a possible RF return loop, as shown in Figure 7-38. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 RF Return Current RF Return Current Slot in Image Plane Slot in Image Plane Bad Better 7.5.2.2.2.10 JTAG Interface For test and debug of the USB PHY only, an IEEE Standard 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture (JTAG) and Serial Test and Configuration Interface (STCI) may be available on the System-on-Chip (SoC). If available, keep the USB PHY JTAG interface less than six inches; keeping this distance short reduces noise coupling from other devices and signal loss due to resistance. 7.5.2.2.2.11 Power Regulators Switching power regulators are a source of noise and can cause noise coupling if placed close to sensitive areas on a circuit board. Therefore, the switching power regulator should be kept away from the DP/DM signals, the external clock crystal (or clock oscillator), and the USB PHY. 7.5.2.3 Electrostatic Discharge (ESD) International Electronic Commission (IEC) 61000-4-xx is a set of about 25 testing specifications from the IEC. IEC ESD Stressing is done both un-powered and with power applied, and with the device functioning. There must be no physical damage, and the device must keep working normally after the conclusion of the stressing. Typically, equipment has to pass IEC stressing at 8 kV contact and 15 kV air discharge, or higher. To market products/systems in the European community, all products/systems must be CE compliant and have the CE Mark. To obtain the CE Mark, all products/systems need to go through and pass IEC standard requirements; for ESD, it is 61000-4-2. 61000-4-2 requires that the products/systems pass contact discharge at 8 kV and air discharge at 15 kV. When performing an IEC ESD Stressing, only pins accessible to the outside world need to pass the test. The system into which the integrated circuit (IC) is placed makes a difference in how well the IC does. For example: • Cable between the zap point and the IC attenuate the high frequencies in the waveform. • Series inductance on the PCB board attenuates the high frequencies. • Unless the capacitor’s ground connection is inductive, capacitance to ground shunts away high frequencies. 7.5.2.3.1 IEC ESD Stressing Test The following sections describe in detail the IEC ESD Stressing Test modes and test types. 7.5.2.3.1.1 Test Mode The IEC ESD Stressing test is done through two modes: contact discharge mode and air discharge mode. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 419 ADVANCE INFORMATION Figure 7-38. Do Not Violate Image Planes DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com For the contact discharge test mode, the preferred way is direct contact applied to the conductive surfaces of the equipment under test (EUT). In the case of the USB system, the conductive surface is the outer casing of the USB connector. The electrode of the ESD generator is held in contact with the EUT or a coupling plane prior to discharge. The arc formation is created under controlled conditions, inside a relay, resulting in repeatable waveforms; however, this arc does not accurately recreate the characteristic unique to the arc of an actual ESD event. 7.5.2.3.1.2 Air Discharge Mode The air discharge usually applies to a non-conductive surface of the EUT. Instead of a direct contact with the EUT, the charged electrode of the ESD generator is brought close to the EUT, and a spark in the air to the EUT actuates the discharge. Compared to the contact discharge mode, the air discharge is more realistic to the actual ESD occurrence. However, due to the variations of the arc length, it may not be able to produce repeatable waveform. 7.5.2.3.1.3 Test Type ADVANCE INFORMATION The IEC ESD Stressing test has two test types: direct discharge and indirect discharge. Direct discharge is applies directly to the surface or the structure of the EUT. It includes both contact discharge and air discharge modes. Indirect discharge applies to a coupling plane in the vicinity of the EUT. The indirect discharge is used to simulate personal discharge to objects which are adjacent to the EUT. It includes contact discharge mode only. 7.5.2.3.2 TI Component Level IEC ESD Test TI Component Level IEC ESD Test tests only the IC terminals that are exposed in system level applications. It can be used to determine the robustness of on-chip protection and the latch-up immunity. The IC can only pass the TI Component Level IEC ESD test when there is no latch-up and IC is fully functional after the test. 7.5.2.3.3 Construction of a Custom USB Connector A standard USB connector, either type A or type B, provides good ESD protection. However, if a custom USB connector is desired, the following guidelines should be observed to ensure good ESD protection. • There should be an easily accessible shield plate next to the connector for air-discharge mode purpose. • Tie the outer shield of the connector to GND. When a cable is inserted into the connector, the shield of the cable should first make contact with the outer shield. • If the connector includes power and GND, the lead of power and GND need to be longer than the leads of signal. • The connector needs to have a key to ensure proper insertion of the cable. • See the standard USB connector for reference. 420 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.5.2.3.4 ESD Protection System Design Consideration ESD protection system design consideration is covered in Section 7.5.2.2 of this document. The following are additional considerations for ESD protection in a system. • Metallic shielding for both ESD and EMI • Chassis GND isolation from the board GND • Air gap designed on board to absorb ESD energy • Clamping diodes to absorb ESD energy • Capacitors to divert ESD energy • The use of external ESD components on the DP/DM lines may affect signal quality and are not recommended. • • • 7.5.3 References USB 2.0 Specification, Intel, 2000, http://www.usb.org/developers/docs/ High Speed USB Platform Design Guidelines, Intel, http://www.intel.com/technology/usb/download/usb2dg_R1_0.pdf Selection and Specification of Crystals for Texas Instruments USB 2.0 Devices (SLLA122) 2000, USB 3.0 Board Design and Layout Guidelines This section provides the timing specification for the USB3.0 (USB1 in the device) interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the USB3.0 interface requirements are met. The design rules stated within this document are targeted at DEVICE mode electrical compliance. HOST mode and/or systems that do not include the 3m USB cable and far-end 11-inch PCB trace required by DEVICE mode compliance testing may not need the complete list of optimizations shown in this document; however, applying these optimizations to HOST mode systems will lead to optimal DEVICE mode performance. 7.5.3.1 USB 3.0 interface introduction The USB 3.0 has two unidirectional differential pairs: TXp/TXn pair and RXp/RXn pair. AC coupling caps are needed on the board for TX traces. Figure 7-39 present high level schematic diagram for USB 3.0 interface. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 421 ADVANCE INFORMATION 7.5.2.4 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com AC Caps GND GND CMF Vias (if necessary) Vias (if necessary) usb_rxp0 usb_rxn0 CMF Vias (if necessary) Vias (if necessary) GND USB 3.0 usb_txp0 usb_txn0 USB 3.0 connector GND Device ADVANCE INFORMATION Place near connector, and keep routing short SPRS85x_PCB_USB30_1 Figure 7-39. USB 3.0 Interface High Level Schematic NOTE ESD components should be on a PCB layer next to a system GND plane layer so the inductance of the via to GND will be minimal. If vias are used, place the vias near the AC Caps or CMFs and under the SoC BGA, if necessary. AC Cap SoC TX USB 3.0 connector via Figure 7-40 present placement diagram for USB 3.0 interface. AC Cap via via CMF SoC RX via CMF SPRS85x_PCB_USB30_2 Figure 7-40. USB 3.0 placement diagram Table 7-12. USB1 Component Reference 422 INTERFACE COMPONENT SUPPLIER ESD TI TPD1E05U06 USB3 PHY CMF Murata DLW21SN900HQ2 C - 100nF (typical size: 0201) Applications, Implementation, and Layout PART NUMBER Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 7.5.3.2 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 USB 3.0 General routing rules Some general routing guidelines regarding USB 3.0: • Avoid crossing splits reference plane(s). • Shorter trace length is preferred. • Minimize the via usage and layer transition • Keep large spacing between TX and RX pairs. • Intra-lane delay mismatch between DP and DM less than 1ps. Same for RXp and RXn. • Distance between common mode filter (CMF) and ESD protection device should be as short as possible • Distance between ESD protection device and USB connector should be as short as possible. • Distance between AC capacitors (TX only) and CMF should be as short as possible. • USB 3.0 signals should always be routed over an adjacent ground plane. Table 7-13 and Table 7-14 present routing specification and recommendations for USB1 in the device. PARAMETER MIN TYP MAX UNIT 3500 Mils 3 6 Mils 0 Stubs 90 97 Ω 2 Vias Number of ground plane cuts allowed within USB3 routing region (except for specific ground carving as explained in this document) 0 Cuts Number of layers between USB3.0 routing region and reference ground plane 0 Layers Device balls to USB 3.0 connector trace length Skew within a differential pair Number of stubs allowed on TX/RX traces TX/RX pair differential impedance 83 Number of vias on each TX/RX trace (1) Differential pair to any other trace spacing (2) (3) (4) 2xDS ADVANCE INFORMATION Table 7-13. USB1 Routing Specifications 3xDS PCB trace width 6 Mils PCB BGA escape via pad size 18 Mils PCB BGA escape via hole size 10 Mils (1) Vias must be used in pairs and spaced equally along a signal path. (2) DS = differential spacing of the traces. (3) Exceptions may be necessary in the SoC package BGA area. (4) GND guard-bands on the same layer may be closer, but should not be allowed to affect the impedance of the differential pair routing. GND guard-bands to isolate USB3.0 differential pairs from all other signals are recommended. Table 7-14. USB1 Routing Recommendations Item Description Reason ESD location Place ESD component on same layer as connector (no via or stub to ESD component) Eliminate reflection loss from via & stub to ESD ESD part number TPD1E05U06 Minimize capacitance (0.42pF) CMF part number DLW21SN900HQ2 Manufacturer’s recommended device Connector Use USB3.0 connector with supporting s-parameter model Enable full signal chain simulation Carve Ground Carve GND underneath AC Caps, ESD, CMF, and connector Minimize capacitance under ESD and CMF Round pads Minimize pad size and round the corners of the pads for the ESD and CMF components Minimize capacitance Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 423 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 7-14. USB1 Routing Recommendations (continued) Item Description Reason Vias Max 2 vias per signal trace. If vias are required, place vias close to the AC Caps and CMFs. Vias under the SoC grid array may be used if necessary to route signals away from BGA pattern. Vias significantly degrade signal integrity at 2.5GHz via Figure 7-41 presents an example layout, demonstrating the “carve GND” concept. USB 3.0 connector AC Cap CMF via via AC Cap ADVANCE INFORMATION via CMF Top Layer: Routing from SoC through AC Caps, CMF, and ESD to connector. Layer2, GND: Gaps carved in GND underneath AC Caps, CMF, ESD, and connector. Layer3, Signal: Implement as keep-out zone underneath carved GND areas. Layer4, GND Plane underneath AC Caps, CMF, ESD, and connector. SPRS85x_PCB_USB30_3 Figure 7-41. USB 3.0 Example “carve GND” layout 7.5.4 HDMI Board Design and Layout Guidelines This section provides the timing specification for the HDMI interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the HDMI interface requirements are met. The design rules stated within this document are targeted at resolutions less than or equal to 1080p60 with 8-bit color; deep color (10-bit) requires further signal integrity optimization. 7.5.4.1 HDMI Interface Schematic The HDMI bus is separated into three main sections (HDMI Ethernet and the optional Audio Return Channel are not specifically supported by this Device): 1. Transition Minimized Differential Signaling (TMDS) high speed digital video interface 424 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 2. Display Data Channel (I2C bus for configuration and status exchange between two devices) 3. Consumer Electronics Control (optional) for remote control of connected devices. The DDC and CEC are low speed interfaces, so nothing special is required for PCB layout of these signals. The TMDS channels are high speed differential pairs and therefore require the most care in layout. Specifications for TMDS layout are below. Figure 7-42 shows the HDMI interface schematic. ADVANCE INFORMATION CMF HDMI connector hdmi_tx*hdmi_tx*+ GND HDMI GND Device Place near connector, and keep routing short SPRS85x_PCB_HDMI_1 Figure 7-42. HDMI Interface High Level Schematic Figure 7-43 presents placement diagram for HDMI interface. HDMI connector CMF CMF CMF CMF SPRS85x_PCB_HDMI_2 Figure 7-43. HDMI Placement Diagram Table 7-15. HDMI Component Reference INTERFACE HDMI DEVICE SUPPLIER ESD TI PART NUMBER TPD1E05U06 CMF Murata DLW21SN900HQ2 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 425 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.5.4.2 www.ti.com TMDS General Routing Guidelines The TMDS signals are high speed differential pairs. Care must be taken in the PCB layout of these signals to ensure good signal integrity. The TMDS differential signal traces must be routed to achieve 100 Ω (+/- 10%) differential impedance and 60 Ω (+/-10%) single ended impedance. Single ended impedance control is required because differential signals can’t be closely coupled on PCBs and therefore single ended impedance becomes important. These impedances are impacted by trace width, trace spacing, distance to reference planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs results in as close to 60 Ω impedance traces as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met. In general, closely coupled differential signal traces are not an advantage on PCBs. When differential signals are closely coupled, tight spacing and width control is necessary. Very small width and spacing variations affect impedance dramatically, so tight impedance control can be more problematic to maintain in production. ADVANCE INFORMATION Loosely coupled PCB differential signals make impedance control much easier. Wider traces and spacing make obstacle avoidance easier, and trace width variations don’t affect impedance as much, therefore it’s easier to maintain accurate impedance over the length of the signal. The wider traces also show reduced skin effect and therefore often result in better signal integrity. Some general routing guidelines regarding TMDS: • Avoid crossing splits reference plane(s). • Shorter trace length is preferred. • Distance between common mode filter (CMF) and ESD protection device should be as short as possible • Distance between ESD protection device and HDMI connector should be as short as possible. Table 7-16 shows the routing specifications for the TMDS signals. Table 7-16. TMDS Routing Specifications PARAMETER MIN TYP Device balls to HDMI header trace length Skew within a differential pair 3 Number of stubs allowed on TMDS traces MAX UNIT 4000 Mils 5 Mils 0 stubs TMDS pair differential impedance 90 100 110 Ω TMDS single-ended impedance 54 60 66 Ω 0 Vias 2×DS 3xDS Number of vias on each TMDS trace TMDS differential pair to any other trace spacing (1) (2) (3) Number of ground plane cuts allowed within HDMI routing region (except for specific ground carving as explained in this document) Number of layers between HDMI routing region and reference ground plane PCB trace width Mils 0 Cuts 0 Layers 4.4 Mils (1) DS = differential spacing of the traces. (2) Exceptions may be necessary in the SoC package BGA area. (3) GND guard-bands may be closer, but should not be allowed to affect the impedance of the differential pair routing. GND guard-bands to isolate HDMI differential pairs from all other signals is recommended. Table 7-17. TDMS Routing Recommendations Item Description ESD part number TPD1E05U06 Minimize capacitance (0.42pF) Carve GND underneath ESD and CMF Minimize capacitance under ESD and CMF Carve Ground 426 Applications, Implementation, and Layout Reason Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 7-17. TDMS Routing Recommendations (continued) Item Description Reason Round pads Reduce pad size and round the corners of the pads for the ESD and CMF components Minimize capacitance Routing layer Route all signals only on the same layer as SoC Minimize reflection loss Figure 7-44presents an example layout, demonstrating the “carve GND” concept. CMF CMF AC Cap ia v ia v CMF CMF ia v CMF Top Layer: Routing from SoC through CMF, and ESD to connector. Layer2, GND: Gaps carved in GND underneath, CMF, ESD, and connector. SPRS85x_PCB_HDMI_3 Figure 7-44. HDMI Example “carve GND” layout 7.5.4.3 TPD5S115 The TPD5S115 is an integrated HDMI companion chip solution. The device provides a regulated 5 V output (5VOUT) for sourcing the HDMI power line. The TPD5S115 exceeds the IEC61000-4-2 (Level 4) ESD protection level. 7.5.4.4 HDMI ESD Protection Device (Required) Interfaces that connect to a cable such as HDMI generally require more ESD protection than can be built into the processor’s outputs. Therefore this HDMI interface requires the use of an ESD protection chip to provide adequate ESD. When selecting an ESD protection chip, choose the lowest capacitance ESD protection available to minimize signal degradation. In no case should be ESD protection circuit capacitance be more than 5pF. TI manufactures these devices that provide ESD protection for HDMI signals such as the TPDxE05U06. For more information see the www.ti.com website. 7.5.4.5 PCB Stackup Specifications Table 7-18 shows the stackup and feature sizes required for HDMI. Table 7-18. HDMI PCB Stackup Specifications PARAMETER MIN TYP MAX UNIT PCB Routing/Plane Layers 4 6 - Layers Signal Routing Layers 2 3 - Layers Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 427 ADVANCE INFORMATION HDMI connector CMF a iv AC Cap DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 7-18. HDMI PCB Stackup Specifications (continued) PARAMETER MIN TYP MAX UNIT Number of ground plane cuts allowed within HDMI routing region - - 0 Cuts Number of layers between HDMI routing region and reference ground plane - - 0 Layers PCB Trace width 7.5.4.6 4 Mils Grounding Each TMDS channel has its own shield pin and they should be grounded to provide a return current path for the TMDS signal. 7.5.5 SATA Board Design and Layout Guidelines The device provides one SATA port. This section provides the timing specification for the SATA interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. TI has performed the simulation and system design work to ensure the SATA interface requirements are met. ADVANCE INFORMATION 7.5.5.1 SATA Interface Schematic Figure 7-45 shows the data portion of the SATA interface schematic. DEVICE SATA Interface sata1_rxn0 C sata1_rxp0 C sata1_txn0l C sata1_txp0 C SATA Connector PCB_SATA_1 Figure 7-45. SATA Interface High Level Schematic NOTE AC coupling capacitors (C) are required on the receive and transmit data pairs. Table 7-19 shows the requirements for these capacitors. Table 7-19. SATA AC Coupling Capacitors Requirements PARAMETER MIN TYP MAX SATA AC coupling capacitor value 0.3 10 12 nF 0402 0603 EIA(1)(2) SATA AC coupling capacitor package size UNIT (1) EIA LxW units, i.e., a 0402 is a 40x20 mils surface mount capacitor. (2) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair placed side by side. 7.5.5.2 Compatible SATA Components and Modes Table 7-20 shows the compatible SATA components and supported modes. Note that the only supported configuration is an internal cable from the processor host to the SATA device. Table 7-20. Compatible SATA Components and Modes 428 PARAMETER MIN MAX UNIT Transfer Rates 1.5 3 Gbps Applications, Implementation, and Layout SUPPORTED Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 7-20. Compatible SATA Components and Modes (continued) 7.5.5.3 PARAMETER MIN MAX UNIT SUPPORTED Internal Cable - - - YES PCB Stackup Specifications Table 7-21 shows the stackup and feature sizes required for these types of SATA connections. PARAMETER MIN TYP MAX UNIT Number of ground plane cuts allowed within SATA routing region - - 0 Cuts Number of layers between SATA routing area and reference plane - - 0 Layers 7.5.5.4 PCB Routing clearance 4 Mils PCB Trace width 4 Mils Routing Specifications The SATA data signal traces must be routed to achieve 100 Ω (+/-10%) differential impedance and 60 Ω (+/-10%) single ended impedance. The signal ended impedance is required because differential signals can’t be closely coupled on PCBs and therefore single ended impedance becomes important. 60 Ω is chosen for the single ended impedance to minimize problems caused by too low an impedance. These impedances are impacted by trace width, trace spacing, distance to reference planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs results in as close to 100 Ω differential and 60 Ω single ended impedance traces as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met. Table 7-22 shows the routing specifications for the SATA data signals. Table 7-22. SATA Routing Specifications PARAMETER MIN TYP SATA signal trace length (device balls to SATA connector) MAX UNIT 3050(1) Mils Differential pair trace skew matching 5 Mils Number of stubs allowed on SATA traces(2) 0 stubs TX/RX pair differential impedance 90 100 110 Ω TX/RX single-ended impedance 54 60 66 Ω 0 Vias Number of vias on each SATA trace SATA differential pair to any other trace spacing 2×DS(3) (1) Beyond this, signal integrity may suffer. (2) Inline pads may be used for probing. (3) DS = differential spacing of the SATA traces. Table 7-23. SATA Routing Recommendations Item ESD part number Description Reason None ESD suppression generally not used on SATA Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 429 ADVANCE INFORMATION Table 7-21. SATA PCB Stackup Specifications DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.5.6 www.ti.com PCIe Board Design and Layout Guidelines The PCIe interface on the device provides support for a 5.0 Gbps lane with polarity inversion. 7.5.6.1 PCIe Connections and Interface Compliance The PCIe interface on the device is compliant with the PCIe revision 3.0 specification. Please refer to the PCIe specifications for all connections that are described in it. Those recommendations are more descriptive and exhaustive than what is possible here. The use of PCIe compatible bridges and switches is allowed for interfacing with more than one other processor or PCIe device. 7.5.6.1.1 Coupling Capacitors AC coupling capacitors are required on the transmit data pair. Table 7-24 shows the requirements for these capacitors. Table 7-24. PCIe AC Coupling Capacitors Requirements ADVANCE INFORMATION PARAMETER MIN PCIe AC coupling capacitor value 90 PCIe AC coupling capacitor package size TYP MAX UNIT 100 110 nF 0402 0603 EIA(1)(2) (1) EIA LxW units, i.e., a 0402 is a 40x20 mils surface mount capacitor. (2) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair placed side by side. 7.5.6.1.2 Polarity Inversion The PCIe specification requires polarity inversion support. This means for layout purposes, polarity is unimportant because each signal can change its polarity on die inside the chip. This means polarity within a lane is unimportant for layout. 7.5.6.2 Non-standard PCIe connections The following sections contain suggestions for any PCIe connection that is NOT described in the official PCIe specification, such as an on-board Device to Device or Device to other PCIe compliant processor connection. 