AD AD8544ARZ-REEL General-purpose cmos rail-to-rail amplifier Datasheet

General-Purpose CMOS
Rail-to-Rail Amplifiers
AD8541/AD8542/AD8544
Single-supply operation: 2.7 V to 5.5 V
Low supply current: 45 μA/amplifier
Wide bandwidth: 1 MHz
No phase reversal
Low input currents: 4 pA
Unity gain stable
Rail-to-rail input and output
PIN CONFIGURATIONS
OUT A 1
AD8541
5 V+
V– 2
+IN A 3
4 –IN A
00935-001
FEATURES
Figure 1. 5-Lead SC70 and 5-Lead SOT-23
(KS and RJ Suffixes)
APPLICATIONS
8
NC
2
7
V+
+IN A 3
6
OUT A
4
5
NC
NC 1
–IN A
V–
AD8541
00935-002
ASIC input or output amplifiers
Sensor interfaces
Piezoelectric transducer amplifiers
Medical instrumentation
Mobile communications
Audio outputs
Portable systems
NC = NO CONNECT
Figure 2. 8-Lead SOIC
(R Suffix)
Very low input bias currents enable the AD8541/AD8542/AD8544
to be used for integrators, photodiode amplifiers, piezoelectric
sensors, and other applications with high source impedance.
The supply current is only 45 μA per amplifier, ideal for battery
operation.
Rail-to-rail inputs and outputs are useful to designers buffering
ASICs in single-supply systems. The AD8541/AD8542/AD8544
are optimized to maintain high gains at lower supply voltages,
making them useful for active filters and gain stages.
The AD8541/AD8542/AD8544 are specified over the extended
industrial temperature range (–40°C to +125°C). The AD8541
is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC
packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP,
and 8-lead TSSOP surface-mount packages. The AD8544 is
available in 14-lead narrow SOIC and 14-lead TSSOP surfacemount packages. All MSOP, SC70, and SOT versions are available
in tape and reel only.
OUT A
1
–IN A
AD8542
8
V+
2
7
OUT B
+IN A
3
6
–IN B
V–
4
5
+IN B
Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP
(R, RM, and RU Suffixes)
OUT A
1
14 OUT D
–IN A
2
13 –IN D
+IN A
3
12 +IN D
AD8544
V+
4
11 V–
+IN B
5
–IN B
6
9
–IN C
OUT B
7
8
OUT C
10 +IN C
00935-004
The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output, single-supply amplifiers featuring very
low supply current and 1 MHz bandwidth. All are guaranteed to
operate from a 2.7 V single supply as well as a 5 V supply. These
parts provide 1 MHz bandwidth at a low current consumption
of 45 μA per amplifier.
00935-003
GENERAL DESCRIPTION
Figure 4. 14-Lead SOIC and 14-Lead TSSOP
(R and RU Suffixes)
Rev. F
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2008 Analog Devices, Inc. All rights reserved.
AD8541/AD8542/AD8544
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ..............................................7
Applications....................................................................................... 1
Theory of Operation ...................................................................... 13
General Description ......................................................................... 1
Notes on the AD854x Amplifiers............................................. 13
Pin Configurations ........................................................................... 1
Applications..................................................................................... 14
Revision History ............................................................................... 2
Notch Filter ................................................................................. 14
Specifications..................................................................................... 3
Comparator Function ................................................................ 14
Electrical Characteristics............................................................. 3
Photodiode Application ............................................................ 15
Absolute Maximum Ratings............................................................ 6
Outline Dimensions ....................................................................... 16
Thermal Resistance ...................................................................... 6
Ordering Guide .......................................................................... 18
ESD Caution.................................................................................. 6
REVISION HISTORY
1/08—Rev. E to Rev. F
Inserted Figure 21; Renumbered Sequentially.............................. 9
Changes to Figure 22 Caption......................................................... 9
Changes to Notch Filter Section, Figure 35, Figure 36, and
Figure 37 .......................................................................................... 13
Updated Outline Dimensions ....................................................... 16
1/07—Rev. D to Rev. E
Updated Format..................................................................Universal
Changes to Photodiode Application Section .............................. 14
Changes to Ordering Guide .......................................................... 17
8/04—Rev. C to Rev. D
Changes to Ordering Guide .............................................................5
Changes to Figure 3........................................................................ 10
Updated Outline Dimensions....................................................... 12
1/03—Rev. B to Rev. C
Updated Format..................................................................Universal
Changes to General Description .....................................................1
Changes to Ordering Guide .............................................................5
Changes to Outline Dimensions .................................................. 12
Rev. F | Page 2 of 20
AD8541/AD8542/AD8544
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
1
6
7
60
100
1000
30
50
500
2.7
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
μV/°C
fA/°C
fA/°C
fA/°C
−40°C ≤ TA ≤ +125°C
