PD - 95315B IRFR3504PbF IRFU3504PbF Features l l l l l l HEXFET® Power MOSFET Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free Description D VDSS = 40V RDS(on) = 9.2mΩ G This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications. ID = 30A S D-Pak IRFR3504PbF I-Pak IRFU3504PbF Absolute Maximum Ratings Parameter ID @ TC ID @ TC ID @ TC IDM PD @TC = 25°C = 100°C = 25°C = 25°C VGS EAS EAS (tested) IAR EAR TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon limited) Continuous Drain Current, VGS @ 10V (See Fig.9) Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Units 87 61 30 350 140 0.92 ± 20 240 480 See Fig.12a, 12b, 15, 16 A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient Typ. Max. Units ––– ––– ––– 1.09 50 110 °C/W HEXFET(R) is a registered trademark of International Rectifier. www.irf.com 1 09/21/10 IRFR/U3504PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Min. 40 ––– ––– 2.0 40 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.041 7.8 ––– ––– ––– ––– ––– ––– 48 12 13 11 53 36 22 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 2150 580 46 2830 510 870 V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 9.2 mΩ VGS = 10V, ID = 30A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 10V, ID = 30A 20 VDS = 40V, VGS = 0V µA 250 VDS = 40V, VGS = 0V, TJ = 125°C 200 VGS = 20V nA -200 VGS = -20V 71 ID = 30A 18 nC VDS = 32V 20 VGS = 10V ––– VDD = 20V ––– ID = 30A ns ––– RG = 6.8Ω ––– VGS = 10V D ––– Between lead, nH 6mm (0.25in.) G ––– from package S and center of die contact ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 32V Source-Drain Ratings and Characteristics IS I SM VSD trr Q rr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 87 ––– ––– showing the A G integral reverse ––– ––– 350 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 30A, VGS = 0V ––– 53 80 ns TJ = 25°C, IF = 30A, VDD = 20V ––– 86 130 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U3504PbF 1000 1000 ID, Drain-to-Source Current (A) 100 10 BOTTOM 1 4.0V 0.1 0.01 TOP ID, Drain-to-Source Current (A) TOP VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 4.0V 20µs PULSE WIDTH Tj = 25°C 0.001 0.1 1 10 100 100 BOTTOM 10 4.0V 1 20µs PULSE WIDTH Tj = 175°C 0.1 1000 0.1 1 VDS, Drain-to-Source Voltage (V) 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.00 80 G fs , Forward Transconductance (S) ID, Drain-to-Source Current (Α) VGS 15V 10V 7.0V 6.0V 5.5V 5.0V 4.5V 4.0V T J = 175°C 100.00 10.00 TJ = 25°C 1.00 VDS = 25V 20µs PULSE WIDTH 4.0 6.0 8.0 10.0 12.0 14.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com T J = 25°C 60 50 TJ = 175°C 40 30 20 VDS = 25V 10 0.10 2.0 70 16.0 20µs PULSE WIDTH 0 0 20 40 60 80 100 120 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFR/U3504PbF 100000 I D = 30A 10 VGS , Gate-to-Source Voltage (V) Ciss 1000 Coss 100 Crss 8 6 4 2 10 0 1 10 0 100 1000 ID, Drain-to-Source Current (A) 1000 I SD , Reverse Drain Current (A) 100 °C TJ = 25 °C 1 V GS = 0 V 0.1 0.5 30 40 50 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 10 0.0 20 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage TJ = 175 10 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 1.0 1.5 2.0 2.5 V SD,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS = 32V VDS = 20V VDS = 8V Coss = Cds + Cgd 10000 C, Capacitance(pF) 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse 10msec 1 3.0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U3504PbF 2.5 100 I D = 87A LIMITED BY PACKAGE 2.0 60 40 20 0 25 50 75 100 125 150 175 (Normalized) RDS(on) , Drain-to-Source On Resistance ID , Drain Current (A) 80 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 ( ° C) TJ , Junction Temperature TC , Case Temperature ( °C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature (Z thJC ) 10 1 Thermal Response D = 0.50 0.20 P DM 0.10 0.1 0.05 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1 / t 2 J = P DM x Z thJC +TC 0.1 1 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U3504PbF 500 15V 20V VGS + V - DD IAS E AS , Single Pulse Avalanche Energy (mJ) D.U.T RG 400 DRIVER L VDS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp TOP ID 12A 21A BOTTOM 30A 300 200 100 0 25 50 75 100 Starting Tj, Junction Temperature I AS 125 150 175 ( ° C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 10 V 3.5 3.0 ID = 250µA 2.5 2.0 1.5 VGS -75 -50 -25 3mA 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRFR/U3504PbF 10000 Duty Cycle = Single Pulse Avalanche Current (A) 1000 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 10 0.10 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 250 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 30A 200 150 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U3504PbF D.U.T Driver Gate Drive + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • V DD dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U3504PbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: THIS IS AN IRFR120 WITH ASS EMBLY LOT CODE 1234 ASS EMBLED ON WW 16, 2001 IN THE AS SEMBLY LINE "A" PART NUMBER INTERNATIONAL RECTIFIER LOGO Note: "P" in assembly line position indicates "Lead-Free" IRFR120 12 116A 34 ASS EMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 16 LINE A "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level OR INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFR120 12 ASSEMBLY LOT CODE 34 DATE CODE P = DES IGNATES LEAD-FREE PRODUCT (OPTIONAL) P = DES IGNATES LEAD-FREE PRODUCT QUALIFIED TO THE CONSUMER LEVEL (OPTIONAL) YEAR 1 = 2001 WEEK 16 A = AS SEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFR/U3504PbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRF U120 WIT H AS SEMBLY LOT CODE 5678 AS SEMBLED ON WW 19, 2001 IN THE ASS EMB LY LINE "A" INT ERNATIONAL RECTIF IER LOGO PART NUMBER IRFU120 119A 56 78 ASS EMBLY LOT CODE Note: "P" in ass embly line pos ition indicates Lead-Free" DAT E CODE YEAR 1 = 2001 WEEK 19 LINE A OR INT ERNATIONAL RECTIFIER LOGO PART NUMB ER IRFU120 56 ASSEMBLY LOT CODE 78 DAT E CODE P = DESIGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 1 = 2001 WEEK 19 A = ASSEMBLY SITE CODE Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRFR/U3504PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.52mH, RG = 25Ω, IAS = 30A, VGS =10V. Part not recommended for use above this value. ISD ≤ 30A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. When mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/2010 www.irf.com 11