600VAPT50GT60BR_SR(G) APT50GT60BR APT50GT60SR APT50GT60BRG* APT50GT60SRG* TYPICAL PERFORMANCE CURVES *G Denotes RoHS Compliant, Pb Free Terminal Finish. Thunderbolt IGBT® (B) TO The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 100KHz • Low Tail Current • Ultra Low Leakage Current D3PAK -2 47 (S) C G G C E E C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT50GT60BR_SR(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 7 @ TC = 25°C UNIT Volts 110 52 1 Amps 150 150A @ 600V Switching Safe Operating Area @ TJ = 150°C Watts 446 Total Power Dissipation Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions MIN V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 2mA) 600 VGE(TH) Gate Threshold Voltage Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 Gate-Emitter Leakage Current (VGE = ±20V) 4 5 1.7 2.0 2.5 2.2 25 TBD 120 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. MicrosemiWebsite-http://www.microsemi.com Volts µA nA 6-2008 I GES Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C) 3 Units Rev C I CES Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C) MAX 052-6273 VCE(ON) (VCE = VGE, I C = 1mA, Tj = 25°C) TYP DYNAMIC CHARACTERISTICS Symbol APT50GT60BR_SR(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Total Gate Charge 3 Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) Turn-on Delay Time tr Current Rise Time td(off) Turn-off Delay Time tf Eon1 VGE = 0V, VCE = 25V 250 f = 1 MHz 153 Gate Charge 7.5 VGE = 15V 240 VCE = 300V 20 110 I C = 50A td(on) Turn-on Delay Time tr Current Rise Time RG = 4.3Ω TJ = +25°C 5 6 VGE = 15V Turn-off Delay Time I C = 50A Current Fall Time Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy V nC RG = 4.3Ω 44 55 TJ = +125°C 6 A 14 32 240 36 995 1110 1070 Inductive Switching (125°C) VCC = 400V UNIT pF 150 15V, L = 100µH,VCE = 600V 4 Turn-off Switching Energy MAX TJ = 150°C, R G = 4.3Ω, VGE = I C = 50A Eoff tf 2660 VGE = 15V Turn-on Switching Energy (Diode) td(off) Inductive Switching (25°C) VCC = 400V Eon2 TYP Capacitance Current Fall Time Turn-on Switching Energy MIN ns µJ 14 32 270 95 1035 1655 1505 ns µJ THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .28 RθJC Junction to Case (DIODE) 5.9 N/A WT Package Weight UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6273 Rev C 6-2008 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. Microsemi reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES = 15V IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 120 TJ = 25°C 100 TJ = -55°C 80 TJ = 125°C 60 40 10 10V 140 120 9V 100 80 8V 60 40 0 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 7V 250µs PULSE TEST<0.5 % DUTY CYCLE 140 TJ = -55°C 120 100 80 60 TJ = 25°C 40 TJ = 125°C 20 0 6V 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 160 IC, COLLECTOR CURRENT (A) 11V 160 20 0 0 15V 13V 180 J VCE = 120V 12 VCE = 300V 10 VCE = 480V 8 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 50A C T = 25°C 14 0 IC = 100A 3 IC = 50A 2 IC = 25A 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 4 3.5 2.5 IC = 50A 2.0 1.5 0.5 0 140 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 1.10 1.00 IC = 25A 1.0 160 1.05 IC = 100A 3.0 1.15 IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 50 100 150 200 250 GATE CHARGE (nC) 0 120 100 80 60 Lead Temperature Limited 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 6-2008 GE 140 Rev C V APT50GT60BR_SR(G) 200 052-6273 160 tr, RISE TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns) VGE = 15V 15 10 5 VCE = 400V TJ = 25°C, or 125°C RG = 4.3Ω L = 100µH 50 VCE = 400V RG = 4.3Ω 80 160 70 140 60 120 50 40 30 L = 100µH TJ = 125°C 3000 2000 1000 TJ = 25°C TJ = 25°C, VGE = 15V V = 400V CE V = +15V GE R = 4.3Ω 3000 G TJ = 125°C 2500 2000 1500 1000 TJ = 25°C 500 0 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current Eon2,100A J 8,000 6,000 4,000 Eoff,100A Eoff,50A Eon2,50A 2,000 Eoff,25A Eon2,25A 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) 5,000 V = 400V CE V = +15V GE T = 125°C 0 60 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 80 0 0 10,000 TJ = 125°C, VGE = 15V 100 20 EOFF, TURN OFF ENERGY LOSS (µJ) G RG = 4.3Ω, L = 100µH, VCE = 400V 3500 V = 400V CE V = +15V GE R = 4.3Ω 4000 0 40 TJ = 25 or 125°C,VGE = 15V 5000 EON2, TURN ON ENERGY LOSS (µJ) 150 180 RG = 4.3Ω, L = 100µH, VCE = 400V 0 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=25°C 200 90 0 6-2008 VGE =15V,TJ=125°C 20 40 60 80 100 125 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 10 Rev C 250 20 40 60 80 100 120 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 20 052-6273 300 0 0 tf, FALL TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 0 APT50GT60BR_SR(G) 350 25 V = 400V CE V = +15V GE R = 4.3Ω G 4,000 Eon2,100A Eoff,100A 3,000 2,000 Eon2,50A Eoff,50A 1,000 0 Eon2,25A Eoff,25A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES IC, COLLECTOR CURRENT (A) Cies P C, CAPACITANCE ( F) APT50GT60BR_SR(G) 160 4,000 1,000 500 Coes 140 120 100 80 60 40 20 Cres 100 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.25 0.20 0.7 0.15 0.5 0.10 0.3 PDM Note: t1 SINGLE PULSE t2 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration TJ (°C) 1.0 TC (°C) 0.114 0.113 Dissipated Power (Watts) 0.0057 0.0276 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 120 50 = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 2 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 4.3Ω max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 10 20 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 6-2008 F Rev C 10-5 ZEXT 0 052-6273 0.05 FMAX, OPERATING FREQUENCY (kHz) ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 APT50GT60BR_SR(G) Gate Voltage APT40DQ60 10% TJ = 125°C td(on) tr Collector Current 90% V CE IC V CC 5% 5% 10% Collector Voltage A D.U.T. Switching Energy Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit 90% Gate Voltage TJ = 125°C td(off) 90% Collector Voltage tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions 3 TO-247 Package Outline D PAK Package Outline e1 SAC: Tin, Silver, Copper 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 15.95 (.628) 16.05(.632) Revised 4/18/95 20.80 (.819) 21.46 (.845) Collector 6-2008 Rev C 052-6273 5.38 (.212) 6.20 (.244) Collector (Heat Sink) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) e3 SAC: Tin, Silver, Copper 1.04 (.041) 1.15(.045) 13.79 (.543) 13.99(.551) 13.41 (.528) 13.51(.532) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.50 (.138) 3.81 (.150) 0.46 (.018) 0.56 (.022) {3 Plcs} 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.27 (.050) 1.40 (.055) 1.22 (.048) 1.32 (.052) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Gate Collector Emitter 2.21 (.087) 2.59 (.102) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Emitter Collector Gate Dimensions in Millimeters (Inches) Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated