Qimonda HYS64T128020EDL-3S-B 200-pin small-outlined ddr2 sdram module Datasheet

October 2007
HYS64T128020EDL–[2.5/3S/3.7]–B
2 0 0 - P i n S m a l l - O u t l i n e d D D R 2 S D R A M Mo d u l e s
DDR2 SDRAM
SO-DIMM SDRAM
RoHS Compliant
Internet Data Sheet
Rev. 1.12
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
HYS64T128020EDL–[2.5/3S/3.7]–B
Revision History: 2007-10, Rev. 1.12
Page
Subjects (major changes since last revision)
6-11
Editorial change and adapted to internet edition
Previous Revision: 2007-05, Rev. 1.11
All
Editorial change
Previous Revision: 2007-05, Rev. 1.1
All
Added Product Types HYS64T128020EDL-2.5-B and HYS64T128020EDL-3S-B
Previous Revision: 2006-10, Rev. 1.0
21
Added IDD currents
Previous Revision: 2006-09, Rev. 0.51
All
Qimonda update
Previous Revision: 2006-04, Rev. 0.5
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
qag_techdoc_rev411 / 3.31 QAG / 2007-01-22
10312006-I253-V1V0
2
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
1
Overview
This chapter gives an overview of the 200-pin small-outline DDR2 SDRAM modules product family and describes its main
characteristics.
1.1
Features
• 200-Pin PC2-6400, PC2-5300 and PC2-4200 DDR2
SDRAM memory modules.
• 128Mx64 module organization, and 64Mx16 chip
organization
• 1GB Modules built with 1 Gbit DDR2 SDRAMs in PGTFBGA-84-11 chipsize packages
• Standard Double-Data-Rate-Two Synchronous DRAMs
(DDR2 SDRAM) with a single + 1.8 V (± 0.1 V) power
supply
• All speed grades faster than DDR2-400 comply with
DDR2-400 timing specifications.
• Programmable CAS Latencies (3, 4, 5 ), Burst Length (8 &
4).
•
•
•
•
•
•
•
•
•
•
•
Auto Refresh (CBR) and Self Refresh
Auto Refresh for temperatures above 85 °C tREFI = 3.9 µs.
Programmable self refresh rate via EMRS2 setting.
Programmable partial array refresh via EMRS2 settings.
DCC enabling via EMRS2 setting.
All inputs and outputs SSTL_1.8 compatible
Off-Chip Driver Impedance Adjustment (OCD) and On-Die
Termination (ODT)
Serial Presence Detect with E2PROM
SO-DIMM Dimensions (nominal): 50 mm42 mm30 mm
high, 67.6 mm wide
Based on standard reference layouts Raw Cards 'A'
RoHS compliant products1)
TABLE 1
Performance Table
QAG Speed Code
–2.5
–3
–3.7
Unit
DRAM Speed Grade
DDR2
–800E
–667C
–533C
Module Speed Grade
PC2
–6400E
–5300C
–4200C
6–6–6
4–4–4
4–4–4
tCK
200
200
200
MHz
266
333
266
MHz
CAS-RCD-RP latencies
Max. Clock Frequency
CL3
CL4
CL5
CL6
Min. RAS-CAS-Delay
Min. Row Precharge Time
Min. Row Active Time
Min. Row Cycle Time
fCK3
fCK4
fCK5
fCK6
tRCD
tRP
tRAS
tRC
333
333
266
MHz
400
–
–
MHz
15
12
15
ns
15
12
15
ns
45
45
45
ns
60
57
60
ns
1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined
in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury,
lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers.
Rev. 1.12, 2007-10
10312006-I253-V1V0
3
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
1.2
Description
The Qimonda HYS64T128020EDL–[2.5/3S/3.7]–B module
family are small-outline DIMM modules “SO-DIMMs” with 50
mm42 mm30 mm height based on DDR2 technology. DIMMs
are available as non-ECC modules in128M × 64 (1GB) in
organization and density, intended for mounting into 200-pin
connector sockets.
The memory array is designed with 1 Gbit Double-Data-RateTwo (DDR2) Synchronous DRAMs. Decoupling capacitors
are mounted on the PCB board. The DIMMs feature serial
presence detect based on a serial E2PROM device using the
2-pin I2C protocol. The first 128 bytes are programmed with
configuration data and are write protected; the second
128 bytes are available to the customer.
TABLE 2
Ordering Information for RoHS Compliant Products
Product Type1)
Compliance Code2)
Description
SDRAM Technology
2 Ranks, Non-ECC
1Gbit (×16)
1GB 2R×16 PC2–5300S–555–12–A0
2 Ranks, Non-ECC
1Gbit (×16)
HYS64T128020EDL–3.7–B 1GB 2R×16 PC2–4200S–444–12–A0
2 Ranks, Non-ECC
1Gbit (×16)
PC2-6400-666
HYS64T128020EDL–2.5–B 1GB 2R×16 PC2–6400S–666–12–A0
PC2-5300-555
HYS64T128020EDL–3S–B
PC2-4200-444
1) For detailed information regarding Product Type of Qimonda please see chapter "Product Type Nomenclature" of this datasheet.
2) The Compliance Code is printed on the module label and describes the speed grade, for example "PC2–6400S–666–12–A0" where 6400S
means Small-Outline DIMM modules with 6.40 GB/sec Module Bandwidth and "666–12" means Column Address Strobe (CAS) latency
=6, Row Column Delay (RCD) latency = 6 and Row Precharge (RP) latency = 6 using the latest JEDEC SPD Revision 1.2 and produced
on the Raw Card "A".
TABLE 3
Address Format
DIMM
Density
Module
Organization
Memory
Ranks
ECC/
Non-ECC
# of SDRAMs # of row/bank/column
bits
Raw
Card
1GB
128M × 64
2
Non-ECC
8
A
13/3/10
TABLE 4
Components on Modules
Product Type1)2)
DRAM Components1)
DRAM Density
DRAM Organisation
HYS64T128020EDL
HYB18T1G160BF
1Gbit
64M x 16
1) Green Product
2) For a detailed description of all functionalities of the DRAM components on these modules see the component data sheet.
Rev. 1.12, 2007-10
10312006-I253-V1V0
4
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
2
Pin Configurations and Block Diagrams
2.1
Pin Configurations
The pin configuration of the Small Outline DDR2 SDRAM DIMM is listed by function in Table 5 (200 pins). The abbreviations
used in columns Pin Type and Buffer Type are explained in Table 6 and Table 7 respectively. The Pin numbering is depicted
in Figure 1
TABLE 5
Pin Configuration of SO-DIMM
Pin No.
Name
Pin
Type
Buffer
Type
Function
30
CK0
I
SSTL
164
CK1
I
SSTL
32
CK0
I
SSTL
166
CK1
I
SSTL
Clock Signals 1:0, Complement Clock Signals 1:0
The system clock inputs. All address and command lines
are sampled on the cross point of the rising edge of CK and
the falling edge of CK. A Delay Locked Loop (DLL) circuit is
driven from the clock inputs and output timing for read
operations is synchronized to the input clock.
79
CKE0
I
SSTL
80
CKE1
I
SSTL
NC
NC
—
Not Connected
Note: 1-rank module
110
S0
I
SSTL
115
S1
I
SSTL
Chip Select Rank 1:0
Enables the associated DDR2 SDRAM command decoder
when LOW and disables the command decoder when
HIGH. When the command decoder is disabled, new
commands are ignored but previous operations continue.
Rank 0 is selected by S0; Rank 1 is selected by S1. Ranks
are also called "Physical banks".2 Ranks module
NC
NC
—
Not Connected
Note: 1-rank module
108
RAS
I
SSTL
Row Address Strobe
When sampled at the cross point of the rising edge of CK,
and falling edge of CK, RAS, CAS and WE define the
operation to be executed by the SDRAM.
113
CAS
I
SSTL
Column Address Strobe
Clock Signals
Clock Enable Rank 1:0
Activates the DDR2 SDRAM CK signal when HIGH and
deactivates the CK signal when LOW. By deactivating the
clocks, CKE LOW initiates the Power Down Mode or the
Self Refresh Mode.
Note: 2 Ranks module
Control Signals
Rev. 1.12, 2007-10
10312006-I253-V1V0
5
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Pin No.
Name
Pin
Type
Buffer
Type
Function
109
WE
I
SSTL
Write Enable
107
BA0
I
SSTL
106
BA1
I
SSTL
Bank Address Bus 2:0
Selects which DDR2 SDRAM internal bank of four or eight
is activated.
85
BA2
I
SSTL
Bank Address Bus 2
Greater than 512Mb DDR2 SDRAMS
NC
NC
SSTL
Less than 1Gb DDR2 SDRAMS
Address Bus 12:0
During a Bank Activate command cycle, defines the row
address when sampled at the cross-point of the rising edge
of CK and falling edge of CK. During a Read or Write
command cycle, defines the column address when sampled
at the cross point of the rising edge of CK and falling edge
of CK. In addition to the column address, AP is used to
invoke autoprecharge operation at the end of the burst read
or write cycle. If AP is HIGH, autoprecharge is selected and
BA0-BAn defines the bank to be precharged. If AP is LOW,
autoprecharge is disabled. During a Precharge command
cycle, AP is used in conjunction with BA0-BAn to control
which bank(s) to precharge. If AP is HIGH, all banks will be
precharged regardless of the state of BA0-BAn inputs. If AP
is LOW, then BA0-BAn are used to define which bank to
precharge.
Address Signals
102
A0
I
SSTL
101
A1
I
SSTL
100
A2
I
SSTL
99
A3
I
SSTL
98
A4
I
SSTL
97
A5
I
SSTL
94
A6
I
SSTL
92
A7
I
SSTL
93
A8
I
SSTL
91
A9
I
SSTL
105
A10
I
SSTL
AP
I
SSTL
90
A11
I
SSTL
89
A12
I
SSTL
Address Signal 12
Note: Module based on 256 Mbit or larger dies
116
A13
I
SSTL
Address Signal 13
Note: 1 Gbit based module
NC
NC
—
Not Connected
Note: Module based on 512 Mbit or smaller dies
A14
I
SSTL
Address Signal 14
Note: 2 Gbit based module
NC
NC
—
Not Connected
Note: Module based on 1 Gbit or smaller dies
5
DQ0
I/O
SSTL
7
DQ1
I/O
SSTL
Data Bus 63:0
Note: Data Input / Output pins
17
DQ2
I/O
SSTL
19
DQ3
I/O
SSTL
4
DQ4
I/O
SSTL
6
DQ5
I/O
SSTL
14
DQ6
I/O
SSTL
16
DQ7
I/O
SSTL
23
DQ8
I/O
SSTL
86
Data Signals
Rev. 1.12, 2007-10
10312006-I253-V1V0
6
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Pin No.
Name
Pin
Type
Buffer
Type
Function
25
DQ9
I/O
SSTL
35
DQ10
I/O
SSTL
Data Bus 63:0
Note: Data Input / Output pins
37
DQ11
I/O
SSTL
20
DQ12
I/O
SSTL
22
DQ13
I/O
SSTL
36
DQ14
I/O
SSTL
38
DQ15
I/O
SSTL
43
DQ16
I/O
SSTL
45
DQ17
I/O
SSTL
55
DQ18
I/O
SSTL
57
DQ19
I/O
SSTL
44
DQ20
I/O
SSTL
46
DQ21
I/O
SSTL
56
DQ22
I/O
SSTL
58
DQ23
I/O
SSTL
61
DQ24
I/O
SSTL
63
DQ25
I/O
SSTL
73
DQ26
I/O
SSTL
75
DQ27
I/O
SSTL
62
DQ28
I/O
SSTL
64
DQ29
I/O
SSTL
74
DQ30
I/O
SSTL
76
DQ31
I/O
SSTL
123
DQ32
I/O
SSTL
125
DQ33
I/O
SSTL
135
DQ34
I/O
SSTL
137
DQ35
I/O
SSTL
124
DQ36
I/O
SSTL
126
DQ37
I/O
SSTL
134
DQ38
I/O
SSTL
136
DQ39
I/O
SSTL
141
DQ40
I/O
SSTL
143
DQ41
I/O
SSTL
151
DQ42
I/O
SSTL
153
DQ43
I/O
SSTL
140
DQ44
I/O
SSTL
142
DQ45
I/O
SSTL
152
DQ46
I/O
SSTL
154
DQ47
I/O
SSTL
157
DQ48
I/O
SSTL
Rev. 1.12, 2007-10
10312006-I253-V1V0
7
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Pin No.
Name
Pin
Type
Buffer
Type
Function
159
DQ49
I/O
SSTL
173
DQ50
I/O
SSTL
Data Bus 63:0
Note: Data Input / Output pins
175
DQ51
I/O
SSTL
158
DQ52
I/O
SSTL
160
DQ53
I/O
SSTL
174
DQ54
I/O
SSTL
176
DQ55
I/O
SSTL
179
DQ56
I/O
SSTL
181
DQ57
I/O
SSTL
189
DQ58
I/O
SSTL
191
DQ59
I/O
SSTL
180
DQ60
I/O
SSTL
182
DQ61
I/O
SSTL
192
DQ62
I/O
SSTL
194
DQ63
I/O
SSTL
DQS0
I/O
SSTL
Data Strobe Signals
13
11
DQS0
I/O
SSTL
31
DQS1
I/O
SSTL
29
DQS1
I/O
SSTL
51
DQS2
I/O
SSTL
49
DQS2
I/O
SSTL
70
DQS3
I/O
SSTL
68
DQS3
I/O
SSTL
131
DQS4
I/O
SSTL
129
DQS4
I/O
SSTL
148
DQS5
I/O
SSTL
146
DQS5
I/O
SSTL
169
DQS6
I/O
SSTL
167
DQS6
I/O
SSTL
188
DQS7
I/O
SSTL
186
DQS7
I/O
SSTL
Data Strobe Bus 7:0
The data strobes, associated with one data byte, sourced
with data transfers. In Write mode, the data strobe is
sourced by the controller and is centered in the data
window. In Read mode the data strobe is sourced by the
DDR2 SDRAM and is sent at the leading edge of the data
window. DQS signals are complements, and timing is
relative to the cross-point of respective DQS and DQS. If the
module is to be operated in single ended strobe mode, all
DQS signals must be tied on the system board to VSS and
DDR2 SDRAM mode registers programmed appropriately.
Data Mask Signals
Rev. 1.12, 2007-10
10312006-I253-V1V0
8
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Pin No.
Name
Pin
Type
Buffer
Type
Function
10
DM0
I
SSTL
26
DM1
I
SSTL
52
DM2
I
SSTL
67
DM3
I
SSTL
Data Mask Bus 7:0
The data write masks, associated with one data byte. In
Write mode, DM operates as a byte mask by allowing input
data to be written if it is LOW but blocks the write operation
if it is HIGH. In Read mode, DM lines have no effect.
130
DM4
I
SSTL
147
DM5
I
SSTL
170
DM6
I
SSTL
185
DM7
I
SSTL
197
SCL
I
CMOS
Serial Bus Clock
This signal is used to clock data into and out of the SPD
EEPROM and Thermal sensor.
195
SDA
I/O
OD
Serial Bus Data
This is a bidirectional pin use to transfer data into and out of
the SPD EEPROM and Thermal sensor. A resistor must be
connected from SDA to VDDSPD on the motherboard to act as
a pull-up.
198
SA0
I
CMOS
200
SA1
I
CMOS
Serial Address Select Bus 2:0
Address pins used to select the SPD and Thermal sensor
base address.
50
EVENT
O
OD
EVENT
The optional EVENT pin is reserved for use to flag critical
module temperature and is used in conjunction with
Thermal Sensor.
NC
-
-
Not Connected
Not connected on modules without temperature sensors.
1
VREF
AI
—
I/O Reference Voltage
Reference voltage for the SSTL-18 inputs.
199
VDDSPD
PWR
—
EEPROM Power Supply
Power supplies for Serial Presence Detect, Thermal Sensor
and ground for the module.
81,82,87,88,95,96,103,104,
111,112,117,118
VDD
PWR
—
Power Supply
Power supplies for core, I/O and ground for the module.
VSS
2,3,8,9,12,15,18,21,24,27,28,
33,34,39,40,41,42,47,48,53,
54,59,60,65,66,71,72,77,78,
121,122,127,128,132,133,138,13
9,144,145,149,150,155,156,
161,162,165,168, 171,172,177,
178,183,184,187,190,193,196
GND
—
Ground Plane
Power supplies for core, I/O, Serial Presence Detect,
Thermal Sensor and ground for the module.
I
SSTL
On-Die Termination Control 1:0
EEPROM
Power Supplies
Other pins
114
Rev. 1.12, 2007-10
10312006-I253-V1V0
ODT0
9
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Pin No.
Name
Pin
Type
Buffer
Type
Function
119
ODT1
I
SSTL
On-Die Termination Control 1
Asserts on-die termination for DQ, DM, DQS, and DQS
signals if enabled via the DDR2 SDRAM mode register.
Note: 2 Rank modules
NC
NC
—
Not Connected
Note: 1 Rank modules
NC
NC
—
Not connected
Pins not connected on Qimonda SO-DIMMs
69,83,84,120,163
TABLE 6
Abbreviations for pin Type
Abbreviation
Description
I
Standard input-only pin. Digital levels.
O
Output. Digital levels.
I/O
I/O is a bidirectional input/output signal.
AI
Input. Analog levels.
PWR
Power
GND
Ground
NC
Not Connected
TABLE 7
Abbreviations for Buffer Type
Abbreviation
Description
SSTL
Serial Stub Terminated Logic (SSTL_18)
LV-CMOS
Low Voltage CMOS
CMOS
CMOS Levels
OD
Open Drain. The corresponding pin has 2 operational states, active low and tri-state, and
allows multiple devices to share as a wire-OR.
Rev. 1.12, 2007-10
10312006-I253-V1V0
10
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
FIGURE 1
Pin Configuration SO-DIMM (200 pin)
62%&
$1
633
$13
$1
633
$1
$13
633
$1
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 633
$1
$13
633
$1
$1
633
.#
$1
633
6$$
.#"!
!
!
!
!
!!0
7%
#!3
6$$
633
$1
$13
633
$1
$1
633
633
$1
$1
633
633
$13
$1
633
$1
$-
$1
633
3#,
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 633
$1
$13
633
$1
$1
633
$13
$1
633
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN $1
633
$13
$1
633
$1
$-
633
$1
#+%
.#
6$$
!
6$$
!
6$$
"!
6$$
.#3
.#/$4
$1
633
$13
$1
633
$1
$-
$1
633
$1
.#
$13
633
$1
$1
633
633
$1
3$!
6$$30$
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN &
2
/
.
4
3
)
$
%
"
!
#
+
3
)
$
%
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN $1
633
633
$1
$1
633
633
#+
$1
633
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN $1
633
$-
$1
633
$1
$13
633
$1
.##+%
.#
6$$
!
6$$
!
6$$
2!3
6$$
.#!
.#
$1
633
633
$1
$1
633
$13
$1
633
$1
#+
633
633
$1
$1
633
$13
$1
633
3!
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 633
$1
$-
$1
633
$1
$-
#+
633
$1
0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 0IN 633
$1
.#%6%.4
633
$1
$1
633
$13
$1
633
6$$
.#!
!
!
!
!
"!
3
/$4
6$$
633
$1
$-
$1
633
$1
$13
633
$1
$1
633
#+
$-
$1
633
$1
$13
633
$1
3!
-004
Rev. 1.12, 2007-10
10312006-I253-V1V0
11
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
3
Electrical Characteristics
3.1
Absolute Maximum Ratings
Attention: Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect reliability.
TABLE 8
Absolute Maximum Ratings
Symbol
Parameter
Rating
Unit
Note
Min.
Max.
Voltage on VDD pin relative to VSS
–1.0
+2.3
V
1)
Voltage on VDDQ pin relative to VSS
–0.5
+2.3
V
1)1)
Voltage on VDDL pin relative to VSS
–0.5
+2.3
V
1)1)
Voltage on any pin relative to VSS
–0.5
+2.3
1) When VDD and VDDQ and VDDL are less than 500 mV; VREF may be equal to or less than 300 mV.
V
1)
VDD
VDDQ
VDDL
VIN, VOUT
TABLE 9
Environmental Requirements
Parameter
Symbol
Values
Unit
Note
Min.
Max.
0
+65
°C
Storage Temperature
TOPR
TSTG
– 50
+100
°C
1)
Barometric Pressure (operating & storage)
PBar
+69
+105
kPa
2)
Operating Humidity (relative)
HOPR
HSTG
10
90
%
5
95
%
Operating temperature (ambient)
Storage Humidity (without condensation)
1) Storage Temperature is the case surface temperature on the center/top side of the DRAM.
2) Up to 3000 m.
Rev. 1.12, 2007-10
10312006-I253-V1V0
12
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
TABLE 10
DRAM Component Operating Temperature Range
Symbol
TCASE
Parameter
Rating
Operating Temperature
Min.
Max.
0
95
Unit
Note
°C
1)2)3)4)
1) Operating Temperature is the case surface temperature on the center / top side of the DRAM.
2) The operating temperature range are the temperatures where all DRAM specification will be supported. During operation, the DRAM case
temperature must be maintained between 0 - 95 °C under all other specification parameters.
3) Above 85 °C the Auto-Refresh command interval has to be reduced to tREFI= 3.9 µs
4) When operating this product in the 85 °C to 95 °C TCASE temperature range, the High Temperature Self Refresh has to be enabled by
setting EMR(2) bit A7 to “1”. When the High Temperature Self Refresh is enabled there is an increase of IDD6 by approximately 50%
3.2
DC Operating Conditions
TABLE 11
Supply Voltage Levels and DC Operating Conditions
Parameter
Device Supply Voltage
Output Supply Voltage
Input Reference Voltage
SPD Supply Voltage
DC Input Logic High
DC Input Logic Low
Symbol
VDD
VDDQ
VREF
VDDSPD
VIH(DC)
VIL (DC)
IL
Values
Unit
Min.
Typ.
Max.
1.7
1.8
1.9
V
1.7
1.8
1.9
V
1)
0.49 × VDDQ
0.5 × VDDQ
0.51 × VDDQ
V
2)
1.7
—
3.6
V
VREF + 0.125
—
V
– 0.30
—
VDDQ + 0.3
VREF – 0.125
V
In / Output Leakage Current
–5
—
5
µA
1) Under all conditions, VDDQ must be less than or equal to VDD
2) Peak to peak AC noise on VREF may not exceed ± 2% VREF (DC).VREF is also expected to track noise in VDDQ.
3) Input voltage for any connector pin under test of 0 V ≤ VIN ≤ VDDQ + 0.3 V; all other pins at 0 V. Current is per pin
Rev. 1.12, 2007-10
10312006-I253-V1V0
Note
13
3)
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
3.3
Timing Characteristics
3.3.1
Speed Grade Definitions
TABLE 12
Speed Grade Definition
Speed Grade
DDR2–800E
QAG Sort Name
–2.5
CAS-RCD-RP latencies
6–6–6
Parameter
Clock Period
@ CL = 3
@ CL = 4
@ CL = 5
@ CL = 6
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
—
tCK
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
ns
1)2)3)4)
3.75
8
ns
1)2)3)4)
3
8
ns
1)2)3)4)
2.5
8
ns
1)2)3)4)
45
70k
ns
1)2)3)4)5)
60
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
15
—
ns
1)2)3)4)
TABLE 13
Speed Grade Definition
Speed Grade
DDR2–667C
DDR2–533C
QAG Sort Name
–3
–3.7
CAS-RCD-RP latencies
4–4–4
4–4–4
Parameter
Clock Period
@ CL = 3
@ CL = 4
@ CL = 5
Row Active Time
Row Cycle Time
RAS-CAS-Delay
Row Precharge Time
Unit
Note
tCK
Symbol
Min.
Max.
Min.
Max.
—
tCK
tCK
tCK
tRAS
tRC
tRCD
tRP
5
8
5
8
ns
1)2)3)4)
3
8
3.75
8
ns
1)2)3)4)
3
8
3.75
8
ns
1)2)3)4)
45
70k
45
70k
ns
1)2)3)4)5)
57
—
60
—
ns
1)2)3)4)
12
—
15
—
ns
1)2)3)4)
12
—
15
—
ns
1)2)3)4)
1) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode. Timings are further guaranteed for normal
OCD drive strength (EMRS(1) A1 = 0) mentioned in Component datasheet.
Rev. 1.12, 2007-10
10312006-I253-V1V0
14
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
2) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode
3) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ
4) The output timing reference voltage level is VTT.
5) tRAS.MAX is calculated from the maximum amount of time a DDR2 device can operate without a refresh command which is equal to 9 x tREFI.
3.3.2
Component AC Timing Parameters
TABLE 14
DRAM Component Timing Parameter by Speed Grade - DDR2–800 and DDR2–667
Parameter
Symbol
DDR2–800
DDR2–667
Unit
Note2)3)5
)6)7)8)
Min.
tCCD
tCH.AVG
Average clock period
tCK.AVG
CKE minimum pulse width ( high and tCKE
Max.
Min.
Max.
CAS to CAS command delay
2
—
2
—
nCK
Average clock high pulse width
0.48
0.52
0.48
0.52
tCK.AVG
2500
8000
3000
8000
ps
3
—
3
—
nCK
12)
0.48
0.52
0.48
0.52
tCK.AVG
10)11)
WR + tnRP
—
WR + tnRP
—
nCK
13)14)
10)11)
low pulse width)
Average clock low pulse width
Auto-Precharge write recovery +
precharge time
tCL.AVG
tDAL
Minimum time clocks remain ON after tDELAY
CKE asynchronously drops LOW
tIS + tCK .AVG ––
+ tIH
tIS +
––
tCK .AVG + tIH
ns
tDH.BASE
DQ and DM input pulse width for each tDIPW
125
––
175
––
ps
0.35
—
0.35
—
tCK.AVG
DQS input high pulse width
tDQSH
tDQSL
DQS-DQ skew for DQS & associated tDQSQ
0.35
—
0.35
—
DQS input low pulse width
0.35
—
0.35
—
tCK.AVG
tCK.AVG
—
200
—
240
ps
16)
17)
DQ and DM input hold time
input
15)19)20)
DQ signals
DQS latching rising transition to
associated clock edges
tDQSS
– 0.25
+ 0.25
– 0.25
+ 0.25
tCK.AVG
DQ and DM input setup time
tDS.BASE
tDSH
tDSS
tFAW
50
––
100
––
ps
18)19)20)
17)
CK half pulse width
0.2
—
0.2
—
0.2
—
0.2
—
tCK.AVG
tCK.AVG
45
—
50
—
ns
35)
tHP
Min(tCH.ABS,
tCL.ABS)
__
Min(tCH.ABS,
tCL.ABS)
__
ps
21)
Data-out high-impedance time from
CK / CK
tHZ
—
tAC.MAX
—
tAC.MAX
ps
9)22)
Address and control input hold time
tIH.BASE
tIPW
250
—
275
—
ps
23)25)
0.6
—
0.6
—
tCK.AVG
DQS falling edge hold time from CK
DQS falling edge to CK setup time
Four Activate Window for 2KB page
size products
Control & address input pulse width
for each input
Rev. 1.12, 2007-10
10312006-I253-V1V0
15
17)
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Parameter
Symbol
DDR2–800
DDR2–667
Unit
Note2)3)5
)6)7)8)
Min.
Max.
Min.
Max.
Address and control input setup time tIS.BASE
175
—
200
—
ps
24)25)
DQ low impedance time from CK/CK tLZ.DQ
2 x tAC.MIN
tAC.MAX
2 x tAC.MIN
ps
9)22)
tAC.MIN
tAC.MAX
tAC.MIN
tAC.MAX
tAC.MAX
ps
9)22)
MRS command to ODT update delay tMOD
0
12
0
12
ns
35)
Mode register set command cycle
time
tMRD
2
—
2
—
nCK
OCD drive mode output delay
tOIT
tQH
tQHS
tREFI
0
12
0
12
ns
35)
tHP – tQHS
—
tHP – tQHS
—
ps
26)
—
300
—
340
ps
27)
—
7.8
—
7.8
µs
28)29)
—
3.9
—
3.9
µs
28)30)
—
127.5
—
ns
31)
DQS/DQS low-impedance time from
CK / CK
DQ/DQS output hold time from DQS
DQ hold skew factor
Average periodic refresh Interval
tLZ.DQS
Auto-Refresh to Active/Auto-Refresh
command period
tRFC
127.5
Precharge-All (8 banks) command
period
tRP
tRP + 1 × tCK —
tRP + 1 × tCK —
ns
Read preamble
tRPRE
tRPST
tRRD
0.9
1.1
0.9
1.1
32)33)
0.4
0.6
0.4
0.6
tCK.AVG
tCK.AVG
10
—
10
—
ns
35)
Internal Read to Precharge command tRTP
delay
7.5
—
7.5
—
ns
35)
tWPRE
Write postamble
tWPST
Write recovery time
tWR
Internal write to read command delay tWTR
Exit power down to read command
tXARD
Exit active power-down mode to read tXARDS
0.35
—
0.35
—
0.4
0.6
0.4
0.6
tCK.AVG
tCK.AVG
15
—
15
—
ns
35)
7.5
—
7.5
—
ns
35)36)
2
—
2
—
nCK
8 – AL
—
7 – AL
—
nCK
Read postamble
Active to active command period for
2KB page size products
Write preamble
32)34)
command (slow exit, lower power)
Exit precharge power-down to any
valid command (other than NOP or
Deselect)
tXP
2
—
2
—
nCK
Exit self-refresh to a non-read
command
tXSNR
tRFC +10
—
tRFC +10
—
ns
—
200
—
Exit self-refresh to read command
tXSRD
200
Write command to DQS associated
clock edges
WL
RL – 1
RL–1
35)
nCK
nCK
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
Rev. 1.12, 2007-10
10312006-I253-V1V0
16
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode. component
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT. component datasheet
8) New units, ‘tCK.AVG‘ and ‘nCK‘, are introduced in DDR2–667 and DDR2–800. Unit ‘tCK.AVG‘ represents the actual tCK.AVG of the input clock
under operation. Unit ‘nCK‘ represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2–400 and
DDR2–533, ‘tCK‘ is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command
may be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
9) When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(6-10per) of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tERR(6-10PER).MIN = – 272
ps and tERR(6- 10PER).MAX = + 293 ps, then tDQSCK.MIN(DERATED) = tDQSCK.MIN – tERR(6-10PER).MAX = – 400 ps – 293 ps = – 693 ps and
tDQSCK.MAX(DERATED) = tDQSCK.MAX – tERR(6-10PER).MIN = 400 ps + 272 ps = + 672 ps. Similarly, tLZ.DQ for DDR2–667 derates to tLZ.DQ.MIN(DERATED)
= - 900 ps – 293 ps = – 1193 ps and tLZ.DQ.MAX(DERATED) = 450 ps + 272 ps = + 722 ps. (Caution on the MIN/MAX usage!)
10) Input clock jitter spec parameter. These parameters component datasheet are referred to as 'input clock jitter spec parameters' and these
parameters apply to DDR2–667 and DDR2–800 only. The jitter specified is a random jitter meeting a Gaussian distribution.
11) These parameters are specified per their average values, however it is understood that the relationship component datasheet between the
average timing and the absolute instantaneous timing holds all the times (min. and max of SPEC values are to be used for calculations
component datasheet).
12) tCKE.MIN of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the
entire time it takes to achieve the 3 clocks of registration. Thus, after any CKE transition, CKE may not transition from its valid level during
the time period of tIS + 2 x tCK + tIH.
13) DAL = WR + RU{tRP(ns) / tCK(ns)}, where RU stands for round up. WR refers to the tWR parameter stored in the MRS. For tRP, if the result
of the division is not already an integer, round up to the next highest integer. tCK refers to the application clock period. Example: For
DDR2–533 at tCK = 3.75 ns with tWR programmed to 4 clocks. tDAL = 4 + (15 ns / 3.75 ns) clocks = 4 + (4) clocks = 8 clocks.
14) tDAL.nCK = WR [nCK] + tnRP.nCK = WR + RU{tRP [ps] / tCK.AVG[ps] }, where WR is the value programmed in the EMR.
15) Input waveform timing tDH with differential data strobe enabled MR[bit10] = 0, is referenced from the differential data strobe crosspoint to
the input signal crossing at the VIH.DC level for a falling signal and from the differential data strobe crosspoint to the input signal crossing
at the VIL.DC level for a rising signal applied to the device under test. DQS, DQS signals must be monotonic between VIL.DC.MAX and
VIH.DC.MIN. See Figure 3.
16) tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output
slew rate mismatch between DQS / DQS and associated DQ in any given cycle.
17) These parameters are measured from a data strobe signal ((L/U/R)DQS / DQS) crossing to its respective clock signal (CK / CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC, etc.), as these are relative to the clock signal
crossing. That is, these parameters should be met whether clock jitter is present or not.
18) Input waveform timing tDS with differential data strobe enabled MR[bit10] = 0, is referenced from the input signal crossing at the VIH.AC level
to the differential data strobe crosspoint for a rising signal, and from the input signal crossing at the VIL.AC level to the differential data strobe
crosspoint for a falling signal applied to the device under test. DQS, DQS signals must be monotonic between Vil(DC)MAX and Vih(DC)MIN. See
Figure 3.
19) If tDS or tDH is violated, data corruption may occur and the data must be re-written with valid data before a valid READ can be executed.
20) These parameters are measured from a data signal ((L/U)DM, (L/U)DQ0, (L/U)DQ1, etc.) transition edge to its respective data strobe signal
((L/U/R)DQS / DQS) crossing.
21) tHP is the minimum of the absolute half period of the actual input clock. tHP is an input parameter but not an input specification parameter.
It is used in conjunction with tQHS to derive the DRAM output timing tQH. The value to be used for tQH calculation is determined by the
following equation; tHP = MIN (tCH.ABS, tCL.ABS), where, tCH.ABS is the minimum of the actual instantaneous clock high time; tCL.ABS is the
minimum of the actual instantaneous clock low time.
22) tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level
which specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) .
23) input waveform timing is referenced from the input signal crossing at the VIL.DC level for a rising signal and VIH.DC for a falling signal applied
to the device under test. See Figure 4.
24) Input waveform timing is referenced from the input signal crossing at the VIH.AC level for a rising signal and VIL.AC for a falling signal applied
to the device under test. See Figure 4.
25) These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to
its respective clock signal (CK / CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT.PER, tJIT.CC,
etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should
be met whether clock jitter is present or not.
26) tQH = tHP – tQHS, where: tHP is the minimum of the absolute half period of the actual input clock; and tQHS is the specification value under
the max column. {The less half-pulse width distortion present, the larger the tQH value is; and the larger the valid data eye will be.}
Examples: 1) If the system provides tHP of 1315 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 975 ps minimum. 2) If the system
provides tHP of 1420 ps into a DDR2–667 SDRAM, the DRAM provides tQH of 1080 ps minimum.
Rev. 1.12, 2007-10
10312006-I253-V1V0
17
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
tQHS accounts for: 1) The pulse duration distortion of on-chip clock circuits, which represents how well the actual tHP at the input is
transferred to the output; and 2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next
transition, both of which are independent of each other, due to data pin skew, output pattern effects, and pchannel to n-channel variation
of the output drivers.
The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
0 °C≤ TCASE ≤ 85 °C.
85 °C < TCASE ≤ 95 °C.
A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device.
tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving
(tRPST), or begins driving (tRPRE). Figure 2 shows a method to calculate these points when the device is no longer driving (tRPST), or begins
driving (tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the
calculation is consistent.
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.PER of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.PER.MIN = – 72 ps
and tJIT.PER.MAX = + 93 ps, then tRPRE.MIN(DERATED) = tRPRE.MIN + tJIT.PER.MIN = 0.9 x tCK.AVG – 72 ps = + 2178 ps and tRPRE.MAX(DERATED) = tRPRE.MAX
+ tJIT.PER.MAX = 1.1 x tCK.AVG + 93 ps = + 2843 ps. (Caution on the MIN/MAX usage!).
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT.DUTY of the input clock. (output
deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR2–667 SDRAM has tJIT.DUTY.MIN = – 72 ps
and tJIT.DUTY.MAX = + 93 ps, then tRPST.MIN(DERATED) = tRPST.MIN + tJIT.DUTY.MIN = 0.4 x tCK.AVG – 72 ps = + 928 ps and tRPST.MAX(DERATED) = tRPST.MAX
+ tJIT.DUTY.MAX = 0.6 x tCK.AVG + 93 ps = + 1592 ps. (Caution on the MIN/MAX usage!).
For these parameters, the DDR2 SDRAM device is characterized and verified to support tnPARAM = RU{tPARAM / tCK.AVG}, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK.AVG}, which is in
clock cycles, if all input clock jitter specifications are met. This means: For DDR2–667 5–5–5, of which tRP = 15 ns, the device will support
tnRP = RU{tRP / tCK.AVG} = 5, i.e. as long as the input clock jitter specifications are met, Precharge command at Tm and Active command at
Tm + 5 is valid even if (Tm + 5 - Tm) is less than 15 ns due to input clock jitter.
tWTR is at lease two clocks (2 x tCK) independent of operation frequency.