Input Bias Current
IB
4
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
0.1
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
ΔVOS/ΔT
ΔIB/ΔT
Offset Current Drift
ΔIOS/ΔT
VCM = 0 V to 2.7 V
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ, VO = 0.5 V to 2.2 V
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
0
40
38
100
50
2
45
500
4
100
2000
25
OUTPUT CHARACTERISTICS
Output Voltage High
VOH
Output Voltage Low
VOL
Output Current
IOUT
ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
PSRR
ISY
SR
tS
GBP
IL = 1 mA
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
VOUT = VS − 1 V
2.575
2.550
2.65
35
100
125
15
±20
50
f = 200 kHz, AV = 1
VS = 2.5 V to 6 V
−40°C ≤ TA ≤ +125°C
VO = 0 V
−40°C ≤ TA ≤ +125°C
65
60
RL = 100 kΩ
To 0.1% (1 V step)
0.4
76
38
55
75
V
V
mV
mV
mA
mA
Ω
dB
dB
μA
μA
0.75
5
980
63
V/μs
μs
kHz
Degrees
40
38
<0.1
nV/√Hz
nV/√Hz
pA/√Hz
ΦM
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
en
en
in
f = 1 kHz
f = 10 kHz
Rev. F | Page 3 of 20
AD8541/AD8542/AD8544
VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
1
6
7
60
100
1000
30
50
500
3
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
μV/°C
fA/°C
fA/°C
fA/°C
−40°C ≤ TA ≤ +125°C
Input Bias Current
IB
4
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
0.1
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
ΔVOS/ΔT
ΔIB/ΔT
Offset Current Drift
OUTPUT CHARACTERISTICS
Output Voltage High
ΔIOS/ΔT
VOH
Output Voltage Low
VOL
Output Current
IOUT
ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
PSRR
VCM = 0 V to 3 V
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ, VO = 0.5 V to 2.2 V
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
VOUT = VS − 1 V
0
40
38
100
50
2
2.875
2.850
2.955
32
100
125
18
±25
50
f = 200 kHz, AV = 1
65
60
SR
tS
GBP
ΦM
RL = 100 kΩ
To 0.01% (1 V step)
0.4
en
en
in
f = 1 kHz
f = 10 kHz
Rev. F | Page 4 of 20
500
4
100
2000
25
VS = 2.5 V to 6 V
−40°C ≤ TA ≤ +125°C
VO = 0 V
−40°C ≤ TA ≤ +125°C
ISY
45
76
40
60
75
V
V
mV
mV
mA
mA
Ω
dB
dB
μA
μA
0.8
5
980
64
V/μs
μs
kHz
Degrees
42
38
<0.1
nV/√Hz
nV/√Hz
pA/√Hz
AD8541/AD8542/AD8544
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
1
6
7
60
100
1000
30
50
500
5
mV
mV
pA
pA
pA
pA
pA
pA
V
dB
dB
V/mV
V/mV
V/mV
μV/°C
fA/°C
fA/°C
fA/°C
−40°C ≤ TA ≤ +125°C
Input Bias Current
IB
4
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
0.1
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
ΔVOS/ΔT
ΔIB/ΔT
Offset Current Drift
ΔIOS/ΔT
VCM = 0 V to 5 V
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ, VO = 0.5 V to 2.2 V
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
0
40
38
20
10
2
48
40
4
100
2000
25
OUTPUT CHARACTERISTICS
Output Voltage High
VOH
Output Voltage Low
VOL
Output Current
IOUT
ISC
ZOUT
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Full Power Bandwidth
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise Density
Current Noise Density
PSRR
IL = 1 mA
−40°C ≤ TA ≤ +125°C
IL = 1 mA
−40°C ≤ TA ≤ +125°C
VOUT = VS − 1 V
4.9
4.875
25
f = 200 kHz, AV = 1
65
60
SR
BWP
tS
GBP
ΦM
RL = 100 kΩ, CL = 200 pF
1% distortion
To 0.1% (1 V step)
0.45
en
en
in
f = 1 kHz
f = 10 kHz
Rev. F | Page 5 of 20
100
125
30
±60
45
VS = 2.5 V to 6 V
−40°C ≤ TA ≤ +125°C
VO = 0 V
−40°C ≤ TA ≤ +125°C
ISY
4.965
76
45
65
85
V
V
mV
mV
mA
mA
Ω
dB
dB
μA
μA
0.92
70
6
1000
67
V/μs
kHz
μs
kHz
Degrees
42
38
<0.1
nV/√Hz
nV/√Hz
pA/√Hz
AD8541/AD8542/AD8544
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 4.
Parameter
Supply Voltage (VS)
Input Voltage
Differential Input Voltage1
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
1
Rating
6V
GND to VS
±6 V
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
For supplies less than 6 V, the differential input voltage is equal to ±VS.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 5.
Package Type
5-Lead SC70 (KS)
5-Lead SOT-23 (RJ)
8-Lead SOIC (R)
8-Lead MSOP (RM)
8-Lead TSSOP (RU)
14-Lead SOIC (R)
14-Lead TSSOP (RU)
ESD CAUTION
Rev. F | Page 6 of 20
θJA
376
230
158
210
240
120
240
θJC
126
146
43
45
43
36
43
Unit
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
AD8541/AD8542/AD8544
TYPICAL PERFORMANCE CHARACTERISTICS
180
160
VS = 2.7V AND 5V
VCM = VS/2
350
140
300
INPUT BIAS CURRENT (pA)
120
100
80
60
40
250
200
150
100
–3.5
–2.5 –1.5
–0.5
0.5
1.5
2.5
INPUT OFFSET VOLTAGE (mV)
3.5
0
–40
00935-005
0
–4.5
4.5
Figure 5. Input Offset Voltage Distribution
6
0
INPUT OFFSET CURRENT (pA)
100
120
140
–0.5
–1.0
–1.5
–2.0
–2.5
–3.0
VS = 2.7V AND 5V
VCM = VS/2
5
4
3
2
1
0
–3.5
–35
5
–15
25
45
65
85
TEMPERATURE (°C)
105
145
125
–1
–55
00935-006
–4.0
–55
Figure 6. Input Offset Voltage vs. Temperature
–35
–15
5
25
45
65
85
TEMPERATURE (°C)
105
125
145
00935-009
INPUT OFFSET VOLTAGE (mV)
20
40
60
80
TEMPERATURE (°C)
7
VS = 2.7V AND 5V
VCM = VS/2
0.5
Figure 9. Input Offset Current vs. Temperature
9
160
VS = 2.7V AND 5V
VCM = VS/2
POWER SUPPLY REJECTION (dB)
140
7
6
5
4
3
2
1
VS = 2.7V
TA = 25°C
120
100
80
–PSRR
60
+PSRR
40
20
0
–20
0
–0.5
0.5
1.5
2.5
3.5
COMMON-MODE VOLTAGE (V)
4.5
5.5
–40
100
00935-007
INPUT BIAS CURRENT (pA)
0
Figure 8. Input Bias Current vs. Temperature
1.0
8
–20
00935-008
50
20
Figure 7. Input Bias Current vs. Common-Mode Voltage
1k
10k
100k
FREQUENCY (Hz)
1M
Figure 10. Power Supply Rejection vs. Frequency
Rev. F | Page 7 of 20
10M
00935-010
NUMBER OF AMPLIFIERS
400
VS = 5V
VCM = 2.5V
TA = 25°C
AD8541/AD8542/AD8544
60
SMALL SIGNAL OVERSHOOT (%)
100
SOURCE
10
SINK
1
0.1
0.01
0.1
1
LOAD CURRENT (mA)
10
100
+OS
40
–OS
30
20
10
0
00935-011
0.01
0.001
50
10
Figure 11. Output Voltage to Supply Rail vs. Load Current
3.0
SMALL SIGNAL OVERSHOOT (%)
OUTPUT SWING (V p-p)
60
2.0
1.5
1.0
0.5
1k
10k
100k
FREQUENCY (Hz)
1M
10M
VS = 2.7V
RL = 2kΩ
TA = 25°C
50
40
+OS
30
–OS
20
10
0
00935-012
0
10k
Figure 14. Small Signal Overshoot vs. Load Capacitance
VS = 2.7V
VIN = 2.5V p-p
RL = 2kΩ
TA = 25°C
2.5
100
1k
CAPACITANCE (pF)
10
100
1k
CAPACITANCE (pF)
10k
00935-015
1k
Δ OUTPUT VOLTAGE (mV)
VS = 2.7V
RL = 10kΩ
TA = 25°C
VS = 2.7V
TA = 25°C
00935-014
10k
Figure 15. Small Signal Overshoot vs. Load Capacitance
Figure 12. Closed-Loop Output Voltage Swing vs. Frequency
VS = 2.7V
RL = ∞
TA = 25°C
50
VS = 2.7V
RL = 100kΩ
CL = 300pF
AV = 1
TA = 25°C
+OS
40
30
–OS
1.35V
20
0
10
100
1k
CAPACITANCE (pF)
10k
50mV
10µs
Figure 16. Small Signal Transient Response
Figure 13. Small Signal Overshoot vs. Load Capacitance
Rev. F | Page 8 of 20
00935-016
10
00935-013
SMALL SIGNAL OVERSHOOT (%)
60
AD8541/AD8542/AD8544
90
VS = 2.7V
RL = 2kΩ
AV = 1
TA = 25°C
VS = 5V
TA = 25°C
COMMON-MODE REJECTION (dB)
80
10µs
60
50
40
30
20
10
0
–10
1k
100k
FREQUENCY (Hz)
1M
10M
Figure 20. Common-Mode Rejection vs. Frequency
Figure 17. Large Signal Transient Response
5
VS = 2.7V
RL = NO LOAD
TA = 25°C
VS = 5V
RL = NO LOAD
TA = 25°C
40
90
20
135
0
180
3
2
1
0
–1
–2
–3
00935-040
45
PHASE SHIFT (Degrees)
60
INPUT OFFSET VOLTAGE (mV)
4
80
1k
10k
100k
FREQUENCY (Hz)
1M
00935-018
–4
10M
–5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
COMMON-MODE VOLTAGE (V)
Figure 21. Input Offset Voltage vs. Common-Mode Voltage
Figure 18. Open-Loop Gain and Phase vs. Frequency
10k
160
VS = 5V
TA = 25°C
140
1k
Δ OUTPUT VOLTAGE (mV)
120
100
80
–PSRR
60
+PSRR
40
20
0
VS = 5V
TA = 25°C
100
SOURCE
10
SINK
1
0.1
–40
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0.01
0.001
Figure 19. Power Supply Rejection Ratio vs. Frequency
0.01
0.1
1
LOAD CURRENT (mA)
10
100
Figure 22. Output Voltage to Supply Rail vs. Load Current
Rev. F | Page 9 of 20
00935-021
–20
00935-019
POWER SUPPLY REJECTION RATIO (dB)
GAIN (dB)
10k
00935-020
500mV
00935-017
1.35V
70
AD8541/AD8542/AD8544
5.0
4.0
SMALL SIGNAL OVERSHOOT (%)
4.5
OUTPUT SWING (V p-p)
60
VS = 5V
VIN = 4.9V p-p
RL = NO LOAD
TA = 25°C
3.5
3.0
2.5
2.0
1.5
1.0
VS = 5V
RL = 2kΩ
TA = 25°C
50
40
+OS
30
–OS
20
10
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0
00935-022
0
Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,
5.0
10k
60
SMALL SIGNAL OVERSHOOT (%)
OUTPUT SWING (V p-p)
4.0
100
1k
CAPACITANCE (pF)
Figure 26. Small Signal Overshoot vs. Load Capacitance
VS = 5V
VIN = 4.9V p-p
RL = 2kΩ
TA = 25°C
4.5
10
00935-025
0.5
3.5
3.0
2.5
2.0
1.5
1.0
VS = 5V
RL = ∞
TA = 25°C
50
40
+OS
30
–OS
20
10
1k
10k
100k
FREQUENCY (Hz)
1M
10M
0
10
00935-023
0
Figure 24. Closed-Loop Output Voltage Swing vs. Frequency
VS = 5V
RL = 100kΩ
CL = 300pF
AV = 1
TA = 25°C
VS = 5V
RL = 10kΩ
TA = 25°C
40
+OS
2.5V
30
–OS
10
50mV
0
10
100
1k
CAPACITANCE (pF)
10k
10µs
Figure 28. Small Signal Transient Response
Figure 25. Small Signal Overshoot vs. Load Capacitance
Rev. F | Page 10 of 20
00935-027
20
00935-024
SMALL SIGNAL OVERSHOOT (%)
10k
Figure 27. Small Signal Overshoot vs. Load Capacitance
60
50
100
1k
CAPACITANCE (pF)
00935-026
0.5
AD8541/AD8542/AD8544
VS = 5V
RL = 2kΩ
AV = 1
TA = 25°C
VS = 5V
RL = 10kΩ
AV = 1
TA = 25°C
VIN
VOUT
2.5V
10µs
1V
Figure 29. Large Signal Transient Response
60
90
20
135
0
180
100k
FREQUENCY (Hz)
1M
10M
Figure 30. Open-Loop Gain and Phase vs. Frequency
50
40
30
20
10
0
0
1
2
3
4
SUPPLY VOLTAGE (V)
5
Figure 32. Supply Current per Amplifier vs. Supply Voltage
Rev. F | Page 11 of 20
6
00935-031
40
PHASE SHIFT (Degrees)
45
00935-029
GAIN (dB)
60
SUPPLY CURRENT/AMPLIFIER (µA)
TA = 25°C
80
10k
20µs
Figure 31. No Phase Reversal
VS = 5V
RL = NO LOAD
TA = 25°C
1k
00935-030
1V
00935-028
2.5V
AD8541/AD8542/AD8544
VS = 5V
MARKER SET @ 10kHz
MARKER READING: 37.6nV/ Hz
TA = 25°C
50
VS = 5V
15nV/DIV
45
40
VS = 2.7V
35
30
20
–55
–35
–15
5
25
45
65
85
TEMPERATURE (°C)
105
125
145
0
1000
800
VS = 2.7V AND 5V
AV = 1
TA = 25°C
600
500
400
300
200
100
10k
100k
1M
FREQUENCY (Hz)
10M
100M
00935-033
IMPEDANCE (Ω)
700
0
1k
10
15
FREQUENCY (kHz)
Figure 35. Voltage Noise
Figure 33. Supply Current per Amplifier vs. Temperature
900
5
Figure 34. Closed-Loop Output Impedance vs. Frequency
Rev. F | Page 12 of 20
20
25
00935-034
25
00935-032
SUPPLY CURRENT/AMPLIFIER (µA)
55
AD8541/AD8542/AD8544
THEORY OF OPERATION
NOTES ON THE AD854X AMPLIFIERS
Higher Output Current
The AD8541/AD8542/AD8544 amplifiers are improved
performance, general-purpose operational amplifiers.
Performance has been improved over previous amplifiers in
several ways, including lower supply current for 1 MHz gain
bandwidth, higher output current, and better performance at
lower voltages.
At 5 V single supply, the short-circuit current is typically 60 μA.
Even 1 V from the supply rail, the AD854x amplifiers can provide a
30 mA output current, sourcing, or sinking.
Lower Supply Current for 1 MHz Gain Bandwidth
The AD854x series typically uses 45 μA of current per amplifier,
which is much less than the 200 μA to 700 μA used in earlier
generation parts with similar performance. This makes the
AD854x series a good choice for upgrading portable designs
for longer battery life. Alternatively, additional functions and
performance can be added at the same current drain.
Sourcing and sinking are strong at lower voltages, with 15 mA
available at 2.7 V and 18 mA at 3.0 V. For even higher output
currents, see the AD8531/AD8532/AD8534 parts for output
currents to 250 mA. Information on these parts is available
from your Analog Devices, Inc. representative, and data sheets
are available at www.analog.com.
Better Performance at Lower Voltages
The AD854x family of parts was designed to provide better ac
performance at 3.0 V and 2.7 V than previously available parts.
Typical gain bandwidth product is close to 1 MHz at 2.7 V.
Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase
margin is typically over 60°C, making the part easy to use.
Rev. F | Page 13 of 20
AD8541/AD8542/AD8544
APPLICATIONS
The AD854x have very high open-loop gain (especially with a
supply voltage below 4 V), which makes it useful for active filters of
all types. For example, Figure 36 illustrates the AD8542 in the
classic twin-T notch filter design. The twin-T notch is desired
for simplicity, low output impedance, and minimal use of op
amps. In fact, this notch filter can be designed with only one op
amp if Q adjustment is not required. Simply remove U2 as
illustrated in Figure 37. However, a major drawback to this
circuit topology is ensuring that all the Rs and Cs closely match.
The components must closely match or notch frequency offset
and drift causes the circuit to no longer attenuate at the ideal
notch frequency. To achieve desired performance, 1% or better
component tolerances or special component screens are usually
required. One method to desensitize the circuit-to-component
mismatch is to increase R2 with respect to R1, which lowers Q.
A lower Q increases attenuation over a wider frequency range
but reduces attenuation at the peak notch frequency.
Figure 38 is an example of the AD8544 in a notch filter circuit. The
frequency dependent negative resistance (FDNR) notch filter has
fewer critical matching requirements than the twin-T notch, where
as the Q of the FDNR is directly proportional to a single resistor R1.
Although matching component values is still important, it is also
much easier and/or less expensive to accomplish in the FDNR
circuit. For example, the twin-T notch uses three capacitors
with two unique values, whereas the FDNR circuit uses only
two capacitors, which may be of the same value. U3 is simply a
buffer that is added to lower the output impedance of the circuit.
R1
Q ADJUST
200Ω
2.5VREF
2.5VREF
1/4 AD8544
U2
6
f0 =
R/2
50kΩ
C
26.7nF
1
2πRC
C
26.7nF
U1
4
1
f=
VOUT
1/2 AD8542
11
R
2.61kΩ
1
2π LC1
R
2.61kΩ
13
12
1/4 AD8544
U4
14
NC
U2
2.5VREF
R2
2.5kΩ
5
6
Figure 38. FDNR 60 Hz Notch Filter with Output Buffer
COMPARATOR FUNCTION
R1
97.5kΩ
2.5VREF
Figure 36. 60 Hz Twin-T Notch Filter, Q = 10
5.0V
3
2
2C
1
VIN
R1
4 1–
R1 + R2
VIN
1/4 AD8544
U1
R
2.61kΩ
5
L = R2C2
1
R
2
2.5VREF
7
R
4
3
C2
1µF
7
AD8541
U1
4
6
VOUT
2.5VREF
A comparator function is a common application for a spare op
amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a
comparator in a standard overload detection application. Unlike
many op amps, the AD854x family can double as comparators
because this op amp family has a rail-to-rail differential input
range, rail-to-rail output, and a great speed vs. power ratio.
R2 is used to introduce hysteresis. The AD854x, when used as
comparators, have 5 μs propagation delay at 5 V and 5 μs
overload recovery time.
R2
1MΩ
R1
1kΩ
C
C
00935-036
R/2
Figure 37. 60 Hz Twin-T Notch Filter, Q = ∞ (Ideal)
VOUT
VIN
2.5VREF
2.5VDC
1/4 AD8541
00935-038
f0 =
2
2C
53.6µF
1/2 AD8542
00935-035
VIN
8
3
VOUT
R
2.61kΩ
5.0V
R
100kΩ
8
U3
10
C1
1µF
VIN
7
R
100kΩ
1/4 AD8544
9
00935-037
NOTCH FILTER
Figure 39. AD854x Comparator Application—Overload Detector
Rev. F | Page 14 of 20
AD8541/AD8542/AD8544
C
100pF
PHOTODIODE APPLICATION
The AD854x family has very high impedance with an input bias
current typically around 4 pA. This characteristic allows the
AD854x op amps to be used in photodiode applications and
other applications that require high input impedance. Note that
the AD854x has significant voltage offset that can be removed
by capacitive coupling or software calibration.
•
Shielding the circuit.
•
Cleaning the circuit board.
•
Putting a trace connected to the noninverting input around
the inverting input.
•
Using separate analog and digital power supplies.
V+
OR
2
7
6
3
4
D
2.5VREF
2.5VREF
VOUT
AD8541
00935-039
Figure 40 illustrates a photodiode or current measurement
application. The feedback resistor is limited to 10 MΩ to avoid
excessive output offset. In addition, a resistor is not needed on
the noninverting input to cancel bias current offset because the
bias current-related output offset is not significant when compared
to the voltage offset contribution. For best performance, follow the
standard high impedance layout techniques, which include the
following:
R
10MΩ
Figure 40. High Input Impedance Application—Photodiode Amplifier
Rev. F | Page 15 of 20
AD8541/AD8542/AD8544
OUTLINE DIMENSIONS
5.10
5.00
4.90
2.90 BSC
5
4
2.80 BSC
1.60 BSC
1
2
14
PIN 1
6.40
BSC
0.95 BSC
1
1.90
BSC
1.30
1.15
0.90
7
PIN 1
1.45 MAX
0.15 MAX
8
4.50
4.40
4.30
3
0.50
0.30
0.65
BSC
1.05
1.00
0.80
0.22
0.08
10°
5°
0°
SEATING
PLANE
1.20
MAX
0.15
0.05
0.60
0.45
0.30
0.30
0.19
0.20
0.09
SEATING
COPLANARITY
PLANE
0.10
0.75
0.60
0.45
8°
0°
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
COMPLIANT TO JEDEC STANDARDS MO-178-A A
Figure 41. 5-Lead Small Outline Transistor Package [SOT-23]
(RJ-5)
Dimensions shown in millimeters
Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
8.75 (0.3445)
8.55 (0.3366)
1.35
1.25
1.15
5
1
4
2
3
PIN 1
1.10
0.80
0.30
0.15
SEATING
PLANE
8
14
1
7
1.27 (0.0500)
BSC
0.65 BSC
1.00
0.90
0.70
0.10 MAX
4.00 (0.1575)
3.80 (0.1496)
2.40
2.10
1.80
0.40
0.10
0.25 (0.0098)
0.10 (0.0039)
0.22
0.08
0.46
0.36
0.26
0.10 COPLANARITY
COMPLIANT TO JEDEC STANDARDS MO-203-AA
Figure 43. 5-Lead Thin Shrink Small Outline Transistor Package [SC70]
(KS-5)
Dimensions shown in millimeters
COPLANARITY
0.10
0.51 (0.0201)
0.31 (0.0122)
6.20 (0.2441)
5.80 (0.2283)
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
0.50 (0.0197)
0.25 (0.0098)
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 44. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
Rev. F | Page 16 of 20
45°
060606-A
2.20
2.00
1.80
AD8541/AD8542/AD8544
3.20
3.00
2.80
8
3.20
3.00
2.80
1
3.10
3.00
2.90
5
8
5.15
4.90
4.65
4.50
4.40
4.30
4
1
PIN 1
0.65 BSC
0.95
0.85
0.75
0.38
0.22
COPLANARITY
0.10
6.40 BSC
4
PIN 1
0.65 BSC
1.10 MAX
0.15
0.00
5
0.23
0.08
0.15
0.05
0.80
0.60
0.40
8°
0°
1.20
MAX
COPLANARITY
0.10
SEATING
PLANE
0.30
0.19
SEATING 0.20
PLANE
0.09
8°
0°
0.75
0.60
0.45
COMPLIANT TO JEDEC STANDARDS MO-153-AA
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 45. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Figure 46. 8-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-8)
Dimensions shown in millimeters
5.00 (0.1968)
4.80 (0.1890)
8
1
5
6.20 (0.2441)
5.80 (0.2284)
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-A A
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 47. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
Rev. F | Page 17 of 20
012407-A
4.00 (0.1574)
3.80 (0.1497)
AD8541/AD8542/AD8544
ORDERING GUIDE
Model
AD8541AKS-R2
AD8541AKS-REEL7
AD8541AKSZ-R2 1
AD8541AKSZ-REEL71
AD8541ART-R2
AD8541ART-REEL
AD8541ART-REEL7
AD8541ARTZ-R21
AD8541ARTZ-REEL1
AD8541ARTZ-REEL71
AD8541AR
AD8541AR-REEL
AD8541AR-REEL7
AD8541ARZ1
AD8541ARZ-REEL1
AD8541ARZ-REEL71
AD8542AR
AD8542AR-REEL
AD8542AR-REEL7
AD8542ARZ1
AD8542ARZ-REEL1
AD8542ARZ-REEL71
AD8542ARM-R2
AD8542ARM-REEL
AD8542ARMZ-R21
AD8542ARMZ-REEL1
AD8542ARU
AD8542ARU-REEL
AD8542ARUZ1
AD8542ARUZ-REEL1
AD8544AR
AD8544AR-REEL
AD8544AR-REEL7
AD8544ARZ1
AD8544ARZ-REEL1
AD8544ARZ-REEL71
AD8544ARU
AD8544ARU-REEL
AD8544ARUZ1
AD8544ARUZ-REEL1
1
Temperature Range
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
–40°C to +125°C
Package Description
5-Lead SC70
5-Lead SC70
5-Lead SC70
5-Lead SC70
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead MSOP
8-Lead MSOP
8-Lead MSOP
8-Lead MSOP
8-Lead TSSOP
8-Lead TSSOP
8-Lead TSSOP
8-Lead TSSOP
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead TSSOP
14-Lead TSSOP
14-Lead TSSOP
14-Lead TSSOP
Z = RoHS Compliant Part; # denotes RoHS compliant product may be top or bottom marked.
Rev. F | Page 18 of 20
Package Option
KS-5
KS-5
KS-5
KS-5
RJ-5
RJ-5
RJ-5
RJ-5
RJ-5
RJ-5
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
RM-8
RM-8
RM-8
RM-8
RU-8
RU-8
RU-8
RU-8
R-14
R-14
R-14
R-14
R-14
R-14
RU-14
RU-14
RU-14
RU-14
Branding
A4B
A4B
A12
A12
A4A
A4A
A4A
A4A#
A4A#
A4A#
AVA
AVA
AVA#
AVA#
AD8541/AD8542/AD8544
NOTES
Rev. F | Page 19 of 20
AD8541/AD8542/AD8544
NOTES
©2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00935-0-1/08(F)
Rev. F | Page 20 of 20
Similar pages