SpectraLinear CY2SSTU32866 1.8v, 25-bit (1:1) of 14-bit (1:2) jedec-compliant data register with parity Datasheet

CY2SSTU32866
1.8V, 25-bit (1:1) or 14-bit (1:2) JEDEC-Compliant
Data Register with Parity
Features
CSR# inputs are HIGH. If either DCS# or CSR# input is LOW,
the Qn outputs will function normally. The RESET# input has
priority over the DCS# and CSR# control and will force the
outputs LOW. If the DCS#-control functionality is not desired,
the CSR# input can be hardwired to ground, in which case the
set-up time requirement for DCS# would be the same as for
the other D data inputs.
• Operating frequency: DC to 500 MHz
• Supports DDRII SDRAM
• Two operations modes: 25 bit (1:1) and 14 bit (1:2)
• 1.8V operation
• Fully JEDEC-compliant (JESD 82-10)
• 96-ball FBGA
Functional Description
All clock and data inputs are compatible with the JEDEC
standard for SSTL_18. The control inputs are LVCMOS. All
outputs are 1.8-V CMOS drivers that have been optimized to
drive the DDR-II DIMM load. The CY2SSTU32866 operates
from a differential clock (CK and CK#). Data are registered at
the crossing of CK going high, and CK# going LOW.
The C0 input controls the pinout configuration of the 1:2 pinout
from A configuration (when LOW) to B configuration (when
HIGH). The C1 input controls the pinout configuration from
25-bit 1:1 (when LOW) to 14-bit 1:2 (when HIGH).
The device monitors both DCS# and CSR# inputs and will gate
the Qn outputs from changing states when both DCS# and
The device supports low-power standby operation. When the
reset input (RESET#) is LOW, the differential input receivers
are disabled, and undriven (floating) data, clock, and reference
voltage (VREF) inputs are allowed. In addition, when RESET#
is LOW, all registers are reset and all outputs are forced LOW.
The LVCMOS RESET# and Cn inputs must always be held at
a valid logic HIGH or LOW level. To ensure defined outputs
from the register before a stable clock has been supplied,
RESET# must be held in the LOW state during power-up.
In the DDR-II RDIMM application, RESET# is specified to be
completely asynchronous with respect to CK and CK#.
Therefore, no timing relationship can be guaranteed between
the two. When entering reset, the register will be cleared and
the outputs will be driven low quickly, relative to the time to
disable the differential input receivers. However, when coming
out of reset, the register will become active quickly, relative to
the time to enable the differential input receivers.
Pin Configuration
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
1
DCKE
D2
D3
DODT
D5
D6
PAR_IN
CK
CK#
D8
D9
D10
D11
D12
D13
D14
1
2
PPO
D15
D16
QERR#
D17
D18
RST#
DCS#
CSR#
D19
D20
D21
D22
D23
D24
D25
2
3
VREF
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
VREF
3
4
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
VDD
4
5
QCKE
Q2
Q3
QODT
Q5
Q6
C1
QCS#
ZOH
Q8
Q9
Q10
Q11
Q12
Q13
Q14
5
6
NC
Q15
Q16
NC
Q17
Q18
C0
NC
ZOL
Q19
Q20
Q21
Q22
Q23
Q24
Q25
6
1:1 Register C0 = 0, C1=0
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
1
DCKE
D2
D3
DODT
D5
D6
PAR_IN
CK
CK#
D8
D9
D10
D11
D12
D13
D14
1
2
PPO
NC
NC
QERR#
NC
NC
RST#
DCS#
CSR#
NC
NC
NC
NC
NC
NC
NC
2
3
VREF
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
VREF
3
4
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
VDD
4
5
QCKEA
Q2A
Q3A
QODTA
Q5A
Q6A
C1
QCSA#
ZOH
Q8A
Q9A
Q10A
Q11A
Q12A
Q13A
Q14A
5
6
QCKEB
Q2B
Q3B
QODTB
Q5B
Q6B
C0
QCSB#
ZOL
Q8B
Q9B
Q10B
Q11B
Q12B
Q13B
Q14B
6
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
1:2 Register A C0 = 0, C1=1
Rev 1.0, November 25, 2006
2200 Laurelwood Road, Santa Clara, CA 95054
1
D1
D2
D3
D4
D5
D6
PAR_IN
CK
CK#
D8
D9
D10
DODT
D12
D13
DCKE
1
2
PPO
NC
NC
QERR#
NC
NC
RST#
DCS#
CSR#
NC
NC
NC
NC
NC
NC
NC
2
3
VREF
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
VREF
3
4
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
VDD
4
5
Q1A
Q2A
Q3A
Q4A
Q5A
Q6A
C1
QCSA#
ZOH
Q8A
Q9A
Q10A
QODTA
Q12A
Q13A
QCKEA
5
6
Q1B
Q2B
Q3B
Q4B
Q5B
Q6B
C0
QCSB#
ZOL
Q8B
Q9B
Q10B
QODTB
Q12B
Q13B
QCKEB
6
1:2 Register B C0 = 1, C1=1
Page 1 of 24
Tel:(408) 855-0555
Fax:(408) 855-0550
www.SpectraLinear.com
CY2SSTU32866
The CY2SSTV32866 accepts a parity bit from the memory
controller on its parity bit (PAR_IN) input, compares it with the
data received on the DIMM-independent D-inputs and
indicates whether a parity error has occurred on its open-drain
QERR# pin (active LOW). The convention is even parity, i.e.,
valid parity is defined as an even number of ones across the
DIMM-independent data inputs combined with the parity input
bit.
When used as a single device, the C0 and C1 inputs are tied
LOW. In this configuration, parity is checked on the PAR_IN
input which arrives one cycle after the input data to which it
applies. The partial-parity-out (PPO) and QERR# signals are
produced three cycles after the corresponding data inputs.
When used in pairs, the C0 input of the first register is tied
LOW and the C0 input of the second register is tied HIGH. The
C1 input of both registers are tied HIGH. Parity, which arrives
one cycle after the data input to which it applies, is checked on
the PAR_IN input of the first device. The PPO and QERR#
signals are produced on the second device three clock cycles
after the corresponding data inputs. The PPO output of the first
register is cascaded to the PAR_IN of the second register. The
QERR# output of the first register is left floating and the valid
error information is latched on the QERR# output of the
second register. If an error occurs and the QERR# output is
driven LOW, it stays latched LOW for two clock cycles or until
RESET# is driven LOW. The DIMM-dependent signals
(DCKE, DCS#, DODT, and CSR#) are not included in the
parity check computation.
Parity is calculated using Table 1.
Table 1. Parity Function Table
Inputs
Outputs
RESET#
DCS#
CSR#
CK
CK#
Sum of inputs =
H (D1-25)
H
L
X
pn
pn
Even
H
L
X
pn
pn
Odd
H
L
X
pn
pn
H
L
X
pn
pn
H
H
L
pn
H
H
L
pn
H
H
L
H
H
L
PAR_IN
PPO
QERR#
L
L
H
L
H
L
Even
H
H
L
Odd
H
L
H
pn
Even
L
L
H
pn
Odd
L
H
L
pn
pn
Even
H
H
L
pn
pn
Odd
H
L
H
H
H
H
pn
pn
X
X
PPO0
QERR#0
H
X
X
L or H
L or H
X
X
PPO0
QERR#0
L
X or
Floating
X or
Floating
X or
Floating
X or
Floating
X or Floating
X or
Floating
L
H
Pin Definition
Pin Number
(C0 = 0, C1 = 0)
Pin Name
Pin Number
(C0 = 0, C1 = 1)
Pin Number
(C0 = 1, C1 = 1)
Description
GND
B3, B4, D3, D4, F3, F4, B3, B4, D3, D4, F3, B3, B4, D3, D4, F3, Ground
H3, H4, K3, K4, M3, M4, F4, H3, H4, K3, K4, F4, H3, H4, K3, K4,
P3, P4
M3, M4, P3, P4
M3, M4, P3, P4
VDD
A4, C3, C4, E3, E4, G3, A4, C3, C4, E3,
G4, J3, J4, L3, L4, N3, E4, G3, G4, J3, J4,
L3, L4, N3, N4, R3,
N4, R3, R4, T4
R4, T4
A4, C3, C4, E3,
Power Supply Voltage
E4, G3, G4, J3, J4,
L3, L4, N3, N4, R3,
R4, T4
VREF
A3, T3
A3, T3
A3, T3
Input Reference Voltage
ZOH
J5
J5
J5
Reserved
ZOL
J6
J6
J6
Reserved
CK
H1
H1
H1
Positive Master Clock
CK#
J1
J1
J1
Negative Master Clock
C0
G6
G6
G6
Configuration control input
C1
G5
G5
G5
Configuration control input
Rev 1.0, November 25, 2006
Page 2 of 24
CY2SSTU32866
Pin Definition (continued)
Pin Number
(C0 = 0, C1 = 0)
Pin Name
Pin Number
(C0 = 0, C1 = 1)
Pin Number
(C0 = 1, C1 = 1)
Description
RESET#
G2
G2
G2
Asynchronous reset – resets registers and
disables Vref data and clock differential input
receivers
CSR#
J2
J2
J2
Chip Select – Disables D1-D24 when both CSR#
and DCS# are HIGH (VDD)
DCS#
H2
H2
H2
Chip Select – Disables D1-D24 when both CSR#
and DCS# are HIGH (VDD)
A1
Data input – clocked in on the crossing points of
CK and CK#
B1, C1
Data input – clocked in on the crossing points of
CK and CK#
D1
Data input – clocked in on the crossing points of
CK and CK#
D1
D2-3
B1, C1
B1, C1
D4
D5, 6, 8, 9,
10
E1, F1, K1, L1, M1
E1, F1, K1, L1, M1 E1, F1, K1, L1, M1 Data input – clocked in on the crossing points of
CK and CK#
D11
N1
N1
D12, 13
P1, R1
P1, R1
D14
T1
T1
D15-25
B2, C2, E2, F2, K2, L2,
M2, N2, P2, R2, T2
DODT
D1
D1
N1
The outputs of this register bit will not be
suspended by the DCS# and CSR# Control
DCKE
A1
A1
T1
The outputs of this register bit will not be
suspended by the DCS# and CSR# Control
A5
Data Outputs that are suspended by the DCS#
and CSR# control
B5, C5
Data Outputs that are suspended by the DCS#
and CSR# control
D5
Data Outputs that are suspended by the DCS#
and CSR# control
B5, C5
P1, R1
Data input – clocked in on the crossing points of
CK and CK#
Data input – clocked in on the crossing points of
CK and CK#
Data input – clocked in on the crossing points of
CK and CK#
Q1A
Q2A-3A
Data input – clocked in on the crossing points of
CK and CK#
B5, C5
Q4A
Q5A, 6A, 8A, E5, F5, K5, L5, M5
9A, 10A
E5, F5, K5, L5, M5 E5, F5, K5, L5, M5 Data Outputs that are suspended by the DCS#
and CSR# control
Q11A
N5
N5
Q12A, Q13A P5, R5
P5, R5
Q14A
T5
T5
Q1B
Q2B-3B
B6, C6
Q4B
P5, R5
Data Outputs that are suspended by the DCS#
and CSR# control
A6
Data Outputs that are suspended by the DCS#
and CSR# control
B6, C6
Data Outputs that are suspended by the DCS#
and CSR# control
D6
Data Outputs that are suspended by the DCS#
and CSR# control
Q5B, 6B, 8B,
9B, 10B,
E6, F6, K6, L6, M6 E6, F6, K6, L6, M6 Data Outputs that are suspended by the DCS#
and CSR# control
Q11B
N6
Rev 1.0, November 25, 2006
Data Outputs that are suspended by the DCS#
and CSR# control
Page 3 of 24
CY2SSTU32866
Pin Definition (continued)
Pin Number
(C0 = 0, C1 = 0)
Pin Name
Pin Number
(C0 = 0, C1 = 1)
Q12B, 13B
P6, R6
Q14B
T6
Q15-25
B6, C6, E6, F6, K6, L6,
M6, N6, P6, R6, T6
QCSA#
H5
QCSB#
QODTA
D5
QODTB
QCKEA
A5
QCKEB
Pin Number
(C0 = 1, C1 = 1)
P6, R6
Description
Data Outputs that are suspended by the DCS#
and CSR# control
Data Outputs that are suspended by the DCS#
and CSR# control
Data Outputs that are suspended by the DCS#
and CSR# control
H5
H5
Data outputs that will not be suspended by the
DCS# and CSR# control
H6
H6
Data outputs that will not be suspended by the
DCS# and CSR# control
D5
N5
Data outputs that will not be suspended by the
DCS# and CSR# control
D6
N6
Data outputs that will not be suspended by the
DCS# and CSR# control
A5
T5
Data outputs that will not be suspended by the
DCS# and CSR# control
A6
T6
Data outputs that will not be suspended by the
DCS# and CSR# control
PPO
A2
A2
A2
Partial parity out – indicates odd parity of inputs
D1-D25
QERR#
D2
D2
D2
Output error bit – generated one clock cycle after
the corresponding data output
PAR_IN
G1
G1
G1
Parity input – arrives one clock cycle after the
corresponding data input
NC
A6, D6, H6
B2, C2, E2, F2, K2, B2, C2, E2, F2, K2, No Connect Pins
L2, M2, N2, P2,
L2, M2, N2, P2,
R2, T2
R2, T2
Table 2. Flip Flop Function Table
RESET#
H
H
H
H
H
H
H
H
H
H
H
H
L
Inputs
DCS#
CSR#
CK
L
L
pn
L
L
pn
L
L
L or H
L
H
pn
L
H
pn
L
H
L or H
H
L
pn
H
L
pn
H
L
L or H
H
H
pn
H
H
pn
H
H
L or H
X or Floating X or Floating X or Floating
Rev 1.0, November 25, 2006
CK#
pn
pn
L or H
pn
pn
L or H
pn
pn
L or H
pn
pn
L or H
X or Floating
Dn, DODT, DCKE
L
H
X
L
H
X
L
H
X
L
H
X
X or Floating
Qn
L
H
Q0
L
H
Q0
L
H
Q0
Q0
Q0
Q0
L
Outputs
QCS# QODT, QCKE
L
L
L
H
Q0
Q0
L
L
L
H
Q0
Q0
H
L
H
H
Q0
Q0
H
L
H
H
Q0
Q0
L
L