7.5.6.2.1 PCB Stackup Specifications Table 7-25 shows the stackup and feature sizes required for these types of PCIe connections. Table 7-25. PCIe PCB Stackup Specifications PARAMETER MIN TYP MAX UNIT Number of ground plane cuts allowed within PCIe routing region - - 0 Cuts Number of layers between PCIe routing area and reference plane (1) - - 0 Layers 430 PCB Routing clearance 4 Mils PCB Trace width 4 Mils Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (1) A reference plane may be a ground plane or the power plane referencing the PCIe signals. 7.5.6.2.2 Routing Specifications 7.5.6.2.2.1 Impedance The PCIe data signal traces must be routed to achieve 100-Ω (±10%) differential impedance and 60-Ω (±10%) single-ended impedance. The single-ended impedance is required because differential signals are extremely difficult to closely couple on PCBs and, therefore, single-ended impedance becomes important. These requirements are the same as those recommended in the PCIe Motherboard Checklist 1.0 document, available from PCI-SIG (www.pcisig.com). These impedances are impacted by trace width, trace spacing, distance between signals and referencing planes, and dielectric material. Verify with a PCB design tool that the trace geometry for both data signal pairs result in as close to 100-Ω differential impedance and 60-Ω single-ended impedance as possible. For best accuracy, work with your PCB fabricator to ensure this impedance is met. See Table 7-26 below. In general, closely coupled differential signal traces are not an advantage on PCBs. When differential signals are closely coupled, tight spacing and width control is necessary. Very small width and spacing variations affect impedance dramatically, so tight impedance control can be more problematic to maintain in production. For PCBs with very tight space limitations (which are usually small) this can work, but for most PCBs, the loosely coupled option is probably best. Loosely coupled PCB differential signals make impedance control much easier. Wider traces and spacing make obstacle avoidance easier (because each trace is not so fixed in position relative to the other), and trace width variations don’t affect impedance as much, therefore it’s easier to maintain an accurate impedance over the length of the signal. For longer routes, the wider traces also show reduced skin effect and therefore often result in better signal integrity with a larger eye diagram opening. Table 7-26 shows the routing specifications for the PCIe data signals. Table 7-26. PCI-E Routing Specifications PARAMETER MIN TYP PCIe signal trace length (device balls to PCIe connector) Differential pair trace matching MAX UNIT 4700(1) Mills 5 Number of stubs allowed on PCIe traces(3) TX/RX pair differential impedance 90 100 TX/RX single-ended impedance 54 60 Mils (2) 0 stubs 110 Ω 66 Ω Pad size of vias on PCIe trace 25(4) Mils Hole size of vias on PCIe trace 14 Mils Number of vias on each PCIe trace 0 Vias PCIe differential pair to any other trace spacing 2×DS(5) (1) Beyond this, signal integrity may suffer. (2) For example, RXP0 within 5 Mils of RXN0. (3) Inline pads may be used for probing. (4) 35-Mil antipad maximum recommended. (5) DS = differential spacing of the PCIe traces. Table 7-27. PCI-E Routing Recommendations Item ESD part number Description Reason None ESD suppression generally not used on PCIe Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 431 ADVANCE INFORMATION 7.5.6.2.2.2 Differential Coupling DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 7.5.6.2.2.3 Pair Length Matching Each signal in the differential pair should be matched to within 5 mils of its matching differential signal. Length matching should be done as close to the mismatch as possible. 7.5.6.3 LJCB_REFN/P Connections A Common Refclk Rx Architecture is required to be used for the device PCIe interface. Specifically, two modes of Common Refclk Rx Architecture are supported: • External REFCLK Mode: An common external 100MHz clock source is distributed to both the Device and the link partner • Output REFCLK Mode: A 100MHz HCSL clock source is output by the device and used by the link partner ADVANCE INFORMATION In External REFCLK Mode, a high-quality, low-jitter, differential HCSL 100MHz clock source compliant to the PCIe REFCLK AC Specifications should be provided on the Device’s ljcb_clkn / ljcb_clkp inputs. Alternatively, an LVDS clock source can be used with the following additional requirements: • External AC coupling capacitors described in Table 7-28 should be populated at the ljcb_clkn / ljcb_clkp inputs. • All termination requirements (ex. parallel 100 Ω termination) from the clock source manufacturer should be followed. In Output REFCLK Mode, the 100MHz clock from the Device’s DPLL_PCIE_REF should be output on the Device’s ljcb_clkn / ljcb_clkp pins and used as the HCSL REFCLK by the link partner. External nearside termination to ground described in Table 7-29 is required on both of the ljcb_clkn / ljcb_clkp outputs in this mode. Table 7-28. LJCB_REFN/P Requirements in External LVDS REFCLK Mode PARAMETER MIN TYP ljcb_clkn / ljcb_clkp AC coupling capacitor value 100 ljcb_clkn / ljcb_clkp AC coupling capacitor package size 0402 MAX UNIT nF EIA(1)(2) 0603 (1) EIA LxW units, i.e., a 0402 is a 40x20 mils surface mount capacitor. (2) The physical size of the capacitor should be as small as practical. Use the same size on both lines in each pair placed side by side. Table 7-29. LJCB_REFN/P Requirements in Output REFCLK Mode PARAMETER MIN TYP MAX UNIT ljcb_clkn / ljcb_clkp near-side termination to ground value 47.5 50 52.5 Ω 7.5.7 CSI2 Board Design and Routing Guidelines The MIPI D-PHY signals include the CSI2_0 and CSI2_1 camera serial interfaces to or from the Device. For more information regarding the MIPI-PHY signals and corresponding balls, see Table 4-5, CSI2 Signal Descriptions. For more information, you can also see the MIPI D-PHY specification v1-01-00_r0-03 (specifically the Interconnect and Lane Configuration and Annex B Interconnect Design Guidelines chapters). In the next section, the PCB guidelines of the following differential interfaces are presented: • CSI2_0 and CSI2_1 MIPI CSI-2 at 1.5 Gbps Table 7-30 lists the MIPI D-PHY interface signals in the Device. Table 7-30. MIPI D-PHY Interface Signals in the Device 432 SIGNAL NAME BOTTOM BALL SIGNAL NAME BOTTOM BALL csi2_0_dx0 AD17 csi2_0_dy0 AD18 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 7-30. MIPI D-PHY Interface Signals in the Device (continued) 7.5.7.1 SIGNAL NAME BOTTOM BALL SIGNAL NAME BOTTOM BALL csi2_0_dx1 AF16 csi2_0_dy1 AF17 csi2_0_dx2 AF19 csi2_0_dy2 AF20 csi2_0_dx3 AE15 csi2_0_dy3 AE16 csi2_0_dx4 AE19 csi2_0_dy4 AE18 csi2_1_dx0 AC13 csi2_1_dy0 AC14 csi2_1_dx1 AD15 csi2_1_dy1 AD14 csi2_1_dx2 AC16 csi2_1_dy2 AC17 CSI2_0 and CSI2_1 MIPI CSI-2 (1.5 Gbps) The general guidelines for the PCB differential lines are: • Differential trace impedance Z0 = 100 Ω (minimum = 85 Ω, maximum = 115 Ω) • Total conductor length from the Device package pins to the peripheral device package pins is 25 to 30 cm with common FR4 PCB and flex materials. NOTE Longer interconnect length can be supported at the expense of detailed simulations of the complete link including driver and receiver models. The general rule of thumb for the space S = 2 × W is not designated (see Figure 7-28, Guard Illustration). It is because although the S = 2 × W rule is a good rule of thumb, it is not always the best solution. The electrical performance will be checked with the frequency-domain specification. Even though the designer does not follow the S = 2 × W rule, the differential lines are ok if the lines satisfy the frequency-domain specification. Because the MIPI signals are used for low-power, single-ended signaling in addition to their high-speed differential implementation, the pairs must be loosely coupled. 7.5.7.1.2 Length Mismatch Guidelines 7.5.7.1.2.1 CSI2_0 and CSI2_1 MIPI CSI-2 (1.5 Gbps) The guidelines of the length mismatch for CSI-2 are presented in Table 7-31. Table 7-31. Length Mismatch Guidelines for CSI-2 (1.5 Gbps) PARAMETER TYPICAL VALUE UNIT Operating speed 1500 Mbps UI (bit time) 667 ps Intralane skew Have to satisfy mode-conversion S parameters(1) Interlane skew (UI / 50) 13.34 ps (1) sdc12, scd21, scd12, sdc21, scd11, sdc11, scd22, and sdc22 7.5.7.1.3 Frequency-domain Specification Guidelines After the PCB design is finished, the S-parameters of the PCB differential lines will be extracted with a 3D Maxwell Equation Solver such as the high-frequency structure simulator (HFSS) or equivalent, and compared to the frequency-domain specification as defined in the section 7 of the MIPI Alliance Specification for D-PHY Version v1-01-00_r0-03. If the PCB lines satisfy the frequency-domain specification, the design is finished. Otherwise, the design needs to be improved. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 433 ADVANCE INFORMATION 7.5.7.1.1 General Guidelines DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.6 www.ti.com DDR2/DDR3 Board Design and Layout Guidelines 7.6.1 DDR2/DDR3 General Board Layout Guidelines To • • • • • • • • • • • ADVANCE INFORMATION 7.6.2 help ensure good signaling performance, consider the following board design guidelines: Avoid crossing splits in the power plane. Minimize Vref noise. Use the widest trace that is practical between decoupling capacitors and memory module. Maintain a single reference. Minimize ISI by keeping impedances matched. Minimize crosstalk by isolating sensitive bits, such as strobes, and avoiding return path discontinuities. Use proper low-pass filtering on the Vref pins. Keep the stub length as short as possible. Add additional spacing for on-clock and strobe nets to eliminate crosstalk. Maintain a common ground reference for all bypass and decoupling capacitors. Take into account the differences in propagation delays between microstrip and stripline nets when evaluating timing constraints. DDR2 Board Design and Layout Guidelines 7.6.2.1 Board Designs TI only supports board designs that follow the guidelines outlined in this document. The switching characteristics and the timing diagram for the DDR2 memory controller are shown in Table 7-32 and Figure 7-46. Table 7-32. Switching Characteristics Over Recommended Operating Conditions for DDR2 Memory Controller NO. DDR21 PARAMETE R tc(DDR_CLK) DESCRIPTION MIN MAX UNIT Cycle time, DDR_CLK 2.5 8 ns 1 ddrx_ck PCB_DDR2_0 Figure 7-46. DDR2 Memory Controller Clock Timing 7.6.2.2 DDR2 Interface This section provides the timing specification for the DDR2 interface as a PCB design and manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR2 memory system without the need for a complex timing closure process. For more information regarding the guidelines for using this DDR2 specification, see the Understanding TI’s PCB Routing Rule-Based DDR Timing Specification Application Report (Literature Number: SPRAAV0). 7.6.2.2.1 DDR2 Interface Schematic Figure 7-47 shows the DDR2 interface schematic for a x32 DDR2 memory system. In Figure 7-48 the x16 DDR2 system schematic is identical except that the high-word DDR2 device is deleted. 434 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 ADVANCE INFORMATION When not using all or part of a DDR2 interface, the proper method of handling the unused pins is to tie off the ddrx_dqsi pins to ground via a 1k-Ω resistor and to tie off the ddrx_dqsni pins to the corresponding vdds_ddrx supply via a 1k-Ω resistor. This needs to be done for each byte not used. The vdds_ddrx and ddrx_vref0 power supply pins need to be connected to their respective power supplies even if DDRx is not being used. All other DDR interface pins can be left unconnected. Note that the supported modes for use of the DDR EMIF are 32-bits wide, 16-bits wide, or not used. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 435 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com DDR2 ddrx_d0 DQ0 ddrx_d7 ddrx_dqm0 ddrx_dqs0 DQ7 LDM LDQS ddrx_dqsn0 ddrx_d8 LDQS DQ8 ddrx_d15 ddrx_dqm1 ddrx_dqs1 DQ15 UDM UDQS ddrx_dqsn1 ddrx_odt0 UDQS ODT T0 DDR2 ddrx_odt1 NC ODT ddrx_d16 DQ0 ADVANCE INFORMATION ddrx_d23 ddrx_dqm2 ddrx_dqs2 ddrx_dqsn2 ddrx_d24 DQ7 LDM LDQS LDQS DQ8 ddrx_d31 ddrx_dqm3 ddrx_dqs3 ddrx_dqsn3 DQ15 UDM UDQS UDQS ddrx_ba0 T0 BA0 BA0 ddrx_ba2 ddrx_a0 T0 T0 BA2 A0 BA2 A0 T0 T0 NC T0 T0 A15 CS A15 CS CAS RAS CAS T0 T0 T0 T0 WE CKE CK CK VREF WE CKE CK CK VREF ddrx_a15 ddrx_csn0 ddrx_csn1 ddrx_casn ddrx_rasn ddrx_wen ddrx_cke ddrx_ck ddrx_nck ddrx_vref0 (B) 0.1 µF ddrx_rst T0 A. B. 0.1 µF (B) vdds_ddrx (A) RAS VREF 0.1 µF VREF 1 K Ω 1% VREF (B) 0.1 µF 0.1 µF 1 K Ω 1% NC Termination is required. See terminator comments. PCB_DDR2_1 vdds_ddrx is the power supply for the DDR2 memories and the Device DDR2 interface. One of these capacitors can be eliminated if the divider and its capacitors are placed near a VREF pin. Figure 7-47. 32-Bit DDR2 High-Level Schematic 436 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 DDR2 ddrx_d0 DQ0 ddrx_d7 ddrx_dqm0 ddrx_dqs0 DQ7 LDM LDQS ddrx_dqsn0 ddrx_d8 LDQS DQ8 ddrx_d15 ddrx_dqm1 ddrx_dqs1 ddrx_dqsn1 DQ15 UDM UDQS UDQS ddrx_odt0 ddrx_odt1 ddrx_d16 T0 NC NC ddrx_d23 ddrx_dqm2 NC NC 1 KΩ ddrx_d24 NC 1 KΩ ddrx_d31 ddrx_dqm3 ddrx_dqsn3 ddrx_dqs3 NC NC ODT vdds_ddrx (A) vdds_ddrx ADVANCE INFORMATION ddrx_dqsn2 ddrx_dqs2 (A) 1 KΩ 1 KΩ ddrx_ba0 T0 BA0 ddrx_ba2 ddrx_a0 T0 T0 BA2 A0 T0 T0 NC T0 T0 T0 T0 T0 T0 A15 CS ddrx_a15 ddrx_csn0 ddrx_csn1 ddrx_casn ddrx_rasn ddrx_wen ddrx_cke ddrx_ck ddrx_nck CAS ddrx_vref0 VREF 0.1 µF ddrx_rst T0 A. B. vdds_ddrx RAS WE CKE CK CK (B) 0.1 µF 0.1 µF VREF (A) 1 K Ω 1% VREF (B) 0.1 µF 1 K Ω 1% NC Termination is required. See terminator comments. PCB_DDR2_2 vdds_ddrx is the power supply for the DDR2 memories and the Device DDR2 interface. One of these capacitors can be eliminated if the divider and its capacitors are placed near a VREF pin. Figure 7-48. 16-Bit DDR2 High-Level Schematic Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 437 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 7.6.2.2.2 Compatible JEDEC DDR2 Devices Table 7-33 shows the parameters of the JEDEC DDR2 devices that are compatible with this interface. Generally, the DDR2 interface is compatible with x16 DDR2-800 speed grade DDR2 devices. Table 7-33. Compatible JEDEC DDR2 Devices (Per Interface) NO. PARAMETER CJ21 JEDEC DDR2 device speed grade(1) CJ22 JEDEC DDR2 device bit width CJ23 JEDEC DDR2 device count(2) CJ24 JEDEC DDR2 device ball count(3) MIN MAX UNIT DDR2-800 x16 x16 1 2 Devices Bits 84 92 Balls (1) Higher DDR2 speed grades are supported due to inherent JEDEC DDR2 backwards compatibility. (2) One DDR2 device is used for a 16-bit DDR2 memory system. Two DDR2 devices are used for a 32-bit DDR2 memory system. (3) The 92-ball devices are retained for legacy support. New designs will migrate to 84-ball DDR2 devices. Electrically, the 92- and 84-ball DDR2 devices are the same. 7.6.2.2.3 PCB Stackup ADVANCE INFORMATION The minimum stackup required for routing the Device is a six-layer stackup as shown in Table 7-34. Additional layers may be added to the PCB stackup to accommodate other circuitry or to reduce the size of the PCB footprint. Table 7-34. Minimum PCB Stackup 438 LAYER TYPE DESCRIPTION 1 Signal Top routing mostly horizontal 2 Plane Ground 3 Plane Power 4 Signal Internal routing 5 Plane Ground 6 Signal Bottom routing mostly vertical Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Complete stackup specifications are provided in Table 7-35. Table 7-35. PCB Stackup Specifications PARAMETER MIN PCB routing/plane layers 6 PS22 Signal routing layers 3 PS23 Full ground reference layers under DDR2 routing region(1) 1 PS24 Full vdds_ddrx power reference layers under the DDR2 routing region(1) 1 PS25 Number of reference plane cuts allowed within DDR routing region(2) TYP PS26 Number of layers between DDR2 routing layer and reference plane PS27 PCB routing feature size 4 PS28 PCB trace width, w 4 PS29 Single-ended impedance, Zo PS210 0 50 Impedance control UNIT 0 (3) (5) MAX Z-5 Z Mils Mils 75 Ω Z+5 Ω (1) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer return current as the trace routes switch routing layers. A full ground reference layer should be placed adjacent to each DDR routing layer in PCB stack up. (2) No traces should cross reference plane cuts within the DDR routing region. High-speed signal traces crossing reference plane cuts create large return current paths which can lead to excessive crosstalk and EMI radiation. (3) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop. (4) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available for power routing. An 18-mil pad is required for minimum layer count escape. (5) Z is the nominal singled-ended impedance selected for the PCB specified by PS29. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 439 ADVANCE INFORMATION NO. PS21 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 7.6.2.2.4 Placement Figure 7-49 shows the required placement for the Device as well as the DDR2 devices. The dimensions for this figure are defined in Table 7-36. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For a 16-bit DDR memory system, the high-word DDR2 device is omitted from the placement. y2 DDR2 Controller y1 ADVANCE INFORMATION y1 x1 y2 PCB_DDR2_3 Figure 7-49. Device and DDR2 Device Placement Table 7-36. Placement Specifications DDR2 NO. PARAMETER MIN MAX UNIT KOD21 X1 2000 Mils KOD22 Y1 500 Mils KOD23 Y2 1300 Mils 4 W (1) KOD24 DDR2 keepout region KOD25 Clearance from non-DDR2 signal to DDR2 keepout region (2) (3) (1) DDR2 keepout region to encompass entire DDR2 routing area. (2) Non-DDR2 signals allowed within DDR2 keepout region provided they are separated from DDR2 routing layers by a ground plane. (3) If a device has more than one DDR controller, the signals from the other controller(s) are considered non-DDR2 and should be separated by this specification. 440 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.6.2.2.5 DDR2 Keepout Region The region of the PCB used for the DDR2 circuitry must be isolated from other signals. The DDR2 keepout region is defined for this purpose and is shown in Figure 7-50. The size of this region varies with the placement and DDR routing. Additional clearances required for the keepout region are shown in Table 7-36. Device PCB_DDR2_4 Figure 7-50. DDR2 Keepout Region 7.6.2.2.6 Bulk Bypass Capacitors Bulk bypass capacitors are required for moderate speed bypassing of the DDR2 and other circuitry. Table 7-37 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the DDR2 interfaces and DDR2 device. Additional bulk bypass capacitance may be needed for other circuitry. Table 7-37. Bulk Bypass Capacitors NO. PARAMETER BC21 vdds_ddrx bulk bypass capacitor (≥1µF) count BC22 vdds_ddrx bulk bypass total capacitance MIN (1) TYP MAX UNIT 1 Devices 22 μF (1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the highspeed (HS) bypass capacitors and DDR2 signal routing. 7.6.2.2.7 High-Speed Bypass Capacitors TI recommends that a PDN/power integrity analysis is performed to ensure that capacitor selection and placement is optimal for a given implementation. This section provides guidelines that can serve as a good starting point. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 441 ADVANCE INFORMATION DDR2 Controller DDR2 Device DDR2 Device DDR2 Device DDR2 Device The region shown in Table 7-36 should encompass all the DDR2 circuitry and varies depending on placement. Non-DDR2 signals should not be routed on the DDR signal layers within the DDR2 keepout region. Non-DDR2 signals may be routed in the region, provided they are routed on layers separated from DDR2 signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the vdds_ddrx power plane should cover the entire keepout region. Routes for the two DDR interfaces must be separated by at least 4x; the more separation, the better. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com High-speed (HS) bypass capacitors are critical for proper DDR2 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, processor/DDR power, and processor/DDR ground connections. Table 7-38 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. Generally speaking, it is good to: 1. Fit as many HS bypass capacitors as possible. 2. HS bypass capacitor value is < 1µF 3. Minimize the distance from the bypass cap to the pins/balls being bypassed. 4. Use the smallest physical sized capacitors possible with the highest capacitance readily available. 5. Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest hole size via possible. 6. Minimize via sharing. Note the limites on via sharing shown in Table 7-38. Table 7-38. High-Speed Bypass Capacitors NO. PARAMETER MIN HS21 HS bypass capacitor package size(1) HS22 Distance, HS bypass capacitor to processor being bypassed(2)(3)(4) ADVANCE INFORMATION processor HS bypass capacitor count per vdds_ddrx rail HS24 processor vdds_ddrx HS bypass capacitor total capacitance MAX UNIT 0402 10 Mils 400(12) (12) HS23 TYP 0201 See and (12) HS25 Number of connection vias for each device power/ground ball HS26 Trace length from device power/ground ball to connection via(2) HS27 Distance, HS bypass capacitor to DDR device being bypassed(6) HS28 Number of connection vias for each HS capacitor(8)(9) 4 HS29 DDR2 device HS bypass capacitor count(7) 12 HS210 DDR2 device HS bypass capacitor total capacitance HS211 Trace length from bypass capacitor connect to connection via(2)(9) HS212 Number of connection vias for each DDR2 device power/ground ball(10) HS213 Trace length from DDR2 device power/ground ball to connection via(2)(8) Mils Devices See and (11) (5) (7) (11) μF 1 Vias 35 70 Mils 150 Mils (14) Vias (13) Devices 0.85 μF 35 100 1 Mils Vias 35 60 Mils (1) LxW, 10-mil units, that is, a 0402 is a 40x20-mil surface-mount capacitor. (2) Closer/shorter is better. (3) Measured from the nearest processor power/ground ball to the center of the capacitor package. (4) Three of these capacitors should be located underneath the processor, between the cluster of vdds_ddrx balls and ground balls, between the DDR interfaces on the package. (5) See the Via Channel™ escape for the processor package. (6) Measured from the DDR2 device power/ground ball to the center of the capacitor package. (7) Per DDR2 device. (8) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of vias is permitted on the same side of the board. (9) An HS bypass capacitor may share a via with a DDR device mounted on the same side of the PCB. A wide trace should be used for the connection and the length from the capacitor pad to the DDR device pad should be less than 150 mils. (10) Up to a total of two pairs of DDR power/ground balls may share a via. (11) The capacitor recommendations in this data manual reflect only the needs of this processor. Please see the memory vendor’s guidelines for determining the appropriate decoupling capacitor arrangement for the memory device itself. (12) For more information, see Section 7.3, Core Power Domains (13) For more information refer to DDR2 specification. (14) Preferred configuration is 4 vias: 2 to power and 2 to ground. 442 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.6.2.2.8 Net Classes Table 7-39 lists the clock net classes for the DDR2 interface. Table 7-40 lists the signal net classes, and associated clock net classes, for the signals in the DDR2 interface. These net classes are used for the termination and routing rules that follow. Table 7-39. Clock Net Class Definitions CLOCK NET CLASS CK PIN NAMES ddrx_ck / ddrx_nck DQS0 ddrx_dqs0 / ddrx_dqsn0 DQS1 ddrx_dqs1 / ddrx_dqsn1 (1) ddrx_dqs2 / ddrx_dqsn2 DQS3(1) ddrx_dqs3 / ddrx_dqsn3 DQS2 (1) Only used on 32-bit wide DDR2 memory systems. SIGNAL NET CLASS ASSOCIATED CLOCK NET CLASS ADDR_CTRL CK DQ0 DQS0 ddrx_d[7:0], ddrx_dqm0 DQ1 DQS1 ddrx_d[15:8], ddrx_dqm1 DQ2(1) DQS2 ddrx_d[23:16], ddrx_dqm2 DQ3(1) DQS3 ddrx_d[31:24], ddrx_dqm3 PIN NAMES ddrx_ba[2:0], ddrx_a[14:0], ddrx_csnj, ddrx_casn, ddrx_rasn, ddrx_wen, ddrx_cke, ddrx_odti (1) Only used on 32-bit wide DDR2 memory systems. 