FIGURE 2
Method for calculating transitions and endpoint
92+[P9
977[P9
92+[P9
977[P9
W/=
W+=
W535(EHJLQSRLQW
W5367
H QGSRLQW
92/[P9
977[P9
92/[P9
977[P9
7 7
7 7
W+=W5367
HQGSRLQW 77
Rev. 1.12, 2007-10
10312006-I253-V1V0
W/=W535(
E HJLQSRLQW 7
7
18
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
FIGURE 3
Differential input waveform timing tDS and tDH
'46
'46
W'6
W'+
W'
6
W'+
9
''
4
9
PL
Q
,+ D
F 9
PL
Q
,+ G
F 95() GF 9
PD
[
,/
G
F 9
PD
[
,/
D
F 9
66
0377
FIGURE 4
Differential input waveform timing tlS and tlH
&.
&.
W,6
W,+
W,6
W,+
9''4
9,+DF PLQ
9,+GF PLQ
95() GF 9,/ GF PD[
9,/ DF PD[
966
Rev. 1.12, 2007-10
10312006-I253-V1V0
19
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
TABLE 15
DRAM Component Timing Parameter by Speed Grade - DDR2–533
Parameter
Symbol
DDR2–533
Unit
Notes2)3)4)5)6)
7)
Min.
Max.
tCCD
tCH
tCKE
tCL
tDAL
2
—
Minimum time clocks remain ON after
CKE asynchronously drops LOW
DQ and DM input hold time (differential
data strobe)
0.45
0.55
3
—
0.45
0.55
WR + tRP
—
tCK
tCK
tCK
tCK
tCK
tDELAY
tIS + tCK + tIH
––
ns
9)
tDH.BASE
225
––
ps
10)
–25
—
ps
11)
tDIPW
0.35
—
tCK
DQS input HIGH pulse width (write cycle) tDQSH
0.35
—
DQS input LOW pulse width (write cycle) tDQSL
0.35
—
tCK
tCK
CAS A to CAS B command period
CK, CK high-level width
CKE minimum high and low pulse width
CK, CK low-level width
Auto-Precharge write recovery +
precharge time
DQ and DM input hold time (single ended tDH1.BASE
data strobe)
DQ and DM input pulse width (each
input)
8)
11)
DQS-DQ skew (for DQS & associated
DQ signals)
tDQSQ
—
300
ps
Write command to 1st DQS latching
transition
tDQSS
– 0.25
+ 0.25
tCK
100
—
ps
11)
11)
DQ and DM input setup time (differential tDS.BASE
data strobe)
DQ and DM input setup time (single
ended data strobe)
tDS1.BASE
–25
—
ps
DQS falling edge hold time from CK
(write cycle)
tDSH
0.2
—
tCK
DQS falling edge to CK setup time (write tDSS
cycle)
0.2
—
tCK
tFAW
Clock half period
tHP
Data-out high-impedance time from CK / tHZ
50
—
ns
Four Activate Window period
Address and control input pulse width
(each input)
Address and control input setup time
DQ low-impedance time from CK / CK
DQS low-impedance from CK / CK
MRS command to ODT update delay
Mode register set command cycle time
Rev. 1.12, 2007-10
10312006-I253-V1V0
12)
MIN. (tCL, tCH)
—
tAC.MAX
ps
13)
tIH.BASE
tIPW
375
—
ps
11)
0.6
—
tCK
tIS.BASE
tLZ(DQ)
tLZ(DQS)
tMOD
tMRD
250
—
ps
11)
2 × tAC.MIN
ps
14)
tAC.MIN
tAC.MAX
tAC.MAX
ps
14)
0
12
ns
2
—
tCK
CK
Address and control input hold time
13)
20
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Parameter
Symbol
DDR2–533
Unit
Notes2)3)4)5)6)
7)
OCD drive mode output delay
tOIT
tQH
tQHS
tREFI
tREFI
tRFC
Min.
Max.
0
12
ns
tHP –tQHS
—
—
400
ps
—
7.8
µs
14)15)
—
3.9
µs
16)18)
127.5
—
ns
17)
Precharge-All (8 banks) command period tRP
tRP + 1 × tCK
—
ns
tRPRE
Read postamble
tRPST
Active bank A to Active bank B command tRRD
0.9
1.1
14)
0.40
0.60
tCK
tCK
10
—
ns
16)22)
Data output hold time from DQS
Data hold skew factor
Average periodic refresh Interval
Average periodic refresh Interval
Auto-Refresh to Active/Auto-Refresh
command period
Read preamble
14)
period
Internal Read to Precharge command
delay
tRTP
7.5
—
ns
Write preamble
tWPRE
tWPST
tWR
0.25
—
0.40
0.60
tCK
tCK
15
—
ns
tWTR
tXARD
7.5
—
ns
20)
2
—
tCK
21)
Exit active power-down mode to Read
command (slow exit, lower power)
tXARDS
6 – AL
—
tCK
21)
Exit precharge power-down to any valid
command (other than NOP or Deselect)
tXP
2
—
tCK
tRFC +10
—
ns
—
tCK
tCK
Write postamble
Write recovery time for write without
Auto-Precharge
Internal Write to Read command delay
Exit power down to any valid command
(other than NOP or Deselect)
Exit Self-Refresh to non-Read command tXSNR
Exit Self-Refresh to Read command
tXSRD
200
Write recovery time for write with AutoPrecharge
WR
tWR/tCK
19)
22)
1) For details and notes see the relevant Qimonda component data sheet
2) VDDQ = 1.8 V ± 0.1V; VDD = 1.8 V ± 0.1 V.
3) Timing that is not specified is illegal and after such an event, in order to guarantee proper operation, the DRAM must be powered down
and then restarted through the specified initialization sequence before normal operation can continue.
4) Timings are guaranteed with CK/CK differential Slew Rate of 2.0 V/ns. For DQS signals timings are guaranteed with a differential Slew
Rate of 2.0 V/ns in differential strobe mode and a Slew Rate of 1 V/ns in single ended mode.
5) The CK / CK input reference level (for timing reference to CK / CK) is the point at which CK and CK cross. The DQS / DQS, RDQS / RDQS,
input reference level is the crosspoint when in differential strobe mode. component
6) Inputs are not recognized as valid until VREF stabilizes. During the period before VREF stabilizes, CKE = 0.2 x VDDQ is recognized as low.
7) The output timing reference voltage level is VTT. component datasheet
8) For each of the terms, if not already an integer, round to the next highest integer. tCK refers to the application clock period. WR refers to
the WR parameter stored in the MR.
9) The clock frequency is allowed to change during self-refresh mode or precharge power-down mode.
10) For timing definition, refer to the Component data sheet.
11) Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output Slew Rate
mis-match between DQS / DQS and associated DQ in any given cycle.
Rev. 1.12, 2007-10
10312006-I253-V1V0
21
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
12) MIN (tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can
be greater than the minimum specification limits for tCL and tCH).
13) The tHZ, tRPST and tLZ, tRPRE parameters are referenced to a specific voltage level, which specify when the device output is no longer driving
(tHZ, tRPST), or begins driving (tLZ, tRPRE). tHZ and tLZ transitions occur in the same access time windows as valid data transitions.These
parameters are verified by design and characterization, but not subject to production test.
14) The Auto-Refresh command interval has be reduced to 3.9 µs when operating the DDR2 DRAM in a temperature range between 85 °C
and 95 °C.
15) 0 °C≤ TCASE ≤ 85 °C.
16) 85 °C < TCASE ≤ 95 °C.
17) A maximum of eight Auto-Refresh commands can be posted to any given DDR2 SDRAM device
18) The tRRD timing parameter depends on the page size of the DRAM organization.
19) The maximum limit for the tWPST parameter is not a device limit. The device operates with a greater value for this parameter, but system
performance (bus turnaround) degrades accordingly.
20) Minimum tWTR is two clocks when operating the DDR2-SDRAM at frequencies ≤ 200 ΜΗz.
21) User can choose two different active power-down modes for additional power saving via MRS address bit A12. In “standard active powerdown mode” (MR, A12 = “0”) a fast power-down exit timing tXARD can be used. In “low active power-down mode” (MR, A12 =”1”) a slow
power-down exit timing tXARDS has to be satisfied.
22) WR must be programmed to fulfill the minimum requirement for the tWR timing parameter, where WRMIN[cycles] = tWR(ns)/tCK(ns) rounded
up to the next integer value. tDAL = WR + (tRP/tCK). For each of the terms, if not already an integer, round to the next highest integer. tCK
refers to the application clock period. WR refers to the WR parameter stored in the MRS.
3.3.3
ODT AC Electrical Characteristics
This chapter describes the ODT AC electrical characteristics.
TABLE 16
ODT AC Characteristics and Operating Conditions for DDR2-667 & DDR2-800
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Note
Min.
Max.
ODT turn-on delay
2
2
nCK
1)
ODT turn-on
tAC.MAX + 0.7 ns
2 tCK + tAC.MAX + 1 ns
ns
1)2)
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
1)
ODT turn-off delay
2.5
2.5
nCK
1)
ns
1)3)
ns
1)
nCK
nCK
1)
ODT turn-off (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ODT to Power Down Mode Entry Latency
3
—
ODT turn-off
1)
ODT Power Down Exit Latency
8
—
1) New units, “tCK.AVG” and “nCK”, are introduced in DDR2-667 and DDR2-800. Unit “tCK.AVG” represents the actual tCK.AVG of the input clock
under operation. Unit “nCK” represents one clock cycle of the input clock, counting the actual clock edges. Note that in DDR2-400 and
DDR2-533, “tCK” is used for both concepts. Example: tXP = 2 [nCK] means; if Power Down exit is registered at Tm, an Active command may
be registered at Tm + 2, even if (Tm + 2 - Tm) is 2 x tCK.AVG + tERR.2PER(Min).
2) ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-667/800, tAOND is
2 clock cycles after the clock edge that registered a first ODT HIGH counting the actual input clock edges.
3) ODT turn off time min is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-667/800, if tCK(avg) = 3 ns is assumed, tAOFD is 1.5
ns (= 0.5 x 3 ns) after the second trailing clock edge counting from the clock edge that registered a first ODT LOW and by counting the
actual input clock edges.
Rev. 1.12, 2007-10
10312006-I253-V1V0
22
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
TABLE 17
ODT AC Characteristics and Operating Conditions for DDR2-533
Symbol
tAOND
tAON
tAONPD
tAOFD
tAOF
tAOFPD
tANPD
tAXPD
Parameter / Condition
Values
Unit
Min.
Max.
ODT turn-on delay
2
2
tCK
ODT turn-on
tAC.MAX + 1 ns
2 tCK + tAC.MAX + 1 ns
ns
ODT turn-on (Power-Down Modes)
tAC.MIN
tAC.MIN + 2 ns
ns
ODT turn-off delay
2.5
2.5
tCK
ODT turn-off
tAC.MIN
tAC.MIN + 2 ns
tAC.MAX + 0.6 ns
2.5 tCK + tAC.MAX + 1 ns
ns
tCK
tCK
ODT turn-off (Power-Down Modes)
ODT to Power Down Mode Entry Latency
3
—
ODT Power Down Exit Latency
8
—
Note
1)
2)
ns
1) ODT turn on time min. is when the device leaves high impedance and ODT resistance begins to turn on. ODT turn on time max is when
the ODT resistance is fully on. Both are measured from tAOND, which is interpreted differently per speed bin. For DDR2-400/533, tAOND is
10 ns (= 2 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
2) ODT turn off time min. is when the device starts to turn off ODT resistance. ODT turn off time max is when the bus is in high impedance.
Both are measured from tAOFD. Both are measured from tAOFD, which is interpreted differently per speed bin. For DDR2-400/533, tAOFD is
12.5 ns (= 2.5 x 5 ns) after the clock edge that registered a first ODT HIGH if tCK = 5 ns.
Rev. 1.12, 2007-10
10312006-I253-V1V0
23
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
3.4
IDD Specifications and Conditions
List of tables defining IDD Specifications and Conditions.
TABLE 18
IDD Measurement Conditions
Symbol Note1)2)
Parameter
3)4)5)
Operating Current 0
IDD0
One bank Active - Precharge; tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN, CKE is HIGH, CS is HIGH between
valid commands. Address and control inputs are SWITCHING, Databus inputs are SWITCHING.
Operating Current 1
One bank Active - Read - Precharge; IOUT = 0 mA, BL = 4, tCK = tCK.MIN, tRC = tRC.MIN, tRAS = tRAS.MIN,
tRCD = tRCD.MIN, AL = 0, CL = CLMIN; CKE is HIGH, CS is HIGH between valid commands. Address and
control inputs are SWITCHING, Databus inputs are SWITCHING.
IDD1
6)
Precharge Standby Current
IDD2N
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are SWITCHING,
Databus inputs are SWITCHING.
Precharge Power-Down Current
Other control and address inputs are STABLE, Data bus inputs are FLOATING.
IDD2P
Precharge Quiet Standby Current
All banks idle; CS is HIGH; CKE is HIGH; tCK = tCK.MIN; Other control and address inputs are STABLE,
Data bus inputs are FLOATING.
IDD2Q
Active Standby Current
Burst Read: All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN;
tRAS = tRAS.MAX, tRP = tRP.MIN; CKE is HIGH, CS is HIGH between valid commands. Address inputs are
SWITCHING; Data Bus inputs are SWITCHING; IOUT = 0 mA.
IDD3N
Active Power-Down Current
IDD3P(0)
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs
are FLOATING. MRS A12 bit is set to LOW (Fast Power-down Exit);
Active Power-Down Current
IDD3P(1)
All banks open; tCK = tCK.MIN, CKE is LOW; Other control and address inputs are STABLE, Data bus inputs
are FLOATING. MRS A12 bit is set to HIGH (Slow Power-down Exit);
Operating Current - Burst Read
IDD4R
All banks open; Continuous burst reads; BL = 4; AL = 0, CL = CLMIN; tCK = tCKMIN; tRAS = tRASMAX;
tRP = tRPMIN; CKE is HIGH, CS is HIGH between valid commands; Address inputs are SWITCHING; Data
bus inputs are SWITCHING; IOUT = 0mA.
Operating Current - Burst Write
All banks open; Continuous burst writes; BL = 4; AL = 0, CL = CLMIN; tCK = tCK.MIN;
tRAS = tRAS.MAX., tRP = tRP.MAX; CKE is HIGH, CS is HIGH between valid commands. Address inputs are
SWITCHING; Data Bus inputs are SWITCHING;
IDD4W
Burst Refresh Current
tCK = tCK.MIN., Refresh command every tRFC = tRFC.MIN interval, CKE is HIGH, CS is HIGH between valid
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
IDD5B
Distributed Refresh Current
tCK = tCK.MIN., Refresh command every tRFC = tREFI interval, CKE is LOW and CS is HIGH between valid
commands, Other control and address inputs are SWITCHING, Data bus inputs are SWITCHING.
IDD5D
Rev. 1.12, 2007-10
10312006-I253-V1V0
24
6)
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Symbol Note1)2)
Parameter
3)4)5)
Self-Refresh Current
IDD6
CKE ≤ 0.2 V; external clock off, CK and CK at 0 V; Other control and address inputs are FLOATING, Data
bus inputs are FLOATING. IDD6 current values are guaranteed up to TCASE of 85 °C max.
6)
All Bank Interleave Read Current
IDD7
All banks are being interleaved at minimum tRC without violating tRRD using a burst length of 4. Control
and address bus inputs are STABLE during DESELECTS. Iout = 0 mA.
1) VDDQ = 1.8 V ± 0.1 V; VDD = 1.8 V ± 0.1 V
2) IDD specifications are tested after the device is properly initialized and IDD parameter are specified with ODT disabled.
3) Definitions for IDD see Table 19
4) For two rank modules: All active current measurements in the same IDD current mode. The other rank is in IDD2P Precharge Power-Down
Mode.
5) For details and notes see the relevant Qimonda component data sheet.
6) IDD1, IDD4R and IDD7 current measurements are defined with the outputs disabled (IOUT = 0 mA). To achieve this on module level the output
buffers can be disabled using an EMRS(1) (Extended Mode Register Command) by setting A12 bit to HIGH.
TABLE 19
Definitions for IDD
Parameter
Description
LOW
VIN ≤ VIL(ac).MAX, HIGH is defined as VIN ≥ VIH(ac).MIN
STABLE
Inputs are stable at a HIGH or LOW level
FLOATING
Inputs are VREF = VDDQ /2
SWITCHING
Inputs are changing between HIGH and LOW every other clock (once per 2 cycles) for address and control
signals, and inputs changing between HIGH and LOW every other data transfer (once per cycle) for DQ
signals not including mask or strobes.
Rev. 1.12, 2007-10
10312006-I253-V1V0
25
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
TABLE 20
IDD Specification for HYS64T128020EDL–[2.5/3S/3.7]–B
Units
Note1)
548
mA
2)
628
568
mA
2)
560
520
440
mA
3)
96
96
96
mA
3)
520
480
400
mA
3)
720
560
480
mA
3)
384
360
304
mA
3)4)
120
120
120
mA
3)5)
1008
868
748
mA
2)
1008
868
748
mA
2)
948
888
848
mA
2)
104
104
104
mA
3)6)
64
64
64
mA
3)6)
1408
1248
1168
mA
2)
Product Type HYS64T128020EDL–2.5–B
HYS64T128020EDL–3S–B
HYS64T128020EDL–3.7–B
Organization 1 GB
1 GB
1 GB
×64
×64
×64
2 Ranks
2 Ranks
2 Ranks
–2.5
–3S
–3.7
648
588
688
IDD0
IDD1
IDD2N
IDD2P
IDD2Q
IDD3N
IDD3P_0 (fast)
IDD3P_1 (slow)
IDD4R
IDD4W
IDD5B
IDD5D
IDD6
IDD7
1)
2)
3)
4)
5)
6)
Calculated values from component data. ODT disabled. IDD1, IDD4R, and IDD7, are defined with the outputs disabled.
The other rank is in IDD2P Precharge Power-Down Current mode
Both ranks are in the same IDD current mode
Fast: MRS(12)=0
Slow: MRS(12)=1
IDD5D and IDD6 values are for 0°C ≤ TCase ≤ 85°C
Rev. 1.12, 2007-10
10312006-I253-V1V0
26
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
4
SPD Codes
This chapter lists all hexadecimal byte values stored in the EEPROM of the products described in this data sheet. SPD stands
for serial presence detect. All values with XX in the table are module specific bytes which are defined during production.
List of SPD Code Tables
• Table 21 “HYS64T128020EDL–2.5–B” on Page 27
• Table 22 “HYS64T128020EDL–3S–B” on Page 31
• Table 23 “HYS64T128020EDL–3.7–B” on Page 35
TABLE 21
HYS64T128020EDL–2.5–B
Product Type
HYS64T128020EDL–2.5–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–6400S–666
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
0
Programmed SPD Bytes in EEPROM
80
1
Total number of Bytes in EEPROM
08
2
Memory Type (DDR2)
08
3
Number of Row Addresses
0D
4
Number of Column Addresses
0A
5
DIMM Rank and Stacking Information
61
6
Data Width
40
7
Not used
00
8
Interface Voltage Level
05
9
tCK @ CLMAX (Byte 18) [ns]
tAC SDRAM @ CLMAX (Byte 18) [ns]
25
10
11
Error Correction Support (non-ECC, ECC)
00
12
Refresh Rate and Type
82
13
Primary SDRAM Width
10
14
Error Checking SDRAM Width
00
15
Not used
00
16
Burst Length Supported
0C
17
Number of Banks on SDRAM Device
08
18
Supported CAS Latencies
70
19
DIMM Mechanical Characteristics
01
Rev. 1.12, 2007-10
10312006-I253-V1V0
40
27
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–2.5–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–6400S–666
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
20
DIMM Type Information
04
21
DIMM Attributes
00
22
Component Attributes
07
23
30
30
tCK @ CLMAX -1 (Byte 18) [ns]
tAC SDRAM @ CLMAX -1 [ns]
tCK @ CLMAX -2 (Byte 18) [ns]
tAC SDRAM @ CLMAX -2 [ns]
tRP.MIN [ns]
tRRD.MIN [ns]
tRCD.MIN [ns]
tRAS.MIN [ns]
31
Module Density per Rank
80
32
17
12
38
tAS.MIN and tCS.MIN [ns]
tAH.MIN and tCH.MIN [ns]
tDS.MIN [ns]
tDH.MIN [ns]
tWR.MIN [ns]
tWTR.MIN [ns]
tRTP.MIN [ns]
39
Analysis Characteristics
00
40
06
45
tRC and tRFC Extension
tRC.MIN [ns]
tRFC.MIN [ns]
tCK.MAX [ns]
tDQSQ.MAX [ns]
tQHS.MAX [ns]
46
PLL Relock Time
00
47
TCASE.MAX Delta / ∆T4R4W Delta
5F
48
Psi(T-A) DRAM
58
49
∆T0 (DT0)
53
50
∆T2N (DT2N, UDIMM) or ∆T2Q (DT2Q, RDIMM)
3B
51
∆T2P (DT2P)
27
52
∆T3N (DT3N)
2A
24
25
26
27
28
29
33
34
35
36
37
41
42
43
44
Rev. 1.12, 2007-10
10312006-I253-V1V0
45
3D
50
3C
28
3C
2D
25
05
3C
1E
1E
3C
7F
80
14
1E
28
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–2.5–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–6400S–666
JEDEC SPD Revision
Rev. 1.2
Byte#
HEX
Description
53
∆T3P.fast (DT3P fast)
43
54
∆T3P.slow (DT3P slow)
1E
55
∆T4R (DT4R) / ∆T4R4W Sign (DT4R4W)
54
56
∆T5B (DT5B)
22
57
∆T7 (DT7)
42
58
Psi(ca) PLL
00
59
Psi(ca) REG
00
60
∆TPLL (DTPLL)
00
61
∆TREG (DTREG) / Toggle Rate
00
62
SPD Revision
12
63
Checksum of Bytes 0-62
22
64
Manufacturer’s JEDEC ID Code (1)
7F
65
Manufacturer’s JEDEC ID Code (2)
7F
66
Manufacturer’s JEDEC ID Code (3)
7F
67
Manufacturer’s JEDEC ID Code (4)
7F
68
Manufacturer’s JEDEC ID Code (5)
7F
69
Manufacturer’s JEDEC ID Code (6)
51
70
Manufacturer’s JEDEC ID Code (7)
00
71
Manufacturer’s JEDEC ID Code (8)
00
72
Module Manufacturer Location
xx
73
Product Type, Char 1
36
74
Product Type, Char 2
34
75
Product Type, Char 3
54
76
Product Type, Char 4
31
77
Product Type, Char 5
32
78
Product Type, Char 6
38
79
Product Type, Char 7
30
80
Product Type, Char 8
32
81
Product Type, Char 9
30
82
Product Type, Char 10
45
83
Product Type, Char 11
44
84
Product Type, Char 12
4C
85
Product Type, Char 13
32
Rev. 1.12, 2007-10
10312006-I253-V1V0
29
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–2.5–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–6400S–666
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
86
Product Type, Char 14
2E
87
Product Type, Char 15
35
88
Product Type, Char 16
42
89
Product Type, Char 17
20
90
Product Type, Char 18
20
91
Module Revision Code
0x
92
Test Program Revision Code
xx
93
Module Manufacturing Date Year
xx
94
Module Manufacturing Date Week
xx
95 - 98
Module Serial Number
xx
99 - 127 Not used
00
128 255
FF
Blank for customer use
Rev. 1.12, 2007-10
10312006-I253-V1V0
30
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
TABLE 22
HYS64T128020EDL–3S–B
Product Type
HYS64T128020EDL–3S–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–5300S–555
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
0
Programmed SPD Bytes in EEPROM
80
1
Total number of Bytes in EEPROM
08
2
Memory Type (DDR2)
08
3
Number of Row Addresses
0D
4
Number of Column Addresses
0A
5
DIMM Rank and Stacking Information
61
6
Data Width
40
7
Not used
00
8
Interface Voltage Level
05
9
30
10
tCK @ CLMAX (Byte 18) [ns]
tAC SDRAM @ CLMAX (Byte 18) [ns]
11
Error Correction Support (non-ECC, ECC)
00
12
Refresh Rate and Type
82
13
Primary SDRAM Width
10
14
Error Checking SDRAM Width
00
15
Not used
00
16
Burst Length Supported
0C
17
Number of Banks on SDRAM Device
08
18
Supported CAS Latencies
38
19
DIMM Mechanical Characteristics
01
20
DIMM Type Information
04
45
21
DIMM Attributes
00
22
Component Attributes
07
23
tCK @ CLMAX -1 (Byte 18) [ns]
tAC SDRAM @ CLMAX -1 [ns]
tCK @ CLMAX -2 (Byte 18) [ns]
tAC SDRAM @ CLMAX -2 [ns]
tRP.MIN [ns]
tRRD.MIN [ns]
tRCD.MIN [ns]
3D
24
25
26
27
28
29
Rev. 1.12, 2007-10
10312006-I253-V1V0
50
50
60
3C
28
3C
31
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–3S–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–5300S–555
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
30
tRAS.MIN [ns]
2D
31
Module Density per Rank
80
32
17
38
tAS.MIN and tCS.MIN [ns]
tAH.MIN and tCH.MIN [ns]
tDS.MIN [ns]
tDH.MIN [ns]
tWR.MIN [ns]
tWTR.MIN [ns]
tRTP.MIN [ns]
39
Analysis Characteristics
00
40
45
tRC and tRFC Extension
tRC.MIN [ns]
tRFC.MIN [ns]
tCK.MAX [ns]
tDQSQ.MAX [ns]
tQHS.MAX [ns]
46
PLL Relock Time
00
47
TCASE.MAX Delta / ∆T4R4W Delta
5D
48
Psi(T-A) DRAM
58
49
∆T0 (DT0)
43
50
∆T2N (DT2N, UDIMM) or ∆T2Q (DT2Q, RDIMM)
32
51
∆T2P (DT2P)
27
52
∆T3N (DT3N)
24
53
∆T3P.fast (DT3P fast)
39
54
∆T3P.slow (DT3P slow)
1E
55
∆T4R (DT4R) / ∆T4R4W Sign (DT4R4W)
48
33
34
35
36
37
41
42
43
44
20
27
10
3C
1E
1E
06
3C
7F
80
18
22
56
∆T5B (DT5B)
21
57
∆T7 (DT7)
34
58
Psi(ca) PLL
00
59
Psi(ca) REG
00
60
∆TPLL (DTPLL)
00
61
∆TREG (DTREG) / Toggle Rate
00
62
SPD Revision
12
Rev. 1.12, 2007-10
10312006-I253-V1V0
32
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–3S–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–5300S–555
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
63
Checksum of Bytes 0-62
12
64
Manufacturer’s JEDEC ID Code (1)
7F
65
Manufacturer’s JEDEC ID Code (2)
7F
66
Manufacturer’s JEDEC ID Code (3)
7F
67
Manufacturer’s JEDEC ID Code (4)
7F
68
Manufacturer’s JEDEC ID Code (5)
7F
69
Manufacturer’s JEDEC ID Code (6)
51
70
Manufacturer’s JEDEC ID Code (7)
00
71
Manufacturer’s JEDEC ID Code (8)
00
72
Module Manufacturer Location
xx
73
Product Type, Char 1
36
74
Product Type, Char 2
34
75
Product Type, Char 3
54
76
Product Type, Char 4
31
77
Product Type, Char 5
32
78
Product Type, Char 6
38
79
Product Type, Char 7
30
80
Product Type, Char 8
32
81
Product Type, Char 9
30
82
Product Type, Char 10
45
83
Product Type, Char 11
44
84
Product Type, Char 12
4C
85
Product Type, Char 13
33
86
Product Type, Char 14
53
87
Product Type, Char 15
42
88
Product Type, Char 16
20
89
Product Type, Char 17
20
90
Product Type, Char 18
20
91
Module Revision Code
1x
92
Test Program Revision Code
xx
93
Module Manufacturing Date Year
xx
94
Module Manufacturing Date Week
xx
95 - 98
Module Serial Number
xx
Rev. 1.12, 2007-10
10312006-I253-V1V0
33
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–3S–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–5300S–555
JEDEC SPD Revision
Rev. 1.2
Byte#
HEX
Description
99 - 127 Not used
00
128 255
FF
Blank for customer use
Rev. 1.12, 2007-10
10312006-I253-V1V0
34
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
TABLE 23
HYS64T128020EDL–3.7–B
Product Type
HYS64T128020EDL–3.7–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–4200S–444
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
0
Programmed SPD Bytes in EEPROM
80
1
Total number of Bytes in EEPROM
08
2
Memory Type (DDR2)
08
3
Number of Row Addresses
0D
4
Number of Column Addresses
0A
5
DIMM Rank and Stacking Information
61
6
Data Width
40
7
Not used
00
8
Interface Voltage Level
05
9
3D
10
tCK @ CLMAX (Byte 18) [ns]
tAC SDRAM @ CLMAX (Byte 18) [ns]
11
Error Correction Support (non-ECC, ECC)
00
12
Refresh Rate and Type
82
13
Primary SDRAM Width
10
14
Error Checking SDRAM Width
00
15
Not used
00
16
Burst Length Supported
0C
17
Number of Banks on SDRAM Device
08
18
Supported CAS Latencies
38
19
DIMM Mechanical Characteristics
00
20
DIMM Type Information
04
50
21
DIMM Attributes
00
22
Component Attributes
07
23
tCK @ CLMAX -1 (Byte 18) [ns]
tAC SDRAM @ CLMAX -1 [ns]
tCK @ CLMAX -2 (Byte 18) [ns]
tAC SDRAM @ CLMAX -2 [ns]
tRP.MIN [ns]
tRRD.MIN [ns]
tRCD.MIN [ns]
3D
24
25
26
27
28
29
Rev. 1.12, 2007-10
10312006-I253-V1V0
50
50
60
3C
28
3C
35
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–3.7–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–4200S–444
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
30
tRAS.MIN [ns]
2D
31
Module Density per Rank
80
32
22
38
tAS.MIN and tCS.MIN [ns]
tAH.MIN and tCH.MIN [ns]
tDS.MIN [ns]
tDH.MIN [ns]
tWR.MIN [ns]
tWTR.MIN [ns]
tRTP.MIN [ns]
39
Analysis Characteristics
00
40
45
tRC and tRFC Extension
tRC.MIN [ns]
tRFC.MIN [ns]
tCK.MAX [ns]
tDQSQ.MAX [ns]
tQHS.MAX [ns]
46
PLL Relock Time
00
47
TCASE.MAX Delta / ∆T4R4W Delta
59
48
Psi(T-A) DRAM
60
49
∆T0 (DT0)
3F
50
∆T2N (DT2N, UDIMM) or ∆T2Q (DT2Q, RDIMM)
2A
51
∆T2P (DT2P)
2B
52
∆T3N (DT3N)
20
53
∆T3P.fast (DT3P fast)
35
54
∆T3P.slow (DT3P slow)
21
55
∆T4R (DT4R) / ∆T4R4W Sign (DT4R4W)
40
33
34
35
36
37
41
42
43
44
25
37
10
3C
1E
1E
06
3C
7F
80
1E
28
56
∆T5B (DT5B)
22
57
∆T7 (DT7)
31
58
Psi(ca) PLL
00
59
Psi(ca) REG
00
60
∆TPLL (DTPLL)
00
61
∆TREG (DTREG) / Toggle Rate
00
62
SPD Revision
12
Rev. 1.12, 2007-10
10312006-I253-V1V0
36
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–3.7–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–4200S–444
JEDEC SPD Revision
Rev. 1.2
Byte#
Description
HEX
63
Checksum of Bytes 0-62
42
64
Manufacturer’s JEDEC ID Code (1)
7F
65
Manufacturer’s JEDEC ID Code (2)
7F
66
Manufacturer’s JEDEC ID Code (3)
7F
67
Manufacturer’s JEDEC ID Code (4)
7F
68
Manufacturer’s JEDEC ID Code (5)
7F
69
Manufacturer’s JEDEC ID Code (6)
51
70
Manufacturer’s JEDEC ID Code (7)
00
71
Manufacturer’s JEDEC ID Code (8)
00
72
Module Manufacturer Location
xx
73
Product Type, Char 1
36
74
Product Type, Char 2
34
75
Product Type, Char 3
54
76
Product Type, Char 4
31
77
Product Type, Char 5
32
78
Product Type, Char 6
38
79
Product Type, Char 7
30
80
Product Type, Char 8
32
81
Product Type, Char 9
30
82
Product Type, Char 10
45
83
Product Type, Char 11
44
84
Product Type, Char 12
4C
85
Product Type, Char 13
33
86
Product Type, Char 14
2E
87
Product Type, Char 15
37
88
Product Type, Char 16
42
89
Product Type, Char 17
20
90
Product Type, Char 18
20
91
Module Revision Code
3x
92
Test Program Revision Code
xx
93
Module Manufacturing Date Year
xx
94
Module Manufacturing Date Week
xx
95 - 98
Module Serial Number
xx
Rev. 1.12, 2007-10
10312006-I253-V1V0
37
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Product Type
HYS64T128020EDL–3.7–B
Organization
1 GByte
×64
2 Ranks (×16)
Label Code
PC2–4200S–444
JEDEC SPD Revision
Rev. 1.2
Byte#
HEX
Description
99 - 127 Not used
00
128 255
FF
Blank for customer use
Rev. 1.12, 2007-10
10312006-I253-V1V0
38
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
5
Package Outlines
FIGURE 5
Package Outline Raw Card A L-DIM-200-31
-!8
›
›
›
›
›
›
›
›
$ETAIL OF CONTACTS
›
›
›
›
›
›
›
-).
$RAWING ACCORDING TO )3/ 'ENERAL TOLERANCES ›
$IMENSIONS IN MM
)32B/B',0BBBB
Notes
1. Thermal Sensor (Optional)
2. SPD or Combidevice (if used then no Thermal Sensor needed)
Rev. 1.12, 2007-10
10312006-I253-V1V0
39
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
6
Product Type Nomenclature
Qimonda’s nomenclature uses simple coding combined with
some proprietary coding. Table 24 provides examples for
module and component product type number as well as the
field number. The detailed field description together with
possible values and coding explanation is listed for modules
in Table 25 and for components in Table 26.
TABLE 24
Nomenclature Fields and Examples
Example for
Field Number
1
2
3
4
5
6
7
8
9
10
11
Micro-DIMM
HYS
64
T
64/128
0
2
0
K
M
–5
–A
DDR2 DRAM
HYB
18
T
512/1G 16
0
A
C
–5
TABLE 25
DDR2 DIMM Nomenclature
Field
Description
Values
Coding
1
Qimonda Module Prefix
HYS
Constant
2
Module Data Width [bit]
64
Non-ECC
72
ECC
3
DRAM Technology
T
DDR2
4
Memory Density per I/O [Mbit];
Module Density1)
32
256 MByte
64
512 MByte
128
1 GByte
256
2 GByte
512
4 GByte
5
Raw Card Generation
0 .. 9
Look up table
6
Number of Module Ranks
0, 2, 4
1, 2, 4
7
Product Variations
0 .. 9
Look up table
8
Package, Lead-Free Status
A .. Z
Look up table
9
Module Type
D
SO-DIMM
M
Micro-DIMM
R
Registered
U
Unbuffered
F
Fully Buffered
Rev. 1.12, 2007-10
10312006-I253-V1V0
40
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Field
Description
Values
Coding
10
Speed Grade
–19F
PC2–8500 6–6–6
–1.9
PC2–8500 7–7–7
11
Die Revision
–25F
PC2–6400 5–5–5
–2.5
PC2–6400 6–6–6
–3
PC2–5300 4–4–4
–3S
PC2–5300 5–5–5
–3.7
PC2–4200 4–4–4
–5
PC2–3200 3–3–3
–A
First
–B
Second
1) Multiplying “Memory Density per I/O” with “Module Data Width” and dividing by 8 for Non-ECC and 9 for ECC modules gives the overall
module memory density in MBytes as listed in column “Coding”.
TABLE 26
DDR2 DRAM Nomenclature
Field
Description
Values
Coding
1
Qimonda Component Prefix
HYB
Constant
2
Interface Voltage [V]
18
SSTL_18
3
DRAM Technology
T
DDR2
4
Component Density [Mbit]
256
256 Mbit
5+6
Number of I/Os
512
512 Mbit
1G
1 Gbit
2G
2 Gbit
40
×4
80
×8
16
×16
7
Product Variations
0 .. 9
Look up table
8
Die Revision
A
First
B
Second
9
Package, Lead-Free Status
C
FBGA, lead-containing
F
FBGA, lead-free
10
Speed Grade
Rev. 1.12, 2007-10
10312006-I253-V1V0
–19F
PC2–8500 6–6–6
–1.9
PC2–8500 7–7–7
–25F
PC2–6400 5–5–5
–2.5
PC2–6400 6–6–6
–3
PC2–5300 4–4–4
–3S
PC2–5300 5–5–5
–3.7
PC2–4200 4–4–4
–5
PC2–3200 3–3–3
41
Internet Data Sheet
HYS64T128020EDL–[2.5/3S/3.7]–B
Small Outlined DDR2 SDRAM Modules
Contents
1
1.1
1.2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
2.1
Pin Configurations and Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Speed Grade Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Component AC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ODT AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IDD Specifications and Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
SPD Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6
Product Type Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Rev. 1.12, 2007-10
10312006-I253-V1V0
42
12
12
13
14
14
15
22
24
Internet Data Sheet
Edition 2007-10
Published by Qimonda AG
Gustav-Heinemann-Ring 212
D-81739 München, Germany
© Qimonda AG 2007.
All Rights Reserved.
Legal Disclaimer
The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office.
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please
contact your nearest Qimonda Office.
Qimonda Components may only be used in life-support devices or systems with the express written approval of Qimonda, if a
failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect
the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
www.qimonda.com
Similar pages