FDD068AN03L / FDU068AN03L N-Channel PowerTrench® MOSFET 30V, 35A, 6.8mΩ Features Applications • rDS(ON) = 5.7mΩ (Typ.), VGS = 4.5V, ID = 35A • 12V Automotive Load Control • Qg(5) = 24nC (Typ.), VGS = 5V • Starter / Alternator Systems • Low Miller Charge • Electronic Power Steering Systems • Low QRR Body Diode • ABS • UIS Capability (Single Pulse and Repetitive Pulse) • DC-DC Converters • Qualified to AEC Q101 D D G S D-PAK TO-252 (TO-252) I-PAK (TO-251AA) G G D S S MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V Continuous (TC < 154oC, VGS = 10V) 35 A Continuous (TC < 150oC, VGS = 4.5V) 35 A Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 52oC/W) 17 A Drain Current ID Pulsed EAS PD TJ, TSTG Single Pulse Avalanche Energy (Note 1) Power dissipation Derate above 25oC Operating and Storage Temperature Figure 4 A 168 mJ 80 W 0.53 W/oC -55 to 175 oC Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-252, TO-251 1.88 o C/W RθJA Thermal Resistance Junction to Ambient TO-252, TO-251 100 o C/W RθJA Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area 52 oC/W This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2003 Fairchild Semiconductor Corporation FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L December 2003 Device Marking FDD068AN03L Device FDD068AN03L Package TO-252AA Reel Size 13” Tape Width 12mm Quantity 2500 units FDU068AN03L FDU068AN03L TO-251AA Tube N/A 75 units Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units 30 - - - V - 1 - - 250 - - ±100 nA - 2.5 V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 25V VGS = 0V TC = 150oC VGS = ±20V µA On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 1.2 ID = 35A, VGS = 10V - 0.0047 0.0057 ID = 35A, VGS = 4.5V - 0.0057 0.0068 ID = 35A, VGS = 10V, TJ = 175oC - 0.0075 0.0092 Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance VDS = 15V, VGS = 0V, f = 1MHz - 2525 - - 490 - pF pF - 300 - pF RG Gate Resistance VGS = 0.5V, f = 1MHz - 2.1 - Ω Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V - 46 60 nC Qg(5) Total Gate Charge at 5V VGS = 0V to 5V Qg(TH) Threshold Gate Charge VGS = 0V to 1V Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge Switching Characteristics VDD = 15V ID = 35A Ig = 1.0mA - 24 32 nC - 2.3 3.0 nC - 6.9 - nC - 4.6 - nC - 9.8 - nC (VGS = 4.5V) tON Turn-On Time - - 283 ns td(ON) Turn-On Delay Time - 18 - ns tr Rise Time td(OFF) Turn-Off Delay Time tf tOFF - 171 - ns - 31 - ns Fall Time - 61 - ns Turn-Off Time - - 137 ns ISD = 35A - - 1.25 V ISD = 15A - - 1.0 V VDD = 15V, ID = 35A VGS = 4.5V, RGS = 6.2Ω Drain-Source Diode Characteristics VSD Source to Drain Diode Voltage trr Reverse Recovery Time ISD = 35A, dISD/dt = 100A/µs - - 27 ns QRR Reverse Recovered Charge ISD = 35A, dISD/dt = 100A/µs - - 12 nC Notes: 1: Starting TJ = 25°C, L = 0.43mH, IAS = 28A. ©2003 Fairchild Semiconductor Corporation FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L Package Marking and Ordering Information 1.2 125 POWER DISSIPATION MULTIPLIER 1.0 ID, DRAIN CURRENT (A) 100 0.8 0.6 0.4 CURRENT LIMITED BY PACKAGE 75 50 25 0.2 0 0 0 25 50 75 100 150 125 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance IDM, PEAK CURRENT (A) 1000 TC = 25oC FOR TEMPERATURES TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 5V 175 - TC I = I25 150 100 30 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2003 Fairchild Semiconductor Corporation FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L Typical Characteristics TC = 25°C unless otherwise noted 1000 500 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 10µs 100 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 1 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 100 STARTING TJ = 25oC 10 DC STARTING TJ = 150oC 1 0.01 0.1 1 60 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 Figure 6. Unclamped Inductive Switching Capability 100 100 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 60 TJ = 25oC 40 VGS = 4V TC = 25oC 80 ID, DRAIN CURRENT (A) 80 ID , DRAIN CURRENT (A) 0.1 1 10 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 5. Forward Bias Safe Operating Area VGS = 5V VGS = 3V 60 VGS = 10V 40 20 20 TJ = 175oC VGS = 2.5V TJ = -55oC 0 0 1.5 2.0 2.5 3.0 VGS , GATE TO SOURCE VOLTAGE (V) 0 3.5 0.2 0.4 0.6 0.8 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics 1.6 14 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 35A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 12 10 8 6 ID = 1A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.4 1.2 1.0 0.8 VGS = 5V, ID = 35A 4 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current ©2003 Fairchild Semiconductor Corporation 0.6 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L Typical Characteristics TC = 25°C unless otherwise noted 1.2 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 1.1 1.0 0.9 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 80 120 160 200 10 VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + CGD C, CAPACITANCE (pF) 40 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 5000 COSS ≅ CDS + CGD 1000 CRSS = CGD VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 35A ID = 5A 2 VGS = 0V, f = 1MHz 100 0.1 0 TJ , JUNCTION TEMPERATURE (oC) 0 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 13. Capacitance vs Drain to Source Voltage ©2003 Fairchild Semiconductor Corporation 30 0 10 20 30 Qg, GATE CHARGE (nC) 40 50 Figure 14. Gate Charge Waveforms for Constant Gate Current FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L Typical Characteristics TC = 25°C unless otherwise noted VDS BVDSS tP L VDS VARY tP TO OBTAIN IAS + RG REQUIRED PEAK IAS VDD VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS VGS = 10V VGS Qg(5) + Qgs2 VDD VGS = 5V DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 18. Gate Charge Waveforms Figure 17. Gate Charge Test Circuit VDS tON tOFF td(ON) td(OFF) RL tf tr VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 Figure 19. Switching Time Test Circuit ©2003 Fairchild Semiconductor Corporation 50% 10% 50% PULSE WIDTH Figure 20. Switching Time Waveforms FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L Test Circuits and Waveforms P DM (T –T ) JM A = ----------------------------RθJA (EQ. 1) In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 125 RθJA = 33.32+ 23.84/(0.268+Area) EQ.2 RθJA = 33.32+ 154/(1.73+Area) EQ.3 100 RθJA (oC/W) The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 75 50 25 0.01 (0.0645) 0.1 (0.645) 1 (6.45) 10 (64.5) AREA, TOP COPPER AREA in2 (cm2) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. 23.84 ( 0.268 + Area ) R θ JA = 33.32 + ------------------------------------- (EQ. 2) Area in Inches Squared 154 ( 1.73 + Area ) R θ JA = 33.32 + ---------------------------------- (EQ. 3) Area in Centimeters Squared ©2003 Fairchild Semiconductor Corporation FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L Thermal Resistance vs. Mounting Pad Area .SUBCKT FDD068AN03L 2 1 3 ; rev December 2003 Ca 12 8 2.3e-9 Cb 15 14 2.3e-9 Cin 6 8 2.3e-9 LDRAIN DPLCAP 10 RSLC2 5 51 EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 11 + 17 EBREAK 18 - 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN Lgate 1 9 4.6e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 1.7e-9 8 7 SOURCE 3 RSOURCE RLSOURCE S1A RLgate 1 9 46 RLdrain 2 5 10 RLsource 3 7 17 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD ESLC 50 RDRAIN 6 8 ESG DBREAK + It 8 17 1 RLDRAIN RSLC1 51 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD Ebreak 11 7 17 18 32.6 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 DRAIN 2 5 12 S2A 13 8 15 14 13 S1B CA RBREAK 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - IT 14 + + - Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 2.2e-3 Rgate 9 20 2.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 2e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD + 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))} .MODEL DbodyMOD D (IS=5E-12 IKF=10 N=1.01 RS=2.6e-3 TRS1=8e-4 TRS2=2e-7 + CJO=8.8e-10 M=0.57 TT=1e-16 XTI=0.9) .MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=9.4e-10 IS=1e-30 N=10 M=0.4) .MODEL MmedMOD NMOS (VTO=1.85 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.34 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.55 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7) .MODEL RdrainMOD RES (TC1=1e-4 TC2=8e-6) .MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=7.5e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-1.7e-3 TC2=-8.8e-6) .MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2003 Fairchild Semiconductor Corporation FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L PSPICE Electrical Model rev December 2003 template FDD068AN03L n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=5e-12,ikf=10,nl=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-16,xti=0.9) dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=9.4e-10,isl=10e-30,nl=10,m=0.4) m..model mmedmod = (type=_n,vto=1.85,kp=10,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.34,kp=350,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.55,kp=0.05,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2) 51 c.ca n12 n8 = 2.3e-9 RSLC2 c.cb n15 n14 = 2.3e-9 ISCL c.cin n6 n8 = 2.3e-9 spe.ebreak n11 n7 n17 n18 = 32.6 GATE spe.eds n14 n8 n5 n8 = 1 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN DRAIN 2 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE i.it n8 n17 = 1 S1A 12 l.lgate n1 n9 = 4.6e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 1.7e-9 13 8 14 13 S1B CA res.rlgate n1 n9 = 46 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 17 S2A RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - IT 14 + + VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7 res.rdrain n50 n16 = 2.2e-3, tc1=1e-4,tc2=8e-6 res.rgate n9 n20 = 2.1 res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2e-3, tc1=7.5e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-1.7e-3,tc2=-8.8e-6 res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10)) } } ©2003 Fairchild Semiconductor Corporation FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L SABER Electrical Model th JUNCTION REV 23 December 2003 FDD068AN03LT CTHERM1 TH 6 9e-4 CTHERM2 6 5 1e-3 CTHERM3 5 4 2e-3 CTHERM4 4 3 3e-3 CTHERM5 3 2 7e-3 CTHERM6 2 TL 8e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 3.0e-2 RTHERM2 6 5 1.0e-1 RTHERM3 5 4 1.8e-1 RTHERM4 4 3 2.8e-1 RTHERM5 3 2 4.5e-1 RTHERM6 2 TL 4.6e-1 CTHERM2 RTHERM2 5 SABER Thermal Model SABER thermal model FDD068AN03LT template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =9e-4 ctherm.ctherm2 6 5 =1e-3 ctherm.ctherm3 5 4 =2e-3 ctherm.ctherm4 4 3 =3e-3 ctherm.ctherm5 3 2 =7e-3 ctherm.ctherm6 2 tl =8e-2 rtherm.rtherm1 th 6 =3.0e-2 rtherm.rtherm2 6 5 =1.0e-1 rtherm.rtherm3 5 4 =1.8e-1 rtherm.rtherm4 4 3 =2.8e-1 rtherm.rtherm5 3 2 =4.5e-1 rtherm.rtherm6 2 tl =4.6e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2003 Fairchild Semiconductor Corporation CASE FDD068AN03L / FDU068AN03L Rev. B1 FDD068AN03L / FDU068AN03L PSPICE Thermal Model TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT Quiet Series™ ActiveArray™ FAST® FASTr™ Bottomless™ FRFET™ CoolFET™ CROSSVOLT™ GlobalOptoisolator™ GTO™ DOME™ HiSeC™ EcoSPARK™ I2C™ E2CMOS™ EnSigna™ ImpliedDisconnect™ FACT™ ISOPLANAR™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ LittleFET™ MICROCOUPLER™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET® QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic® TINYOPTO™ TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I5