Page 4 of 24
CY2SSTU32866
RESET
CLK
CLK
G2
H1
J1
LPS0
(internal node)
D2−D3,
22
D5−D6,
D8-D25
A3, T3
VREF
D
D2−D3,
D5−D6,
D8−D25
CE
CLK
Q
22
22
R
22
Q2−Q3,
Q5−Q6,
Q8−Q25
D2−D3,
D5−D6,
D8−D25
Parity
Generator
C1
G5
1
0
D
Q
PPO
1
PAR_IN
G1
Q
D
CLK
R
A2
CLK
R
0
Q
D
CLK
R
CE
D2
QERR
C0
G6
CLK
2−Bit
Counter
R
LPS1
(internal node)
0
D
Q
CLK
1
R
Figure 1. Parity logic Diagram for 1:1 register configuration (positive logic) C0=0, C1=0
Rev 1.0, November 25, 2006
Page 5 of 24
CY2SSTU32866
RESET
CLK
CLK
G2
H1
J1
LPS0
(internal node)
D2−D3,
11
D5−D6,
D8-D14
A3, T3
VREF
D2−D3,
D5−D6,
D8−D14
CE
D
CLK
Q
11
R
11
Q2A−Q3A,
Q5A−Q6A,
Q8A−Q14A
11
11
Q2B−Q3B,
Q5B−Q6B,
Q8B−Q14B
D2−D3,
D5−D6,
D8−D14
Parity
Generator
C1
G5
1
0
D
Q
PPO
1
PAR_IN
G1
Q
D
CLK
R
A2
CLK
R
0
Q
D
CLK
R
CE
D2
QERR
C0
G6
CLK
2−Bit
Counter
R
LPS1
(internal node)
0
D
Q
CLK
1
R
Figure 2. Parity logic Diagram for 1:2 register-A configuration (positive logic) C0=0, C1=1
Rev 1.0, November 25, 2006
Page 6 of 24
CY2SSTU32866
RESET
CLK
CLK
G2
H1
J1
LPS0
(internal node)
D1−D6,
D8-D13
VREF
11
A3, T3
11
D1−D6,
D8−D13
CE
D
Q1A−Q6A,
Q8A−Q13A
CLK Q
11
R
11
11
D1−D6,
D8−D13
Q1B−Q6B,
Q8B−Q13B
Parity
Generator
C1
G5
1
0
D
Q
PPO
1
PAR_IN
G1
Q
D
CLK
R
A2
D
CLK
R
0
Q
CLK
R
CE
D2
QERR
C0
G6
CLK
2−Bit
Counter
R
LPS1
(internal node)
0
D
Q
CLK
1
R
Figure 3. Parity logic Diagram for 1:2 register-B configuration (positive logic) C0=1, C1=1
Rev 1.0, November 25, 2006
Page 7 of 24
CY2SSTU32866
(RESET switches from L to H)
RESET
DCS
CSR
CLK
CLK
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
tact
D1−D25†
n
n+1
tsu
n+3
n+2
n+4
th
tpdm, tpdmss
CLK to Q
Q1−Q25
PAR_IN†
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
tsu
th
tpd
CLK to PPO
PPO
tPHL
CLK to QERR
QERR‡
tPHL, tPLH
CLK to QERR
Data to QERR Latency
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
H, L, or X
H or L
Figure 4. CY2SSTU32866 used as single device C0=0, C1=0, RST# Switchs L to H
Rev 1.0, November 25, 2006
Page 8 of 24
CY2SSTU32866
RESET
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌÌ
ÌÌÌÌÌ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
DCS
CSR
n
n+1
n+2
n+3
n+4
CLK
CLK
tsu
th
D1−D25
tpdm, tpdmss
CLK to Q
Q1−Q25
tsu
th
PAR_IN
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇÇÇÇÇÇÇ
tpd
CLK to PPO
PPO
Data to PPO Latency
tPHL or tPLH
CLK to QERR
QERR†
Data to QERR Latency
ÉÉÉÉ
ÉÉÉÉ
Unknown input
event
ÇÇÇÇ
ÇÇÇÇ
Output signal is dependent on
the prior unknown input event
H or L
Figure 5. CY2SSTU32866 used as single device, C0=0, C1=0, RST# being held high
Rev 1.0, November 25, 2006
Page 9 of 24
CY2SSTU32866
RESET
tinact
DCS†
CSR†
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
CLK†
CLK†
D1−D25†
tRPHL
RESET to Q
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Q1−Q25
PAR_IN†
tRPHL
RESET to PPO
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
PPO
QERR
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
tRPLH
RESET to QERR
H, L, or X
H or L
Figure 6. CY2SSTU32866 used as single device, C0=0, C1=0, RST# switchs from H to L
Rev 1.0, November 25, 2006
Page 10 of 24
CY2SSTU32866
C0 = 0, C1 = 1 (RESET switches from L to H)
RESET
DCS
CSR
CLK
CLK
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
tact
D1−D14†
n
n+1
tsu
n+3
n+2
n+4
th
tpdm, tpdmss
CLK to Q
Q1−Q14
PAR_IN†
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
tsu
th
tpd
CLK to PPO
PPO
tPHL
CLK to QERR
QERR‡
(not used)
ÎÎÎÎÎ
ÎÎÎÎÎ
tPHL, tPLH
CLK to QERR
Data to QERR
Latency
H, L, or X
H or L
Figure 7. CY2SSTU32866 used as pair, C0=0, C1=1, RST# switches from L to H
Rev 1.0, November 25, 2006
Page 11 of 24
CY2SSTU32866
RESET
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
DCS
CSR
n
n+1
n+2
n+3
n+4
CLK
CLK
tsu
th
D1−D14
tpdm, tpdmss
CLK to Q
Q1−Q14
tsu
th
PAR_IN
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
tpd
CLK to PPO
PPO
Data to PPO
Latency
tPHL or tPLH
CLK to QERR
QERR†
(not used)
Data to QERR
Latency
ÇÇÇÇ
ÇÇÇÇ
Unknown input
event
ÉÉÉÉ
ÉÉÉÉ
Output signal is dependent on
the prior unknown input event
H or L
Figure 8. CY2SSTU32866 used as pair, C0=0, C1=1, RST# being held high
Rev 1.0, November 25, 2006
Page 12 of 24
CY2SSTU32866
RESET
tinact
DCS†
CSR†
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
CLK†
CLK†
D1−D14†
tRPHL
RESET to Q
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Q1−Q14
PAR_IN†
tRPHL
RESET to PPO
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
PPO
QERR
(not used)
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
tRPLH
RESET to QERR
H, L, or X
H or L
Figure 9. CY2SSTU32866 used as pair, C0=0, C1=1, RST# switches from H to L
Rev 1.0, November 25, 2006
Page 13 of 24
CY2SSTU32866
RESET
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
DCS
CSR
n
n+1
n+3
n+2
n+4
CLK
CLK
tsu
tact
th
D1−D14†
tpdm, tpdmss
CLK to Q
Q1−Q14
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
tsu
th
PAR_IN†‡
tpd
CLK to PPO
PPO
(not used)
tPHL
CLK to QERR
tPHL, tPLH
CLK to QERR
QERR§
Data to QERR Latency
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
H, L, or X
H or L
Figure 10. CY2SSTU32866 used as pair, C0=1, C1=1, RST# switches from L to H
Rev 1.0, November 25, 2006
Page 14 of 24
CY2SSTU32866
RESET
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÇÇÇÇÇ
ÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉ
ÇÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇÇ
DCS
CSR
n
n+1
n+2
n+3
n+4
CLK
CLK
tsu
th
D1−D14
tpdm, tpdmss
CLK to Q
Q1−Q14
tsu
th
PAR_IN
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉÉÉÉ
tpd
CLK to PPO
PPO
Data to PPO
Latency
tPHL or tPLH
CLK to QERR
QERR†
(not used)
Data to QERR
Latency
ÇÇÇÇ
ÇÇÇÇ
Unknown input
event
ÉÉÉÉ
ÉÉÉÉ
Output signal is dependent on
the prior unknown input event
H or L
Figure 11. CY2SSTU32866 used as pair, C0=1, C1=1, RST# being held high
Rev 1.0, November 25, 2006
Page 15 of 24
CY2SSTU32866
C0 = 1, C1 = 1 (RESET switches from H to L)
RESET
tinact
DCS†
CSR†
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
CLK†
CLK†
D1−D14†
tRPHL
RESET to Q
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
Q1−Q14
PAR_IN†
tRPHL
RESET to PPO
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
PPO
(not used)
QERR
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
H, L, or X
tRPLH
RESET to QERR
H or L
Figure 12. CY2SSTU32866 used as pair, C0=1, C1=1, RST# switches from H to L
Rev 1.0, November 25, 2006
Page 16 of 24
CY2SSTU32866
Absolute Maximum Conditions [1]
Parameter
Description
TS
Storage Temperature
VCC
Supply Voltage Range
VIN
Input Voltage Range[2, 3]
Condition
Range[2, 3]
Min.
Max.
Unit
–65
150
C
–0.5
2.5
V
–0.5
VDD + 0.5
V
VOUT
Output Voltage
–0.5
VDD + 0.5
V
IIK
Input Clamp Current
VO < 0 or VO > VDD
–50
50
mA
IOK
Output Clamp Current
VO < 0 or VO > VDD
–50
50
mA
IO
Continuous Output Current
VO = 0 to VDD
–50
50
mA
ICCC
Continuous Current through VDD/GND
–100
100
mA
Min.
Max.
Unit
0
70
C
1.7
1.9
V
DC Electrical Specifications
Parameter
Description
TA (Com.)
Ambient Operating Temp
VDD
Operating Voltage
Conditions
VREF
Voltage Reference
0.49*VDD
0.51*VDD
V
VTT
Terminating Voltage
VREF–40mV
VREF+40mV
V
VI
Input Voltage
0
VDD
V
II
Input Current
VI = VDD or GND
–5
5
PA
AC Input Low Voltage
Data, CSR#, and PAR_IN inputs
VIL
–
VREF – 250mV
V
–
VREF – 125mV
V
AC Input High Voltage
VREF + 250mV
–
V
DC Input High Voltage
VREF + 125mV
–
V
0.35 X VDD
V
DC Input Low Voltage
VIH
VIL
Input Low Voltage
VIH
Input High Voltage
VICR
Input Low Voltage
VID
Input Differential Voltage
VOL
Output Low Voltage
VOH
Output High Voltage
RESET#, Cn
0.65 X VDD
CK, CK#
V
0.675
1.125
V
600
–
mV
IOL = 100 PA, VCC = 1.7V to 1.9V
–
0.2
V
IOL = 6 mA, VCC = 1.7V
–
0.5
V
IOH = –100 PA, VCC = 1.7V to 1.9V
IOH = –6 mA, VCC = 1.7V
VDD – 0.2
–
V
1.2
–
V
IOH
Output High Current
–
–8
mA
IOL
Output Low Current
–
8
mA
IDD
Static Standby Power
Supply Current
RESET# = GND, IO = 0, VDD = 1.9V
100
PA
Static Operating Power
Supply Current
RESET# = VDD, VI = VIH(AC) or VIL(AC),
IO = 0, VDD = 1.9V
40
mA
Notes:
1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these or any other conditions beyond those indicated under “Recommended Operating Conditions” is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
3. This value is limited to 2.5V (max.)
Rev 1.0, November 25, 2006
Page 17 of 24
CY2SSTU32866
DC Electrical Specifications (continued)
Parameter
IDDD
Description
Conditions
Max.
Unit
28 (typical)
PA/MHz
Dynamic Operating per
each Data Input
RESET# = VDD, VI = VIH(AC) or VIL(AC), CK,
CK# switching 50% duty cycle,
VDD = 1.8V, 1 IO switching 1:1 configuration
18 (typical)
PA/MHz
RESET# = VDD, VI = VIH(AC) or VIL(AC), CK,
CK# switching 50% duty cycle,
VDD = 1.8V, 1 IO switching 1:2 configuration
36 (typical)
PA/MHz
Low Power Active Mode,
CLK only
RESET# = VDD, VI = VIH(AC) or VIL(AC), CK,
CK# switching 50% duty cycle,
VDD = 1.8V, CS Enabled
27 (typical)
PA/MHz
Low Power Active Mode
per each Data Input
RESET# = VDD, VI = VIH(AC) or VIL(AC), CK,
CK# switching 50% duty cycle,
VDD = 1.8V, 1 IO switching 1:1 configuration,
CS Enabled
2 (typical)
PA/MHz
RESET# = VDD, VI = VIH(AC) or VIL(AC), CK,
CK# switching 50% duty cycle,
VDD = 1.8V, 1 IO switching 1:2 configuration;
CS Enabled
2 (typical)
PA/MHz
Ci (Data and CSR#)
CIN
Min.
RESET# = VDD, VI = VIH(AC) or VIL(AC), CK,
Power Supply Current
Dynamic Operating Clock CK# switching 50% duty cycle,
Only
VDD = 1.8V
VI = VREF ± 250mV
2.5
Ci (CK and CK#)
VIX = 0.9V, VID = 600 mV
Ci (RESET#)
VI = VDD or GND
3.5
2
3
pF
pF
2.5
pF
AC Timing Specifications
Parameter
Description
FCLK
Clock Frequency
TW
Pulse Duration
TACT[4]
TINACT[5]
TSU
Set-up Time
Conditions
Min.
Max.
Unit
–
500
MHz
1
–
ns
Differential Input Active time
–
10
ns
Differential Input Inactive time
–
15
ns
DSR# before crossing CK,CK#,
CSR = H
0.7
–
ns
CSR# before crossing CK,CK#,
DCS = H
0.7
–
ns
DCS# before crossing CK,CK#,
CSR = L
0.5
–
ns
DODT, DCKE and data before
crossing CK,CK#, CK going
HIGH
0.5
–
ns
PAR_IN after crossing CK,CK#
0.5
DCS#, DODT, DCKE and data
after crossing CK, CK#
0.5
PAR_IN after crossing CK, CK#
0.5
CK, CK# H or L
ns
TH
Hold Time
–
–
ns
TPDM
Propagation Delay single bit switching
From CK, CK# crossing to Q
1.86
ns
TPDMSS
Propagation Delay simultaneous
switching
From CK, CK# to Q simultaneous switching
1.87
ns
Propagation Delay from Low to High
From CK, CK# crossing to PPO
2.15 (typical)
TPD
Notes:
4. Data and VREF inputs must be low a minimum time of TACT max, after RESET# is taken HIGH.
5. Data, VREF and clock inputs must be held at valid levels (not floating) a minimum time of TINACT max after RESET# is taken LOW.
Rev 1.0, November 25, 2006
ns
ns
Page 18 of 24
CY2SSTU32866
AC Timing Specifications (continued)
Parameter
Description
Conditions
Min.
Max.
Unit
1.2
3
ns
1
2.4
ns
TPLH
Propagation Delay from Low to High
TPHL
Propagation Delay from Low to High
From CK, CK# crossing to
QERR#
TrPLH
Propagation Delay from Low to High
RESET# LOW to QERR# HIGH
TrPHL
Propagation Delay from High to Low
RESET# LOW to Q, PPO LOW
3
ns
SLR
Slew Rate Rising
dv/dt_r (20 to 80%)
1
4
V/ns
Slew Rate Falling
dv/dt_f (20 to 80%)
1
4
V/ns
–
1
V/ns
dv/dt '
3 (typical)
Delta between Rising/Falling Rates
ns
VDD
DUT
RL = 1000:
CK
CK
CK Inputs
OUT
TL = 350ps, 50:
Test Point
Test Point
RL = 1000:
CL = 30pF
RL = 100:
Test Point
CL includes probe and jig capacitance
Figure 13. Test Load for Timing Measurements #1
LVCMOS
VDD
RESET
VDD/2
VDD/2
0V
tact
tinact
IDD
90%
10%
IDD tested with clock and data inputs held at VDD or GND, and IO = 0mA
Figure 14. Active and Inactive Times
tw
VIH
Input
VICR
VICR
VID
VIL
VID = 600mV
VIH = VREF + 250mV (AC Voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.
VIL = VREF - 250mV ( AC voltage levels) for differential inputs. VIL = VDD for LVCMOS inputs
Figure 15. Pulse Duration
Rev 1.0, November 25, 2006
Page 19 of 24
CY2SSTU32866
CK
VICR
VID
CK
tsu
th
VIH
VREF
Input
VREF
VIL
VID = 600mV
VREF = VDD/2
VIH = VREF + 250mV (AC Voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.
