MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 D Low Supply-Voltage Range: 1.8 V to 3.6 V D Ultralow-Power Consumption: D D D D D D D D D D D D − Active Mode: 400 μA at 1 MHz, 2.2 V − Standby Mode: 1.3 μA − Off Mode (RAM Retention): 0.22 μA Five Power-Saving Modes Wake-Up From Standby Mode in Less Than 6 μs 16-Bit RISC Architecture, Extended Memory, 125-ns Instruction Cycle Time Three Channel Internal DMA 12-Bit A/D Converter With Internal Reference, Sample-and-Hold, and Autoscan Feature Three Configurable Operational Amplifiers Dual 12-Bit Digital-to-Analog (D/A) Converters With Synchronization 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Seven Capture/Compare-With-Shadow Registers On-Chip Comparator Supply Voltage Supervisor/Monitor With Programmable Level Detection Serial Communication Interface (USART1), Select Asynchronous UART or Synchronous SPI by Software D Universal Serial Communication Interface D D D D D D − Enhanced UART Supporting Auto-Baudrate Detection − IrDA Encoder and Decoder − Synchronous SPI − I2CTM Serial Onboard Programming, Programmable Code Protection by Security Fuse Brownout Detector Basic Timer With Real Time Clock Feature Integrated LCD Driver up to 160 Segments With Regulated Charge Pump Family Members Include: − MSP430xG4616: 92KB+256B Flash or ROM Memory 4KB RAM − MSP430xG4617: 92KB+256B Flash or ROM Memory, 8KB RAM − MSP430xG4618: 116KB+256B Flash or ROM Memory, 8KB RAM − MSP430xG4619: 120KB+256B Flash or ROM Memory, 4KB RAM For Complete Module Descriptions, See the MSP430x4xx Family User’s Guide (literature number SLAU056) description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 μs. The MSP430xG461x series are microcontroller configurations with two 16-bit timers, a high-performance 12-bit A/D converter, dual 12-bit D/A converters, three configurable operational amplifiers, one universal serial communication interface (USCI), one universal synchronous/asynchronous communication interface (USART), DMA, 80 I/O pins, and a liquid crystal display (LCD) driver with regulated charge pump. Typical applications for this device include portable medical applications and e-meter applications. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright © 2011, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 AVAILABLE OPTIONS{ PACKAGED DEVICES} TA −40°C 40°C to 85°C PLASTIC 100-PIN TQFP (PZ) PLASTIC 113-BALL BGA (ZQW) MSP430FG4616IPZ MSP430FG4616IZQW MSP430FG4617IPZ MSP430FG4617IZQW MSP430FG4618IPZ MSP430FG4618IZQW MSP430FG4619IPZ MSP430FG4619IZQW MSP430CG4616IPZ MSP430CG4616IZQW MSP430CG4617IPZ MSP430CG4617IZQW MSP430CG4618IPZ MSP430CG4618IZQW MSP430CG4619IPZ MSP430CG4619IZQW † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: D Debugging and Programming Interface − MSP-FET430UIF (USB) − MSP-FET430PIF (Parallel Port) D Debugging and Programming Interface with Target Board − MSP-FET430U100 (for PZ package) D Standalone Target Board − MSP-TS430PZ100 (for PZ package) D Production Programmer − 2 MSP-GANG430 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P2.4/UCA0TXD P2.5/UCA0RXD P2.6/CAOUT P2.7/ADC12CLK/DMAE0 P3.0/UCB0STE P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 P4.0/UTXD1 P4.1/URXD1 DVSS2 DVCC2 LCDCAP/R33 P5.7/R23 P5.6/LCDREF/R13 P5.5/R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/STE1/S39 P8.1/S24 P8.0/S25 P7.7/S26 P7.6/S27 P7.5/S28 P7.4/S29 P7.3/UCA0CLK/S30 P7.2/UCA0SOMI/S31 P7.1/UCA0SIMO/S32 P7.0/UCA0STE/S33 P4.7/UCA0RXD/S34 P4.6/UCA0TXD/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 P4.3/SIMO1/S38 P8.5/S20 P8.4/S21 P8.3/S22 P8.2/S23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 MSP430xG4616IPZ MSP430xG4617IPZ MSP430xG4618IPZ MSP430xG4619IPZ P9.3/S14 P9,2/S15 P9.1/S16 P9.0/S17 P8.7/S18 P8.6/S19 DVCC1 P6.3/A3/OA1O P6.4/A4/OA1I0 P6.5/A5/OA2O P6.6/A6/DAC0/OA2I0 P6.7/A7/DAC1/SVSIN VREF+ XIN XOUT VeREF+/DAC0 VREF−/VeREF− P5.1/S0/A12/DAC1 P5.0/S1/A13/OA1I1 P10.7/S2/A14/OA2I1 P10.6/S3/A15 P10.5/S4 P10.4/S5 P10.3/S6 P10.2/S7 P10.1/S8 P10.0/S9 P9.7/S10 P9.6/S11 P9.5/S12 P9.4/S13 82 81 80 79 78 77 76 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P6.2/A2/OA0I1 P6.1/A1/OA0O P6.0/A0/OA0I0 RST/NMI TCK TMS 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 AVCC DV SS1 AVSS pin designation, MSP430xG461xIPZ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 pin designation, MSP430xG461xIZQW (top view) A B C D E F G H J K L M 1 2 3 4 5 6 7 8 9 NOTE: For terminal assignments, see the MSP430xG461x Terminal Functions table. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 11 12 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 functional block diagram XIN/ XT2IN XOUT/ XT2OUT 2 2 Oscillators FLL+ DVCC1/2 DVSS1/2 Enhanced Emulation (FG only) JTAG Interface AVSS P1.x/P2.x 2x8 Flash (FG) ROM (CG) ACLK 120kB 116kB 92kB 92kB SMCLK MCLK 8MHz CPUX incl. 16 Registers AVCC RAM 4kB 8kB 8kB 4kB ADC12 12−Bit DAC12 12−Bit 12 Channels 2 Channels Voltage out OA0, OA1, OA2 Ports P1/P2 Comparator _A 3 Op Amps 2x8 I/O Interrupt capability P3.x/P4.x P5.x/P6.x 4x8 P7.x/P8.x P9.x/P10.x 4x8/2x16 Ports P3/P4 P5/P6 Ports P7/P8 P9/P10 4x8 I/O 4x8/2x16 I/O MAB DMA Controller 3 Channels MDB Brownout Protection SVS/SVM Hardware Multiplier MPY, MPYS, MAC, MACS Timer_B7 Watchdog WDT+ 15/16−Bit Timer_A3 3 CC Registers 7 CC Registers, Shadow Reg Basic Timer & Real−Time Clock LCD_A 160 Segments 1,2,3,4 Mux USCI_A0: UART, IrDA, SPI USART1 UART, SPI USCI_B0: SPI, I2C RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Terminal Functions TERMINAL I/O DESCRIPTION NO. PZ NO. ZQW DVCC1 1 A1 P6.3/A3/OA1O 2 B1 P6.4/A4/OA1I0 3 P6.5/A5/OA2O 4 P6.6/A6/DAC0/OA2I0 5 P6.7/A7/DAC1/SVSIN 6 C3 I/O General-purpose digital I/O / analog input a7—12-bit ADC / DAC12.1 output / analog input to brownout, supply voltage supervisor VREF+ 7 D2 O Output of positive terminal of the reference voltage in the ADC XIN 8 D1 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 E1 O Output terminal of crystal oscillator XT1 VeREF+/DAC0 10 E2 I/O Input for an external reference voltage to the ADC / DAC12.0 output VREF−/VeREF− 11 E4 I Negative terminal for the ADC reference voltage for both sources, the internal reference voltage, or an external applied reference voltage P5.1/S0/A12/DAC1 (see Note 1) 12 F1 I/O General-purpose digital I/O / LCD segment output 0 / analog input a12 − 12−bit ADC / DAC12.1 output P5.0/S1/A13/OA1I1 (see Note 1) 13 F2 I/O General-purpose digital I/O / LCD segment output 1 / analog input a13 − 12−bit ADC/OA1 input multiplexer on +terminal and −terminal P10.7/S2/A14/OA2I1 (see Note 1) 14 E5 I/O General-purpose digital I/O / LCD segment output 2 / analog input a14 − 12−bit ADC/OA2 input multiplexer on +terminal and −terminal P10.6/S3/A15 (see Note 1) 15 G1 I/O General-purpose digital I/O / LCD segment output 3 / analog input a15 − 12−bit ADC P10.5/S4 16 G2 I/O General-purpose digital I/O / LCD segment output 4 P10.4/S5 17 F4 I/O General-purpose digital I/O / LCD segment output 5 P10.3/S6 18 H1 I/O General-purpose digital I/O / LCD segment output 6 P10.2/S7 19 H2 I/O General-purpose digital I/O / LCD segment output 7 P10.1/S8 20 F5 I/O General-purpose digital I/O / LCD segment output 8 P10.0/S9 21 J1 I/O General-purpose digital I/O / LCD segment output 9 P9.7/S10 22 J2 I/O General-purpose digital I/O / LCD segment output 10 P9.6/S11 23 G4 I/O General-purpose digital I/O / LCD segment output 11 P9.5/S12 24 K1 I/O General-purpose digital I/O / LCD segment output 12 P9.4/S13 25 L1 I/O General-purpose digital I/O / LCD segment output 13 P9.3/S14 26 M2 I/O General-purpose digital I/O / LCD segment output 14 P9.2/S15 27 K2 I/O General-purpose digital I/O / LCD segment output 15 P9.1/S16 28 L3 I/O General-purpose digital I/O / LCD segment output 16 P9.0/S17 29 M3 I/O General-purpose digital I/O / LCD segment output 17 P8.7/S18 30 H4 I/O General-purpose digital I/O / LCD segment output 18 P8.6/S19 31 L4 I/O General-purpose digital I/O / LCD segment output 19 P8.5/S20 32 M4 I/O General-purpose digital I/O / LCD segment output 20 P8.4/S21 33 G5 I/O General-purpose digital I/O / LCD segment output 21 P8.3/S22 34 L5 I/O General-purpose digital I/O / LCD segment output 22 NAME B2 C2 C1 Digital supply voltage, positive terminal I/O General-purpose digital I/O / analog input a3—12-bit ADC / OA1 output I/O General-purpose digital I/O / analog input a4—12-bit ADC / OA1 input multiplexer on +terminal and −terminal I/O General-purpose digital I/O / analog input a5—12-bit ADC / OA2 output I/O General-purpose digital I/O / analog input a6—12-bit ADC / DAC12.0 output / OA2 input multiplexer on +terminal and −terminal NOTES: 1. Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, VLCD ≤ AVCC. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Terminal Functions (Continued) TERMINAL NO. PZ NO. ZQW I/O P8.2/S23 35 M5 I/O General-purpose digital I/O / LCD segment output 23 P8.1/S24 36 H5 I/O General-purpose digital I/O / LCD segment output 24 P8.0/S25 37 J5 I/O General-purpose digital I/O / LCD segment output 25 P7.7/S26 38 M6 I/O General-purpose digital I/O / LCD segment output 26 P7.6/S27 39 L6 I/O General-purpose digital I/O / LCD segment output 27 P7.5/S28 40 J6 I/O General-purpose digital I/O / LCD segment output 28 P7.4/S29 41 M7 I/O General-purpose digital I/O / LCD segment output 29 P7.3/UCA0CLK/S30 42 H6 I/O General-purpose digital I/O / external clock input − USCI_A0/UART or SPI mode, clock output − USCI_A0/SPI mode / LCD segment 30 P7.2/UCA0SOMI/S31 43 L7 I/O General-purpose digital I/O / slave out/master in of USCI_A0/SPI mode / LCD segment output 31 P7.1/UCA0SIMO/S32 44 M8 I/O General-purpose digital I/O / slave in/master out of USCI_A0/SPI mode / LCD segment output 32 P7.0/UCA0STE/S33 45 L8 I/O General-purpose digital I/O / slave transmit enable—USCI_A0/SPI mode / LCD segment output 33 P4.7/UCA0RXD/S34 46 J7 I/O General-purpose digital I/O / receive data in − USCI_A0/UART or IrDA mode / LCD segment output 34 P4.6/UCA0TXD/S35 47 M9 I/O General-purpose digital I/O / transmit data out − USCI_A0/UART or IrDA mode / LCD segment output 35 P4.5/UCLK1/S36 48 L9 I/O General-purpose digital I/O / external clock input − USART1/UART or SPI mode, clock output − USART1/SPI MODE / LCD segment output 36 P4.4/SOMI1/S37 49 H7 I/O General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37 P4.3/SIMO1/S38 50 M10 I/O General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38 P4.2/STE1/S39 51 M11 I/O General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39 COM0 52 L10 O COM0−3 are used for LCD backplanes. P5.2/COM1 53 L12 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.3/COM2 54 J8 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.4/COM3 55 K12 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.5/R03 56 K11 I/O General-purpose digital I/O / Input port of lowest analog LCD level (V5) P5.6/LCDREF/R13 57 J12 I/O General-purpose digital I/O / External reference voltage input for regulated LCD voltage / Input port of third most positive analog LCD level (V4 or V3) P5.7/R23 58 J11 I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2) LCDCAP/R33 59 H11 I DVCC2 60 H12 DVSS2 61 G12 P4.1/URXD1 62 G11 I/O General-purpose digital I/O / receive data in—USART1/UART mode P4.0/UTXD1 63 H9 I/O General-purpose digital I/O / transmit data out—USART1/UART mode P3.7/TB6 64 F12 I/O General-purpose digital I/O / Timer_B7 CCR6. Capture: CCI6A/CCI6B input, compare: Out6 output P3.6/TB5 65 F11 I/O General-purpose digital I/O / Timer_B7 CCR5. Capture: CCI5A/CCI5B input, compare: Out5 output P3.5/TB4 66 G9 I/O General-purpose digital I/O / Timer_B7 CCR4. Capture: CCI4A/CCI4B input, compare: Out4 output NAME DESCRIPTION LCD capacitor connection / Input/output port of most positive analog LCD level (V1) Digital supply voltage, positive terminal Digital supply voltage, negative terminal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Terminal Functions (Continued) TERMINAL NO. PZ NO. ZQW I/O DESCRIPTION P3.4/TB3 67 E12 I/O General-purpose digital I/O / Timer_B7 CCR3. Capture: CCI3A/CCI3B input, compare: Out3 output P3.3/UCB0CLK 68 E11 I/O General-purpose digital I/O / external clock input—USCI_B0/UART or SPI mode, clock output—USCI_B0/SPI mode P3.2/UCB0SOMI/ UCB0SCL 69 F9 I/O General-purpose digital I/O / slave out/master in of USCI_B0/SPI mode /I2C clock—USCI_B0/I2C mode P3.1/UCB0SIMO/ UCB0SDA 70 D12 I/O General-purpose digital I/O / slave in/master out of USCI_B0/SPI mode, I2C data—USCI_B0/I2C mode P3.0/UCB0STE 71 D11 I/O General-purpose digital I/O / slave transmit enable—USCI_B0/SPI mode P2.7/ADC12CLK/ DMAE0 72 E9 I/O General-purpose digital I/O / conversion clock—12-bit ADC / DMA Channel 0 external trigger P2.6/CAOUT 73 C12 I/O General-purpose digital I/O / Comparator_A output P2.5/UCA0RXD 74 C11 I/O General-purpose digital I/O / receive data in—USCI_A0/UART or IrDA mode P2.4/UCA0TXD 75 B12 I/O General-purpose digital I/O / transmit data out—USCI_A0/UART or IrDA mode P2.3/TB2 76 A11 I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 77 E8 I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 78 D8 I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 79 A10 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 80 B10 I/O General-purpose digital I/O / Comparator_A input P1.6/CA0 81 A9 I/O General-purpose digital I/O / Comparator_A input P1.5/TACLK/ACLK 82 B9 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.4/TBCLK/SMCLK 83 B8 I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output P1.3/TBOUTH/SVSOUT 84 A8 I/O General-purpose digital I/O / switch all PWM digital output impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator P1.2/TA1 85 D7 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output P1.1/TA0/MCLK 86 E7 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 87 A7 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit XT2OUT 88 B7 O Output terminal of crystal oscillator XT2 XT2IN 89 B6 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 90 A6 I/O TDI/TCLK 91 D6 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 92 E6 I Test mode select. TMS is used as an input port for device programming and test. TCK 93 A5 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 94 B5 I Reset input or nonmaskable interrupt input port P6.0/A0/OA0I0 95 A4 I/O General-purpose digital I/O / analog input a0—12-bit ADC / OA0 input multiplexer on + terminal and − terminal P6.1/A1/OA0O 96 D5 I/O General-purpose digital I/O / analog input a1—12-bit ADC / OA0 output P6.2/A2/OA0I1 97 B4 I/O General-purpose digital I/O / analog input a2—12-bit ADC / OA0 input multiplexer on + terminal and − terminal NAME 8 ports to high Test data output port. TDO/TDI data output or programming data input terminal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Terminal Functions (Continued) TERMINAL I/O DESCRIPTION NO. PZ NO. ZQW AVSS 98 A3 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1 DVSS1 (see Note 1) 99 B3 Digital supply voltage, negative terminal AVCC 100 A2 Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1; must not power up prior to DVCC1/DVCC2. NAME NOTE 1: All unassigned ball locations on the ZQW package should be electrically tied to the ground supply. The shortest ground return path to the device should be established via ball location B3. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Stack Pointer SP/R1 Constant Generator Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. The MSP430xG461x device family utilizes the MSP430X CPU and is completely backwards compatible with the MSP430 CPU. For a complete description of the MSP430X CPU, see the MSP430x4xx Family User’s Guide (SLAU056). instruction set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes. POST OFFICE BOX 655303 PC/R0 Status Register The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. 10 Program Counter • DALLAS, TEXAS 75265 SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Table 1. Instruction Word Formats Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g., CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g., JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D SYNTAX EXAMPLE Register F F MOV Rs,Rd MOV R10,R11 OPERATION Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) F F MOV EDE,TONI M(EDE) —> M(TONI) Absolute F F MOV & MEM, & TCDAT M(MEM) —> M(TCDAT) R10 —> R11 M(2+R5)—> M(6+R6) Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) —> M(Tab+R6) Indirect autoincrement F MOV @Rn+,Rm MOV @R10+,R11 M(R10) —> R11 R10 + 2—> R10 F MOV #X,TONI MOV #45,TONI Immediate NOTE: S = source #45 —> M(TONI) D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 operating modes The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) − All clocks are active D Low-power mode 0 (LPM0) − CPU is disabled − ACLK and SMCLK remain active. MCLK is disabled − FLL+ loop control remains active D Low-power mode 1 (LPM1) − CPU is disabled − FLL+ loop control is disabled − ACLK and SMCLK remain active, MCLK is disabled D Low-power mode 2 (LPM2) − CPU is disabled − MCLK, FLL+ loop control and DCOCLK are disabled − DCO’s dc-generator remains enabled − ACLK remains active D Low-power mode 3 (LPM3) − CPU is disabled − MCLK, FLL+ loop control, and DCOCLK are disabled − DCO’s dc-generator is disabled − ACLK remains active D Low-power mode 4 (LPM4) 12 − CPU is disabled − ACLK is disabled − MCLK, FLL+ loop control, and DCOCLK are disabled − DCO’s dc-generator is disabled − Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 interrupt vector addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 3. Interrupt Sources, Flags, and Vectors of MSP430xG461x Configurations INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory WDTIFG KEYV (see Note 1 and 5) Reset 0FFFEh 31, highest NMI Oscillator Fault Flash Memory Access Violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1, 2, and 5) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 30 Timer_B7 TBCCR0 CCIFG0 (see Note 2) Maskable 0FFFAh 29 Timer_B7 TBCCR1 CCIFG1 ... TBCCR6 CCIFG6, TBIFG (see Notes 1 and 2) Maskable 0FFF8h 28 Comparator_A CAIFG Maskable 0FFF6h 27 Watchdog Timer+ WDTIFG Maskable 0FFF4h 26 USCI_A0/USCI_B0 Receive UCA0RXIFG, UCB0RXIFG (see Note 1) Maskable 0FFF2h 25 USCI_A0/USCI_B0 Transmit UCA0TXIFG, UCB0TXIFG (see Note 1) Maskable 0FFF0h 24 ADC12 ADC12IFG (see Notes 1 and 2) Maskable 0FFEEh 23 Timer_A3 TACCR0 CCIFG0 (see Note 2) Maskable 0FFECh 22 Timer_A3 TACCR1 CCIFG1 and TACCR2 CCIFG2, TAIFG (see Notes 1 and 2) Maskable 0FFEAh 21 I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 20 USART1 Receive URXIFG1 Maskable 0FFE6h 19 USART1 Transmit UTXIFG1 Maskable 0FFE4h 18 I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 17 Basic Timer1/RTC BTIFG Maskable 0FFE0h 16 DMA DMA0IFG, DMA1IFG, DMA2IFG (see Notes 1 and 2) Maskable 0FFDEh 15 DAC12 DAC12.0IFG, DAC12.1IFG (see Notes 1 and 2) Maskable 0FFDCh 14 0FFDAh 13 Reserved Reserved (see Note 4) ... ... 0FFC0h 0, lowest NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh). (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. 4. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if necessary. 5. Access and key violations, KEYV and ACCVIFG, only applicable to F devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 special function registers (SFRs) The MSP430 SFRs are located in the lowest address space and are organized as byte mode registers. SFRs should be accessed with byte instructions. interrupt enable 1 and 2 7 Address 6 0h 5 4 ACCVIE NMIIE rw–0 WDTIE 1 OFIE rw–0 0 WDTIE rw–0 Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as a general-purpose timer. Oscillator-fault-interrupt enable NMIIE Nonmaskable-interrupt enable ACCVIE Flash access violation interrupt enable 7 Address BTIE rw–0 14 2 rw–0 OFIE 01h 3 6 5 4 3 2 1 UTXIE1 URXIE1 UCB0TXIE UCB0RXIE UCA0TXIE rw–0 UCA0RXIE USCI_A0 receive-interrupt enable UCA0TXIE USCI_A0 transmit-interrupt enable UCB0RXIE USCI_B0 receive-interrupt enable UCB0TXIE USCI_B0 transmit-interrupt enable rw–0 rw–0 URXIE1 USART1 UART and SPI receive-interrupt enable UTXIE1 USART1 UART and SPI transmit-interrupt enable BTIE Basic timer interrupt enable POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 rw–0 rw–0 0 UCA0RXIE rw–0 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 interrupt flag register 1 and 2 7 Address 6 5 02h 4 3 2 NMIIFG rw–0 rw–1 WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin 7 Address 03h 6 BTIFG 5 4 UTXIFG1 URXIFG1 rw–1 rw–0 3 rw–0 UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag URXIFG0: USART1: UART and SPI receive flag UTXIFG0: USART1: UART and SPI transmit flag BTIFG: Basic timer flag 1 OFIFG 2 0 WDTIFG rw–(0) 1 UCB0TXIFG UCB0RXIFG UCA0TXIFG rw–0 rw–0 rw–0 0 UCA0RXIFG rw–0 module enable registers 1 and 2 Address 7 6 5 4 3 2 1 0 7 6 5 UTXE1 4 URXE1 USPIE1 3 2 1 0 04h Address 05h rw–0 rw–0 URXE1: USART1: UART mode receive enable UTXE1: USART1: UART mode transmit enable USPIE1: USART1: SPI mode transmit and receive enable Legend rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 memory organization MSP430FG4616 MSP430FG4617 MSP430FG4618 MSP430FG4619 Size Flash Flash 92KB 0FFFFh − 0FFC0h 018FFFh − 002100h 92KB 0FFFFh − 0FFC0h 019FFFh − 003100h 116KB 0FFFFh − 0FFC0h 01FFFFh − 003100h 120KB 0FFFFh − 0FFC0h 01FFFFh − 002100h Size 4KB 020FFh − 01100h 8KB 030FFh − 01100h 8KB 030FFh − 01100h 4KB 020FFh − 01100h Extended Size 2KB 020FFh − 01900h 6KB 030FFh − 01900h 6KB 030FFh − 01900h 2KB 020FFh − 01900h Mirrored Size 2KB 018FFh − 01100h 2KB 018FFh − 01100h 2KB 018FFh − 01100h 2KB 018FFh − 01100h Information memory Size Flash 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Boot memory Size ROM 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h Size 2KB 09FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 16 bit 8 bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h Memory Main: interrupt vector Main: code memory RAM (Total) RAM (mirrored at 018FFh − 01100h) Peripherals MSP430CG4616 MSP430CG4617 MSP430CG4618 MSP430CG4619 Size ROM ROM 92KB 0FFFFh − 0FFC0h 018FFFh − 002100h 92KB 0FFFFh − 0FFC0h 019FFFh − 003100h 116KB 0FFFFh − 0FFC0h 01FFFFh − 003100h 120KB 0FFFFh − 0FFC0h 01FFFFh − 002100h Size 4KB 020FFh − 01100h 8KB 030FFh − 01100h 8KB 030FFh − 01100h 4KB 020FFh − 01100h Extended Size 2KB 020FFh − 01900h 6KB 030FFh − 01900h 6KB 030FFh − 01900h 2KB 020FFh − 01900h Mirrored Size 2KB 018FFh − 01100h 2KB 018FFh − 01100h 2KB 018FFh − 01100h 2KB 018FFh − 01100h Information memory Size ROM 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Boot memory (Optional on CG) Size ROM 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h RAM (mirrored at 018FFh − 01100h) Size 2KB 09FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 16 bit 8 bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h Memory Main: interrupt vector Main: code memory RAM (Total) Peripherals 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 bootstrap loader (BSL) The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader security key is provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. The BSL is optional for ROM-based devices. For complete description of the features of the BSL and its implementation, see the application report Features of the MSP430 Bootstrap Loader, literature number SLAA089. BSLKEY DESCRIPTION 00000h Erasure of flash disabled if an invalid password is supplied 0AA55h BSL disabled any other value BSL enabled BSL FUNCTION PZ/ZQW PACKAGE PINS Data Transmit 87/A7 − P1.0 Data Receive 86/E7 − P1.1 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0 to n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide (SLAU056). DMA controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. oscillator and system clock The clock system in the MSP430xG461x family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 μs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal Main clock (MCLK), the system clock used by the CPU Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8 brownout, supply voltage supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are ten 8-bit I/O ports implemented—ports P1 through P10: D D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Ports P7/P8 and P9/P10 can be accessed word-wise as ports PA and PB respectively. Basic Timer1 and Real-Time Clock The Basic Timer1 has two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Basic Timer1 is extended to provide an integrated real-time clock (RTC). An internal calendar compensates for months with less than 31 days and includes leap-year correction. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 LCD_A drive with regulated charge pump The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and, thus, contrast by software. watchdog timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. universal serial communication interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection, and IrDA. The USCI_A0 module provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA. The USCI_B0 module provides support for SPI (3 or 4 pin) and I2C. USART1 The hardware universal synchronous/asynchronous receive transmit (USART) peripheral module is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. hardware multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16, 16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication, as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A3 Signal Connections Input Pin Number PZ/ZQW Device Input Signal Module Input Name 82/B9 - P1.5 TACLK TACLK ACLK ACLK SMCLK SMCLK 82/B9 - P1.5 TACLK INCLK 87/A7 - P1.0 TA0 CCI0A 86/E7 - P1.1 85/D7 - P1.2 79/A10 - P2.0 20 TA0 CCI0B DVSS GND DVCC VCC Module Block Module Output Signal Timer NA Output Pin Number PZ/ZQW 87/A7 - P1.0 CCR0 TA0 TA1 CCI1A 85/D7 - P1.2 CAOUT (internal) CCI1B ADC12 (internal) DVSS GND DVCC VCC TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC POST OFFICE BOX 655303 CCR1 TA1 79/A10 - P2.0 CCR2 • DALLAS, TEXAS 75265 TA2 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Timer_B7 Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B7 Signal Connections Input Pin Number PZ/ZQW Device Input Signal Module Input Name 83/B8 - P1.4 TBCLK TBCLK ACLK ACLK SMCLK SMCLK 83/B8 - P1.4 TBCLK INCLK 78/D8 - P2.1 TB0 CCI0A 78/D8 - P2.1 Module Block Module Output Signal Timer NA Output Pin Number PZ/ZQW 78/D8 - P2.1 ADC12 (internal) TB0 CCI0B DVSS GND DVCC VCC 77/E8 - P2.2 TB1 CCI1A 77/E8 - P2.2 77/E8 - P2.2 TB1 CCI1B ADC12 (internal) DVSS GND DVCC VCC 76/A11 - P2.3 TB2 CCI2A 76/A11 - P2.3 TB2 CCI2B DVSS GND DVCC VCC 67/E12 - P3.4 TB3 CCI3A 67/E12 - P3.4 TB3 CCI3B DVSS GND DVCC VCC 66/G9 - P3.5 TB4 CCI4A 66/G9 - P3.5 TB4 CCI4B DVSS GND 65/F11 - P3.6 65/F11 - P3.6 64/F12 - P3.7 DVCC VCC TB5 CCI5A TB5 CCI5B DVSS GND DVCC VCC TB6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC POST OFFICE BOX 655303 CCR0 CCR1 TB0 TB1 76/A11 - P2.3 CCR2 TB2 67/E12 - P3.4 CCR3 TB3 66/G9 - P3.5 CCR4 TB4 65/F11 - P3.6 CCR5 TB5 64/F12 - P3.7 CCR6 • DALLAS, TEXAS 75265 TB6 21 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Comparator_A The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. DAC12 The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. OA The MSP430xG461x has three configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion. OA Signal Connections Input Pin Number PZ 95 - P6.0 97 - P6.2 3 - P6.4 13 - P5.0 22 Device Output Signal Output Pin Number OA0I0 OA0O 96 - P6.1 OA0O ADC12 (internal) Device Input Signal Module Input Name OA0I0 Module Block Module Output Signal PZ OA0I1 OA0I1 DAC12_0OUT (internal) DAC12_0OUT DAC12_1OUT (internal) DAC12_1OUT OA1I0 OA1I0 OA1O 2 - P6.3 OA1O 13- P5.0 OA1O ADC12 (internal) OA0 OA0OUT OA1I1 OA1I1 DAC12_0OUT (internal) DAC12_0OUT DAC12_1OUT (internal) DAC12_1OUT 5 - P6.6 OA2I0 OA2I0 OA2O 4 - P6.5 14 - P10.7 OA2I1 OA2I1 OA2O 14 - P10.7 DAC12_0OUT (internal) DAC12_0OUT OA2O ADC12 (internal) DAC12_1OUT (internal) DAC12_1OUT POST OFFICE BOX 655303 OA1 OA2 OA1OUT OA2OUT • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog+ Watchdog timer control WDTCTL 0120h Timer_B7 _ Capture/compare register 6 TBCCR6 019Eh Capture/compare register 5 TBCCR5 019Ch Capture/compare register 4 TBCCR4 019Ah Capture/compare register 3 TBCCR3 0198h Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 6 TBCCTL6 018Eh Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 3 TBCCTL3 0188h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh Capture/compare register 2 TACCR2 0176h Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h Timer_A3 _ Hardware Multiplier Flash (FG devices only) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) DMA DMA Channel 0 DMA Channel 1 DMA Channel 2 24 DMA module control 0 DMACTL0 0122h DMA module control 1 DMACTL1 0124h DMA interrupt vector DMAIV 0126h DMA channel 0 control DMA0CTL 01D0h DMA channel 0 source address DMA0SA 01D2h DMA channel 0 destination address DMA0DA 01D6h DMA channel 0 transfer size DMA0SZ 01DAh DMA channel 1 control DMA1CTL 01DCh DMA channel 1 source address DMA1SA 01DEh DMA channel 1 destination address DMA1DA 01E2h DMA channel 1 transfer size DMA1SZ 01E6h DMA channel 2 control DMA2CTL 01E8h DMA channel 2 source address DMA2SA 01EAh DMA channel 2 destination address DMA2DA 01EEh DMA channel 2 transfer size DMA2SZ 01F2h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) ADC12 Conversion memory 15 ADC12MEM15 015Eh See also Peripherals With Byte y Access Conversion memory 14 ADC12MEM14 015Ch Conversion memory 13 ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h DAC12_1 data DAC12_1DAT 01CAh DAC12_1 control DAC12_1CTL 01C2h DAC12_0 data DAC12_0DAT 01C8h DAC12_0 control DAC12_0CTL 01C0h Port PA selection PASEL 03Eh Port PA direction PADIR 03Ch Port PA output PAOUT 03Ah Port PA input PAIN 038h Port PB selection PBSEL 00Eh Port PB direction PBDIR 00Ch Port PB output PBOUT 00Ah Port PB input PBIN 008h DAC12 Port PA Port PB POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS OA2 Operational Amplifier 2 control register 1 Operational Amplifier 2 control register 0 OA2CTL1 OA2CTL0 0C5h 0C4h OA1 Operational Amplifier 1 control register 1 Operational Amplifier 1 control register 0 OA1CTL1 OA1CTL0 0C3h 0C2h OA0 Operational Amplifier 0 control register 1 Operational Amplifier 0 control register 0 OA0CTL1 OA0CTL0 0C1h 0C0h LCD_A LCD Voltage Control 1 LCD Voltage Control 0 LCD Voltage Port Control 1 LCD Voltage Port Control 0 LCD memory 20 : LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode LCDAVCTL1 LCDAVCTL0 LCDAPCTL1 LCDAPCTL0 LCDM20 : LCDM16 LCDM15 : LCDM1 LCDCTL 0AFh 0AEh 0ADh 0ACh 0A4h : 0A0h 09Fh : 091h 090h ADC12 ADC memory-control register 15 (Memory control ADC memory-control register 14 registers require byte ADC memory-control register 13 access) ADC memory-control register 12 ADC12MCTL15 08Fh ADC12MCTL14 08Eh ADC12MCTL13 08Dh ADC12MCTL12 08Ch ADC memory-control register 11 ADC12MCTL11 08Bh ADC memory-control register 10 ADC12MCTL10 08Ah ADC memory-control register 9 ADC12MCTL9 089h ADC memory-control register 8 ADC12MCTL8 088h ADC memory-control register 7 ADC12MCTL7 087h ADC memory-control register 6 ADC12MCTL6 086h ADC memory-control register 5 ADC12MCTL5 085h ADC memory-control register 4 ADC12MCTL4 084h ADC memory-control register 3 ADC12MCTL3 083h ADC memory-control register 2 ADC12MCTL2 082h ADC memory-control register 1 ADC12MCTL1 081h ADC memory-control register 0 ADC12MCTL0 080h Transmit buffer U1TXBUF 07Fh Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h USART1 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) USCI USCI I2C Slave Address UCBI2CSA 011Ah USCI I2C Own Address UCBI2COA 0118h USCI Synchronous Transmit Buffer UCBTXBUF 06Fh USCI Synchronous Receive Buffer UCBRXBUF 06Eh USCI Synchronous Status UCBSTAT 06Dh USCI I2C Interrupt Enable UCBI2CIE 06Ch USCI Synchronous Bit Rate 1 UCBBR1 06Bh USCI Synchronous Bit Rate 0 UCBBR0 06Ah USCI Synchronous Control 1 UCBCTL1 069h USCI Synchronous Control 0 UCBCTL0 068h USCI Transmit Buffer UCATXBUF 067h USCI Receive Buffer UCARXBUF 066h USCI Status UCASTAT 065h USCI Modulation Control UCAMCTL 064h USCI Baud Rate 1 UCABR1 063h USCI Baud Rate 0 UCABR0 062h USCI Control 1 UCACTL1 061h USCI Control 0 UCACTL0 060h USCI IrDA Receive Control UCAIRRCTL 05Fh USCI IrDA Transmit Control UCAIRTCTL 05Eh USCI LIN Control UCAABCTL 05Dh Comparator_A port disable CAPD 05Bh Comparator_A control 2 CACTL2 05Ah Comparator_A control 1 CACTL1 059h BrownOUT, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+Clock FLL+ Control 1 FLL_CTL1 054h FLL+ Control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h Real Time Clock Year High Byte RTCYEARH 04Fh Real Time Clock Year Low Byte RTCYEARL 04Eh Real Time Clock Month RTCMON 04Dh Real Time Clock Day of Month RTCDAY 04Ch Basic Timer1 Counter 2 BTCNT2 047h Basic Timer1 Counter 1 BTCNT1 046h Real Time Counter 4 (Real Time Clock Day of Week) RTCNT4 (RTCDOW) 045h Real Time Counter 3 (Real Time Clock Hour) RTCNT3 (RTCHOUR) 044h Real Time Counter 2 (Real Time Clock Minute) RTCNT2 (RTCMIN) 043h Real Time Counter 1 (Real Time Clock Second) RTCNT1 (RTCSEC) 042h Real Time Clock Control RTCCTL 041h Basic Timer1 Control BTCTL 040h Comparator_A p _ RTC (Basic ( Timer 1)) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P10 Port P9 Port P8 Port P7 Port P6 Port P5 Port P4 Port P3 Port P2 Port P1 28 Port P10 selection P10SEL 00Fh Port P10 direction P10DIR 00Dh Port P10 output P10OUT 00Bh Port P10 input P10IN 009h Port P9 selection P9SEL 00Eh Port P9 direction P9DIR 00Ch Port P9 output P9OUT 00Ah Port P9 input P9IN 008h Port P8 selection P8SEL 03Fh Port P8 direction P8DIR 03Dh Port P8 output P8OUT 03Bh Port P8 input P8IN 039h Port P7 selection P7SEL 03Eh Port P7 direction P7DIR 03Ch Port P7 output P7OUT 03Ah Port P7 input P7IN 038h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Special p functions SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage range applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Voltage range applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature range, Tstg: Unprogrammed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Programmed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. recommended operating conditions MIN NOM MAX UNITS Supply voltage during program execution (see Note 1), VCC (AVCC = DVCC1/2 = VCC) MSP430xG461x 1.8 3.6 V Supply voltage during flash memory programming (see Note 1), VCC (AVCC = DVCC1/2 = VCC) MSP430FG461x 2.7 3.6 V Supply voltage during program execution, SVS enabled and PORON = 1 (see Note 1 and Note 2), VCC (AVCC = DVCC1/2 = VCC) MSP430xG461x 2 3.6 V 0 0 V MSP430xG461x −40 85 °C kHz Supply voltage (see Note 1), VSS (AVSS = DVSS1/2 = VSS) Operating free-air temperature range, TA LFXT1 crystal t l frequency, f f(LFXT1) (see Note 2) LF selected, XTS_FLL = 0 Watch crystal XT1 selected, XTS_FLL = 1 Ceramic resonator XT1 selected, XTS_FLL = 1 Crystal Ceramic resonator frequency f(XT2) XT2 crystal frequency, 450 8000 1000 8000 450 8000 1000 8000 VCC = 1.8 V DC 3.0 VCC = 2.0 V DC 4.6 VCC = 3.6 V DC 8.0 Crystal Processor frequency (signal MCLK), f(System) 32.768 kHz MHz NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. 2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry. 3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. fSystem (MHz) 8.0 MHz ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ Supply voltage range, MSP430xG461x, during program execution 4.6 MHz 3.0 MHz 1.8 2.0 2.7 3 Supply Voltage − V Supply voltage range, MSP430FG461x, during flash memory programming 3.6 Figure 1. Frequency vs Supply Voltage, Typical Characteristic 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS Active mode ((see Note 1 and Note 4)) f(MCLK) = f(SMCLK) = 1 MHz, MH f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1) (FG461x: Program executes from flash) I(AM) MAX 280 370 VCC = 3 V 470 580 VCC = 2.2 V 400 480 VCC = 3 V 600 740 VCC = 2.2 V 45 70 VCC = 3 V 75 110 VCC = 2.2 V 11 20 VCC = 3 V 17 24 TA = −40°C 1.3 4.0 TA = 25°C 1.3 4.0 CG461x TA = −40°C 40°C to 85°C FG461x TA = −40°C 40°C to 85°C I(LPM0) Low-power Low power mode (LPM0) (see Note 1 and Note 4) I(LPM2) Low-power mode (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2 and Note 4) I(LPM3) TYP VCC = 2.2 V xG461x Low-power Low power mode (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 Basic Timer1 enabled, ACLK selected LCD A enabled LCD_A enabled, LCDCPEN = 0; (static mode; fLCD = f(ACLK) /32) (see Note 2 and Note 3 and Note 4) 40°C to 85°C TA = −40°C TA = 60°C I(LPM3) 2.22 6.5 6.5 15.0 TA = −40°C 1.9 5.0 1.9 5.0 2.5 7.5 TA = 85°C 7.5 18.0 TA = −40°C 1.5 5.5 TA = 25°C 1.5 5.5 TA = 60°C I(LPM4) VCC = 3 V VCC = 2 2.2 2V 2.8 7.0 TA = 85°C 7.2 17.0 TA = −40°C 2.5 6.5 2.5 6.5 3.2 8.0 TA = 85°C 8.5 20.0 TA = −40°C 0.13 1.0 TA = 25°C 0.22 1.0 TA = 25°C TA = 60°C TA = 60°C Low-power mode (LPM4) f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1 (see Note Note ( N t 2 and dN t 4) 2V VCC = 2 2.2 TA = 85°C TA = 25°C VCC = 3 V VCC = 2 2.2 2V 0.9 2.5 TA = 85°C 4.3 12.5 TA = −40°C 0.13 1.6 0.3 1.6 TA = 25°C TA = 60°C VCC = 3 V TA = 85°C NOTES: 1. 2. 3. 4. UNIT μA A μA A A μA μA A TA = −40°C 40°C to 85°C TA = 60°C Low-power Low power mode (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 Basic Timer1 enabled, ACLK selected LCD A enabled LCD_A enabled, LCDCPEN = 0; (4−mux mode; fLCD = f(ACLK) /32) (see Note 2 and Note 3 and Note 4) MIN 1.1 3.0 5.0 15.0 μA A A μA μA A Timer_B is clocked by f(DCOCLK) = f(DCO) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The LPM3 currents are characterized with a Micro Crystal CC4V−T1A (9 pF) crystal and OSCCAPx = 1h. Current for brownout included. Current consumption of active mode versus system frequency, F version: I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage, F version: I(AM) = I(AM) [3 V] + 200 μA/V × (VCC – 3 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs − Ports P1 to P10, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI) PARAMETER TEST CONDITIONS VIT+ Positive going input threshold voltage Positive-going VIT− Negative going input threshold voltage Negative-going Vhys Input voltage hysteresis (VIT+ − VIT−) MIN TYP MAX VCC = 2.2 V 1.1 1.55 VCC = 3 V 1.5 1.98 VCC = 2.2 V 0.4 0.9 VCC = 3 V 0.9 1.3 VCC = 2.2 V 0.3 1.1 VCC = 3 V 0.5 1 UNIT V V V inputs Px.x, TAx, TBx PARAMETER t(int) External interrupt timing t(cap) Timer_A, Timer_B capture timing f(TAext) f(TBext) f(TAint) f(TBint) TEST CONDITIONS VCC MIN Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag, (see Note 1) 2.2 V 62 3V 50 TA0, TA1, TA2 2.2 V 62 3V 50 TB0, TB1, TB2, TB3, TB4, TB5, TB6 Timer_A, Timer_B clock frequency externally applied to pin TACLK TBCLK TACLK, TBCLK, INCLK: t(H) = t(L) Timer_A, Timer_B clock frequency SMCLK or ACLK signal selected TYP MAX UNIT ns ns 2.2 V 8 3V 10 2.2 V 8 3V 10 MHz MHz NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int). leakage current − Ports P1 to P10 (see Note 1) PARAMETER Ilkg(Px.y) Leakage current TEST CONDITIONS Port Px V(Px.y) (see Note 2) (1 ≤ x ≤ 10, 0 ≤ y ≤ 7) MIN TYP VCC = 2.2 V/3 V NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input. 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT ±50 nA MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1 to P10 PARAMETER VOH VOL High level output voltage High-level Low level output voltage Low-level TEST CONDITIONS MIN TYP MAX IOH(max) = −1.5 mA, VCC = 2.2 V, See Note 1 VCC−0.25 VCC IOH(max) = −6 mA, VCC = 2.2 V, See Note 2 VCC−0.6 VCC IOH(max) = −1.5 mA, VCC = 3 V, See Note 1 VCC−0.25 VCC IOH(max) = −6 mA, VCC = 3 V, See Note 2 VCC−0.6 VCC IOL(max) = 1.5 mA, VCC = 2.2 V, See Note 1 VSS VSS+0.25 IOL(max) = 6 mA, VCC = 2.2 V, See Note 2 VSS VSS+0.6 IOL(max) = 1.5 mA, VCC = 3 V, See Note 1 VSS VSS+0.25 IOL(max) = 6 mA, VCC = 3 V, See Note 2 VSS VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER f(Px.y) (1 ≤ x ≤ 10 10, 0 ≤ y ≤ 7) f(MCLK) P1.1/TA0/MCLK, f(SMCLK) P1.4/TBCLK/SMCLK, f(ACLK) P1.5/TACLK/ACLK t(Xdc) Duty cycle of output frequency TEST CONDITIONS CL = 20 pF, IL = ±1.5 mA CL = 20 pF MAX UNIT VCC = 2.2 V MIN DC TYP 10 MHz VCC = 3 V DC 12 MHz 10 MHz MHz VCC = 2 2.2 2V VCC = 3 V DC 12 P1.5/TACLK/ACLK, CL = 20 pF VCC = 2.2 V / 3 V f(ACLK) = f(LFXT1) = f(XT1) 40% 60% f(ACLK) = f(LFXT1) = f(LF) 30% P1.1/TA0/MCLK, CL = 20 pF, VCC = 2.2 V / 3 V f(MCLK) = f(XT1) P1.4/TBCLK/SMCLK, CL = 20 pF, VCC = 2.2 V / 3 V f(SMCLK) = f(XT2) POST OFFICE BOX 655303 f(ACLK) = f(LFXT1) f(MCLK) = f(DCOCLK) f(SMCLK) = f(DCOCLK) • DALLAS, TEXAS 75265 70% 50% 40% 50%− 15 ns 60% 50% 50%+ 15 ns 40% 60% 50%− 15 ns 50% 50%+ 15 ns 33 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics − outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 I OL − Typical Low-Level Output Current − mA I OL − Typical Low-Level Output Current − mA 25.0 TA = 25°C VCC = 2.2 V P2.0 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.0 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 TA = 25°C 0.5 VOL − Low-Level Output Voltage − V 1.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE I OH − Typical High-Level Output Current − mA I OH − Typical High-Level Output Current − mA 3.5 −5.0 −10.0 −15.0 TA = 85°C TA = 25°C 1.0 1.5 2.0 2.5 VCC = 3 V P2.0 −10.0 −20.0 −30.0 −40.0 TA = 85°C −50.0 0.0 VOH − High-Level Output Voltage − V TA = 25°C 0.5 1.0 1.5 Figure 5 POST OFFICE BOX 655303 2.0 2.5 3.0 VOH − High-Level Output Voltage − V Figure 4 34 3.0 0.0 VCC = 2.2 V P2.0 0.5 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 −25.0 0.0 2.0 Figure 3 Figure 2 −20.0 1.5 VOL − Low-Level Output Voltage − V • DALLAS, TEXAS 75265 3.5 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) wake-up LPM3 PARAMETER TEST CONDITIONS MIN TYP f = 1 MHz td(LPM3) f = 2 MHz Delay time MAX UNIT 6 6 VCC = 2.2 V/3 V f = 3 MHz μs 6 RAM PARAMETER VRAMh TEST CONDITIONS CPU halted (see Note 1) MIN 1.6 TYP MAX UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) LCD_A PARAMETER TEST CONDITIONS Supply voltage (see Note 2) Charge pump enabled (LCDCPEN = 1; VLCDx > 0000) ICC(LCD) Supply current (see Note 2 ) VLCD(typ)=3 V; LCDCPEN = 1, VLCDx= 1000; all segments on, fLCD = fACLK/32, no LCD connected (see Note 4) TA = 25°C CLCD Capacitor on LCDCAP (see Note 1 and Note 3) Charge pump enabled (LCDCPEN = 1; VLCDx > 0000) fLCD LCD frequency VCC(LCD) VLCD RLCD LCD voltage (see Note 3) LCD driver output impedance VCC MIN TYP 2.2 2.2 V MAX 3.6 μF 4.7 VLCDx = 0000 VCC VLCDx = 0001 2.60 VLCDx = 0010 2.66 VLCDx = 0011 2.72 VLCDx = 0100 2.78 VLCDx = 0101 2.84 VLCDx = 0110 2.90 VLCDx = 0111 2.96 VLCDx = 1000 3.02 VLCDx = 1001 3.08 VLCDx = 1010 3.14 VLCDx = 1011 3.20 VLCDx = 1100 3.26 VLCDx = 1101 3.32 VLCDx = 1110 3.38 VLCDx = 1111 3.44 2.2 V V μA 3 1.1 VLCD=3 V; CPEN = 1; VLCDx = 1000, ILOAD = 10 μΑ UNIT kHz V 3.60 10 kΩ NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device. 2. Refer to the supply current specifications I(LPM3) for additional current specifications with the LCD_A module active. 3. Segments S0 through S3 are disabled when the LCD charge pump feature is enabled (LCDCPEN = 1) and cannot be used together with the LCD charge pump. In addition, when using segments S0 through S3 with an external LCD voltage supply, VLCD ≤ AVCC. 4. Connecting an actual display will increase the current consumption depending on the size of the LCD. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON 1 CARSEL=0, CAON=1, CARSEL 0 CAREF=0 CAREF 0 I(Refladder/RefDiode) CAON=1, CARSEL=0, CAREF=1/2/3, No load at P1.6/CA0 P1 6/CA0 and P1.7/CA1 V(Ref025) V(Ref050) Voltage @ 0.25 V V CC TYP MAX VCC = 2.2 V 25 40 VCC = 3 V 45 60 VCC = 2.2 V 30 50 VCC = 3 V 45 71 node PCA0=1, CARSEL=1, CAREF=1, No load at P1.6/CA0 and P1.7/CA1 VCC = 2.2 V / 3 V 0.23 0.24 0.25 node PCA0=1, CARSEL=1, CAREF=2, No load at P1.6/CA0 and P1.7/CA1 VCC = 2.2V / 3 V 0.47 0.48 0.5 PCA0=1, CARSEL=1, CAREF=3, No load at P1.6/CA0 P1 6/CA0 and P1.7/CA1; P1 7/CA1; TA = 85°C VCC = 2.2 V 390 480 540 VCC = 3 V 400 490 550 CC V CC Voltage @ 0.5 V MIN CC V(RefVT) UNIT μA A μA A mV VIC Common-mode input voltage range CAON=1 VCC = 2.2 V / 3 V 0 VCC−1 Vp−VS Offset voltage See Note 2 VCC = 2.2 V / 3 V −30 30 mV Vhys Input hysteresis CAON = 1 VCC = 2.2 V / 3 V mV TA = 25 25°C, C, Overdrive 10 mV, without filter: CAF = 0 VCC = 2.2 V t(response LH) t(response HL) 0 0.7 1.4 160 210 300 VCC = 3 V 80 150 240 TA = 25 25°C C Overdrive 10 mV, with filter: CAF = 1 VCC = 2.2 V 1.4 1.9 3.4 VCC = 3 V 0.9 1.5 2.6 TA = 25 25°C C Overdrive 10 mV, without filter: CAF = 0 VCC = 2.2 V 130 210 300 VCC = 3 V 80 150 240 25°C, TA = 25 C, Overdrive 10 mV, with filter: CAF = 1 VCC = 2.2 V 1.4 1.9 3.4 VCC = 3 V 0.9 1.5 2.6 V ns μss ns μss NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 typical characteristics REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 2.2 V 600 VREF − Reference Voltage − mV VREF − Reference Voltage − mV VCC = 3 V Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 TA − Free-Air Temperature − °C Figure 6. V(RefVT) vs Temperature 0V 0 −5 15 35 55 Figure 7. V(RefVT) vs Temperature VCC 1 CAF CAON Low-Pass Filter V+ V− + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2 μs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V− 400 mV V+ t(response) Figure 9. Overdrive Definition 38 75 TA − Free-Air Temperature − °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 95 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Note 1) PARAMETER TEST CONDITIONS MIN TYP td(BOR) dVCC/dt ≤ 3 V/s (see Figure 10) VCC(start) V(B_IT−) Vhys(B_IT−) t(reset) UNIT 2000 μs 0.7 × V(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 10 through Figure 12) Brownout (see Notes 2 and 3) MAX dVCC/dt ≤ 3 V/s (see Figure 10) 70 Pulse length needed at RST/NMI pin to accepted reset internally, VCC = 2.2 V/3 V 2 130 V 1.79 V 210 mV μs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. 2. The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.89V. 3. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+ settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide for more information on the brownout/SVS circuit. typical characteristics VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − μs 1 ns tpw − Pulse Width − μs Figure 11. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 typical characteristics (continued) VCC 2 t pw 3V VCC(drop) − V VCC = 3 V 1.5 Typical Conditions 1 VCC(drop) 0.5 tf = tr 0 0.001 1 1000 tf tr tpw − Pulse Width − μs tpw − Pulse Width − μs Figure 12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal electrical characteristics over recommended operating free-air temperature (unless otherwise noted) SVS (supply voltage supervisor/monitor) (see Note 1) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 13) 5 MAX 150 dVCC/dt ≤ 30 V/ms 2000 td(SVSon) SVS on, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0‡ V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13) 150 1.55 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 13) VLD = 2 .. 14 Vhys(SVS_IT−) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 VCC/dt ≤ 3 V/s (see Figure 13) V(SVS_IT−) (SVS IT ) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 ICC(SVS) (see Note 1) TYP VLD = 15 70 120 μs 12 μs 1.7 V 155 mV V(SVS_IT−) x 0.001 V(SVS_IT−) x 0.016 4.4 20 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.23 VLD = 3 2.05 2.2 2.35 VLD = 4 2.14 2.3 2.46 VLD = 5 2.24 2.4 2.58 VLD = 6 2.33 2.5 2.69 VLD = 7 2.46 2.65 2.84 VLD = 8 2.58 2.8 2.97 VLD = 9 2.69 2.9 3.10 VLD = 10 2.83 3.05 3.26 VLD = 11 2.94 3.2 3.39 VLD = 12 3.11 3.35 3.58† VLD = 13 3.24 3.5 3.73† VLD = 14 3.43 3.7† 3.96† VLD = 15 1.1 1.2 1.3 10 15 † μs 300 VLD = 1 VLD ≠ 0, VCC = 2.2 V/3 V UNIT mV V μA The recommended operating voltage range is limited to 3.6 V. tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data. ‡ 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 typical characteristics Software Sets VLD>0: SVS is Active VCC V(SVS_IT−) V(SVSstart) Vhys(SVS_IT−) Vhys(B_IT−) V(B_IT−) VCC(start) BrownOut Region Brownout Region Brownout 1 0 td(BOR) SVSOut t d(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT−) 1 0 td(SVSon) Set POR 1 td(SVSR) undefined 0 Figure 13. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 Rectangular Drop VCC(drop) VCC(drop) − V 1.5 Triangular Drop 1 1 ns 1 ns 0.5 VCC t pw 3V 0 1 10 100 1000 tpw − Pulse Width − μs VCC(drop) tf = tr tf tr t − Pulse Width − μs Figure 14. VCC(drop) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) DCO PARAMETER f(DCOCLK) VCC N(DCO)=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0 MIN TYP 2.2 V 0.3 0.65 1.25 3V 0.3 0.7 1.3 2.2 V 2.5 5.6 10.5 3V 2.7 6.1 11.3 2.2 V 0.7 1.3 2.3 3V 0.8 1.5 2.5 2.2 V 5.7 10.8 18 3V 6.5 12.1 20 2.2 V 1.2 2 3 3V 1.3 2.2 3.5 2.2 V 9 15.5 25 3V 10.3 17.9 28.5 2.2 V 1.8 2.8 4.2 3V 2.1 3.4 5.2 2.2 V 13.5 21.5 33 3V 16 26.6 41 2.2 V 2.8 4.2 6.2 3V 4.2 6.3 9.2 2.2 V 21 32 46 3V 30 46 70 2.2 V/3 V MAX 1 FN 8 FN 4 FN 3 FN 2 0 ; DCOPLUS = 1 FN_8=FN_4=FN_3=FN_2=0 f(DCO=27) FN 8 FN 4 FN 3 FN 2 0; DCOPLUS = 1 FN_8=FN_4=FN_3=FN_2=0; f(DCO=2) FN 8 FN 4 FN 3 0 FN FN_8=FN_4=FN_3=0, FN_2=1; 2 1; DCOPLUS = 1 f(DCO=27) FN 8 FN 4 FN 3 0 FN FN_8=FN_4=FN_3=0, FN_2=1; 2 1; DCOPLUS = 1 f(DCO=2) FN 8 FN 4 0 FN 3 1 2 x; DCOPLUS = 1 FN_8=FN_4=0, FN_3= 1, FN FN_2=x; f(DCO=27) FN 8 FN 4 0 FN FN_8=FN_4=0, FN_3= 3 1 1, FN FN_2=x; 2 x; DCOPLUS = 1 f(DCO=2) FN 8 0 FN FN_8=0, FN_4= 4 1 1, FN FN_3= 3 FN FN_2=x; 2 x; DCOPLUS = 1 f(DCO=27) FN 8 0 FN FN_8=0, FN_4=1, 4 1 FN FN_3= 3 FN FN_2=x; 2 x; DCOPLUS = 1 f(DCO=2) FN 8 1 FN FN_8=1, FN_4=FN_3=FN_2=x; 4 FN 3 FN 2 x; DCOPLUS = 1 f(DCO=27) FN 8 1 FN 4 FN 3 FN 2 x; DCOPLUS = 1 FN_8=1,FN_4=FN_3=FN_2=x; Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n) (see Figure 16 for taps 21 to 27) 1 < TAP ≤ 20 1.06 Sn TAP = 27 1.07 –0.2 –0.3 –0.4 Dt Temperature drift, N(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0 D = 2; DCOPLUS = 0 2.2 V 3V –0.2 –0.3 –0.4 DV Drift with VCC variation, N(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0 D = 2; DCOPLUS = 0 0 5 15 f (DCO) f (DCO3V) MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz 1.11 1.17 %/_C %/V (DCO) (DCO205C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC − V −40 −20 0 20 40 60 Figure 15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 42 UNIT MHz f(DCO=2) f f TEST CONDITIONS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 TA − °C MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 16. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) crystal oscillator, LFXT1 oscillator (see Notes 1 and 2) PARAMETER CXIN CXOUT Integrated input capacitance (see Note 4) Integrated output capacitance (see Note 4) TEST CONDITIONS MIN 0 OSCCAPx = 1h, VCC = 2.2 V / 3 V 10 OSCCAPx = 2h, VCC = 2.2 V / 3 V 14 OSCCAPx = 3h, VCC = 2.2 V / 3 V 18 OSCCAPx = 0h, VCC = 2.2 V / 3 V 0 OSCCAPx = 1h, VCC = 2.2 V / 3 V 10 OSCCAPx = 2h, VCC = 2.2 V / 3 V 14 OSCCAPx = 3h, VCC = 2.2 V / 3 V VIL VIH Input levels at XIN TYP OSCCAPx = 0h, VCC = 2.2 V / 3 V VCC = 2 2.2 2 V/3 V (see Note 3) MAX UNIT pF pF 18 VSS 0.2×VCC 0.8×VCC VCC V NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is (CXIN x CXOUT) / (CXIN + CXOUT). This is independent of XTS_FLL. 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed. − Keep the trace between the device and the crystal as short as possible. − Design a good ground plane around the oscillator pins. − Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. − Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. − Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. − If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. − Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator. 4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h. crystal oscillator, XT2 oscillator (see Note 1) PARAMETER TEST CONDITIONS CXT2IN Integrated input capacitance VCC = 2.2 V/3 V CXT2OUT Integrated output capacitance VCC = 2.2 V/3 V VIL VIH Input levels at XT2IN MIN NOM MAX 2 pF 2 2 2 V/3 V (see Note 2) VCC = 2.2 pF VSS 0.2 × VCC V 0.8 × VCC VCC V NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals Baudrate in MBaud) tτ UART receive deglitch time (see Note 1) TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10% 2.2V /3 V MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 150 600 3V 50 100 600 ns NOTE 1: Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. USCI (SPI master mode) (see Figure 18 and Figure 19) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time TEST CONDITIONS VCC MIN TYP SMCLK, ACLK Duty Cycle = 50% ± 10% UCLK edge to SIMO valid; CL = 20 pF 2.2 V 110 3V 75 2.2 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 2.2 V 30 3V 20 ns USCI (SPI slave mode) (see Figure 20 and Figure 21) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time STE low to clock 2.2 V/3 V tSTE,LAG STE lag time Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time UCLK edge to SOMI valid; CL = 20 pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 50 ns 10 2.2 V 20 3V 15 2.2 V 10 3V 10 ns ns ns 2.2 V 75 110 3V 50 75 ns 45 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tVALID ,MO SIMO Figure 18. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,MI SOMI tVALID ,MO SIMO Figure 19. SPI Master Mode, CKPH = 1 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 tHD,MI MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,SIMO tHD,SIMO SIMO tACC tVALID ,SOMI tDIS SOMI Figure 20. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLOW/HIGH tLOW/HIGH tSU,SI tHD,SI SIMO tACC tVALID ,SO tDIS SOMI Figure 21. SPI Slave Mode, CKPH = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 22) PARAMETER TEST CONDITIONS fUSCI USCI input clock frequency fSCL SCL clock frequency VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10% 2.2 V/3 V 0 fSCL ≤ 100kHz 2.2 V/3 V 4.0 fSCL > 100kHz 2.2 V/3 V 0.6 fSCL ≤ 100kHz 2.2 V/3 V 4.7 fSCL > 100kHz 2.2 V/3 V 0.6 MAX UNIT fSYSTEM MHz 400 kHz μss tHD,STA Hold time (repeated) START tSU,STA Set up time for a repeated START Set−up tHD,DAT Data hold time 2.2 V/3 V 0 tSU,DAT Data set−up time 2.2 V/3 V 250 ns tSU,STO Set−up time for STOP 2.2 V/3 V 4.0 μs Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 tSP 3V 50 100 600 tHD , STA μss ns tSU , STA tHD , STA ns tBUF SDA t LOW tHIGH tSP SCL tSU ,DAT tSU , STO tHD ,DAT Figure 22. I2C Mode Timing USART1 (see Note 1) PARAMETER t(τ) USART1 deglitch time TEST CONDITIONS MIN TYP MAX VCC = 2.2 V, SYNC = 0, UART mode 200 430 800 VCC = 3 V, SYNC = 0, UART mode 150 280 500 UNIT ns NOTE 1: The signal applied to the USART1 receive signal/terminal (URXD1) should meet the timing requirements of t(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD1 line. 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, power supply and input range conditions (see Note 1) PARAMETER TEST CONDITIONS MIN AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(P6.x/Ax) Analog input voltage range (see Note 2) All external Ax terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1, V(AVSS) ≤ VAx ≤ V(AVCC) IADC12 Operating supply current into AVCC terminal (see Note 3) fADC12CLK = 5.0 MHz, ADC12ON = 1, 1 REFON = 0, 0 SHT0=0, SHT1=0, ADC12DIV=0 Operating supply current i t AVCC tterminal into i l (see Note 4) IREF+ MAX UNIT 2.2 3.6 V 0 VAVCC V VCC = 2.2 V 0.65 1.3 VCC = 3 V 0.8 1.6 VCC = 3 V 0.5 0.8 VCC = 2.2 V 0.5 0.8 VCC = 3 V 0.5 0.8 mA fADC12CLK = 5.0 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5.0 MHz, ADC12ON = 0 0, REFON = 1, REF2_5V = 0 mA mA CI Input capacitance Only one terminal can be selected at one time, Ax VCC = 2.2 V RI Input MUX ON resistance 0V ≤ VAx ≤ VAVCC VCC = 3 V NOTES: 1. 2. 3. 4. TYP 40 pF 2000 Ω The leakage current is defined in the leakage current table with Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. 12-bit ADC, external reference (see Note 1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VREF−/VeREF−, (see Note 2) 1.4 VAVCC V VREF− /VeREF− Negative external reference voltage input VeREF+ > VREF−/VeREF−, (see Note 3) 0 1.2 V (VeREF+ − VREF−/VeREF−) Differential external reference voltage input VeREF+ > VREF−/VeREF−, (see Note 4) 1.4 VAVCC V IVeREF+ Input leakage current 0V ≤VeREF+ ≤ VAVCC VCC = 2.2 V/3 V ±1 μA IVREF−/VeREF− Input leakage current 0V ≤ VeREF− ≤ VAVCC VCC = 2.2 V/3 V ±1 μA NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, built-in reference PARAMETER Positive built in reference built-in voltage output VREF+ AVCC(min) AVCC minimum voltage, Positive built-in built in reference active IVREF+ Load current out of VREF+ terminal Load current regulation Load-current VREF+ terminal IL(VREF)+ TEST CONDITIONS MIN NOM MAX REF2_5V = 1 for 2.5 V, IVREF+max ≤ IVREF+≤ IVREF+min VCC = 3 V 2.4 2.5 2.6 REF2_5V = 0 for 1.5 V, IVREF+max ≤ IVREF+≤ IVREF+min VCC = 2.2 V/3 V 1.44 1.5 1.56 REF2_5V = 0, IVREF+max ≤ IVREF+ ≤ IVREF+min 2.2 REF2_5V = 1, IVREF+min ≥ IVREF+ ≥ −0.5mA 2.8 V REF2_5V = 1, IVREF+min ≥ IVREF+ ≥ −1mA IVREF+ = 500 μA +/− 100 μA, Analog input voltage ~0.75 0 75 V; REF2_5V = 0 UNIT V 2.9 VCC = 2.2 V 0.01 −0.5 VCC = 3 V 0.01 −1 mA VCC = 2.2 V ±2 VCC = 3 V ±2 IVREF+ = 500 μA ± 100 μA, Analog input voltage ~1.25 V, REF2_5V = 1 VCC = 3 V ±2 LSB 20 ns IDL(VREF) + Load current regulation VREF+ terminal IVREF+ =100 μA → 900 μA, CVREF+=5 5 μF μF, ax ~0.5 0 5 x VREF+, Error of conversion result ≤ 1 LSB VCC = 3 V CVREF+ Capacitance at pin VREF+ (see Note 1) REFON =1, 0 mA ≤ IVREF+ ≤ IVREF+max VCC = 2.2 V/3 V TREF+ Temperature coefficient of built-in reference IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA VCC = 2.2 V/3 V tREFON Settle time of internal reference voltage (see Figure 23 and Note 2) IVREF+ = 0.5 mA, CVREF+ = 10 μF, VREF+ = 1.5 V, VAVCC = 2.2 V 5 LSB μF 10 ±100 17 ppm/°C ms NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF−/VeREF− and AVSS: 10 μF tantalum and 100 nF ceramic. 2. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. CVREF+ 100 μF tREFON ≈ .66 x CVREF+ [ms] with CVREF+ in μF 10 μF 1 μF 0 1 ms 10 ms 100 ms tREFON Figure 23. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 DVCC1/2 From Power Supply + − 10 μ F DVSS1/2 100 nF AVCC + − 10 μ F Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 100 nF VREF+ or VeREF+ + − Apply External Reference 10 μ F 100 nF VREF−/VeREF− + − 10 μ F MSP430FG461x AVSS 100 nF Figure 24. Supply Voltage and Reference Voltage Design VREF−/VeREF− External Supply From Power Supply DVCC1/2 + − 10 μ F DVSS1/2 100 nF AVCC + − Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 10 μ F 100 nF VREF+ or VeREF+ + − 10 μ F MSP430FG461x AVSS 100 nF Reference Is Internally Switched to AVSS VREF−/VeREF− Figure 25. Supply Voltage and Reference Voltage Design VREF−/VeREF− = AVSS, Internally Connected POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, timing parameters PARAMETER TEST CONDITIONS fADC12CLK fADC12OSC tCONVERT Internal ADC12 oscillator Conversion time MIN NOM MAX UNIT For specified performance of ADC12 linearity parameters VCC = 2.2V/3 V 0.45 5 6.3 MHz ADC12DIV=0, fADC12CLK=fADC12OSC VCC = 2.2 V/ 3 V 3.7 5 6.3 MHz CVREF+ ≥ 5 μF, Internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz VCC = 2.2 V/ 3 V 2.06 3.51 μs External fADC12CLK from ACLK, MCLK, or SMCLK, ADC12SSEL ≠ 0 tADC12ON Turn on settling time of the ADC (see Note 1) tSample Sampling time RS = 400 Ω, RI = 1000 Ω, CI = 30 pF pF, τ = [RS + RI] x CI, (see Note 2) 13×ADC12DIV× 1/fADC12CLK μs 100 VCC = 3 V 1220 VCC = 2.2 V 1400 ns ns NOTES: 1. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. 2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. 12-bit ADC, linearity parameters PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ − VREF−/VeREF−) min ≤ 1.6 V MIN NOM MAX ±2 UNIT 1.6 V < (VeREF+ − VREF−/VeREF−) min ≤ [VAVCC] VCC = 2.2 V/3 V ±1.7 LSB Differential linearity error (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) VCC = 2.2 V/3 V ±1 LSB EO Offset error (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), Internal impedance of source RS < 100 Ω, CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) VCC = 2.2 V/3 V ±2 ±4 LSB EG Gain error (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) VCC = 2.2 V/3 V ±1.1 ±2 LSB ET Total unadjusted error (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) VCC = 2.2 V/3 V ±2 ±5 LSB EI Integral linearity error ED 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, temperature sensor and built-in VMID PARAMETER TEST CONDITIONS VCC MIN NOM MAX Operating supply current into AVCC terminal (see Note 1) REFON = 0, INCH = 0Ah, ADC12ON=NA, TA = 25_C 2.2 V 40 120 ISENSOR 3V 60 160 VSENSOR (see Note 2) ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V/ 3V 986 ADC12ON = 1 1, INCH = 0Ah 2.2 V/ 3V 3 55±3% 3.55±3% TCSENSOR mV/°C Sample time required if channel 10 is selected (see Note 3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 (see Note 4) ADC12ON = 1 1, INCH = 0Bh 1.1 1.1±0.04 AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 x VAVCC 2.2 V VMID 3V 1.5 1.50±0.04 Sample time required if channel 11 is selected (see Note 5) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 tVMID(sample) 3V 1220 30 3V 30 μA A mV tSENSOR(sample) 2.2 V UNIT μss 2.2 V NA 3V NA μA A V ns NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. 2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor. 3. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on) 4. No additional current is needed. The VMID is used during sampling. 5. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 12-bit DAC, supply specifications PARAMETER AVCC Analog supply voltage TEST CONDITIONS VCC AVCC = DVCC, AVSS = DVSS =0 V IDD DAC12AMPx=2, DAC12IR=1, DAC12_xDAT=0800h , VeREF+=VREF+= AVCC DAC12AMPx=5, DAC12IR=1, DAC12_xDAT=0800h, VeREF+=VREF+= AVCC PSRR DAC12_xDAT = 800h, VREF = 1.5 V, ΔAVCC = 100mV DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V, ΔAVCC = 100mV MAX UNIT 3.60 V 50 110 50 110 200 440 700 1500 μA A 2 2 V/3 V 2.2 DAC12AMPx=7, DAC12IR=1, DAC12_xDAT=0800h, VeREF+=VREF+= AVCC Power-supply rejection ratio (see Notes 3 and 4) TYP 2.20 DAC12AMPx=2, DAC12IR=0, DAC12_xDAT=0800h Supply current: Single DAC Channel (see Notes 1 and 2) MIN 2.2 V 70 dB 3V NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. 2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. 3. PSRR = 20*log{ΔAVCC/ΔVDAC12_xOUT}. 4. VREF is applied externally. The internal reference is not used. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, linearity specifications (see Figure 26) PARAMETER TEST CONDITIONS Resolution INL DNL EO MIN (12-bit Monotonic) Integral nonlinearity (see Note 1) Differential nonlinearity (see Note 1) Offset voltage without calibration (see Notes 1, 2) Offset voltage with calibration (see Notes 1, 2) dE(O)/dT VCC Gain error (see Note 1) dE(G)/dT Gain temperature coefficient (see Note 1) tOffset_Cal Time for offset calibration (see Note 3) MAX 12 Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V Vref = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 3V UNIT bits ±2 0 ±2.0 ±8.0 ±8 0 LSB ±0 4 ±0.4 ±1.0 ±1 0 LSB ±21 mV ±2 5 ±2.5 Offset error temperature coefficient (see Note 1) EG TYP ±30 2.2 V/3 V VREF = 1.5 V 2.2 V VREF = 2.5 V 3V μV/°C ±3 50 ±3.50 2.2 V/3 V ppm of FSR/°C 10 DAC12AMPx = 2 % FSR 100 DAC12AMPx = 3,5 32 2.2 V/3 V DAC12AMPx = 4,6,7 ms 6 NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of the first order equation: y = a + b*x. VDAC12_xOUT = EO + (1 + EG) * (VeREF+/4095) * DAC12_xDAT, DAC12IR = 1. 2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON 3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect accuracy and is not recommended. DAC V OUT DAC Output VR+ RLoad = Ideal transfer function AV CC 2 CLoad = 100pF Offset Error Positive Negative Gain Error DAC Code Figure 26. Linearity Test Load Conditions and Gain/Offset Definition 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, linearity specifications (continued) TYPICAL INL ERROR vs DIGITAL INPUT DATA INL − Integral Nonlinearity Error − LSB 4 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 3 2 1 0 −1 −2 −3 −4 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT − Digital Code TYPICAL DNL ERROR vs DIGITAL INPUT DATA DNL − Differential Nonlinearity Error − LSB 2.0 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 1.5 1.0 0.5 0.0 −0.5 −1.0 −1.5 −2.0 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT − Digital Code POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, output specifications PARAMETER TEST CONDITIONS VCC MIN No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 VO Output voltage range (see Note 1, Figure 29) No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 RLoad= 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 Max DAC12 load capacitance IL(DAC12) Max DAC12 load current 0 0.005 AVCC−0.05 AVCC Output resistance ((see Figure g 29)) 0 0.1 AVCC−0.13 AVCC 2.2V/3V RLoad= 3 kΩ, VO/P(DAC12) > AVCC−0.3 V DAC12_xDAT = 0FFFh 100 2.2V −0.5 +0.5 3V −1.0 +1.0 2.2 V/3 V RLoad= 3 kΩ, 0.3V ≤ VO/P(DAC12) ≤ AVCC − 0.3V NOTE 1: Data is valid after the offset calibration of the output amplifier. ILoad UNIT V RLoad= 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h RO/P(DAC12) MAX 2 2 V/3 V 2.2 RLoad= 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 CL(DAC12) TYP 150 250 150 250 1 4 pF mA Ω RO/P(DAC12_x) Max RLoad AV CC DAC12 2 O/P(DAC12_x) CLoad= 100pF Min 0.3 AV CC−0.3V VOUT AV CC Figure 29. DAC12_x Output Resistance Tests 56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) 12-bit DAC, reference input specifications PARAMETER TEST CONDITIONS Reference input voltage range VeREF+ VCC MIN DAC12IR=0 (see Notes 1 and 2) 2 2 V/3 V 2.2 DAC12IR=1 (see Notes 3 and 4) DAC12_0 IR=DAC12_1 IR =0 TYP MAX AVCC/3 AVCC+0.2 AVcc AVcc+0.2 20 UNIT V MΩ DAC12_0 IR=1, DAC12_1 IR = 0 Ri(VREF+), Ri(VeREF+) NOTES: 1. 2. 3. 4. 5. Reference input p 40 DAC12_0 IR=0, DAC12_1 IR = 1 48 56 2 2 V/3 V 2.2 resistance kΩ DAC12_0 IR=DAC12_1 IR =1, DAC12_0 SREFx = DAC12_1 SREFx 20 24 28 (see Note 5) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC − VE(O)] / [3*(1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC − VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. 12-bit DAC, dynamic specifications; Vref = VCC, DAC12IR = 1 (see Figure 30 and Figure 31) PARAMETER tON TEST CONDITIONS DAC12 on-time on time DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (see Note 1,Figure 30) Settling time, time full-scale full scale DAC12_xDAT DAC12 xDAT = 80h→ F7Fh→ 80h VCC MIN DAC12AMPx = 0 → {2, 3, 4} DAC12AMPx = 0 → {5, 6} 2.2 V/3 V DAC12AMPx = 0 → 7 DAC12AMPx = 2 tS(FS) tS(C-C) SR Settling time, time code to code Slew rate DAC12AMPx = 3,5 2.2 V/3 V DAC12AMPx = 4,6,7 DAC12_xDAT = 3F8h→ 408h→ 3F8h DAC12AMPx = 2 BF8h→ C08h→ BF8h DAC12AMPx = 4,6,7 DAC12_xDAT = 80h→ F7Fh→ 80h (see Note 2) DAC12AMPx = 2 120 15 30 6 12 100 200 40 80 15 30 2 2.2 V/3 V UNIT μs μs μs 1 DAC12AMPx = 3,5 2.2 V/3 V DAC12AMPx = 4,6,7 0.05 0.12 0.35 0.7 1.5 2.7 DAC12AMPx = 2 Glitch energy, full full-scale scale MAX 60 5 DAC12AMPx = 3,5 DAC12 xDAT = DAC12_xDAT 80h→ F7Fh→ 80h TYP V/μs 600 DAC12AMPx = 3,5 2.2 V/3 V DAC12AMPx = 4,6,7 150 nV-ss nV 30 NOTES: 1. RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 30. 2. Slew rate applies to output voltage steps >= 200mV. Conversion 1 VOUT DAC Output ILoad RLoad = 3 kΩ Glitch Energy Conversion 2 Conversion 3 +/− 1/2 LSB AV CC 2 RO/P(DAC12.x) +/− 1/2 LSB CLoad = 100pF tsettleLH tsettleHL Figure 30. Settling Time and Glitch Energy Testing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRLH tSRHL Figure 31. Slew Rate Testing 12-bit DAC, dynamic specifications continued (TA = 25°C unless otherwise noted) PARAMETER TEST CONDITIONS VCC DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h BW−3dB 3 dB bandwidth, b d idth 3-dB VDC=1.5V, VAC=0.1VPP (see Figure 32) DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h TYP MAX UNIT 40 2.2 V/3 V DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 180 kHz 550 DAC12_0DAT = 800h, No Load, DAC12_1DAT = 80h<−>F7Fh, RLoad = 3kΩ fDAC12_1OUT = 10kHz @ 50/50 duty cycle Channel-to-channel crosstalk (see Note 1 and Figure 33) MIN DAC12_0DAT = 80h<−>F7Fh, RLoad = 3kΩ, DAC12_1DAT = 800h, No Load, fDAC12_0OUT = 10kHz @ 50/50 duty cycle −80 2 2 V/3 V 2.2 dB −80 NOTE 1: RLOAD = 3 kΩ, CLOAD = 100 pF ILoad Ve REF+ RLoad = 3 kΩ AV CC DAC12_x 2 DACx AC CLoad = 100pF DC Figure 32. Test Conditions for 3-dB Bandwidth Specification ILoad RLoad AV CC DAC12_0 DAC12_xDAT 080h 2 DAC0 7F7h 080h V OUT CLoad= 100pF VREF+ ILoad e V DAC12_yOUT RLoad AV CC DAC12_1 V DAC12_xOUT 2 DAC1 fToggle CLoad= 100pF Figure 33. Crosstalk Test Conditions 58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7F7h 080h MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) operational amplifier OA, supply specifications PARAMETER VCC ICC TEST CONDITIONS Supply voltage Supply current (see Note 1) VCC — MIN TYP 2.2 MAX UNIT 3.6 Fast Mode, OARRIP = 1 (rail-to-rail mode off) 180 290 Medium Mode, OARRIP = 1 (rail-to-rail mode off) 110 190 50 80 300 490 Medium Mode, OARRIP = 0 (rail-to-rail mode on) 190 350 Slow Mode, OARRIP = 0 (rail-to-rail mode on) 90 190 Slow Mode, OARRIP = 1 (rail-to-rail mode off) Fast Mode, OARRIP = 0 (rail-to-rail mode on) POST OFFICE BOX 655303 A μA 2 2 V/3 V 2.2 PSRR Power supply rejection ratio Non-inverting 2.2 V/3 V NOTE 1: P6SEL.x = 1 for each corresponding pin when used in OA input or OA output mode. • DALLAS, TEXAS 75265 V 70 dB 59 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 operational amplifier OA, input/output specifications PARAMETER TEST CONDITIONS VCC OARRIP = 1 (rail-to-rail mode off) VI/P Voltage supply supply, I/P IIkg Input leakage current, I/P (see Notes 1 and 2) OARRIP = 0 (rail-to-rail mode on) TA = −40 to +55_C — — TA = +55 to +85_C MIN TYP VCC−1.2 −0.1 VCC+0.1 −5 ±0.5 5 −20 ±5 20 Voltage noise density density, I/P 140 — 50 fV(I/P) = 10 kHz 65 Offset voltage voltage, I/P see Note 3 2.2 V/3 V Offset voltage drift with supply, I/P 0.3V ≤ VIN ≤ VCC−0.3V ΔVCC≤ ± 10%, TA = 25°C 2.2 V/3 V High level output voltage High-level voltage, O/P VOL Low level output voltage Low-level voltage, O/P Output Resistance (see Figure 34 and Note 4) CMRR Common-mode rejection ratio 60 ±1.5 VCC−0.2 VCC Slow Mode,ISOURCE ≤ −150μA 3V VCC−0.1 VCC Fast Mode, ISOURCE ≤ +500μA 2.2 V VSS 0.2 Slow Mode,ISOURCE ≤ +150μA 3V VSS 0.1 RLoad= 3 kΩ, CLoad = 50pF, OARRIP = 0 (rail-to-rail mode on), VO/P(OAx) > AVCC − 0.2 V 2.2 V/3 V Non-inverting 2.2 V/3 V ESD damage can degrade input current leakage. The input bias current is overridden by the input leakage current. Calculated using the box method. Specification valid for voltage-follower OAx configuration. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 150 250 150 250 0.1 4 70 mV μV/°C 2.2 V RLoad= 3 kΩ, CLoad = 50pF, OARRIP = 0 (rail-to-rail mode on), 0.2 V ≤ VO/P(OAx) ≤ AVCC − 0.2 V NOTES: 1. 2. 3. 4. ±10 Fast Mode, ISOURCE ≤ −500μA RLoad= 3 kΩ, CLoad = 50pF, OARRIP = 0 (rail-to-rail mode on), VO/P(OAx) < 0.2 V RO/P (OAx) ±10 2 2 V/3 V 2.2 Offset temperature drift, I/P VOH nV/√Hz 30 Slow Mode VIO nA 80 fV(I/P) = 1 kHz Fast Mode Medium Mode V 50 Slow Mode Vn UNIT −0.1 Fast Mode Medium Mode MAX mV/V V V Ω dB MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) RO/P(OAx) Max RLoad ILoad AV CC OAx 2 CLoad O/P(OAx) Min 0.2V AV CC −0.2VAV V CC OUT Figure 34. OAx Output Resistance Tests operational amplifier OA, dynamic specifications PARAMETER SR TEST CONDITIONS Slew rate VCC TYP MAX UNIT — 1.2 Medium Mode — 0.8 Slow Mode — 0.3 — 100 dB Open-loop voltage gain φm MIN Fast Mode V/μs Phase margin CL = 50 pF — 60 deg Gain margin CL = 50 pF — 20 dB Gain-bandwidth product (see Figure 35 and Figure 36) Non inverting Fast Mode Non−inverting, Mode, RL = 47kΩ, 47kΩ CL = 50pF ten(on) Enable time on ton, non-inverting, Gain = 1 ten(off) Enable time off GBW 22 2.2 Non inverting Medium Mode Non−inverting, Mode, RL =300kΩ, 300kΩ CL = 50pF 2 2 V/3 V 2.2 14 1.4 Non inverting Slow Mode 300kΩ CL = 50pF Non−inverting, Mode, RL =300kΩ, MHz 05 0.5 2.2 V/3 V 10 2.2 V/3 V 20 μs 1 μs TYPICAL PHASE vs FREQUENCY TYPICAL OPEN-LOOP GAIN vs FREQUENCY 0 140 120 Fast Mode 100 −50 Medium Mode 60 40 20 Slow Mode 0 Phase − degrees Gain − dB 80 Fast Mode −100 Medium Mode −150 −20 Slow Mode −40 −200 −60 −80 0.001 0.01 0.1 1 10 100 Input Frequency − kHz 1000 10000 −250 1 10 100 1000 10000 Input Frequency − kHz Figure 36 Figure 35 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) operational amplifier OA feedback network, noninverting amplifier mode (OAFCx = 4) PARAMETER G Gain TEST CONDITIONS VCC MIN TYP MAX OAFBRx = 0 0.996 1.00 1.002 OAFBRx = 1 1.329 1.334 1.340 OAFBRx = 2 1.987 2.001 2.016 OAFBRx = 3 2.64 2.667 2.70 2 2 V/ 3 V 2.2 3.93 4.00 4.06 OAFBRx = 5 5.22 5.33 5.43 OAFBRx = 6 7.76 7.97 8.18 15.0 15.8 16.6 OAFBRx = 4 OAFBRx = 7 THD Total harmonic distortion/ nonlinearity All gains tSettle Settling time (see Note 1) All power modes 2.2 V −60 3V −70 2.2 V/3 V UNIT dB 7 12 μs NOTES: 1. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster. operational amplifier OA feedback network, inverting amplifier mode (OAFCx = 6) (see Note 1) PARAMETER G Gain MIN TYP MAX OAFBRx = 1 TEST CONDITIONS VCC −0.371 −0.335 −0.298 OAFBRx = 2 −1.031 −1.002 −0.972 OAFBRx = 3 −1.727 −1.668 −1.609 OAFBRx = 4 −3.142 −3.00 −2.856 2 2 V/ 3 V 2.2 OAFBRx = 5 −4.581 −4.33 −4.073 OAFBRx = 6 −7.529 −6.97 −6.379 OAFBRx = 7 −17.04 0 −14.8 −12.27 9 THD Total harmonic distortion/ nonlinearity All gains tSettle Settling time (see Note 2) All power modes 2.2 V −60 3V −70 2.2 V/3 V 7 UNIT dB 12 μs NOTES: 1. This includes the 2 OA configuration “inverting amplifier with input buffer”. Both OA needs to be set to the same power mode OAPMx. 2. The settling time specifies the time until an ADC result is stable. This includes the minimum required sampling time of the ADC. The settling time of the amplifier itself might be faster. 62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) flash memory (MSP430FG461x devices only) TEST CONDITIONS PARAMETER VCC MIN TYP MAX UNIT VCC(PGM/ ERASE) Program and Erase supply voltage fFTG Flash Timing Generator frequency IPGM Supply current from DVCC during program IERASE Supply current from DVCC during erase IGMERASE Supply current from DVCC during global mass erase tCPT Cumulative program time tCMErase Cumulative mass erase time 2.7 257 3.6 V 476 kHz 2.7 V/ 3.6 V 3 5 mA See Note 3 2.7 V/ 3.6 V 3 7 mA See Note 4 2.7 V/ 3.6 V 6 14 mA See Note 1 2.7 V/ 3.6 V 10 ms 2.7 V/ 3.6 V 20 104 Program/Erase endurance TJ = 25°C ms 105 tRetention Data retention duration tWord Word or byte program time 30 tBlock, 0 Block program time for 1st byte or word 25 tBlock, 1-63 Block program time for each additional byte or word cycles 100 years 18 S Note N t 2 See tBlock, End Block program end-sequence wait time tMass Erase Mass erase time 10593 tGlobal Mass Erase Global mass erase time 10593 tSeg Erase Segment erase time tFTG 6 4819 NOTES: 1. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write feature is used. 2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). 3. Lower 64-KB or upper 64-KB Flash memory erased. 4. All Flash memory erased. JTAG interface TEST CONDITIONS PARAMETER fTCK TCK input frequency See Note 1 RInternal Internal pull-up resistance on TMS, TCK, TDI/TCLK See Note 2 VCC MIN 2.2 V 0 TYP MAX UNIT 5 MHz 3V 0 10 MHz 2.2 V/ 3 V 25 60 90 kΩ MIN TYP MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow: F versions IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TA = 25°C VCC 2.5 6 UNIT V 7 V 100 mA 1 ms NOTE 1: Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 APPLICATION INFORMATION input/output schematics Port P1, P1.0 to P1.5, input/output with Schmitt trigger Pad Logic DVSS DVSS DVSS P1DIR.x 0 Direction 0: Input 1: Output 1 P1OUT.x 0 Module X OUT 1 Bus Keeper P1SEL.x EN P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Note: x = 0,1,2,3,4,5 64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P1 (P1.0 to P1.5) pin functions (P1 X) PIN NAME (P1.X) P1.0/TA0 CONTROL BITS / SIGNALS X 0 FUNCTION P1.0 (I/O) Timer_A3.CCI0A Timer_A3.TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK 1 2 3 4 5 P1DIR.x P1SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer_A3.CCI0B 0 1 MCLK 1 1 I: 0; O: 1 0 Timer_A3.CCI1A 0 1 Timer_A3.TA1 1 1 I: 0; O: 1 0 Timer_B7.TBOUTH 0 1 SVSOUT 1 1 P1.4 (I/O) I: 0; O: 1 0 Timer_B7.TBCLK 0 1 SMCLK 1 1 P1.1 (I/O) P1.2 (I/O) P1.3 (I/O) P1.5 (I/O) I: 0; O: 1 0 Timer_A3.TACLK 0 1 ACLK 1 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 65 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P1, P1.6, P1.7, input/output with Schmitt trigger Pad Logic DVSS DVSS CAPD.x P1DIR.x 0 Direction 0: Input 1: Output 1 P1OUT.x 0 Module X OUT 1 P1.6/CA0 P1.7/CA1 Bus Keeper P1SEL.x EN P1IN.x EN Module X IN D P2CA0 P1IE.x P1IRQ.x EN Comp_A Q P1IFG.x P1SEL.x P1IES.x 0 1 CA0 Set + Interrupt Edge Select − 0 1 CA1 Note: x = 6,7 P2CA1 Port P1 (P1.6 and P1.7) pin functions PIN NAME (P1.X) (P1 X) P1.6/CA0 P1.7/CA1 CONTROL BITS / SIGNALS X 6 7 FUNCTION CAPD.x P1DIR.x P1.6 (I/O) 0 I: 0; O: 1 0 CA0 1 X X P1.7 (I/O) 0 I: 0; O: 1 0 CA1 1 X X NOTE 1: X: Don’t care 66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1SEL.x MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P2, P2.0 to P2.3, P2.6 to P2.7, input/output with Schmitt trigger Pad Logic DVSS DVSS TBOUTH P2DIR.x 0 Direction 0: Input 1: Output 1 P2OUT.x 0 Module X OUT 1 Bus Keeper P2SEL.x EN P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.6/CAOUT P2.7/ADC12CLK/DMAE0 P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Note: x = 0,1,2,3,6,7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 67 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P2 (P2.0, P2.1, P2.2, P2.3, P2.6 and P2.7) pin functions (P2 X) PIN NAME (P2.X) P2.0/TA2 CONTROL BITS / SIGNALS X 0 FUNCTION P2.0 (I/O) Timer_A3.CCI2A Timer_A3.TA2 P2.1/TB0 P2.2/TB1 P2.3/TB3 1 2 3 P2.6/CAOUT 6 P2.7/ADC12CLK/DMAE0 7 P2SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer_B7.CCI0A and Timer_B7.CCI0B 0 1 Timer_B7.TB0 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI1A and Timer_B7.CCI1B 0 1 Timer_B7.TB1 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI2A and Timer_B7.CCI2B 0 1 Timer_B7.TB3 (see Note 1) 1 1 I: 0; O: 1 0 P2.1 (I/O) P2.2 (I/O) P2.3 (I/O) P2.6 (I/O) CAOUT 1 1 I: 0; O: 1 0 ADC12CLK 1 1 DMAE0 0 1 P2.7 (I/O) NOTE 1: Setting TBOUTH causes all Timer_B outputs to be set to high impedance. 68 P2DIR.x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P2, P2.4 to P2.5, input/output with Schmitt trigger Pad Logic DVSS DVSS DVSS P2DIR.x Direction control from Module X P2OUT.x Module X OUT 0 Direction 0: Input 1: Output 1 0 1 P2.4/UCA0TXD P2.5/UCA0RXD Bus Keeper P2SEL.x EN P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Note: x = 4,5 Port P2 (P2.4 and P2.5) pin functions PIN NAME (P2.X) (P2 X) P2.4/UCA0TXD CONTROL BITS / SIGNALS X 4 FUNCTION P2.4 (I/O) USCI_A0.UCA0TXD (see Note 1, 2) P2.5/UCA0RXD 5 P2.5 (I/O) USCI_A0.UCA0RXD (see Note 1, 2) P2DIR.x P2SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 NOTES: 1. X: Don’t care 2. When in USCI mode, P2.4 is set to output, P2.5 is set to input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 69 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P3, P3.0 to P3.3, input/output with Schmitt trigger Pad Logic DVSS DVSS DVSS P3DIR.x 0 Direction 0: Input 1: Output 1 P3OUT.x 0 Module X OUT 1 Bus Keeper P3SEL.x P3.0/UCB0STE P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK EN P3IN.x EN Module X IN D Note: x = 0,1,2,3 Port P3 (P3.0 to P3.3) pin functions PIN NAME (P3.X) (P3 X) P3.0/UCB0STE CONTROL BITS / SIGNALS X 0 FUNCTION P3.0 (I/O) UCB0STE (see Notes 1, 2) P3.1/UCB0SIMO/ UCB0SDA 1 P3.2/UCB0SOMI/ UCB0SCL 2 P3.3/UCB0CLK 3 P3.1 (I/O) UCB0SIMO/UCB0SDA (see Notes 1, 2, 3) P3.2 (I/O) UCB0SOMI/UCB0SCL (see Notes 1, 2, 3) P3.3 (I/O) UCB0CLK (see Notes 1, 2) NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. 70 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P3, P3.4 to P3.7, input/output with Schmitt trigger Pad Logic DVSS DVSS TBOUTH P3DIR.x 0 Direction 0: Input 1: Output 1 P3OUT.x 0 Module X OUT 1 P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 Bus Keeper P3SEL.x EN P3IN.x EN Module X IN D Note: x = 4,5,6,7 Port P3 (P3.4 to P3.7) pin functions PIN NAME (P3.X) (P3 X) P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 CONTROL BITS / SIGNALS X 4 5 6 7 FUNCTION P3DIR.x P3SEL.x I: 0; O: 1 0 Timer_B7.CCI3A and Timer_B7.CCI3B 0 1 Timer_B7.TB3 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI4A and Timer_B7.CCI4B 0 1 Timer_B7.TB4 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI5A and Timer_B7.CCI5B 0 1 Timer_B7.TB5 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI6A and Timer_B7.CCI6B 0 1 Timer_B7.TB6 (see Note 1) 1 1 P3.4 (I/O) P3.5 (I/O) P3.6 (I/O) P3.7 (I/O) NOTE 1: Setting TBOUTH causes all Timer_B outputs to be set to high impedance. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 71 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P4, P4.0 to P4.1, input/output with Schmitt trigger Pad Logic DVSS DVSS DVSS P4DIR.x 0 Direction control from Module X Direction 0: Input 1: Output 1 0 P4OUT.x 1 Module X OUT P4.1/URXD1 P4.0/UTXD1 Bus Keeper P4SEL.x EN P4IN.x EN Module X IN D Note: x = 0,1 Port P4 (P4.0 to P4.1) pin functions PIN NAME (P4.X) (P4 X) CONTROL BITS / SIGNALS X P4.0/UTXD1 0 P4.1/URXD1 1 FUNCTION P4.0 (I/O) USART1.UTXD1 (see Notes 1, 2) P4.1 (I/O) USART1.URXD1 (see Notes 1, 2) NOTES: 1. X: Don’t care 2. When in USART1 mode, P4.0 is set to output, P4.1 is set to input. 72 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P4DIR.x P4SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P4, P4.2 to P4.7, input/output with Schmitt trigger Pad Logic LCDS32/36 Segment Sy DVSS P4DIR.x Direction control from Module X P4OUT.x Module X OUT 0 Direction 0: Input 1: Output 1 0 1 Bus Keeper P4SEL.x EN P4.7/UCA0RXD/S34 P4.6/UCA0TXD/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 P4.3/SIMO1/S38 P4.2/STE1/S39 P4IN.x EN Module X IN D Note : x = 2,3,4,5,6,7 y = 34,35,36,37,38,39 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 73 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P4 (P4.2 to P4.5) pin functions (P4 X) PIN NAME (P4.X) P4.2/STE1/S39 CONTROL BITS / SIGNALS X 2 FUNCTION P4.2 (I/O) USART1.STE1 S39 (see Note 1) P4.3/SIMO/S38 P4.4/SOMI/S37 P4.5/SOMI/S36 P4.6/UCA0TXD/S35 P4.7/UCA0RXD/S34 3 4 5 6 7 P4.3 (I/O) P4SEL.x LCDS36 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 USART1.SIMO1 (see Notes 1, 2) X 1 0 S38 (see Note 1) X X 1 I: 0; O: 1 0 0 P4.4 (I/O) USART1.SOMI1 (see Notes 1, 2) X 1 0 S37 (see Note 1) X X 1 I: 0; O: 1 0 0 P4.5 (I/O) USART1.UCLK1 (see Notes 1, 2) X 1 0 S36 (see Note 1) X X 1 I: 0; O: 1 0 0 P4.6 (I/O) USCI_A0.UCA0TXD (see Notes 1, 3) X 1 0 S35 (see Note 1) X X 1 P4.7 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0RXD (see Notes 1, 3) X 1 0 S34 (see Note 1) X X 1 NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USART1 module. 3. When in USCI mode, P4.6 is set to output, P4.7 is set to input. 74 P4DIR.x I: 0; O: 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P5, P5.0, input/output with Schmitt trigger INCH=13# Pad Logic A13# LCDS0 Segment Sy P5DIR.x 0 1 P5OUT.x DVSS Direction 0: Input 1: Output 0 1 Bus Keeper P5SEL.x P5.0/S1/A13/OA1I1 EN P5IN.x Note: x = 0 y=1 + OA1 − POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P5 (P5.0) pin functions CONTROL BITS / SIGNALS PIN NAME (P5.X) X P5.0/S1/A13/OA1I1 0 FUNCTION P5.0 (I/O) (see Note 1) P5DIR.x P5SEL.x INCHx OAPx(OA1) OANx(OA1) LCDS0 0 I: 0; O: 1 0 X X OAI11 (see Note 1) 0 X X 1 0 A13 (see Notes 1, 3) X 1 13 X X S1 enabled (see Note 1) X 0 X X 1 S1 disabled (see Note 1) X 1 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P5, P5.1, input/output with Schmitt trigger INCH=12# Pad Logic A12# LCDS0 Segment Sy DAC12.1OPS P5DIR.x 0 1 P5OUT.x DVSS Direction 0: Input 1: Output 0 1 P5.1/S0/A12/DAC1 Bus Keeper P5SEL.x EN P5IN.x Note: x = 1 y=0 DVSS DAC1 0 1 2 0 if DAC12.1AMPx = 0 and DAC12.1OPS = 1 1 if DAC12.1AMPx = 1 and DAC12.1OPS = 1 2 if DAC12.1AMPx > 1 and DAC12.1OPS = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 77 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P5 (P5.1) pin functions CONTROL BITS / SIGNALS (P5 X) PIN NAME (P5.X) X P5.1/S0/A12/DAC1 1 FUNCTION P5DIR.x P5SEL.x INCHx DAC12.1OPS DAC12.1AMPx LCDS0 P5.1 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X 0 DAC1 high impedance (see Note 1) X X X 1 0 X DVSS (see Note 1) X X X 1 1 X DAC1 output (see Note 1) X X X 1 >1 X A12 (see Notes 1, 2) X 1 12 0 X 0 S0 enabled (see Note 1) X 0 X 0 X 1 S0 disabled (see Note 1) X 1 X 0 X 1 NOTES: 1. X: Don’t care 2. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 78 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P5, P5.2 to P5.4, input/output with Schmitt trigger Pad Logic LCD Signal DVSS P5DIR.x 0 Direction 0: Input 1: Output 1 P5OUT.x DVSS 0 1 P5.2/COM1 P5.3/COM2 P5.4/COM3 Bus Keeper P5SEL.x EN P5IN.x Note: x = 2,3,4 Port P5 (P5.2 to P5.4) pin functions (P5 X) PIN NAME (P5.X) CONTROL BITS / SIGNALS X P5.2/COM1 2 P5.3/COM2 3 FUNCTION P5.2 (I/O) COM1 (see Note 1) P5.3 (I/O) COM2 (see Note 1) P5.4/COM3 4 P5.4 (I/O) COM3 (see Note 1) P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 NOTE 1: X: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 79 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P5, P5.5 to P5.7, input/output with Schmitt trigger Pad Logic LCD Signal DVSS P5DIR.x 0 Direction 0: Input 1: Output 1 P5OUT.x DVSS 0 1 Bus Keeper P5SEL.x P5.5/R03 P5.6/LCDREF/R13 P5.7/R03 EN P5IN.x Note: x = 5,6,7 Port P5 (P5.5 to P5.7) pin functions (P5 X) PIN NAME (P5.X) CONTROL BITS / SIGNALS X P5.5/R03 5 P5.6/LCDREF/R13 6 FUNCTION P5.5 (I/O) R03 (see Note 1) P5.6 (I/O) R13 or LCDREF (see Notes 1, 2) P5.7/R03 7 P5.7 (I/O) R03 (see Note 1) P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 NOTES: 1. X: Don’t care 2. External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected. 80 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P6, P6.0, P6.2, and P6.4, input/output with Schmitt trigger INCH=0/2/4# Pad Logic Ay# P6DIR.x 0 Direction 0: Input 1: Output 1 P6OUT.x DVSS P6.0/A0/OA0I0 P6.2/A2/OA0I1 P6.4/A4/OA1I0 0 1 Bus Keeper P6SEL.x EN P6IN.x Note: x = 0, 2, 4 y = 0, 1 # = Signal from or to ADC12 + OA0/1 − Port P6 (P6.0, P6.2, and P6.4) pin functions CONTROL BITS / SIGNALS PIN NAME (P6.X) P6.0/A0/OA0I0 P6.2/A2/OA0I1 P6.4/A4/OA1I0 X 0 2 4 FUNCTION P6DIR.x P6SEL.x OAPx (OA0) OANx (OA0) OAPx (OA1) OANx(OA1) INCHx I: 0; O: 1 0 X X X OA0I0 (see Note 1) 0 X 0 X X A0 (see Notes 1, 3) X 1 X X 0 I: 0; O: 1 0 X X X OA0I1 (see Note 1) 0 X 1 X X A2 (see Notes 1, 3) X 1 X X 2 I: 0; O: 1 0 X X X OA1I0 (see Note 1) 0 X X 0 X A4 (see Notes 1, 3) X 1 X X 4 P6.0 (I/O) (see Note 1) P6.2 (I/O) (see Note 1) P6.4 (I/O) (see Note 1) NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 81 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P6, P6.1, P6.3, and P6.5 input/output with Schmitt trigger INCH=1/3/5# Pad Logic Ay# P6DIR.x 0 1 P6OUT.x DVSS Direction 0: Input 1: Output P6.1/A1/OA0O P6.3/A3/OA1O P6.5/A5/OA2O 0 1 Bus Keeper P6SEL.x EN P6IN.x OAPMx> 0 OAADC1 + OAy − Note: x = 1, 3, 5 y = 0, 1, 2 # = Signal from or to ADC12 82 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P6 (P6.1, P6.3, and P6.5) pin functions (P6 X) PIN NAME (P6.X) P6.1/A1/OA0O CONTROL BITS / SIGNALS X 1 FUNCTION P6DIR.x P6SEL.x OAADC1 OAPMx INCHx P6.1 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X OA0O (see Notes 1, 4) X X 1 >0 X A1 (see Notes 1, 3) P6.3/A3/OA1O P6.5/A5/OA2O 3 5 X 1 X 0 1 P6.3 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X OA1O (see Notes 1, 4) X X 1 >0 X A3 (see Notes 1, 3) X 1 X 0 3 P6.5 (I/O) (see Note 1) I: 0; O: 1 0 X 0 X OA2O (see Notes 1, 4) X X 1 >0 X A5 (see Notes 1, 3) X 1 X 0 5 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 4. Setting the OAADC1 bit or setting OAFCx = 00 will cause the operational amplifier to be present at the pin as well as internally connected to the corresponding ADC12 input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 83 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P6, P6.6, input/output with Schmitt trigger INCH=6# Pad Logic A6# P6DIR.x 0 1 P6OUT.x DVSS Direction 0: Input 1: Output P6.6/A6/DAC0/OA2I0 0 1 Bus Keeper P6SEL.x DAC12.0AMP > 0 DAC12.0OPS EN P6IN.x Note: x = 6 # = Signal from or to ADC12 + OA2 − DVSS DAC0 0 1 2 0 if DAC12.0AMPx= 0 and DAC12.0OPS = 0 1 if DAC12.0AMPx= 1 and DAC12.0OPS = 0 2 if DAC12.0AMPx> 1 and DAC12.0OPS = 0 84 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P6 (P6.6) pin functions CONTROL BITS / SIGNALS PIN NAME (P6.X) X FUNCTION P6.6/A6/DAC0/OA2I0 6 P6DIR.x P6SEL.x INCHx DAC12.0OPS DAC12.0AMPx OAPx (OA2) OANx (OA2) P6.6 (I/O) (see Note 1) I: 0; O: 1 0 X 1 X X DAC0 high impedance (see Note 1) X X X 0 0 X DVSS (see Note 1) X X X 0 1 X DAC0 output (see Note 1) X X X 0 >1 X A6 (see Notes 1, 2) X 1 6 X X X OA2I0 (see Note 1) 0 X 0 X X 0 NOTES: 1. X: Don’t care 2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P6, P6.7, input/output with Schmitt trigger To SVS Mux # INCH=7 Pad Logic A7# P6DIR.x 0 1 P6OUT.x DVSS Direction 0: Input 1: Output 0 1 P6SEL.x Bus Keeper VLD =15 EN P6.7/A7/DAC1/SVSIN DAC12.1AMP > 0 DAC12.1OPS P6IN.x Note: x = 7 # = Signal from or to ADC12 DVSS DAC1 0 1 2 0 if DAC12.1AMPx = 0 and DAC12.1OPS = 0 1 if DAC12.1AMPx = 1 and DAC12.1OPS = 0 2 if DAC12.1AMPx > 1 and DAC12.1OPS = 0 86 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P6 (P6.7) pin functions CONTROL BITS / SIGNALS (P6 X) PIN NAME (P6.X) X P6.7/A7/DAC1/SVSIN 7 FUNCTION P6DIR.x P6SEL.x INCHx DAC12.1OPS DAC12.1AMPx P6.7 (I/O) (see Note 1) I: 0; O: 1 0 X 1 X DAC1 high impedance (see Note 1) X X X 0 0 DVSS (see Note 1) X X X 0 1 DAC1 output (see Note 1) X X X 0 >1 A7 (see Notes 1, 2) X 1 7 X X SVSIN (see Notes 1,3) 0 1 0 1 X NOTES: 1. X: Don’t care 2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 3. Setting VLDx = 15 will also cause the external SVSIN to be used. In this case, the P6SEL.x bit is a do not care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 87 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P7, P7.0 to P7.3, input/output with Schmitt trigger Pad Logic LCDS28/32 Segment Sy DVSS P7DIR.x Direction control from Module X P7OUT.x Module X OUT 0 Direction 0: Input 1: Output 1 0 1 Bus Keeper P7SEL.x EN P7IN.x EN Module X IN D Note: x = 0, 1, 2, 3 y = 30, 31, 32, 33 88 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P7.3/UCA0CLK/S30 P7.2/UCA0SOMI/S31 P7.1/UCA0SIMO/S32 P7.0/UCA0STE/S33 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P7 (P7.0 to P7.1) pin functions CONTROL BITS / SIGNALS (P7 X) PIN NAME (P7.X) X P7.0/UCA0STE/S33 0 FUNCTION P7.0 (I/O) USCI_A0.UCA0STE (see Notes 1, 2) S33 (see Note 1) P7.1/UCA0SIMO/S32 P7.2/UCA0SOMI/S31 P7.3/UCA0CLK/S30 1 2 3 P7.1 (I/O) P7DIR.x P7SEL.x LCDS32 I: 0; O: 1 0 0 X 1 0 X X 1 I: 0; O: 1 0 0 USCI_A0.UCA0SIMO (see Notes 1, 2) X 1 0 S32 (see Note 1) X X 1 I: 0; O: 1 0 0 P7.2 (I/O) USCI_A0.UCA0SOMI (see Notes 1, 3) X 1 0 S31 (see Note 1) X X 1 I: 0; O: 1 0 0 P7.3 (I/O) USCI_A0.UCA0CLK (see Notes 1, 3) X 1 0 S30 (see Note 1) X X 1 NOTES: 1. X: Don’t care 2. The pin direction is controlled by the USCI module. 3. The pin direction is controlled by the USCI module. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 89 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P7, P7.4 to P7.7, input/output with Schmitt trigger Pad Logic LCDS24/28 Segment Sy DVSS P7DIR.x 0 Direction 0: Input 1: Output 1 P7OUT.x DVSS 0 1 P7.7/S26 P7.6/S27 P7.5/S28 P7.4/S29 Bus Keeper P7SEL.x EN P7IN.x Note: x = 4, 5, 6, 7 y = 26, 27, 28, 29 Port P7 (P7.4 to P7.5) pin functions PIN NAME (P7.X) (P7 X) P7.4/S29 CONTROL BITS / SIGNALS X 4 FUNCTION P7.4 (I/O) S29 (see Note 1) P7.5/S28 5 P7.5 (I/O) S28 (see Note 1) P7.6/S27 6 P7.7/S26 7 P7.6 (I/O) S27 (see Note 1) P7.7 (I/O) S26 (see Note 1) NOTE 1: X: Don’t care 90 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P7DIR.x P7SEL.x LCDS28 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P8, P8.0 to P8.7, input/output with Schmitt trigger Pad Logic LCDS16/20/24 Segment Sy DVSS P8DIR.x 0 1 P8OUT.x DVSS Direction 0: Input 1: Output 0 1 Bus Keeper P8SEL.x EN P8IN.x P8.7/S18 P8.6/S19 P8.5/S20 P8.4/S21 P8.3/S22 P8.2/S23 P8.1/S24 P8.0/S25 Note: x = 0,1,2,3,4,5,6,7 y = 25,24,23,22,21,20,19,18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 91 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P8 (P8.0 to P8.1) pin functions (P8 X) PIN NAME (P8.X) P8.0/S18 CONTROL BITS / SIGNALS X 0 FUNCTION P8.0 (I/O) S18 (see Note 1) P8.1/S19 0 P8.0 (I/O) S19 (see Note 1) P8.2/S20 2 P8.2 (I/O) S20 (see Note 1) P8.3/S21 3 P8.4/S22 4 P8.3 (I/O) S21 (see Note 1) P8.4 (I/O) S22 (see Note 1) P8.5/S23 5 P8.5 (I/O) S23 (see Note 1) P8DIR.x P8SEL.x LCDS16 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 NOTE 1: X: Don’t care Port P8 (P8.6 to P8.7) pin functions PIN NAME (P8.X) (P8 X) P8.6/S24 CONTROL BITS / SIGNALS X 6 FUNCTION P8.6 (I/O) S24 (see Note 1) P8.7/S25 7 P8.7 (I/O) S25 (see Note 1) NOTE 1: X: Don’t care 92 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P8DIR.x P8SEL.x LCDS24 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P9, P9.0 to P9.7, input/output with Schmitt trigger Pad Logic LCDS8/12/16 Segment Sy DVSS P9DIR.x 0 1 P9OUT.x DVSS Direction 0: Input 1: Output 0 1 Bus Keeper P9SEL.x EN P9IN.x P9.7/S10 P9.6/S11 P9.5/S12 P9.4/S13 P9.3/S14 P9.2/S15 P9.1/S16 P9.0/S17 Note: x = 0,1,2,3,4,5,6,7 y = 17,16,15,14,13,12,11,10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 93 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P9 (P9.0 to P9.1) pin functions (P9 X) PIN NAME (P9.X) P9.0/S17 CONTROL BITS / SIGNALS X 0 FUNCTION P9.0 (I/O) S17 (see Note 1) P9.1/S16 1 P9.1 (I/O) S16 (see Note 1) P9.2/S20 2 P9.2 (I/O) S15 (see Note 1) P9.3/S21 3 P9.4/S22 4 P9.3 (I/O) S14 (see Note 1) P9.4 (I/O) S13 (see Note 1) P9.5/S23 5 P9.5 (I/O) S12 (see Note 1) P9.6/S24 6 P9.7/S25 7 P9.6 (I/O) S11 (see Note 1) P9.7 (I/O) S10 (see Note 1) NOTE 1: X: Don’t care 94 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P9DIR.x P9SEL.x LCDS16 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P10, P10.0 to P10.5, input/output with Schmitt trigger Pad Logic LCDS4/8 Segment Sy DVSS P10DIR.x 0 Direction 0: Input 1: Output 1 P10OUT.x DVSS 0 1 P10.5/S4 P10.4/S5 P10.3/S6 P10.2/S7 P10.1/S8 P10.0/S9 Bus Keeper P10SEL.x EN P10IN.x Note: x = 0,1,2,3,4,5 y = 9,8,7,6,5,4 Port P10 (P10.0 to P10.1) pin functions PIN NAME (P10 (P10.X) X) CONTROL BITS / SIGNALS X P10.0/S8 0 P10.1/S7 1 FUNCTION P10.0 (I/O) S8 (see Note 1) P10.1 (I/O) S7 (see Note 1) P10.2/S7 2 P10.2 (I/O) S7 (see Note 1) P10.3/S6 3 P10.4/S5 4 P10.3 (I/O) S6 (see Note 1) P10.4 (I/O) S5 (see Note 1) P10.5/S4 5 P10.5 (I/O) S4 (see Note 1) P10DIR.x P10SEL.x LCDS8 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 NOTE 1: X: Don’t care POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 95 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P10, P10.6, input/output with Schmitt trigger INCH=15# Pad Logic A15# LCDS0 Segment Sy P10DIR.x 0 Direction 0: Input 1: Output 1 P10OUT.x DVSS 0 1 P10.6/S3/A15 Bus Keeper P10SEL.x EN P10IN.x Note: x = 6 y =3 Port P10 (P10.6) pin functions PIN NAME (P10 (P10.X) X) P10.6/S3/A15 CONTROL BITS / SIGNALS X 6 FUNCTION P10DIR.x P10SEL.x INCHx LCDS0 I: 0; O: 1 0 X 0 A15 (see Notes 1, 3) X 1 15 0 S3 enabled (see Note 1) X 0 X 1 S3 disabled (see Note 1) X 1 X 1 P5.0 (I/O) (see Note 1) NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 96 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 port P10, P10.7, input/output with Schmitt trigger INCH=14# Pad Logic A14# LCDS0 Segment Sy P10DIR.x 0 1 P10OUT.x DVSS Direction 0: Input 1: Output 0 1 Bus Keeper P10SEL.x P10.7/S2/A14/OA2I1 EN P10IN.x Note: x = 7 y= 2 + OA2 − POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 97 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Port P10 (P10.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P10.X) X FUNCTION P10.7/S2/A14/OA2I1 7 P10.7 (I/O) (see Note 1) P10DIR.x P10SEL.x INCHx OAPx (OA1) OANx (OA1) LCDS0 I: 0; O: 1 0 X X 0 A14 (see Notes 1, 3) X 1 14 X 0 OA2I1 (see Notes 1, 3) 0 X X 1 0 S2 enabled (see Note 1) X 0 X X 1 S2 disabled (see Note 1) X 1 X X 1 NOTES: 1. X: Don’t care 2. N/A: Not available or not applicable. 3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 98 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 VeREF+/DAC0 DAC12.0OPS 0 DAC0_2_OA P6.6/A6/DAC0/OA2I0 1 Reference Voltage to DAC1 Reference Voltage to ADC12 Reference Voltage to DAC0 # Ve REF+ /DAC0 ’0’, if DAC12CALON = 0 DAC12AMPx>1 AND DAC12OPS=1 + − 1 0 ’1’, if DAC12AMPx>1 ’1’, if DAC12AMPx=1 DAC12OPS # If the reference of DAC0 is taken from pin VeREF+ /DAC0, unpredictable voltage levels will be on pin. In this situation, the DAC0 output is fed back to its own reference input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 99 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger or output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DVCC TDI Burn and Test Fuse TDI/TCLK Test and Emulation DVCC TMS Module TMS DVCC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK 100 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G D U S G D U S MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I(TF) ) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 37). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination. Time TMS Goes Low After POR TMS I(TF) ITDI/TCLK Figure 37. Fuse Check Mode Current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 101 MSP430xG461x MIXED SIGNAL MICROCONTROLLER SLAS508I − APRIL 2006 − REVISED MARCH 2011 Data Sheet Revision History Literature Number SLAS508 Summary Preliminary Product Preview datasheet release SLAS508A Production Data data sheet release SLAS508B Changed power consumption values in features (page 1) SLAS508C Changed tVALID,MO, tHD,SI, and tVALID,SO values (page 43) SLAS508D Changed I(AM) values for CG461x (page 29) SLAS508E Added ZQW package information Changed power consumption values for Standby and Off Modes in features (page 1) Corrected description of P7.3/UCA0CLK/S30 terminal (page 7) Clarified test conditions in recommended operating conditions table (page 30) Changed I(AM) values for CG461x and all TYP values for I(LPM3) in supply current into AVCC + DVCC table (page 31) Clarified test conditions in DCO table (page 42) Clarified test conditions in USART table (page 48) Clarified test conditions in operational amplifier OA, supply specifications table (page 59) Clarified test conditions in operational amplifier OA, input/output specifications table (page 60) SLAS508F Removed preview notice for MSP430CG461x in PZ package. SLAS508G Removed preview notice for all devices in ZQW package. SLAS508H Added “operational amplifier OA feedback network, noninverting amplifier mode (OAFCx = 4)” table and “operational amplifier OA feedback network, inverting amplifier mode (OAFCx = 6)” table (page 62) SLAS508I Changed limits on td(SVSon) parameter (page 40) NOTE: Page and figure numbers refer to the respective document revision. 102 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 9-May-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) (Requires Login) MSP430FG4616IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4616IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4616IZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4616IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4616IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4617IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4617IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4617IZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4617IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4617IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4618IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4618IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4618IZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) Addendum-Page 1 SNAGCU Samples Level-3-260C-168 HR PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-May-2012 Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) MSP430FG4618IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4618IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4619IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4619IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430FG4619IZQW ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4619IZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR MSP430FG4619IZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 9-May-2012 Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 16-Feb-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430FG4616IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG4616IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG4617IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG4617IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG4618IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG4618IZQWT BGA MI CROSTA R JUNI ZQW 113 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 16-Feb-2012 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant OR MSP430FG4619IZQWR BGA MI CROSTA R JUNI OR ZQW 113 2500 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 MSP430FG4619IZQWT BGA MI CROSTA R JUNI OR ZQW 113 250 330.0 16.4 7.3 7.3 1.5 12.0 16.0 Q1 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430FG4616IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430FG4616IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 336.6 336.6 28.6 MSP430FG4617IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430FG4617IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 336.6 336.6 28.6 MSP430FG4618IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430FG4618IZQWT BGA MICROSTAR ZQW 113 250 336.6 336.6 28.6 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 16-Feb-2012 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) JUNIOR MSP430FG4619IZQWR BGA MICROSTAR JUNIOR ZQW 113 2500 336.6 336.6 28.6 MSP430FG4619IZQWT BGA MICROSTAR JUNIOR ZQW 113 250 336.6 336.6 28.6 Pack Materials-Page 3 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated