PD - 96926D IRF6655 DirectFET Power MOSFET Typical values (unless otherwise specified) RoHS compliant containing no lead or bromide l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Ultra Low Package Inductance l Optimized for High Frequency Switching l Ideal for High Performance Isolated Converter Primary Switch Socket l Ideal for Control FET sockets in 36V – 75V in Synchronous Buck applications l Low Conduction Losses l Compatible with existing Surface Mount Techniques l VDSS VGS RDS(on) 100V max ±20V max Qg Qgd Vgs(th) 2.8nC 3.9V tot 8.7nC SH Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST SH MQ MX MT 53mΩ@ 10V DirectFET ISOMETRIC MN Description The IRF6655 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest combined on-state resistance and gate charge in a package that has a footprint similar to that of a micro-8, and only 0.7mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infrared or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6655 is optimized for low power primary side bridge topologies in isolated DC-DC applications, and for high side control FET sockets in non-isolated synchronous buck DC-DC applications for use in wide range universal Telecom systems (36V – 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Typical RDS(on) (mΩ) VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR e Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current e 200 180 160 140 120 100 80 60 40 20 0 h h k f ID = 5.0A T J = 125°C T J = 25°C 4 6 8 10 12 14 16 18 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance Vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET MOSFETs Repetitive rating; pulse width limited by max. junction temperature. www.irf.com VGS, Gate-to-Source Voltage (V) VDS Max. Units 100 ±20 4.2 3.4 19 34 11 5.0 V A mJ A 12.0 ID= 5.0A 10.0 8.0 VDS= 80V VDS= 50V VDS= 20V 6.0 4.0 2.0 0.0 0 2 4 6 8 10 QG Total Gate Charge (nC) Fig 2. Typical On-Resistance Vs. Gate Voltage Starting TJ = 25°C, L = 0.89mH, RG = 25Ω, IAS = 5.0A. Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple mounted to top (Drain) of part. 1 11/16/05 IRF6655 Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage Parameter 100 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 0.12 ––– Static Drain-to-Source On-Resistance ––– 53 62 VGS(th) Gate Threshold Voltage 2.8 ––– 4.8 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -11 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 20 µA ––– ––– 250 IGSS gfs Qg Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 6.6 ––– ––– V Conditions VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 5.0A g VDS = VGS, ID = 25µA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 5.0A Total Gate Charge ––– 8.7 11.7 Qgs1 Pre-Vth Gate-to-Source Charge ––– 2.1 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 0.58 ––– Qgd Gate-to-Drain Charge ––– 2.8 4.2 ID = 5.0A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 3.2 ––– See Fig. 17 Qsw ––– 3.4 ––– Qoss Output Charge ––– 4.5 ––– nC Ω VDS = 50V nC VGS = 10V VDS = 16V, VGS = 0V RG Gate Resistance ––– 1.9 2.9 td(on) tr Turn-On Delay Time Rise Time ––– ––– 7.4 2.8 ––– ––– td(off) Turn-Off Delay Time ––– 14 ––– tf Fall Time ––– 4.3 ––– Ciss Input Capacitance ––– 530 ––– Coss Output Capacitance ––– 110 ––– Crss Reverse Transfer Capacitance ––– 29 ––– Coss Output Capacitance ––– 510 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 67 ––– VGS = 0V, VDS = 80V, f=1.0MHz VDD = 50V, VGS = 10Vg ID = 5.0A ns RG=6.0Ω VGS = 0V pF VDS = 25V Diode Characteristics Parameter IS Continuous Source Current Min. Typ. Max. Units ––– ––– (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 38 D showing the G 34 integral reverse p-n junction diode. TJ = 25°C, IS = 5.0A, VGS = 0V g S (Body Diode)e VSD Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 31 47 ns TJ = 25°C, IF = 5.0A, VDD = 25V nC di/dt = 100A/µs g Qrr Reverse Recovery Charge ––– 37 56 Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6655 Absolute Maximum Ratings h h k Max. Units 2.2 1.4 42 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter hl il jl kl RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.4 58 ––– ––– 3.0 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 1 τJ 0.01 0.1 R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) R2 R2 R3 R3 R4 R4 Ri (°C/W) R5 R5 1.6195 τA τ1 τ2 τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri τA τi (sec) 0.000126 2.1406 0.001354 22.2887 0.375850 20.0457 7.410000 11.9144 99 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with a thin gap filler and heat sink. (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6655 100 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 9.0V 8.0V 7.0V 6.0V 6.0V 1 BOTTOM 10 VGS 15V 10V 9.0V 8.0V 7.0V 6.0V 6.0V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 0.1 1 10 100 1000 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 1000 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 100 2.0 Typical RDS(on), (Normalized) ID, Drain-to-Source Current (Α) ID = 5.0A 10 T J = -40°C T J = 25°C T J = 150°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 VGS = 10V 1.5 1.0 0.5 2 4 6 8 10 12 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature RDS(on), Drain-to -Source On Resistance ( mΩ) 10000 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C, Capacitance(pF) C oss = C ds + C gd 1000 Ciss Coss 100 Crss 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 4 20 40 60 80 100 120 140 160 120 T J = 125°C 100 80 T J = 25°C 60 Vgs = 10V 40 0 2 4 6 8 10 ID, Drain Current (A) Fig 9. Normalized Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6655 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 Tc = 25°C Tj = 175°C Single Pulse 100 10 T J = -40°C T J = 25°C T J = 150°C OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 10 100msec 1msec 1 10msec 0.1 VGS = 0V 1 0.01 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0 1 VSD, Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage 100 1000 Fig11. Maximum Safe Operating Area 5.5 Typical VGS(th) Gate threshold Voltage (V) 5 4 ID, Drain Current (A) 10 VDS, Drain-to-Source Voltage (V) 3 2 1 5 4.5 4 3.5 ID = 25µA ID = 1.0mA 50 75 100 125 ID = 1.0A 2.5 0 25 ID = 250µA 3 2 -75 -50 -25 150 T A , Ambient Temperature (°C) 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) Fig 12. Maximum Drain Current vs. Ambient Temperature Fig 13. Threshold Voltage vs. Temperature EAS , Single Pulse Avalanche Energy (mJ) 50 ID 0.86A 1.3A BOTTOM 5.0A TOP 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6655 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS A I AS 0.01Ω tp Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS RD VDS 90% VGS D.U.T. RG + - 10V Pulse Width ≤ 1 µs VDD 10% VGS td(on) tr td(off) tf Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 Fig 17b. Switching Time Waveforms www.irf.com IRF6655 D.U.T + Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance + - - + RG VDD • di/dt controlled by RG • Driver same type as D.U.T. • ISD controlled by Duty Factor "D" + - Driver Gate Drive D= Period P.W. P.W. Period * VGS=10V D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRF6655 DirectFET™ Substrate and PCB Layout, SH Outline (Small Size Can, H-Designation). Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. 8 www.irf.com IRF6655 DirectFET Outline Dimension, SH Outline (Small Size Can, H-Designation). Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS Note: Controlling dimensions are in mm. METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.62 E 0.58 0.62 F 0.58 0.67 G 0.63 0.87 H 0.83 K 0.99 1.03 2.33 L 2.29 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.023 0.024 0.023 0.024 0.025 0.026 0.033 0.034 0.039 0.041 0.090 0.092 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking www.irf.com 9 IRF6655 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6655). For 1000 parts on 7" reel, order IRF6655TR1 STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MAX MIN MAX 12.992 177.77 N.C N.C 0.795 19.06 N.C N.C 0.504 13.5 0.520 12.8 0.059 1.5 N.C N.C 3.937 58.72 N.C N.C N.C N.C 0.724 13.50 0.488 11.9 0.567 12.01 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MIN MAX 6.9 N.C 0.75 N.C 0.50 0.53 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.157 0.165 4.00 4.20 0.197 0.205 5.00 5.20 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/05 10 www.irf.com