APT40GP60B APT40GP60S 600V ® POWER MOS 7 IGBT The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss • 100 kHz operation @ 400V, 41A • Low Gate Charge • 200 kHz operation @ 400V, 26A • Ultrafast Tail Current shutoff • SSOA rated TO-247 D3PAK C G C G E E C G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT40GP60B_S VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 VGEM 7 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM Pulsed Collector Current SSOA PD TJ,TSTG TL 1 UNIT Volts 100 @ TC = 25°C 62 Amps 160 @ TC = 150°C 160A @ 600V Switching Safe Operating Area @ TJ = 150°C 543 Total Power Dissipation Watts -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 250 2 Gate-Emitter Leakage Current (VGE = ±20V) UNIT Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. nA 2-2004 MIN Rev D Characteristic / Test Conditions APT Website - http://www.advancedpower.com 050-7403 Symbol APT40GP60B_S DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc SSOA Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Switching SOA MIN TYP Capacitance 4610 VGE = 0V, VCE = 25V 395 f = 1 MHz 25 Gate Charge VGE = 15V 7.5 135 VCE = 300V 30 I C = 40A 40 TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V nC 160 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 40A 45 4 Turn-on Switching Energy (Diode) 5 Eon1 64 352 20 VGE = 15V 89 I C = 40A 69 Current Fall Time 5 µJ 450 29 R G = 5Ω 4 Turn-on Switching Energy (Diode) Turn-off Switching Energy 644 Inductive Switching (125°C) VCC(Peak) = 400V Turn-off Delay Time ns 385 TJ = +25°C 6 Current Rise Time Turn-on Switching Energy 29 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 20 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC(Peak) = 400V ns 385 TJ = +125°C 972 6 µJ 615 950 TYP MAX THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN RΘJC Junction to Case (IGBT) .23 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. 050-7403 Rev D 2-2004 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES APT40GP60B_S 80 80 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 70 TC=-55°C 60 50 40 30 TC=25°C 20 TC=125°C IC, COLLECTOR CURRENT (A) 20 150 TJ = -55°C 100 TJ = 25°C 50 VCE=120V 12 VCE=300V 10 8 VCE=480V 6 4 2 1 2 3 4 5 6 7 8 9 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics IC= 80A 2.5 IC= 40A 2 IC= 20A 1.5 1 0.5 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 3.5 3 IC= 20A 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 160 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature IC= 80A IC= 40A 1.15 1.0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 140 2 180 1.05 40 60 80 100 120 GATE CHARGE (nC) FIGURE 4, Gate Charge 2.5 1.2 1.10 20 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 2-2004 3 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 Rev D 3.5 0 IC = 40A TJ = 25°C 14 0 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 FIGURE 2, Output Characteristics (VGE = 10V) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 200 TC=25°C TC=125°C 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 30 0 TJ = 125°C VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 40 0 FIGURE 1, Output Characteristics(VGE = 15V) 250 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) 50 10 250µs PULSE TEST <0.5 % DUTY CYCLE TC=-55°C 60 10 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7403 IC, COLLECTOR CURRENT (A) 70 APT40GP60B_S 100 35 VGE= 10V 30 25 VGE= 15V 20 15 10 VCE = 400V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 0 20 VCE = 400V RG = 5Ω L = 100 µH TJ = 125°C, VGE = 10V or 15V tf, FALL TIME (ns) 80 80 60 40 2500 RG =5Ω, L = 100µH, VCE = 400V TJ = 25 or 125°C,VGE = 10V 60 40 RG =5Ω, L = 100µH, VCE = 400V 0 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 2000 VCE = 400V VGE = +15V RG = 5 Ω TJ =125°C, 15V TJ =125°C,10V 2000 1500 TJ = 25°C, 10V 1000 500 TJ = 25°C, 15V TJ = 25°C, VGE = 10V or 15V 20 TJ = 25 or 125°C,VGE = 15V EOFF, TURN OFF ENERGY LOSS (µJ) EON1, TURN ON ENERGY LOSS (µJ) VGE =10V,TJ=25°C 40 100 3000 0 VCE = 400V VGE = +15V RG = 5 Ω TJ = 125°C, VGE = 10V or 15V 1500 1000 500 TJ = 25°C, VGE = 10V or 15V 0 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 4000 3000 3500 3000 2500 Eoff 80A 2000 Eon2 40A 1500 1000 Eon2 20A Eoff 40A 500 Eoff20A 0 0 VCE = 400V VGE = +15V RG = 5 Ω Eon2 80A VCE = 400V TJ = 125°C VGE = +15V 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 60 120 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 2-2004 VGE =15V,TJ=25°C 0 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 Rev D VGE =10V,TJ=125°C 80 20 40 60 80 100 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 20 050-7403 VGE =15V,TJ=125°C 0 0 100 tr, RISE TIME (ns) td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 40 2500 Eon2 80A 2000 1500 Eoff 80A Eon2 40A 1000 500 0 Eoff 40A Eon2 20A Eoff 20A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES APT40GP60B_S 180 10,000 Cies 160 140 1,000 500 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 5,000 Coes 100 50 Cres 10 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 120 100 80 60 40 20 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.9 0.20 0.7 0.15 0.5 Note: PDM Z JC, THERMAL IMPEDANCE (°C/W) θ 0.25 0.10 t1 0.3 t2 Duty Factor D = t1/t2 0.05 0.1 Peak TJ = PDM x ZθJC + TC 0.05 0 10-5 SINGLE PULSE 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION 10-4 1.0 260 0.0868 0.0106F 0.133 0.262F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL 100 Fmax = min(f max1 , f max 2 ) 50 TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 10 f max1 = 0.05 t d (on) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 20 30 40 50 60 70 80 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 2-2004 0.00663F Rev D Power (Watts) 0.0106 050-7403 Junction temp. ( ”C) FMAX, OPERATING FREQUENCY (kHz) RC MODEL APT40GP60B_S Gate Voltage APT30DF60 10% TJ = 125 C td(on) V CE IC V CC tr Collector Current 90% A 5% 5% Collector Voltage 10% D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST Gate Voltage *DRIVER SAME TYPE AS D.U.T. TJ = 125 C td(off) A Collector Voltage V CE 90% IC 100uH 10% 0 V CLAMP B Collector Current tf A Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions Figure 24, EON1 Test Circuit 3 TO-247 Package Outline 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 2-2004 Rev D 5.38 (.212) 6.20 (.244) 4.98 (.196) 5.08 (.200) 1.47 (.058) 1.57 (.062) 20.80 (.819) 21.46 (.845) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) Gate Collector Emitter 15.95 (.628) 16.05 (.632) Revised 4/18/95 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 050-7403 D PAK Package Outline Collector (Heat Sink) 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 2.21 (.087) 2.59 (.102) D.U.T. DRIVER* 1.04 (.041) 1.15 (.045) 13.79 (.543) 13.99 (.551) 0.46 (.018) 0.56 (.022) 0.020 (.001) 0.178 (.007) 2.67 (.105) 2.84 (.112) 1.22 (.048) 1.32 (.052) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) 1.27 (.050) 1.40 (.055) 1.98 (.078) 2.08 (.082) 5.45 (.215) BSC {2 Plcs.} Emitter Collector Gate Dimensions in Millimeters (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 13.41 (.528) 13.51 (.532) Revised 8/29/97 11.51 (.453) 11.61 (.457) 3.81 (.150) 4.06 (.160) (Base of Lead) Heat Sink (Collector) and Leads are Plated