VIL = VREF - 250mV ( AC voltage levels) for differential inputs. VIL = VDD for LVCMOS inputs
Figure 16. Set-up and Hold Times
CK
VICR
VICR
VI(P-P)
CK
tPLH
tPHL
VOH
VTT
VTT
Output
VOL
tPLH and tPHL are the same as tPD
Figure 17. Propagation Delay
LVCMOS RESET
VIH
VDD/2
Input
VIL
tRPHL
Output
VOH
VTT
VOL
tPLH and tPHL are the same as tPD
VIH = VREF + 250mV (AC Voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.
VIL = VREF - 250mV ( AC voltage levels) for differential inputs. VIL = VDD for LVCMOS inputs
Figure 18. Propagation Delay after RESET#
VDD
DUT
R L = 50:
O UT
Test Point
C L = 10pF
CL includes probe and jig capacitance
Figure 19. Load Circuit - High to Low Slew Measurement
Rev 1.0, November 25, 2006
Page 20 of 24
CY2SSTU32866
VOH
OUTPUT
80%
dv_f
20%
VOL
dt_f
Figure 20. High to Low Slew Rate Measurement
DUT
Test Point
OUT
R L = 50:
C L = 10pF
CL includes probe and jig capacitance
Figure 21. Load Circuit, Low to High slew measurement
dt_r
VOH
80%
dv_r
20%
OUTPUT
VOL
Figure 22. Low to High Slew Rate Measurement
VDD
DUT
R L = 1k:
OUT
T e s t P o in t
CL = 10pF
CL includes probe and jig capacitance
Figure 23. Load Circuit - High to Low Slew Rate Measurement
Rev 1.0, November 25, 2006
Page 21 of 24
CY2SSTU32866
Figure 24. Open drain output - Low to High transition with respect to reset inputs
Timing
Inputs
VICR
VI(P-P)
VICR
tPLH
VCC
Output
VCC/2
VOL
Figure 25. Open drain output - High to Low transition with respect to clock inputs
Timing
Inputs
VICR
VI(P-P)
VICR
tPLH
VOH
0.15V
Output
0V
Figure 26. Open drain output - High to Low transition with respect to clock inputs
DUT
Test Point
OUT
CL = 5pF
RL = 1K:
CL includes probe and jig capacitance
Figure 27. Partial-parity-out Load Circuit
Rev 1.0, November 25, 2006
Page 22 of 24
CY2SSTU32866
CK
VICR
VICR
VI(P-P)
CK
tPLH
tPHL
VTT
VTT
Output
VOH
VOL
VTT = VDD/2
tPLH and tPHL are the same as tPD
VI(P-P) = 600mV
Figure 28. Partial-parity-out ; propagation delay times with respect to clock
inputs
LVCMOS
RESET
VIH
VDD/2
INPUT
VIL
tPHL
Output
VTT
VOH
VOL
VTT = VDD/2
tPLH and tPHL are the same as tPD
VIH = VREF + 250mV (AC Voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.
VIL = VREF - 250mV ( AC voltage levels) for differential inputs. VIL = VDD for LVCMOS inputs
Figure 29. Partial-parity-out ; propagation delay times with respect to clock inputs
Rev 1.0, November 25, 2006
Page 23 of 24
CY2SSTU32866
Ordering Information
Part Number
Package Type
Product Flow
Lead Free
CY2SSTU32866BFXC
96-pin FBGA
Commercial, 0q to 70qC
CY2SSTU32866BFXCT
96-pin FBGA – Tape and Reel
Commercial, 0q to 70qC
Package Drawing and Dimensions
96-Ball FBGA (5.5 x 13.5 x 1.2 MM) BF96A
Ø0.05 M C
Ø0.25 M C A B
Ø0.50±0.05(96X)
BOTTOM VIEW
TOP VIEW
A1 CORNER
A1 CORNER
1
2
3
4
5
6
6
5
4
3
1
A
A
B
B
C
C
D
6.00
D
E
E
F
F
G
G
H
J
K
H
12.00
13.50±0.10
13.50±0.10
2
J
K
L
DIMENSIONS IN MILLIMETERS
REFERENCE JEDEC MO-205
PKG. WEIGHT: 0.23 gms
L
PART #
M
N
BF96A STANDARD PKG.
P
BP96A LEAD FREE PKG.
0.80
M
N
P
R
R
T
T
A
2.00
A
0.80
5.50±0.10
B
0.15 C
0.40±0.05
0.25 C
0.53±0.05
4.00
B
5.50±0.10
0.15(4X)
1.20 MAX
0.26
SEATING PLANE
C
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any
circuitry or specification without notice.
Rev 1.0, November 25, 2006
Page 24 of 24
Similar pages