Vishay IRF3805LPBF Advanced process technology Datasheet

PD - 97046A
IRF3805PbF
IRF3805SPbF
IRF3805LPbF
Features
l
l
l
l
l
l
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
D
VDSS = 55V
RDS(on) = 3.3mΩ
G
Description
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating.These features combine
to make this design an extremely efficient and
reliable device for use in a wide variety of
applications.
Absolute Maximum Ratings
ID = 75A
S
TO-220AB
IRF3805PbF
D2Pak
IRF3805SPbF
Parameter
TO-262
IRF3805LPbF
Max.
Units
I D @ TC = 25°C
Continuous Drain Current, V GS @ 10V (Silicon Limited)
210
I D @ TC = 100°C
Continuous Drain Current, V GS @ 10V (Silicon Limited)
150
I D @ TC = 25°C
75
I DM
Continuous Drain Current, V GS @ 10V (Package limited)
Pulsed Drain Current
890
P D @TC = 25°C
Power Dissipation
300
W
2.0
± 20
W/°C
V
650
mJ
c
V GS
Linear Derating Factor
Gate-to-Source Voltage
E AS (Thermally limited)
Single Pulse Avalanche Energy
E AS (Tested )
Single Pulse Avalanche Energy Tested Value
I AR
Avalanche Current
E AR
TJ
Repetitive Avalanche Energy
T STG
Storage Temperature Range
c
d
940
See Fig.12a, 12b, 15, 16
g
-55 to + 175
Operating Junction and
°C
Mounting Torque, 6-32 or M3 screw
Thermal Resistance
k
i
Parameter
300 (1.6mm from case )
y
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface
RθJA
Junction-to-Ambient
RθJA
Junction-to-Ambient (PCB Mount)
i
jk
y
10 lbf in (1.1N m)
Typ.
RθJC
ik
A
mJ
Soldering Temperature, for 10 seconds
www.irf.com
h
A
–––
Max.
Units
0.5
°C/W
l
0.50
–––
–––
62
–––
40
1
07/23/10
IRF3805/S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V
Conditions
V(BR)DSS
Drain-to-Source Breakdown Voltage
55
–––
–––
VGS = 0V, ID = 250µA
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.051
–––
V/°C Reference to 25°C, ID = 1mA
e
RDS(on)
Static Drain-to-Source On-Resistance
–––
2.6
3.3
mΩ
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 250µA
gfs
Forward Transconductance
75
–––
–––
V
VDS = 25V, ID = 75A
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 55V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
200
nA
VGS = 20V
VGS = 10V, ID = 75A
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
190
290
Qgs
Gate-to-Source Charge
–––
52
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
72
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
150
–––
VDD = 28V
tr
Rise Time
–––
20
–––
td(off)
Turn-Off Delay Time
–––
93
–––
tf
Fall Time
–––
87
–––
VGS = 10V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
6mm (0.25in.)
from package
–––
and center of die contact
VGS = 0V
ID = 75A
nC
Input Capacitance
Coss
Crss
Coss
Coss
Coss eff.
e
ID = 75A
ns
nH
Ciss
VDS = 44V
RG = 2.6 Ω
e
D
G
S
–––
7960
Output Capacitance
–––
1260
–––
Reverse Transfer Capacitance
–––
630
–––
Output Capacitance
–––
4400
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance
–––
980
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Effective Output Capacitance
–––
1550
–––
VGS = 0V, VDS = 0V to 44V
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
75
ISM
(Body Diode)
Pulsed Source Current
–––
–––
890
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
trr
Reverse Recovery Time
–––
36
54
ns
TJ = 25°C, IF = 75A, VDD = 28V
Qrr
Reverse Recovery Charge
–––
47
71
nC
di/dt = 100A/µs
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
showing the
integral reverse
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF3805/S/LPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
10
BOTTOM
100
4.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
10
1
0.1
1
10
0.1
100
1
≤ 60µs PULSE WIDTH
Tj = 175°C
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
200
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current(Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
TJ = 175°C
100.0
10.0
TJ = 25°C
1.0
VDS = 20V
≤ 60µs PULSE WIDTH
TJ = 25°C
160
TJ = 175°C
120
80
40
VDS = 10V
380µs PULSE WIDTH
0.1
4.0
5.0
6.0
7.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
8.0
0
0
20
40
60
80 100 120 140 160 180
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRF3805/S/LPbF
14000
VGS, Gate-to-Source Voltage (V)
12000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
10000
Ciss
8000
6000
4000
Coss
2000
Crss
16
12
8
4
10
0
100
10000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.0
TJ = 175°C
100.0
10.0
TJ = 25°C
1.0
VGS = 0V
1.2
1.6
2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
150
200
250
300
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
100µsec
100
10msec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.1
0.8
100
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
0.4
50
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
0.0
VDS = 44V
VDS= 28V
0
0
1
ID= 75A
2.4
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF3805/S/LPbF
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
240
LIMITED BY PACKAGE
ID , Drain Current (A)
200
160
120
80
40
0
25
50
75
100
125
150
ID = 75A
VGS = 10V
1.5
1.0
0.5
175
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
Thermal Response ( ZthJC )
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ2
τ
Ri (°C/W) τi (sec)
0.2653 0.001016
0.2347 0.012816
Ci= τi/Ri
Ci i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
15V
DRIVER
L
VDS
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
IRF3805/S/LPbF
2000
I D
15A
20A
BOTTOM 75A
TOP
1600
1200
800
400
0
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.5
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
10 V
4.0
ID = 250µA
3.5
3.0
2.5
2.0
1.5
-75 -50 -25
VGS
0
25
50
75
100 125 150 175
TJ , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRF3805/S/LPbF
10000
Avalanche Current (A)
Duty Cycle = Single Pulse
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
100
0.05
0.10
10
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
800
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
600
400
200
0
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF3805/S/LPbF
D.U.T
Driver Gate Drive
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
+
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRF3805/S/LPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS S EMBLED ON WW 19, 2000
IN T HE AS S E MBLY LINE "C"
Note: "P" in as s embly line pos ition
indicates "Lead - Free"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
TO-220AB package is not recommended for Surface Mount Application
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRF3805/S/LPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF530S WITH
LOT CODE 8024
ASSEMBLED ON WW 02, 2000
IN THE ASS EMBLY LINE "L"
INT ERNAT IONAL
RECT IF IER
LOGO
ASSE MBLY
LOT CODE
PART NUMBER
F 530S
DAT E CODE
YE AR 0 = 2000
WEE K 02
LINE L
OR
INT ERNAT IONAL
RECT IF IER
LOGO
ASSE MBLY
LOT CODE
PART NUMBER
F 530S
DAT E CODE
P = DESIGNATES LEAD - F REE
PRODUCT (OPT IONAL)
YE AR 0 = 2000
WEEK 02
A = ASS EMBLY SITE CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRF3805/S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS SEMBLED ON WW 19, 1997
IN T HE AS SEMBLY LINE "C"
Note: "P" in ass embly line
pos ition indicates "Lead-F ree"
INT ERNAT IONAL
RE CTIF IER
LOGO
ASSE MBLY
LOT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INTE RNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
DATE CODE
P = DESIGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YE AR 7 = 1997
WE EK 19
A = ASSEMBLY SIT E CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
11
IRF3805/S/LPbF
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Notes:
 Repetitive rating; pulse width limited by
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
max. junction temperature. (See fig. 11).
avalanche performance.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.23mH † This value determined from sample failure population. 100%
RG = 25Ω, IAS = 75A, VGS =10V. Part not
tested to this value in production.
recommended for use above this value.
‡ This is only applied to TO-220AB pakcage.
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
ˆ This is applied to D2Pak, when mounted on 1" square PCB (FR„ Coss eff. is a fixed capacitance that gives the
4 or G-10 Material). For recommended footprint and soldering
same charging time as Coss while VDS is rising
techniques refer to application note #AN-994.
from 0 to 80% VDSS .
‰ Rθ is measured at TJ of approximately 90°C.
Š TO-220 device will have an Rth of 0.45°C/W.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
12
www.irf.com
Similar pages