7.6.2.2.9 DDR2 Signal Termination Signal terminators are required in CK and ADDR_CTRL net classes. Serial terminators may be used on data lines to reduce EMI risk; however, serial terminations are the only type permitted. ODTs are integrated on the data byte net classes. They should be enabled to ensure signal integrity.Table 7-41 shows the specifications for the series terminators. Table 7-41. DDR2 Signal Terminations NO. PARAMETER MIN ST21 CK net class(1)(2) 0 ST22 ADDR_CTRL net class(1)(2)(3)(4) 0 ST23 Data byte net classes (DQS0-DQS3, DQ0-DQ3) (5) 0 TYP 22 MAX UNIT 10 Ω Zo Ω Zo Ω (1) Only series termination is permitted, parallel or SST specifically disallowed on board. (2) Only required for EMI reduction. (3) Terminator values larger than typical only recommended to address EMI issues. (4) Termination value should be uniform across net class. (5) No external terminations allowed for data byte net classes. ODT is to be used. 7.6.2.2.10 VREF Routing VREF (ddrx_vref0) is used as a reference by the input buffers of the DDR2 memories as well as the processor. VREF is intended to be half the DDR2 power supply voltage and should be created using a resistive divider as shown in Figure 7-48. Other methods of creating VREF are not recommended. Figure 7-51 shows the layout guidelines for VREF. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 443 ADVANCE INFORMATION Table 7-40. Signal Net Class Definitions DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com VREF Bypass Capacitor DDR2 Device DDR2 Device VREF Nominal Max Trace width is 20 mils DDR2 Controller PCB_DDR2_5 Figure 7-51. VREF Routing and Topology 7.6.2.3 DDR2 CK and ADDR_CTRL Routing B DDR2 Device Figure 7-52 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A = (A'+A'') should be maximized. DDR2 Device ADVANCE INFORMATION Neck down to minimum in BGA escape regions is acceptable. Narrowing to accomodate via congestion for short distances is also acceptable. Best performance is obtained if the width of VREF is maximized. C A” DDR2 Controller T A’ PCB_DDR2_6 Figure 7-52. CK and ADDR_CTRL Routing and Topology Table 7-42. CK and ADDR_CTRL Routing Specification (1) NO. Center-to-center ddrx_ck - ddrx_nck spacing RSC22 ddrx_ck / ddrx_nck skew(1) RSC23 444 PARAMETER RSC21 CK A-to-B/A-to-C skew mismatch (2) Applications, Implementation, and Layout MIN MAX UNIT 2w 5 ps 10 ps Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 7-42. CK and ADDR_CTRL Routing Specification NO. (1) (continued) PARAMETER MAX UNIT 10 ps CK/ADDR_CTRL trace length(4) 680 ps RSC27 ADDR_CTRL-to-CK skew mismatch 25 ps RSC28 ADDR_CTRL-to-ADDR_CTRL skew mismatch 25 ps RSC29 Center-to-center ADDR_CTRL to other DDR2 trace spacing(3) 4w RSC210 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(3) 3w 25 ps 25 ps RSC24 CK B-to-C skew mismatch RSC25 Center-to-center CK to other DDR2 trace spacing(3) RSC26 RSC211 ADDR_CTRL A-to-B/A-to-C skew mismatch RSC212 ADDR_CTRL B-to-C skew mismatch MIN 4w (2) (1) The length of segment A = A' + A′′ as shown in Figure 7-52. (2) Series terminator, if used, should be located closest to the Device. (3) Center-to-center spacing is allowed to fall to minimum 2w for up to 500 mils of routed length to accommodate BGA escape and routing congestion. (4) This is the longest routing length of the CK and ADDR_CTRL net classes. DDR2 Device DDR2 Device Figure 7-53 shows the topology and routing for the DQS and DQ net classes; the routes are point to point. Skew matching across bytes is not needed nor recommended. E2 E3 E0 E1 DDR2 Controller PCB_DDR2_7 Figure 7-53. DQS and DQ Routing and Topology Table 7-43. DQS and DQ Routing Specification NO. PARAMETER MIN MAX UNIT 5 ps RSDQ21 Center-to-center DQS-DQSn spacing in E0|E1|E2|E3 RSDQ22 DQS-DQSn skew in E0|E1|E2|E3 2w RSDQ23 Center-to-center DQS to other DDR2 trace spacing(1) RSDQ24 DQS/DQ trace length (2)(3)(4) 325 ps RSDQ25 DQ-to-DQS skew mismatch(2)(3)(4) 10 ps RSDQ26 DQ-to-DQ skew mismatch(2)(3)(4) 10 ps 1 Vias 25 ps 4w (2)(3)(4) RSDQ27 DQ-to-DQ/DQS via count mismatch RSDQ28 Center-to-center DQ to other DDR2 trace spacing(1)(5) 4w RSDQ29 Center-to-center DQ to other DQ trace spacing(1)(6)(7) 3w RSDQ210 DQ/DQS E skew mismatch(2)(3)(4) Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 445 ADVANCE INFORMATION (5) Length of A should be maximized. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (1) Center-to-center spacing is allowed to fall to minimum 2w for up to 500 mils of routed length to accommodate BGA escape and routing congestion. (2) A 16-bit DDR memory system has two sets of data net classes; one for data byte 0, and one for data byte 1, each with an associated DQS (2 DQSs) per DDR EMIF used. (3) A 32-bit DDR memory system has four sets of data net classes; one each for data bytes 0 through 3, and each associated with a DQS (4 DQSs) per DDR EMIF used. (4) There is no need, and it is not recommended, to skew match across data bytes; that is, from DQS0 and data byte 0 to DQS1 and data byte 1. (5) DQs from other DQS domains are considered other DDR2 trace. (6) DQs from other data bytes are considered other DDR2 trace. (7) This is the longest routing distance of each of the DQS and DQ net classes. 7.6.3 DDR3 Board Design and Layout Guidelines 7.6.3.1 Board Designs TI only supports board designs using DDR3 memory that follow the guidelines in this document. The switching characteristics and timing diagram for the DDR3 memory controller are shown in Table 7-44 and Figure 7-54. ADVANCE INFORMATION Table 7-44. Switching Characteristics Over Recommended Operating Conditions for DDR3 Memory Controller NO. 1 PARAMETER tc(DDR_CLK) MIN MAX UNIT 1.5 2.5(1) ns Cycle time, DDR_CLK (1) This is the absolute maximum the clock period can be. Actual maximum clock period may be limited by DDR3 speed grade and operating frequency (see the DDR3 memory device data sheet). 1 DDR_CLK SPRS906_PCB_DDR3_01 Figure 7-54. DDR3 Memory Controller Clock Timing 7.6.3.2 DDR3 EMIF The processor contains one DDR3 EMIF. 7.6.3.3 DDR3 Device Combinations Because there are several possible combinations of device counts and single- or dual-side mounting, Table 7-45 summarizes the supported device configurations. Table 7-45. Supported DDR3 Device Combinations NUMBER OF DDR3 DEVICES DDR3 DEVICE WIDTH (BITS) 1 2 2 DDR3 EMIF WIDTH (BITS) 16 N 16 8 Y(1) 16 16 N 32 (1) 32 2 16 Y 3 16 N(3) 32 4 8 N 32 4 8 Y(2) 32 8 (3) 32 5 446 MIRRORED? N Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (1) Two DDR3 devices are mirrored when one device is placed on the top of the board and the second device is placed on the bottom of the board. (2) This is two mirrored pairs of DDR3 devices. (3) Three or five DDR3 device combination is not available on this device, but combination types are retained for consistency with the DRA7xx family of devices. 7.6.3.4 DDR3 Interface Schematic 7.6.3.4.1 32-Bit DDR3 Interface The DDR3 interface schematic varies, depending upon the width of the DDR3 devices used and the width of the bus used (16 or 32 bits). General connectivity is straightforward and very similar. 16-bit DDR devices look like two 8-bit devices. Figure 7-55 and Figure 7-56 show the schematic connections for 32-bit interfaces using x16 devices. 7.6.3.4.2 16-Bit DDR3 Interface When not using all or part of a DDR interface, the proper method of handling the unused pins is to tie off the ddrx_dqsi pins to ground via a 1k-Ω resistor and to tie off the ddrx_dqsni pins to the corresponding vdds_ddrx supply via a 1k-Ω resistor. This needs to be done for each byte not used. Although these signals have internal pullups and pulldowns, external pullups and pulldowns provide additional protection against external electrical noise causing activity on the signals. The vdds_ddrx and ddrx_vref0 power supply pins need to be connected to their respective power supplies even if ddrx is not being used. All other DDR interface pins can be left unconnected. Note that the supported modes for use of the DDR EMIF are 32-bits wide, 16-bits wide, or not used. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 447 ADVANCE INFORMATION Note that the 16-bit wide interface schematic is practically identical to the 32-bit interface (see Figure 7-55 and Figure 7-56); only the high-word DDR memories are removed and the unused DQS inputs are tied off. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 32-bit DDR3 EMIF 16-Bit DDR3 Devices ddr1_d31 DQ15 8 ddr1_d24 DQ8 ddr1_dqm3 ddr1_dqs3 ddr1_dqsn3 UDM UDQS UDQS ddr1_d23 DQ7 8 ddr1_d16 ddr1_dqm2 ddr1_dqs2 ddr1_dqsn2 D08 LDM LDQS LDQS ddr1_d15 DQ15 8 ddr1_d8 DQ8 ADVANCE INFORMATION ddr1_dqm1 ddr1_dqs1 ddr1_dqsn1 ddr1_d7 UDM UDQS UDQS DQ7 8 ddr1_d0 ddr1_dqm0 ddr1_dqs0 ddr1_dqsn0 ddr1_ck ddr1_nck ddr1_odt0 ddr1_csn0 ddr1_odt1 ddr1_csn1 ddr1_ba0 ddr1_ba1 ddr1_ba2 ddr1_a0 ODT CS ODT CS BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA A15 CAS RAS WE CKE RST Zo 0.1 µF DDR_1V5 Zo NC 16 ZQ ddr1_vref0 0.1 µF Zo CK CK NC ddr1_a15 ddr1_casn ddr1_rasn ddr1_wen ddr1_cke ddr1_rst ZQ DQ0 LDM LDQS LDQS CK CK 0.1 µF DDR_VTT Zo Zo DDR_VREF ZQ VREFDQ VREFCA ZQ 0.1 µF Termination is required. See terminator comments. Value determined according to the DDR memory device data sheet. SPRS906_PCB_DDR3_02 Figure 7-55. 32-Bit, One-Bank DDR3 Interface Schematic Using Two 16-Bit DDR3 Devices 448 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 32-bit DDR3 EMIF 8-Bit DDR3 Devices 8-Bit DDR3 Devices ddrx_d31 DQ7 8 ddrx_d24 ddrx_dqm3 DQ0 NC ddrx_dqs3 ddrx_dqsn3 DM/TQS TDQS DQS DQS ddrx_d23 DQ7 8 ddrx_d16 ddrx_dqm2 DQ0 NC ddrx_dqs2 ddrx_dqsn2 ddrx_d15 DM/TQS TDQS DQS DQS DQ7 ddrx_d8 ddrx_dqm1 NC ddrx_dqs1 ddrx_dqsn1 ddrx_d7 DQ0 DM/TQS TDQS DQS DQS DQ7 8 ddrx_d0 NC ddrx_dqm0 ddrx_dqs0 ddrx_dqsn0 ddrx_ck ddrx_nck ddrx_odt0 ddrx_csn0 ddrx_odt1 ddrx_csn1 ddrx_ba0 ddrx_ba1 ddrx_ba2 ddrx_a0 16 ZQ ddrx_vref0 0.1 µF ZQ CK CK CK CK CK CK ODT CS ODT CS ODT CS ODT CS BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 BA0 BA1 BA2 A0 Zo 0.1 µF DDR_1V5 Zo NC NC ddrx_a15 ddrx_casn ddrx_rasn ddrx_wen ddrx_cke ddrx_rst Zo DQ0 TDQS DM/TQS DQS DQS CK CK A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA 0.1 µF A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA 0.1 µF ZQ ZQ A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA 0.1 µF A15 CAS RAS WE CKE RST ZQ VREFDQ VREFCA DDR_VTT Zo Zo DDR_VREF ZQ 0.1 µF Termination is required. See terminator comments. Value determined according to the DDR memory device data sheet. SPRS906_PCB_DDR3_03 Figure 7-56. 32-Bit, One-Bank DDR3 Interface Schematic Using Four 8-Bit DDR3 Devices Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 449 ADVANCE INFORMATION 8 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.6.3.5 www.ti.com Compatible JEDEC DDR3 Devices Table 7-46 shows the parameters of the JEDEC DDR3 devices that are compatible with this interface. Generally, the DDR3 interface is compatible with DDR3-1333 devices in the x8 or x16 widths. Table 7-46. Compatible JEDEC DDR3 Devices (Per Interface) N O. 1 PARAMETER CONDITION JEDEC DDR3 device speed grade(1) MIN MAX DDR clock rate = 400MHz DDR3-800 DDR3-1600 400MHz< DDR clock rate ≤ 533MHz DDR3-1066 DDR3-1600 533MHz< DDR clock rate ≤ 667MHz UNIT DDR3-1333 DDR3-1600 2 JEDEC DDR3 device bit width x8 x16 Bits 3 JEDEC DDR3 device count(2) 2 4 Devices (1) Refer to Table 7-44 Switching Characteristics Over Recommended Operating Conditions for DDR3 Memory Controller for the range of supported DDR clock rates. (2) For valid DDR3 device configurations and device counts, see Section 7.6.3.4, Figure 7-55, and Figure 7-56. 7.6.3.6 PCB Stackup ADVANCE INFORMATION The minimum stackup for routing the DDR3 interface is a six-layer stack up as shown in Table 7-47. Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance SI/EMI performance, or to reduce the size of the PCB footprint. Complete stackup specifications are provided in Table 7-48. Table 7-47. Six-Layer PCB Stackup Suggestion 450 LAYER TYPE DESCRIPTION 1 Signal Top routing mostly vertical 2 Plane Ground 3 Plane Split power plane 4 Plane Split power plane or Internal routing 5 Plane Ground 6 Signal Bottom routing mostly horizontal Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 7-48. PCB Stackup Specifications NO. PARAMETER MIN PS1 PCB routing/plane layers 6 PS2 Signal routing layers 3 PS3 Full ground reference layers under DDR3 routing region(1) TYP MAX 1 (1) PS4 Full 1.5-V power reference layers under the DDR3 routing region PS5 Number of reference plane cuts allowed within DDR routing region(2) 0 PS6 Number of layers between DDR3 routing layer and reference plane(3) 0 PS7 PCB routing feature size 4 PS8 PCB trace width, w 4 PS9 Single-ended impedance, Zo PS10 UNIT 1 Mils Mils 50 (5) Impedance control Z-5 Z 75 Ω Z+5 Ω (1) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer return current as the trace routes switch routing layers. (2) No traces should cross reference plane cuts within the DDR routing region. High-speed signal traces crossing reference plane cuts create large return current paths which can lead to excessive crosstalk and EMI radiation. (4) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available for power routing. An 18-mil pad is required for minimum layer count escape. (5) Z is the nominal singled-ended impedance selected for the PCB specified by PS9. 7.6.3.7 Placement Figure 7-57 shows the required placement for the processor as well as the DDR3 devices. The dimensions for this figure are defined in Table 7-49. The placement does not restrict the side of the PCB on which the devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and allow for proper routing space. For a 16-bit DDR memory system, the high-word DDR3 devices are omitted from the placement. x3 x2 x1 y1 y2 x1+x2+x3 y2 y2 DDR3 Controller DDR3 Controller y2 y2 Four Devices Five Devices SPRS906_PCB_DDR3_04 Figure 7-57. Placement Specifications Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 451 ADVANCE INFORMATION (3) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Table 7-49. Placement Specifications DDR3 MAX UNIT KOD31 X1 NO. PARAMETER MIN 500 Mils KOD32 X2 600 Mils KOD33 X3 600 Mils KOD34 Y1 1800 Mils KOD35 Y2 600 Mils KOD36 DDR3 keepout region (1) KOD37 Clearance from non-DDR3 signal to DDR3 keepout region (2) (3) 4 W (1) DDR3 keepout region to encompass entire DDR3 routing area. (2) Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane. (3) If a device has more than one DDR controller, the signals from the other controller(s) are considered non-DDR3 and should be separated by this specification. 7.6.3.8 DDR3 Keepout Region ADVANCE INFORMATION The region of the PCB used for DDR3 circuitry must be isolated from other signals. The DDR3 keepout region is defined for this purpose and is shown in Figure 7-58. The size of this region varies with the placement and DDR routing. Additional clearances required for the keepout region are shown in Table 749. Non-DDR3 signals should not be routed on the DDR signal layers within the DDR3 keepout region. Non-DDR3 signals may be routed in the region, provided they are routed on layers separated from the DDR signal layers by a ground layer. No breaks should be allowed in the reference ground layers in this region. In addition, the 1.5-V DDR3 power plane should cover the entire keepout region. Also note that the two signals from the DDR3 controller should be separated from each other by the specification in Table 749 (see KOD37). DDR3 Keepout Region DDR3 Keepout Region DDR3 Controller DDR3 Controller Five Devices Four Devices SPRS906_PCB_DDR3_05 Figure 7-58. DDR3 Keepout Region 452 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 7.6.3.9 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Bulk Bypass Capacitors Bulk bypass capacitors are required for moderate speed bypassing of the DDR3 and other circuitry. Table 7-50 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note that this table only covers the bypass needs of the DDR3 controllers and DDR3 devices. Additional bulk bypass capacitance may be needed for other circuitry. Table 7-50. Bulk Bypass Capacitors NO. PARAMETER MIN MAX UNIT 1 vdds_ddrx bulk bypass capacitor count(1) 1 Devices 2 vdds_ddrx bulk bypass total capacitance 22 μF (1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the highspeed (HS) bypass capacitors and DDR3 signal routing. High-speed (HS) bypass capacitors are critcal for proper DDR3 interface operation. It is particularly important to minimize the parasitic series inductance of the HS bypass capacitors, processor/DDR power, and processor/DDR ground connections. Table 7-51 contains the specification for the HS bypass capacitors as well as for the power connections on the PCB. Generally speaking, it is good to: 1. Fit as many HS bypass capacitors as possible. 2. Minimize the distance from the bypass cap to the pins/balls being bypassed. 3. Use the smallest physical sized capacitors possible with the highest capacitance readily available. 4. Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest hole size via possible. 5. Minimize via sharing. Note the limites on via sharing shown in Table 7-51. Table 7-51. High-Speed Bypass Capacitors NO. PARAMETER MIN 1 HS bypass capacitor package size(1) 2 Distance, HS bypass capacitor to processor being bypassed(2)(3)(4) 3 Processor HS bypass capacitor count per vdds_ddrx rail(12) 4 Processor HS bypass capacitor total capacitance per vdds_ddrx rail(12) TYP MAX UNIT 0201 0402 10 Mils 400 See and (11) Mils Devices See and (11) μF (5) 5 Number of connection vias for each device power/ground ball 6 Trace length from device power/ground ball to connection via(2) 7 Distance, HS bypass capacitor to DDR device being bypassed 8 DDR3 device HS bypass capacitor count(7) 9 DDR3 device HS bypass capacitor total capacitance(7) Vias 35 (6) (8)(9) 10 Number of connection vias for each HS capacitor 11 Trace length from bypass capacitor connect to connection via(2)(9) 12 Number of connection vias for each DDR3 device power/ground ball(10) 13 Trace length from DDR3 device power/ground ball to connection via(2)(8) 70 Mils 150 Mils 12 Devices 0.85 μF 2 Vias 35 100 1 Mils Vias 35 60 Mils (1) LxW, 10-mil units, that is, a 0402 is a 40x20-mil surface-mount capacitor. (2) Closer/shorter is better. (3) Measured from the nearest processor power/ground ball to the center of the capacitor package. (4) Three of these capacitors should be located underneath the processor, between the cluster of DDR_1V5 balls and ground balls, between the DDR interfaces on the package. (5) See the Via Channel™ escape for the processor package. (6) Measured from the DDR3 device power/ground ball to the center of the capacitor package. (7) Per DDR3 device. (8) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of vias is permitted on the same side of the board. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 453 ADVANCE INFORMATION 7.6.3.10 High-Speed Bypass Capacitors DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com (9) An HS bypass capacitor may share a via with a DDR device mounted on the same side of the PCB. A wide trace should be used for the connection and the length from the capacitor pad to the DDR device pad should be less than 150 mils. (10) Up to a total of two pairs of DDR power/ground balls may share a via. (11) The capacitor recommendations in this data manual reflect only the needs of this processor. Please see the memory vendor’s guidelines for determining the appropriate decoupling capacitor arrangement for the memory device itself. (12) For more information, see Section 7.3, Core Power Domains. 7.6.3.10.1 Return Current Bypass Capacitors Use additional bypass capacitors if the return current reference plane changes due to DDR3 signals hopping from one signal layer to another. The bypass capacitor here provides a path for the return current to hop planes along with the signal. As many of these return current bypass capacitors should be used as possible. Because these are returns for signal current, the signal via size may be used for these capacitors. 7.6.3.11 Net Classes Table 7-52 lists the clock net classes for the DDR3 interface. Table 7-53 lists the signal net classes, and associated clock net classes, for signals in the DDR3 interface. These net classes are used for the termination and routing rules that follow. ADVANCE INFORMATION Table 7-52. Clock Net Class Definitions CLOCK NET CLASS CK processor PIN NAMES ddrx_ck/ddrx_nck DQS0 ddrx_dqs0 / ddrx_dqsn0 DQS1 ddrx_dqs1 / ddrx_dqsn1 DQS2(1) ddrx_dqs2 / ddrx_dqsn2 (1) ddrx_dqs3 / ddrx_dqsn3 DQS3 (1) Only used on 32-bit wide DDR3 memory systems. Table 7-53. Signal Net Class Definitions SIGNAL NET CLASS ASSOCIATED CLOCK NET CLASS ADDR_CTRL CK DQ0 DQS0 ddrx_d[7:0], ddrx_dqm0 processor PIN NAMES ddrx_ba[2:0], ddrx_a[14:0], ddrx_csnj, ddrx_casn, ddrx_rasn, ddrx_wen, ddrx_cke, ddrx_odti DQ1 DQS1 ddrx_d[15:8], ddrx_dqm1 DQ2(1) DQS2 ddrx_d[23:16], ddrx_dqm2 DQ3(1) DQS3 ddrx_d[31:24], ddrx_dqm3 (1) Only used on 32-bit wide DDR3 memory systems. 7.6.3.12 DDR3 Signal Termination Signal terminators are required for the CK and ADDR_CTRL net classes. The data lines are terminated by ODT and, thus, the PCB traces should be unterminated. Detailed termination specifications are covered in the routing rules in the following sections. 7.6.3.13 VREF_DDR Routing ddrx_vref0 (VREF) is used as a reference by the input buffers of the DDR3 memories as well as the processor. VREF is intended to be half the DDR3 power supply voltage and is typically generated with the DDR3 VDDS and VTT power supply. It should be routed as a nominal 20-mil wide trace with 0.1 µF bypass capacitors near each device connection. Narrowing of VREF is allowed to accommodate routing congestion. 454 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 7.6.3.14 VTT Like VREF, the nominal value of the VTT supply is half the DDR3 supply voltage. Unlike VREF, VTT is expected to source and sink current, specifically the termination current for the ADDR_CTRL net class Thevinen terminators. VTT is needed at the end of the address bus and it should be routed as a power sub-plane. VTT should be bypassed near the terminator resistors. 7.6.3.15 CK and ADDR_CTRL Topologies and Routing Definition The CK and ADDR_CTRL net classes are routed similarly and are length matched to minimize skew between them. CK is a bit more complicated because it runs at a higher transition rate and is differential. The following subsections show the topology and routing for various DDR3 configurations for CK and ADDR_CTRL. The figures in the following subsections define the terms for the routing specification detailed in Table 7-54. 7.6.3.15.1 Four DDR3 Devices 7.6.3.15.1.1 CK and ADDR_CTRL Topologies, Four DDR3 Devices Figure 7-59 shows the topology of the CK net classes and Figure 7-60 shows the topology for the corresponding ADDR_CTRL net classes. + – + – + – + – AS+ AS- AS+ AS- AS+ AS- AS+ AS- DDR Differential CK Input Buffers Clock Parallel Terminator DDR_1V5 Rcp A1 Processor Differential Clock Output Buffer A2 A3 A4 A3 AT Cac + – Rcp A1 A2 A3 A4 A3 0.1 µF AT Routed as Differential Pair SPRS906_PCB_DDR3_06 Figure 7-59. CK Topology for Four x8 DDR3 Devices Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 455 ADVANCE INFORMATION Four DDR3 devices are supported on the DDR EMIF consisting of four x8 DDR3 devices arranged as one bank (CS). These four devices may be mounted on a single side of the PCB, or may be mirrored in two pairs to save board space at a cost of increased routing complexity and parts on the backside of the PCB. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com Processor Address and Control Output Buffer A1 A3 A2 AS AS AS AS DDR Address and Control Input Buffers A3 A4 Address and Control Terminator Rtt Vtt AT SPRS906_PCB_DDR3_07 Figure 7-60. ADDR_CTRL Topology for Four x8 DDR3 Devices 7.6.3.15.1.2 CK and ADDR_CTRL Routing, Four DDR3 Devices A1 A1 ADVANCE INFORMATION Figure 7-61 shows the CK routing for four DDR3 devices placed on the same side of the PCB. Figure 7-62 shows the corresponding ADDR_CTRL routing. DDR_1V5 A3 A3 = A4 A4 A3 A3 Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A2 A2 SPRS906_PCB_DDR3_08 Figure 7-61. CK Routing for Four Single-Side DDR3 Devices 456 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 A1 www.ti.com Rtt A3 AT Vtt SPRS906_PCB_DDR3_09 Figure 7-62. ADDR_CTRL Routing for Four Single-Side DDR3 Devices A1 A1 To save PCB space, the four DDR3 memories may be mounted as two mirrored pairs at a cost of increased routing and assembly complexity. Figure 7-63 and Figure 7-64 show the routing for CK and ADDR_CTRL, respectively, for four DDR3 devices mirrored in a two-pair configuration. DDR_1V5 = A4 A4 A3 A3 Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A3 A3 A2 A2 SPRS906_PCB_DDR3_10 Figure 7-63. CK Routing for Four Mirrored DDR3 Devices Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 457 ADVANCE INFORMATION = A3 A4 AS A2 DRA77P, DRA76P www.ti.com A1 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Rtt = A3 A4 AT Vtt AS A3 A2 SPRS906_PCB_DDR3_11 7.6.3.15.2 Two DDR3 Devices Two DDR3 devices are supported on the DDR EMIF consisting of two x8 DDR3 devices arranged as one bank (CS), 16 bits wide, or two x16 DDR3 devices arranged as one bank (CS), 32 bits wide. These two devices may be mounted on a single side of the PCB, or may be mirrored in a pair to save board space at a cost of increased routing complexity and parts on the backside of the PCB. 7.6.3.15.2.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices Figure 7-65 shows the topology of the CK net classes and Figure 7-66 shows the topology for the corresponding ADDR_CTRL net classes. + – + – AS+ AS- DDR Differential CK Input Buffers AS+ AS- ADVANCE INFORMATION Figure 7-64. ADDR_CTRL Routing for Four Mirrored DDR3 Devices Clock Parallel Terminator DDR_1V5 Rcp A1 Processor Differential Clock Output Buffer A2 A3 AT Cac + – Rcp A1 A2 A3 0.1 µF AT Routed as Differential Pair SPRS906_PCB_DDR3_12 Figure 7-65. CK Topology for Two DDR3 Devices 458 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Processor Address and Control Output Buffer A1 AS AS DDR Address and Control Input Buffers A3 A2 Address and Control Terminator Rtt Vtt AT SPRS906_PCB_DDR3_13 Figure 7-66. ADDR_CTRL Topology for Two DDR3 Devices 7.6.3.15.2.2 CK and ADDR_CTRL Routing, Two DDR3 Devices ADVANCE INFORMATION A1 A1 Figure 7-67 shows the CK routing for two DDR3 devices placed on the same side of the PCB. Figure 7-68 shows the corresponding ADDR_CTRL routing. DDR_1V5 A3 A3 = Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A2 A2 SPRS906_PCB_DDR3_14 Figure 7-67. CK Routing for Two Single-Side DDR3 Devices Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 459 DRA77P, DRA76P www.ti.com A1 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Rtt A3 = Vtt AT AS A2 SPRS906_PCB_DDR3_15 ADVANCE INFORMATION Figure 7-68. ADDR_CTRL Routing for Two Single-Side DDR3 Devices A1 A1 To save PCB space, the two DDR3 memories may be mounted as a mirrored pair at a cost of increased routing and assembly complexity. Figure 7-69 and Figure 7-70 show the routing for CK and ADDR_CTRL, respectively, for two DDR3 devices mirrored in a single-pair configuration. DDR_1V5 = Rcp Cac Rcp 0.1 µF AT AT AS+ AS- A3 A3 A2 A2 SPRS906_PCB_DDR3_16 Figure 7-69. CK Routing for Two Mirrored DDR3 Devices 460 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 A1 www.ti.com Rtt A3 = Vtt AT AS A2 Figure 7-70. ADDR_CTRL Routing for Two Mirrored DDR3 Devices 7.6.3.15.3 One DDR3 Device A single DDR3 device is supported on the DDR EMIF consisting of one x16 DDR3 device arranged as one bank (CS), 16 bits wide. 7.6.3.15.3.1 CK and ADDR_CTRL Topologies, One DDR3 Device Figure 7-71 shows the topology of the CK net classes and Figure 7-72 shows the topology for the corresponding ADDR_CTRL net classes. DDR Differential CK Input Buffer AS+ AS- + – Clock Parallel Terminator DDR_1V5 Rcp A1 Processor Differential Clock Output Buffer A2 AT Cac + – Rcp A1 A2 0.1 µF AT Routed as Differential Pair SPRS906_PCB_DDR3_18 Figure 7-71. CK Topology for One DDR3 Device Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 461 ADVANCE INFORMATION SPRS906_PCB_DDR3_17 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com AS DDR Address and Control Input Buffers Processor Address and Control Output Buffer A1 Address and Control Terminator Rtt AT Vtt A2 SPRS906_PCB_DDR3_19 Figure 7-72. ADDR_CTRL Topology for One DDR3 Device 7.6.3.15.3.2 CK and ADDR/CTRL Routing, One DDR3 Device A1 A1 ADVANCE INFORMATION Figure 7-73 shows the CK routing for one DDR3 device placed on the same side of the PCB. Figure 7-74 shows the corresponding ADDR_CTRL routing. DDR_1V5 Rcp Cac Rcp 0.1 µF AT AT = AS+ AS- A2 A2 SPRS906_PCB_DDR3_20 Figure 7-73. CK Routing for One DDR3 Device 462 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 A1 www.ti.com Rtt AT SPRS906_PCB_DDR3_21 Figure 7-74. ADDR_CTRL Routing for One DDR3 Device 7.6.3.16 Data Topologies and Routing Definition No matter the number of DDR3 devices used, the data line topology is always point to point, so its definition is simple. Care should be taken to minimize layer transitions during routing. If a layer transition is necessary, it is better to transition to a layer using the same reference plane. If this cannot be accommodated, ensure there are nearby ground vias to allow the return currents to transition between reference planes if both reference planes are ground or vdds_ddr. Ensure there are nearby bypass capacitors to allow the return currents to transition between reference planes if one of the reference planes is ground. The goal is to minimize the size of the return current loops. 7.6.3.16.1 DQS and DQ/DM Topologies, Any Number of Allowed DDR3 Devices DQS lines are point-to-point differential, and DQ/DM lines are point-to-point singled ended. Figure 7-75 and Figure 7-76 show these topologies. Processor DQS IO Buffer DQSn+ DQSn- DDR DQS IO Buffer Routed Differentially n = 0, 1, 2, 3 SPRS906_PCB_DDR3_22 Figure 7-75. DQS Topology Processor DQ and DM IO Buffer Dn DDR DQ and DM IO Buffer n = 0, 1, 2, 3 SPRS906_PCB_DDR3_23 Figure 7-76. DQ/DM Topology Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 463 ADVANCE INFORMATION = Vtt AS A2 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 7.6.3.16.2 DQS and DQ/DM Routing, Any Number of Allowed DDR3 Devices Figure 7-77 and Figure 7-78 show the DQS and DQ/DM routing. DQS DQSn+ DQSn- Routed Differentially n = 0, 1, 2, 3 ADVANCE INFORMATION SPRS906_PCB_DDR3_24 Figure 7-77. DQS Routing With Any Number of Allowed DDR3 Devices Dn DQ and DM n = 0, 1, 2, 3 SPRS906_PCB_DDR3_25 Figure 7-78. DQ/DM Routing With Any Number of Allowed DDR3 Devices 7.6.3.17 Routing Specification 7.6.3.17.1 CK and ADDR_CTRL Routing Specification Skew within the CK and ADDR_CTRL net classes directly reduces setup and hold margin and, thus, this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. A metric to establish this maximum length is Manhattan distance. The Manhattan distance between two points on a PCB is the length between the points when connecting them only with horizontal or vertical segments. A reasonable trace route length is to within a percentage of its Manhattan distance. CACLM is defined as Clock Address Control Longest Manhattan distance. 464 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Given the clock and address pin locations on the processor and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 7-79 and Figure 7-80 show this distance for four loads and two loads, respectively. It is from this distance that the specifications on the lengths of the transmission lines for the address bus are determined. CACLM is determined similarly for other address bus configurations; that is, it is based on the longest net of the CK/ADDR_CTRL net class. For CK and ADDR_CTRL routing, these specifications are contained in Table 7-54. (A) A1 A8 CACLMY A8 (A) A8 (A) A8 (A) A8 ADVANCE INFORMATION CACLMX (A) Rtt A3 = A4 A3 AT Vtt AS A2 SPRS906_PCB_DDR3_26 A. It is very likely that the longest CK/ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net class that satisfies this criteria and use as the baseline for CK/ADDR_CTRL skew matching and length control. The length of shorter CK/ADDR_CTRL stubs as well as the length of the terminator stub are not included in this length calculation. Non-included lengths are grayed out in the figure. Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils. The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8. Figure 7-79. CACLM for Four Address Loads on One Side of PCB Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 465 DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 (A) A1 A8 www.ti.com CACLMY CACLMX A8 (A) A8 (A) Rtt A3 = AT Vtt AS A2 ADVANCE INFORMATION SPRS906_PCB_DDR3_27 A. It is very likely that the longest CK/ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net class that satisfies this criteria and use as the baseline for CK/ADDR_CTRL skew matching and length control. The length of shorter CK/ADDR_CTRL stubs as well as the length of the terminator stub are not included in this length calculation. Non-included lengths are grayed out in the figure. Assuming A8 is the longest, CALM = CACLMY + CACLMX + 300 mils. The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8. Figure 7-80. CACLM for Two Address Loads on One Side of PCB Table 7-54. CK and ADDR_CTRL Routing Specification(2)(3) NO. PARAMETER MAX UNIT 500(1) ps A1+A2 skew 29 ps A3 length 125 ps CARS34 A3 skew(4) 6 ps CARS35 (5) A3 skew 6 ps CARS36 A4 length 125 ps CARS37 A4 skew 6 ps CARS38 AS length 5 17(1) ps 1.3 14(1) ps 5 12 ps 1 ps CARS31 A1+A2 length CARS32 CARS33 CARS39 AS skew CARS310 AS+/AS- length CARS311 AS+/AS- skew MIN (6) TYP CARS312 AT length 75 CARS313 AT skew(7) 14 CARS314 AT skew(8) CARS315 CK/ADDR_CTRL trace length 1020 ps CARS316 Vias per trace 3(1) vias CARS317 Via count difference 1(15) vias CARS318 Center-to-center CK to other DDR3 trace spacing(9) 4w CARS319 Center-to-center ADDR_CTRL to other DDR3 trace spacing(9)(10) 4w CARS320 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(9) 3w 466 ps ps 1 Applications, Implementation, and Layout ps Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 7-54. CK and ADDR_CTRL Routing Specification(2)(3) (continued) NO. PARAMETER CARS321 CK center-to-center spacing(11)(12) CARS322 CK spacing to other net(9) CARS323 Rcp(13) CARS324 Rtt(13)(14) MIN TYP MAX UNIT Zo-1 Zo Zo+1 Ω Zo-5 Zo Zo+5 Ω 4w (1) Max value is based upon conservative signal integrity approach. This value could be extended only if detailed signal integrity analysis of rise time and fall time confirms desired operation. (2) The use of vias should be minimized. (3) Additional bypass capacitors are required when using the DDR_1V5 plane as the reference plane to allow the return current to jump between the DDR_1V5 plane and the ground plane when the net class switches layers at a via. (4) Non-mirrored configuration (all DDR3 memories on same side of PCB). (5) Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom). (6) While this length can be increased for convenience, its length should be minimized. (7) ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required. (8) CK net class only. (10) The ADDR_CTRL net class of the other DDR EMIF is considered other DDR3 trace spacing. (11) CK spacing set to ensure proper differential impedance. (12) The most important thing to do is control the impedance so inadvertent impedance mismatches are not created. Generally speaking, center-to-center spacing should be either 2w or slightly larger than 2w to achieve a differential impedance equal to twice the singleended impedance, Zo. (13) Source termination (series resistor at driver) is specifically not allowed. (14) Termination values should be uniform across the net class. (15) Via count difference may increase by 1 only if accurate 3-D modeling of the signal flight times – including accurately modeled signal propagation through vias – has been applied to ensure all segment skew maximums are not exceeded. 7.6.3.17.2 DQS and DQ Routing Specification Skew within the DQS and DQ/DM net classes directly reduces setup and hold margin and thus this skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces up to the length of the longest net in the net class and its associated clock. As with CK and ADDR_CTRL, a reasonable trace route length is to within a percentage of its Manhattan distance. DQLMn is defined as DQ Longest Manhattan distance n, where n is the byte number. For a 32-bit interface, there are four DQLMs, DQLM0-DQLM3. Likewise, for a 16-bit interface, there are two DQLMs, DQLM0-DQLM1. NOTE It is not required, nor is it recommended, to match the lengths across all bytes. Length matching is only required within each byte. Given the DQS and DQ/DM pin locations on the processor and the DDR3 memories, the maximum possible Manhattan distance can be determined given the placement. Figure 7-81 shows this distance for four loads. It is from this distance that the specifications on the lengths of the transmission lines for the data bus are determined. For DQS and DQ/DM routing, these specifications are contained in Table 7-55. Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 467 ADVANCE INFORMATION (9) Center-to-center spacing is allowed to fall to minimum 2w for up to 1250 mils of routed length. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com DQLMX0 DB0 DB1 DQ[0:7]/DM0/DQS0 DQ[8:15]/DM1/DQS1 DQLMX1 DQ[16:23]/DM2/DQS2 DB2 DQLMY0 DQLMX2 DQLMY3 DQLMY2 DB3 DQLMY1 DQ[23:31]/DM3/DQS3 DQLMX3 3 2 1 0 DB0 - DB3 represent data bytes 0 - 3. SPRS906_PCB_DDR3_28 ADVANCE INFORMATION There are four DQLMs, one for each byte (32-bit interface). Each DQLM is the longest Manhattan distance of the byte; therefore: DQLM0 = DQLMX0 + DQLMY0 DQLM1 = DQLMX1 + DQLMY1 DQLM2 = DQLMX2 + DQLMY2 DQLM3 = DQLMX3 + DQLMY3 Figure 7-81. DQLM for Any Number of Allowed DDR3 Devices Table 7-55. Data Routing Specification(2) NO. PARAMETER MIN TYP MAX UNIT DRS31 DB0 length 340 ps DRS32 DB1 length 340 ps DRS33 DB2 length 340 ps DRS34 DB3 length 340 ps DRS35 (3) DBn skew 5 ps DRS36 DQSn+ to DQSn- skew 1 ps DRS37 DQSn to DBn skew(3)(4) 5(10) ps (1) vias vias DRS38 Vias per trace 2 DRS39 Via count difference 0(10) DRS310 Center-to-center DBn to other DDR3 trace spacing(6) 4 w(5) DRS311 Center-to-center DBn to other DBn trace spacing(7) 3 w(5) 4 w(5) (8)(9) DRS312 DQSn center-to-center spacing DRS313 DQSn center-to-center spacing to other net (1) Max value is based upon conservative signal integrity approach. This value could be extended only if detailed signal integrity analysis of rise time and fall time confirms desired operation. (2) External termination disallowed. Data termination should use built-in ODT functionality. (3) Length matching is only done within a byte. Length matching across bytes is neither required nor recommended. (4) Each DQS pair is length matched to its associated byte. (5) Center-to-center spacing is allowed to fall to minimum 2w for up to 1250 mils of routed length. (6) Other DDR3 trace spacing means other DDR3 net classes not within the byte. (7) This applies to spacing within the net classes of a byte. (8) DQS pair spacing is set to ensure proper differential impedance. (9) The most important thing to do is control the impedance so inadvertent impedance mismatches are not created. Generally speaking, center-to-center spacing should be either 2w or slightly larger than 2w to achieve a differential impedance equal to twice the singleended impedance, Zo. (10) Via count difference may increase by 1 only if accurate 3-D modeling of the signal flight times – including accurately modeled signal propagation through vias – has been applied to ensure DBn skew and DQSn to DBn skew maximums are not exceeded. 468 Applications, Implementation, and Layout Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 8 Device and Documentation Support TI offers an extensive line of development tools, including methods to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules as listed below. 8.1 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, DRA77xP). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS). X Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. P Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. null Production version of the silicon die that is fully qualified. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. For orderable part numbers of DRA77xP devices in the ACD package type, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative. For additional description of the device nomenclature markings on the die, see the Silicon Errata (literature number SPRZ398). Device and Documentation Support Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 469 ADVANCE INFORMATION Device development evolutionary flow: DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 8.1.1 www.ti.com Standard Package Symbolization JACINTO aBBBBBBrzIYyPPPQ1 XXXXXXX PIN ONE INDICATOR YYY ZZZ G1 ADVANCE INFORMATION O SWPS857_PACK_01 Figure 8-1. Printed Device Reference NOTE Some devices have a cosmetic circular marking visible on the top of the device package which results from the production test process. These markings are cosmetic only with no reliability impact. 8.1.2 Device Naming Convention Table 8-1. Nomenclature Description FIELD PARAMETER a FIELD DESCRIPTION Device evolution stage(1) VALUE Prototype P Preproduction (production test flow, no reliability data) BLANK BBBBBB r Base production part number Device revision Production DRA764P J6 Plus Low Tier DRA765P J6 Plus Mid Tier DRA766P J6 Plus High Tier DRA767P J6 Plus Super Tier DRA770P J6EP Plus Low Tier DRA771P J6EP Plus Mid Tier DRA772P J6EP Plus High Tier DRA773P J6EP Plus Super Tier DRA774P J6EX Plus Low Tier DRA775P J6EX Plus Mid Tier DRA776P J6EX Plus High Tier DRA777P J6EX Plus Super Tier BLANK S 470 DESCRIPTION X SR 1.0 Super speed grade Device and Documentation Support Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Table 8-1. Nomenclature Description (continued) z I FIELD DESCRIPTION Device Speed ISS designator VALUE High speed grade L Overdrive speed grade J Nominal speed grade OTHER Alternate speed grade I BLANK Yy PPP Q1 Device type Package designator Automotive Designator ISS supported No ISS G General purpose (Prototype and Production) E Emulation (E) devices S High-Security device, Secure Boot Supported D High security prototype devices with TI Development keys (D) Yn Letter followed by number indicates HS Device with customer key ACD BLANK Q1 XXXXXXX DESCRIPTION P ACD S-PBGA-N784 (23mm x 23mm) Package not meeting automotive qualification meeting Q100 equal requirements, with exceptions as specified in DM. Lot Trace Code YYY Production Code, For TI use only ZZZ Production Code, For TI use only O Pin one designator G1 ECAT—Green package designator (1) To designate the stages in the product development cycle, TI assigns prefixes to the part numbers. These prefixes represent evolutionary stages of product development from engineering prototypes through fully qualified production devices. Prototype devices are shipped against the following disclaimer: “This product is still in development and is intended for internal evaluation purposes.” Notwithstanding any provision to the contrary, TI makes no warranty expressed, implied, or statutory, including any implied warranty of merchantability of fitness for a specific purpose, of this device. NOTE BLANK in the symbol or part number is collapsed so there are no gaps between characters. 8.2 Tools and Software The following products support development for DRA7xx platforms: DRA77xP, DRA76xP Pad Configuration Tool is an interactive pad-configuration tool that allows the user to visualize the device pad configuration state on power-on reset and then customize the configuration of the pads for the specific use-case and identify the device register settings associated to that configuration. DRA77xP, DRA76xP Register Descriptor Tool is an interactive device register configuration tool that allows users to visualize the register state on power-on reset, and then customize the configuration of the device for the specific use-case. DRA77xP, DRA76xP Clock Tree Tool is interactive clock tree configuration software that allows the user to visualize the device clock tree, interact with clock tree elements and view the effect on PRCM registers, interact with the PRCM registers and view the effect on the device clock tree, and view a trace of all the device registers affected by the user interaction with the clock tree. For a complete listing of development-support tools for the processor platform, visit the Texas Instruments website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 8.3 Documentation Support The following documents describe the DRA77xP/DRA76xP devices. Device and Documentation Support Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 471 ADVANCE INFORMATION FIELD PARAMETER DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 8.3.1 www.ti.com TRM SPRUI98 DRA75xP, DRA74xP, DRA77x, DRA76x SoC for Automotive Infotainment Silicon Revision 1.0 Technical Reference Manual Details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the DRA7xx family of devices. Errata DRA75xP, DRA74xP, DRA77xP, DRA76xP Silicon Errata Describes known advisories on silicon and provides workarounds. FCC Warning This equipment is intended for use in a laboratory test environment only. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to subpart J of part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference. 8.3.2 Information About Cautions and Warnings This book may contain cautions and warnings. ADVANCE INFORMATION CAUTION This is an example of a caution statement. A caution statement describes a situation that could potentially damage your software or equipment. WARNING This is an example of a warning statement. A warning statement describes a situation that could potentially cause harm to you. The information in a caution or a warning is provided for your protection. Please read each caution and warning carefully. 8.4 Receiving Notification of Documentation Updates To receive notification of documentation updates — including silicon errata — go to the product folder for your device on www.ti.com. In the upper right-hand corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. 8.5 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 8-2. Related Links 472 PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY DRA76P Click here Click here Click here Click here Click here DRA77P Click here Click here Click here Click here Click here Device and Documentation Support Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P DRA77P, DRA76P www.ti.com 8.6 SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 8.7 Trademarks ICEPick and SmartReflex are trademarks of Texas Instruments Incorporated. ARM and Cortex are registered trademarks of ARM Limited. ETB, ARM9, CoreSight, and Neon are trademarks of ARM Limited. HDMI is a trademark of HDMI Licensing, LLC. 1-Wire is a registered trademark of Dallas Semiconductor. POWERVR is a registered trademark of Imagination Technologies Ltd. SD is a registered trademark of Toshiba Corporation. MMC and eMMC are trademarks of MultiMediaCard Association. JTAG is a registered trademark of JTAG Technologies, Inc. PCI Express is a registered trademark of PCI-SIG. MediaLB is a trademark of Standard Microsystems Corporation. Vivante is a registered trademark of Vivante Corporation. All other trademarks are the property of their respective owners. 8.8 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 8.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 8.10 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Device and Documentation Support Copyright © 2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: DRA77P DRA76P 473 ADVANCE INFORMATION HDQ is a trademark of Benchmarq. DRA77P, DRA76P SPRS993C – MARCH 2017 – REVISED DECEMBER 2017 www.ti.com 9 Mechanical Packaging and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical Data 474 Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: DRA77P DRA76P ADVANCE INFORMATION 9.1 Copyright © 2017, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 3-Jan-2018 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) XDRA767PSIGACD PREVIEW FCBGA ACD 784 1 TBD Call TI Call TI -40 to 125 XDRA777PSIGACD PREVIEW FCBGA ACD 784 1 TBD Call TI Call TI -40 to 125 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 Samples IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated