MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow-Power Consumption: D D D D D D D D D D D − Active Mode: 280 µA at 1 MHz, 2.2 V − Standby Mode: 1.1 µA − Off Mode (RAM Retention): 0.1 µA Five Power Saving Modes Wake-Up From Standby Mode in Less Than 6 µs 16-Bit RISC Architecture, 125-ns Instruction Cycle Time 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature 16-Bit Timer_B With Three† or Seven‡ Capture/Compare-With-Shadow Registers 16-Bit Timer_A With Three Capture/Compare Registers On-Chip Comparator Serial Communication Interface (USART), Select Asynchronous UART or Synchronous SPI by Software: − Two USARTs (USART0, USART1)† − One USART (USART0)‡ Brownout Detector Supply Voltage Supervisor/Monitor With Programmable Level Detection Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse D Integrated LCD Driver for up to 160 Segments D Bootstrap Loader D Family Members Include: D − MSP430F435, MSP430F4351§: 16KB+256B Flash Memory, 512B RAM − MSP430F436, MSP430F4361§: 24KB+256B Flash Memory, 1KB RAM − MSP430F437, MSP430F4371§: 32KB+256B Flash Memory, 1KB RAM − MSP430F447: 32KB+256B Flash Memory, 1KB RAM − MSP430F448, MSP430F4481§: 48KB+256B Flash Memory, 2KB RAM − MSP430F449, MSP430F4491§: 60KB+256B Flash Memory, 2KB RAM For Complete Module Descriptions, See The MSP430x4xx Family User’s Guide, Literature Number SLAU056 † MSP430F43x, and MSP430F43x1 devices MSP430F44x, and MSP430F44x1 devices § The MSP430F43x1 and MSP430F44x1 devices are identical to the MSP430F43x and MSP430F44x devices, respectively − with the exception that the ADC12 module is not implemented. ‡ description The Texas Instruments MSP430 family of ultralow power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The devices feature a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2009, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 description (continued) The MSP430x43x(1) and the MSP430x44x(1) series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter (not implemented on the MSP430F43x1 and MSP430F44x1 devices), one or two universal serial synchronous/asynchronous communication interfaces (USART), 48 I/O pins, and a liquid crystal driver (LCD) with up to 160 segments. Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system, or process this data and display it on a LCD panel. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution. AVAILABLE OPTIONS{ PACKAGED DEVICES} TA −40°C to 85°C PLASTIC 80-PIN QFP (PN) PLASTIC 100-PIN QFP (PZ) MSP430F435IPN MSP430F436IPN MSP430F437IPN MSP430F435IPZ MSP430F436IPZ MSP430F437IPZ MSP430F4351IPN MSP430F4361IPN MSP430F4371IPN MSP430F4351IPZ MSP430F4361IPZ MSP430F4371IPZ MSP430F447IPZ MSP430F448IPZ MSP430F449IPZ MSP430F4481IPZ MSP430F4491IPZ † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following: D Debugging and Programming Interface − MSP-FET430UIF (USB) − MSP-FET430PIF (Parallel Port) D Debugging and Programming Interface with Target Board − MSP-FET430U100 (PZ package) D Stand-Alone Target Board − MSP-TS430PZ100 (PZ package) D Production Programmer − 2 MSP-GANG430 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 P6.2 P6.1 P6.0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT AVCC DVSS1 AVSS PN PACKAGE (TOP VIEW) P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 pin designation, MSP430x4351IPN, MSP430x4361IPN, MSP430x4371IPN 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 1 60 2 59 3 58 4 57 5 56 6 55 7 54 8 53 9 10 11 MSP430F4351IPN MSP430F4361IPN MSP430F4371IPN 52 51 50 12 49 13 48 14 47 15 46 16 45 17 44 18 43 19 42 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.4/UTXD0 P2.5/URXD0 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P3.0/STE0/S31 P3.1/SIMO0/S30 P3.2/SOMI0/S29 P4.0/S9 S10 S11 S12 S13 S14 S15 S16 S17 P2.7/S18 P2.6/CAOUT/S19 S20 S21 S22 S23 P3.7/S24 P3.6/S25 P3.5/S26 P3.4/S27 P3.3/UCLK0/S28 DVCC1 P6.3 P6.4 P6.5 P6.6 P6.7/SVSIN Reserved XIN XOUT DVSS DVSS P5.1/S0 P5.0/S1 P4.7/S2 P4.6/S3 P4.5/S4 P4.4/S5 P4.3/S6 P4.2/S7 P4.1/S8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 pin designation, MSP430x4351IPZ, MSP430x4361IPZ, MSP430x4371IPZ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AVCC DVSS1 AVSS P6.2 P6.1 P6.0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 PZ PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F4351IPZ MSP430F4361IPZ MSP430F4371IPZ S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 P4.7/S34 P4.6/S35 P4.5/S36 P4.4/S37 P4.3/S38 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DVCC1 P6.3 P6.4 P6.5 P6.6 P6.7/SVSIN Reserved XIN XOUT DVSS DVSS P5.1/S0 P5.0/S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P2.4/UTXD0 P2.5/URXD0 P2.6/CAOUT P2.7 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4 P3.5 P3.6 P3.7 P4.0 P4.1 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/S39 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT AVCC DVSS1 AVSS PN PACKAGE (TOP VIEW) P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 pin designation, MSP430x435IPN, MSP430x436IPN, MSP430x437IPN 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 1 60 2 59 3 58 4 57 5 56 6 55 7 54 8 53 9 10 11 MSP430F435IPN MSP430F436IPN MSP430F437IPN 52 51 50 12 49 13 48 14 47 15 46 16 45 17 44 18 43 19 42 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.4/UTXD0 P2.5/URXD0 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P3.0/STE0/S31 P3.1/SIMO0/S30 P3.2/SOMI0/S29 P4.0/S9 S10 S11 S12 S13 S14 S15 S16 S17 P2.7/ADC12CLK/S18 P2.6/CAOUT/S19 S20 S21 S22 S23 P3.7/S24 P3.6/S25 P3.5/S26 P3.4/S27 P3.3/UCLK0/S28 DVCC1 P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7/SVSIN VREF+ XIN XOUT VeREF+ VREF−/VeREF− P5.1/S0 P5.0/S1 P4.7/S2 P4.6/S3 P4.5/S4 P4.4/S5 P4.3/S6 P4.2/S7 P4.1/S8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 pin designation, MSP430x435IPZ, MSP430x436IPZ, MSP430x437IPZ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 PZ PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F435IPZ MSP430F436IPZ MSP430F437IPZ S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 P4.7/S34 P4.6/S35 P4.5/S36 P4.4/S37 P4.3/S38 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DVCC1 P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7/SVSIN VREF+ XIN XOUT VeREF+ VREF−/VeREF− P5.1/S0 P5.0/S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P2.4/UTXD0 P2.5/URXD0 P2.6/CAOUT P2.7/ADC12CLK P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4 P3.5 P3.6 P3.7 P4.0 P4.1 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/S39 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 pin designation, MSP430x4481IPZ, MSP430x4491IPZ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AVCC DVSS1 AVSS P6.2 P6.1 P6.0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 PZ PACKAGE (TOP VIEW) MSP430F4481IPZ MSP430F4491IPZ 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P2.4/UTXD0 P2.5/URXD0 P2.6/CAOUT P2.7 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 P4.0/UTXD1 P4.1/URXD1 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/STE1/S39 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 P4.7/S34 P4.6/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 4.3/SIMO1/S38 DVCC1 P6.3 P6.4 P6.5 P6.6 P6.7/SVSIN Reserved XIN XOUT DVSS DVSS P5.1/S0 P5.0/S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 pin designation, MSP430x447IPZ, MSP430x448IPZ, MSP430x449IPZ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 PZ PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F447IPZ MSP430F448IPZ MSP430F449IPZ S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 P4.7/S34 P4.6/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 4.3/SIMO1/S38 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DVCC1 P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7/SVSIN VREF+ XIN XOUT VeREF+ VREF−/VeREF− P5.1/S0 P5.0/S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P2.4/UTXD0 P2.5/URXD0 P2.6/CAOUT P2.7/ADC12CLK P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 P4.0/UTXD1 P4.1/URXD1 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/STE1/S39 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x43x1 functional block diagram XIN XT2IN XT2OUT DVCC1/2 DVSS1/2 XOUT AVCC AVSS P1 P2 P4 P3 8 8 Port 1 Port 2 8 I/O Interrupt Capability 8 I/O Interrupt Capability P5 8 8 P6 8 8 ACLK Oscillator FLL+ Flash SMCLK MCLK 8 MHz CPU incl. 16 Registers 32KB 24KB 16KB RAM USART0 Port 3 1KB 512B 8 I/O Port 4 8 I/O Port 5 8 I/O Port 6 6 I/O UART Mode SPI Mode MAB MDB Emulation Module Watchdog Timer WDT POR/ SVS/ Brownout 15/16-Bit JTAG Interface Timer_B3 Timer_A3 3 CC Reg Shadow Reg 3 CC Reg Comparator_ A Basic Timer 1 1 Interrupt Vector LCD 128/160 Segments 1,2,3,4 MUX fLCD RST/NMI MSP430x43x functional block diagram XIN XT2IN XT2OUT DVCC1/2 DVSS1/2 XOUT AVCC AVSS P1 P2 P4 P3 8 8 Port 1 Port 2 8 P5 8 P6 8 8 ACLK Oscillator FLL+ Flash SMCLK MCLK 8 MHz CPU incl. 16 Registers Emulation Module 32KB 24KB 16KB RAM 1KB 512B 8 I/O Interrupt Capability 8 I/O Interrupt Capability ADC12 Watchdog Timer WDT USART0 Port 3 Port 4 Port 5 Port 6 8 I/O 8 I/O 8 I/O 6 I/O UART Mode SPI Mode MAB MDB POR/ SVS/ Brownout JTAG Interface 12-Bit 8 Channels <10µs Conv. 15/16-Bit Timer_B3 Timer_A3 3 CC Reg Shadow Reg 3 CC Reg Comparator_ A Basic Timer 1 1 Interrupt Vector LCD 128/160 Segments 1,2,3,4 MUX fLCD RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x44x1 functional block diagram XIN XT2IN XT2OUT DVCC1/2 DVSS1/2 XOUT AVCC AVSS P1 P2 P4 P3 8 8 Port 1 Port 2 8 I/O Interrupt Capability 8 I/O Interrupt Capability P5 8 8 P6 8 8 ACLK Oscillator FLL+ Flash SMCLK 60KB 48KB MCLK 8 MHz CPU incl. 16 Registers RAM 2KB Port 3 Port 4 Port 5 Port 6 8 I/O 8 I/O 8 I/O 6 I/O USART0 USART1 UART Mode SPI Mode MAB MDB Emulation Module Hardware Multiplier MPY, MPYS MAC,MACS JTAG Interface Watchdog Timer WDT POR/ SVS/ Brownout 15/16-Bit Timer_B7 Timer_A3 7 CC Reg Shadow Reg 3 CC Reg Comparator_ A Basic Timer 1 1 Interrupt Vector LCD 160 Segments 1,2,3,4 MUX fLCD RST/NMI MSP430x44x functional block diagram XIN XT2IN XT2OUT DVCC1/2 DVSS1/2 XOUT AVCC AVSS P1 P2 P4 P3 8 8 Port 1 Port 2 8 I/O Interrupt Capability 8 I/O Interrupt Capability 8 P5 8 P6 8 8 ACLK Oscillator FLL+ Flash SMCLK 60KB 48KB 32KB MCLK 8 MHz CPU incl. 16 Registers Emulation Module JTAG Interface RAM 2KB 1KB Port 3 Port 4 Port 5 Port 6 8 I/O 8 I/O 8 I/O 6 I/O USART0 USART1 UART Mode SPI Mode MAB MDB Hardware Multiplier MPY, MPYS MAC,MACS ADC12 POR/ SVS/ Brownout 12-Bit 8 Channels <10µs Conv. Watchdog Timer WDT 15/16-Bit Timer_B7 Timer_A3 7 CC Reg Shadow Reg 3 CC Reg Comparator_ A Basic Timer 1 1 Interrupt Vector LCD 160 Segments 1,2,3,4 MUX fLCD RST/NMI 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x43x1 Terminal Functions TERMINAL PN NAME NO. PZ I/O NAME NO. DESCRIPTION I/O DVCC1 1 DVCC1 1 P6.3 2 I/O P6.3 2 I/O Digital supply voltage, positive terminal. General-purpose digital I/O P6.4 3 I/O P6.4 3 I/O General-purpose digital I/O P6.5 4 I/O P6.5 4 I/O General-purpose digital I/O P6.6 5 I/O P6.6 5 I/O General-purpose digital I/O P6.7/SVSIN 6 I/O P6.7/SVSIN 6 I/O General-purpose digital I/O / input to brownout, supply voltage supervisor Reserved 7 Reserved 7 XIN 8 I XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O XOUT 9 O Output terminal of crystal oscillator XT1 DVSS 10 I DVSS 10 I Connect to DVSS DVSS 11 I DVSS 11 I Connect to DVSS P5.1/S0 12 I/O P5.1/S0 12 I/O General-purpose digital I/O / LCD segment output 0 P5.0/S1 13 I/O P5.0/S1 13 I/O General-purpose digital I/O / LCD segment output 1 P4.7/S2 14 I/O S2 14 O General-purpose digital I/O / LCD segment output 2 P4.6/S3 15 I/O S3 15 O General-purpose digital I/O / LCD segment output 3 P4.5/S4 16 I/O S4 16 O General-purpose digital I/O / LCD segment output 4 P4.4/S5 17 I/O S5 17 O General-purpose digital I/O / LCD segment output 5 P4.3/S6 18 I/O S6 18 O General-purpose digital I/O / LCD segment output 6 P4.2/S7 19 I/O S7 19 O General-purpose digital I/O / LCD segment output 7 P4.1/S8 20 I/O S8 20 O General-purpose digital I/O / LCD segment output 8 P4.0/S9 21 I/O S9 21 O General-purpose digital I/O / LCD segment output 9 S10 22 O S10 22 O LCD segment output 10 S11 23 O S11 23 O LCD segment output 11 S12 24 O S12 24 O LCD segment output 12 S13 25 O S13 25 O LCD segment output 13 S14 26 O S14 26 O LCD segment output 14 S15 27 O S15 27 O LCD segment output 15 S16 28 O S16 28 O LCD segment output 16 S17 29 O S17 29 O LCD segment output 17 P2.7/S18 30 I/O S18 30 O General-purpose digital I/O / LCD segment output 18 P2.6/CAOUT/S19 31 I/O S19 31 O General-purpose digital I/O / Comparator_A output / LCD segment output 19 S20 32 O S20 32 O LCD segment output 20 S21 33 O S21 33 O LCD segment output 21 S22 34 O S22 34 O LCD segment output 22 S23 35 O S23 35 O LCD segment output 23 P3.7/S24 36 I/O S24 36 O General-purpose digital I/O / LCD segment output 24 P3.6/S25 37 I/O S25 37 O General-purpose digital I/O / LCD segment output 25 P3.5/S26 38 I/O S26 38 O General-purpose digital I/O / LCD segment output 26 P3.4/S27 39 I/O S27 39 O General-purpose digital I/O / LCD segment output 27 Reserved, do not connect externally POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x43x1 Terminal Functions (Continued) TERMINAL PN PZ I/O NAME NO. DESCRIPTION I/O NAME NO. P3.3/UCLK0/S28 40 I/O S28 40 O General-purpose digital I/O / ext. clock i/p—USART0/UART or SPI mode, clock o/p—USART0/SPI mode / LCD segment output 28 P3.2/SOMI0/S29 41 I/O S29 41 O General-purpose digital I/O / slave out/master in of USART0/SPI mode / LCD segment output 29 P3.1/SIMO0/S30 42 I/O S30 42 O General-purpose digital I/O / slave out/master out of USART0/SPI mode / LCD segment output 30 P3.0/STE0/S31 43 I/O S31 43 O General-purpose digital I/O / slave transmit enable-USART0/SPI mode / LCD segment output 31 S32 44 O LCD segment output 32 S33 45 O LCD segment output 33 P4.7/S34 46 I/O General-purpose digital I/O / LCD segment output 34 P4.6/S35 47 I/O General-purpose digital I/O / LCD segment output 35 P4.5/S36 48 I/O General-purpose digital I/O / LCD segment output 36 P4.4/S37 49 I/O General-purpose digital I/O / LCD segment output 37 P4.3/S38 50 I/O General-purpose digital I/O / LCD segment output 38 P4.2/S39 51 I/O General-purpose digital I/O / LCD segment output 39 COM0 44 O COM0 52 O COM0−3 are used for LCD backplanes. P5.2/COM1 45 I/O P5.2/COM1 53 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.3/COM2 46 I/O P5.3/COM2 54 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.4/COM3 47 I/O P5.4/COM3 55 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. R03 48 I R03 56 I P5.5/R13 49 I/O P5.5/R13 57 I/O General-purpose digital I/O / input port of third most positive analog LCD level (V4 or V3) P5.6/R23 50 I/O P5.6/R23 58 I/O General-purpose digital I/O / input port of second most positive analog LCD level (V2) P5.7/R33 51 I/O P5.7/R33 59 I/O General-purpose digital I/O / output port of most positive analog LCD level (V1) DVCC2 52 DVCC2 60 DVSS2 53 DVSS2 61 P4.1 62 I/O General-purpose digital I/O P4.0 63 I/O General-purpose digital I/O P3.7 64 I/O General-purpose digital I/O P3.6 65 I/O General-purpose digital I/O P3.5 66 I/O General-purpose digital I/O P3.4 67 I/O General-purpose digital I/O P3.3/UCLK0 68 I/O General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode P3.2/SOMI0 69 I/O General-purpose digital I/O / slave out/master in of USART0/SPI mode P3.1/SIMO0 70 I/O General-purpose digital I/O / slave in/master out of USART0/SPI mode P3.0/STE0 71 I/O General-purpose digital I/O / slave transmit enable USART0/SPI mode P2.7 72 I/O General-purpose digital I/O P2.6/CAOUT 73 I/O General-purpose digital I/O / Comparator_A output P2.5/URXD0 74 I/O General-purpose digital I/O / receive data in—USART0/UART mode P2.5/URXD0 12 54 I/O Input port of fourth positive (lowest) analog LCD level (V5) Digital supply voltage, positive terminal. Digital supply voltage, negative terminal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x43x1 Terminal Functions (Continued) TERMINAL PN NAME NO. PZ I/O NAME NO. DESCRIPTION I/O P2.4/UTXD0 55 I/O P2.4/UTXD0 75 I/O General-purpose digital I/O / transmit data out—USART0/UART mode P2.3/TB2 56 I/O P2.3/TB2 76 I/O General-purpose digital I/O / Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 57 I/O P2.2/TB1 77 I/O General-purpose digital I/O / Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 58 I/O P2.1/TB0 78 I/O General-purpose digital I/O / Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 59 I/O P2.0/TA2 79 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 60 I/O P1.7/CA1 80 I/O General-purpose digital I/O / Comparator_A input P1.6/CA0 61 I/O P1.6/CA0 81 I/O General-purpose digital I/O / Comparator_A input 82 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.5/TACLK/ ACLK 62 I/O P1.5/TACLK/ ACLK P1.4/TBCLK/ SMCLK 63 I/O P1.4/TBCLK/ SMCLK 83 I/O General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain system clock SMCLK output P1.3/TBOUTH/ SVSOUT 64 I/O P1.3/TBOUTH/ SVSOUT 84 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator P1.2/TA1 65 I/O P1.2/TA1 85 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output P1.1/TA0/MCLK 66 I/O P1.1/TA0/MCLK 86 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 67 I/O P1.0/TA0 87 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit XT2OUT 68 O XT2OUT 88 O Output terminal of crystal oscillator XT2 XT2IN 69 I XT2IN 89 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 70 I/O TDO/TDI 90 I/O Test data output port. TDO/TDI data output or programming data input terminal TDI/TCLK 71 I TDI/TCLK 91 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 72 I TMS 92 I Test mode select. TMS is used as an input port for device programming and test. TCK 73 I TCK 93 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 74 I RST/NMI 94 I General-purpose digital I/O / reset input or nonmaskable interrupt input port P6.0 75 I/O P6.0 95 I/O General-purpose digital I/O P6.1 76 I/O P6.1 96 I/O General-purpose digital I/O P6.2 77 I/O P6.2 97 I/O General-purpose digital I/O AVSS 78 AVSS 98 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry. DVSS1 79 DVSS1 99 Digital supply voltage, negative terminal. AVCC 80 AVCC 100 Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry; must not power up prior to DVCC1/DVCC2. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x43x Terminal Functions TERMINAL PN NAME NO. PZ I/O NAME NO. DESCRIPTION I/O DVCC1 1 DVCC1 1 P6.3/A3 2 I/O P6.3/A3 2 I/O General-purpose digital I/O / analog input a3—12-bit ADC P6.4/A4 3 I/O P6.4/A4 3 I/O General-purpose digital I/O / analog input a4—12-bit ADC P6.5/A5 4 I/O P6.5/A5 4 I/O General-purpose digital I/O / analog input a5—12-bit ADC P6.6/A6 5 I/O P6.6/A6 5 I/O General-purpose digital I/O / analog input a6—12-bit ADC P6.7/A7/SVSIN 6 I/O P6.7/A7/SVSIN 6 I/O General-purpose digital I/O / analog input a7—12-bit ADC, analog / input to brownout, supply voltage supervisor VREF+ 7 O VREF+ 7 O Output of positive terminal of the reference voltage in the ADC XIN 8 I XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O XOUT 9 O Output terminal of crystal oscillator XT1 VeREF+ 10 I VeREF+ 10 I Input for an external reference voltage to the ADC VREF−/VeREF− 11 I VREF−/VeREF− 11 I Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an external applied reference voltage. P5.1/S0 12 I/O P5.1/S0 12 I/O General-purpose digital I/O / LCD segment output 0 P5.0/S1 13 I/O P5.0/S1 13 I/O General-purpose digital I/O / LCD segment output 1 P4.7/S2 14 I/O S2 14 O General-purpose digital I/O / LCD segment output 2 P4.6/S3 15 I/O S3 15 O General-purpose digital I/O / LCD segment output 3 P4.5/S4 16 I/O S4 16 O General-purpose digital I/O / LCD segment output 4 P4.4/S5 17 I/O S5 17 O General-purpose digital I/O / LCD segment output 5 P4.3/S6 18 I/O S6 18 O General-purpose digital I/O / LCD segment output 6 P4.2/S7 19 I/O S7 19 O General-purpose digital I/O / LCD segment output 7 P4.1/S8 20 I/O S8 20 O General-purpose digital I/O / LCD segment output 8 P4.0/S9 21 I/O S9 21 O General-purpose digital I/O / LCD segment output 9 S10 22 O S10 22 O LCD segment output 10 S11 23 O S11 23 O LCD segment output 11 S12 24 O S12 24 O LCD segment output 12 S13 25 O S13 25 O LCD segment output 13 S14 26 O S14 26 O LCD segment output 14 S15 27 O S15 27 O LCD segment output 15 S16 28 O S16 28 O LCD segment output 16 S17 29 O S17 29 O LCD segment output 17 P2.7/ADC12CLK/ S18 30 I/O S18 30 O General-purpose digital I/O / conversion clock—12-bit ADC / LCD segment output 18 P2.6/CAOUT/S19 31 I/O S19 31 O General-purpose digital I/O / Comparator_A output / LCD segment output 19 S20 32 O S20 32 O LCD segment output 20 S21 33 O S21 33 O LCD segment output 21 S22 34 O S22 34 O LCD segment output 22 S23 35 O S23 35 O LCD segment output 23 P3.7/S24 36 I/O S24 36 O General-purpose digital I/O / LCD segment output 24 P3.6/S25 37 I/O S25 37 O General-purpose digital I/O / LCD segment output 25 P3.5/S26 38 I/O S26 38 O General-purpose digital I/O / LCD segment output 26 P3.4/S27 39 I/O S27 39 O General-purpose digital I/O / LCD segment output 27 14 Digital supply voltage, positive terminal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x43x Terminal Functions (Continued) TERMINAL PN PZ I/O NAME NO. DESCRIPTION I/O NAME NO. P3.3/UCLK0/S28 40 I/O S28 40 O General-purpose digital I/O / ext. clock i/p—USART0/UART or SPI mode, clock o/p—USART0/SPI mode / LCD segment output 28 P3.2/SOMI0/S29 41 I/O S29 41 O General-purpose digital I/O / slave out/master in of USART0/SPI mode / LCD segment output 29 P3.1/SIMO0/S30 42 I/O S30 42 O General-purpose digital I/O / slave out/master out of USART0/SPI mode / LCD segment output 30 P3.0/STE0/S31 43 I/O S31 43 O General-purpose digital I/O / slave transmit enable-USART0/SPI mode / LCD segment output 31 S32 44 O LCD segment output 32 S33 45 O LCD segment output 33 P4.7/S34 46 I/O General-purpose digital I/O / LCD segment output 34 P4.6/S35 47 I/O General-purpose digital I/O / LCD segment output 35 P4.5/S36 48 I/O General-purpose digital I/O / LCD segment output 36 P4.4/S37 49 I/O General-purpose digital I/O / LCD segment output 37 P4.3/S38 50 I/O General-purpose digital I/O / LCD segment output 38 P4.2/S39 51 I/O General-purpose digital I/O / LCD segment output 39 COM0 44 O COM0 52 O COM0−3 are used for LCD backplanes. P5.2/COM1 45 I/O P5.2/COM1 53 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.3/COM2 46 I/O P5.3/COM2 54 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.4/COM3 47 I/O P5.4/COM3 55 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. R03 48 I R03 56 I P5.5/R13 49 I/O P5.5/R13 57 I/O General-purpose digital I/O / input port of third most positive analog LCD level (V4 or V3) P5.6/R23 50 I/O P5.6/R23 58 I/O General-purpose digital I/O / input port of second most positive analog LCD level (V2) P5.7/R33 51 I/O P5.7/R33 59 I/O General-purpose digital I/O / output port of most positive analog LCD level (V1) DVCC2 52 DVCC2 60 DVSS2 53 DVSS2 61 P4.1 62 I/O General-purpose digital I/O P4.0 63 I/O General-purpose digital I/O P3.7 64 I/O General-purpose digital I/O P3.6 65 I/O General-purpose digital I/O P3.5 66 I/O General-purpose digital I/O P3.4 67 I/O General-purpose digital I/O P3.3/UCLK0 68 I/O General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode P3.2/SOMI0 69 I/O General-purpose digital I/O / slave out/master in of USART0/SPI mode P3.1/SIMO0 70 I/O General-purpose digital I/O / slave in/master out of USART0/SPI mode P3.0/STE0 71 I/O General-purpose digital I/O / slave transmit enable USART0/SPI mode P2.7/ADC12CLK 72 I/O General-purpose digital I/O / conversion clock—12-bit ADC P2.6/CAOUT 73 I/O General-purpose digital I/O / Comparator_A output P2.5/URXD0 74 I/O General-purpose digital I/O / receive data in—USART0/UART mode P2.5/URXD0 54 I/O Input port of fourth positive (lowest) analog LCD level (V5) Digital supply voltage, positive terminal. Digital supply voltage, negative terminal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x43x Terminal Functions (Continued) TERMINAL PN NAME NO. PZ I/O NAME NO. DESCRIPTION I/O P2.4/UTXD0 55 I/O P2.4/UTXD0 75 I/O General-purpose digital I/O / transmit data out—USART0/UART mode P2.3/TB2 56 I/O P2.3/TB2 76 I/O General-purpose digital I/O / Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 57 I/O P2.2/TB1 77 I/O General-purpose digital I/O / Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 58 I/O P2.1/TB0 78 I/O General-purpose digital I/O / Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 59 I/O P2.0/TA2 79 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 60 I/O P1.7/CA1 80 I/O General-purpose digital I/O / Comparator_A input P1.6/CA0 61 I/O P1.6/CA0 81 I/O General-purpose digital I/O / Comparator_A input 82 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.5/TACLK/ ACLK 62 I/O P1.5/TACLK/ ACLK P1.4/TBCLK/ SMCLK 63 I/O P1.4/TBCLK/ SMCLK 83 I/O General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain system clock SMCLK output P1.3/TBOUTH/ SVSOUT 64 I/O P1.3/TBOUTH/ SVSOUT 84 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator P1.2/TA1 65 I/O P1.2/TA1 85 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output P1.1/TA0/MCLK 66 I/O P1.1/TA0/MCLK 86 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 67 I/O P1.0/TA0 87 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit XT2OUT 68 O XT2OUT 88 O Output terminal of crystal oscillator XT2 XT2IN 69 I XT2IN 89 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 70 I/O TDO/TDI 90 I/O Test data output port. TDO/TDI data output or programming data input terminal TDI/TCLK 71 I TDI/TCLK 91 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 72 I TMS 92 I Test mode select. TMS is used as an input port for device programming and test. TCK 73 I TCK 93 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 74 I RST/NMI 94 I General-purpose digital I/O / reset input or nonmaskable interrupt input port P6.0/A0 75 I/O P6.0/A0 95 I/O General-purpose digital I/O / analog input a0 − 12-bit ADC P6.1/A1 76 I/O P6.1/A1 96 I/O General-purpose digital I/O / analog input a1 − 12-bit ADC P6.2/A2 77 I/O P6.2/A2 97 I/O General-purpose digital I/O / analog input a2 − 12-bit ADC AVSS 78 AVSS 98 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry. DVSS1 79 DVSS1 99 Digital supply voltage, negative terminal. AVCC 80 AVCC 100 Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry; must not power up prior to DVCC1/DVCC2. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x44x1 Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION DVCC1 1 P6.3 2 I/O Digital supply voltage, positive terminal. General-purpose digital I/O P6.4 3 I/O General-purpose digital I/O P6.5 4 I/O General-purpose digital I/O P6.6 5 I/O General-purpose digital I/O P6.7/SVSIN 6 I/O General-purpose digital I/O / analog input to brownout, supply voltage supervisor Reserved 7 O Reserved, do not connect externally XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1 DVSS 10 I Connect to DVSS DVSS 11 I Connect to DVSS P5.1/S0 12 I/O General-purpose digital I/O / LCD segment output 0 P5.0/S1 13 I/O General-purpose digital I/O / LCD segment output 1 S2 14 O LCD segment output 2 S3 15 O LCD segment output 3 S4 16 O LCD segment output 4 S5 17 O LCD segment output 5 S6 18 O LCD segment output 6 S7 19 O LCD segment output 7 S8 20 O LCD segment output 8 S9 21 O LCD segment output 9 S10 22 O LCD segment output 10 S11 23 O LCD segment output 11 S12 24 O LCD segment output 12 S13 25 O LCD segment output 13 S14 26 O LCD segment output 14 S15 27 O LCD segment output 15 S16 28 O LCD segment output 16 S17 29 O LCD segment output 17 S18 30 O LCD segment output 18 S19 31 O LCD segment output 19 S20 32 O LCD segment output 20 S21 33 O LCD segment output 21 S22 34 O LCD segment output 22 S23 35 O LCD segment output 23 S24 36 O LCD segment output 24 S25 37 O LCD segment output 25 S26 38 O LCD segment output 26 S27 39 O LCD segment output 27 S28 40 O LCD segment output 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x44x1 Terminal Functions (Continued) TERMINAL PN NAME I/O DESCRIPTION NO. S29 41 O LCD segment output 29 S30 42 O LCD segment output 30 S31 43 O LCD segment output 31 S32 44 O LCD segment output 32 S33 45 O LCD segment output 33 P4.7/S34 46 I/O General-purpose digital I/O / LCD segment output 34 P4.6/S35 47 I/O General-purpose digital I/O / LCD segment output 35 P4.5/UCLK1/S36 48 I/O General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 36 P4.4/SOMI1/S37 49 I/O General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37 P4.3/SIMO1/S38 50 I/O General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38 P4.2/STE1/S39 51 I/O General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39 COM0 52 O COM0−3 are used for LCD backplanes. P5.2/COM1 53 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.3/COM2 54 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.4/COM3 55 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. R03 56 I P5.5/R13 57 I/O General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3) P5.6/R23 58 I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2) P5.7/R33 59 I/O General-purpose digital I/O / Output port of most positive analog LCD level (V1) DVCC2 60 DVSS2 61 P4.1/URXD1 62 I/O General-purpose digital I/O / receive data in—USART1/UART mode P4.0/UTXD1 63 I/O General-purpose digital I/O / transmit data out—USART1/UART mode P3.7/TB6 64 I/O General-purpose digital I/O / Timer_B7 CCR6 / Capture: CCI6A/CCI6B input, compare: Out6 output P3.6/TB5 65 I/O General-purpose digital I/O / Timer_B7 CCR5 / Capture: CCI5A/CCI5B input, compare: Out5 output P3.5/TB4 66 I/O General-purpose digital I/O / Timer_B7 CCR4 / Capture: CCI4A/CCI4B input, compare: Out4 output P3.4/TB3 67 I/O General-purpose digital I/O / Timer_B7 CCR3 / Capture: CCI3A/CCI3B input, compare: Out3 output P3.3/UCLK0 68 I/O General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode P3.2/SOMI0 69 I/O General-purpose digital I/O / slave out/master in of USART0/SPI mode P3.1/SIMO0 70 I/O General-purpose digital I/O / slave in/master out of USART0/SPI mode P3.0/STE0 71 I/O General-purpose digital I/O / slave transmit enable—USART0/SPI mode P2.7 72 I/O General-purpose digital I/O P2.6/CAOUT 73 I/O General-purpose digital I/O / Comparator_A output P2.5/URXD0 74 I/O General-purpose digital I/O / receive data in—USART0/UART mode P2.4/UTXD0 75 I/O General-purpose digital I/O / transmit data out—USART0/UART mode P2.3/TB2 76 I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 77 I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 78 I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 79 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 80 I/O General-purpose digital I/O / Comparator_A input 18 Input port of fourth positive (lowest) analog LCD level (V5) Digital supply voltage, positive terminal. Digital supply voltage, negative terminal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x44x1 Terminal Functions (Continued) TERMINAL PN NAME I/O DESCRIPTION NO. P1.6/CA0 81 I/O General-purpose digital I/O / Comparator_A input P1.5/TACLK/ ACLK 82 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.4/TBCLK/ SMCLK 83 I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output P1.3/TBOUTH/ SVSOUT 84 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator P1.2/TA1 85 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output P1.1/TA0/MCLK 86 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 87 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit XT2OUT 88 O Output terminal of crystal oscillator XT2 XT2IN 89 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 90 I/O TDI/TCLK 91 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 92 I Test mode select. TMS is used as an input port for device programming and test. TCK 93 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 94 I Reset input or nonmaskable interrupt input port P6.0 95 I/O General-purpose digital I/O P6.1 96 I/O General-purpose digital I/O P6.2 97 I/O General-purpose digital I/O AVSS 98 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry. DVSS1 99 Digital supply voltage, negative terminal. AVCC 100 Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, port 1, and LCD resistive divider circuitry; must not power up prior to DVCC1/DVCC2. Test data output port. TDO/TDI data output or programming data input terminal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x44x Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION DVCC1 1 P6.3/A3 2 I/O General-purpose digital I/O / analog input a3—12-bit ADC P6.4/A4 3 I/O General-purpose digital I/O / analog input a4—12-bit ADC P6.5/A5 4 I/O General-purpose digital I/O / analog input a5—12-bit ADC P6.6/A6 5 I/O General-purpose digital I/O / analog input a6—12-bit ADC P6.7/A7/SVSIN 6 I/O General-purpose digital I/O / analog input a7—12-bit ADC / analog input to brownout, supply voltage supervisor VREF+ 7 O Output of positive terminal of the reference voltage in the ADC XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1 VeREF+ 10 I Input for an external reference voltage to the ADC VREF−/VeREF− 11 I Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an external applied reference voltage P5.1/S0 12 I/O General-purpose digital I/O / LCD segment output 0 P5.0/S1 13 I/O General-purpose digital I/O / LCD segment output 1 S2 14 O LCD segment output 2 S3 15 O LCD segment output 3 S4 16 O LCD segment output 4 S5 17 O LCD segment output 5 S6 18 O LCD segment output 6 S7 19 O LCD segment output 7 S8 20 O LCD segment output 8 S9 21 O LCD segment output 9 S10 22 O LCD segment output 10 S11 23 O LCD segment output 11 S12 24 O LCD segment output 12 S13 25 O LCD segment output 13 S14 26 O LCD segment output 14 S15 27 O LCD segment output 15 S16 28 O LCD segment output 16 S17 29 O LCD segment output 17 S18 30 O LCD segment output 18 S19 31 O LCD segment output 19 S20 32 O LCD segment output 20 S21 33 O LCD segment output 21 S22 34 O LCD segment output 22 S23 35 O LCD segment output 23 S24 36 O LCD segment output 24 S25 37 O LCD segment output 25 S26 38 O LCD segment output 26 S27 39 O LCD segment output 27 S28 40 O LCD segment output 28 20 Digital supply voltage, positive terminal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x44x Terminal Functions (Continued) TERMINAL PN NAME I/O DESCRIPTION NO. S29 41 O LCD segment output 29 S30 42 O LCD segment output 30 S31 43 O LCD segment output 31 S32 44 O LCD segment output 32 S33 45 O LCD segment output 33 P4.7/S34 46 I/O General-purpose digital I/O / LCD segment output 34 P4.6/S35 47 I/O General-purpose digital I/O / LCD segment output 35 P4.5/UCLK1/S36 48 I/O General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 36 P4.4/SOMI1/S37 49 I/O General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37 P4.3/SIMO1/S38 50 I/O General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38 P4.2/STE1/S39 51 I/O General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39 COM0 52 O COM0−3 are used for LCD backplanes. P5.2/COM1 53 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.3/COM2 54 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.4/COM3 55 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. R03 56 I P5.5/R13 57 I/O General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3) P5.6/R23 58 I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2) P5.7/R33 59 I/O General-purpose digital I/O / Output port of most positive analog LCD level (V1) DVCC2 60 DVSS2 61 P4.1/URXD1 62 I/O General-purpose digital I/O / receive data in—USART1/UART mode P4.0/UTXD1 63 I/O General-purpose digital I/O / transmit data out—USART1/UART mode P3.7/TB6 64 I/O General-purpose digital I/O / Timer_B7 CCR6 / Capture: CCI6A/CCI6B input, compare: Out6 output P3.6/TB5 65 I/O General-purpose digital I/O / Timer_B7 CCR5 / Capture: CCI5A/CCI5B input, compare: Out5 output P3.5/TB4 66 I/O General-purpose digital I/O / Timer_B7 CCR4 / Capture: CCI4A/CCI4B input, compare: Out4 output P3.4/TB3 67 I/O General-purpose digital I/O / Timer_B7 CCR3 / Capture: CCI3A/CCI3B input, compare: Out3 output P3.3/UCLK0 68 I/O General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode P3.2/SOMI0 69 I/O General-purpose digital I/O / slave out/master in of USART0/SPI mode P3.1/SIMO0 70 I/O General-purpose digital I/O / slave in/master out of USART0/SPI mode P3.0/STE0 71 I/O General-purpose digital I/O / slave transmit enable—USART0/SPI mode P2.7/ADC12CLK 72 I/O General-purpose digital I/O / conversion clock—12-bit ADC P2.6/CAOUT 73 I/O General-purpose digital I/O / Comparator_A output P2.5/URXD0 74 I/O General-purpose digital I/O / receive data in—USART0/UART mode P2.4/UTXD0 75 I/O General-purpose digital I/O / transmit data out—USART0/UART mode P2.3/TB2 76 I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 77 I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 78 I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 79 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 80 I/O General-purpose digital I/O / Comparator_A input Input port of fourth positive (lowest) analog LCD level (V5) Digital supply voltage, positive terminal. Digital supply voltage, negative terminal. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 MSP430x44x Terminal Functions (Continued) TERMINAL PN NAME I/O DESCRIPTION NO. P1.6/CA0 81 I/O General-purpose digital I/O / Comparator_A input P1.5/TACLK/ ACLK 82 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.4/TBCLK/ SMCLK 83 I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output P1.3/TBOUTH/ SVSOUT 84 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator P1.2/TA1 85 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output P1.1/TA0/MCLK 86 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 87 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit XT2OUT 88 O Output terminal of crystal oscillator XT2 XT2IN 89 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 90 I/O TDI/TCLK 91 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 92 I Test mode select. TMS is used as an input port for device programming and test. TCK 93 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 94 I Reset input or nonmaskable interrupt input port P6.0/A0 95 I/O General-purpose digital I/O, analog input a0—12-bit ADC P6.1/A1 96 I/O General-purpose digital I/O, analog input a1—12-bit ADC P6.2/A2 97 I/O General-purpose digital I/O, analog input a2—12-bit ADC AVSS 98 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry. DVSS1 99 Digital supply voltage, negative terminal. AVCC 100 Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, comparator_A, ADC12, port 1, and LCD resistive divider circuitry; must not power up prior to DVCC1/DVCC2. 22 Test data output port. TDO/TDI data output or programming data input terminal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Indirect D D D D D Indirect autoincrement Register Indexed Symbolic (PC relative) Absolute Immediate NOTE: S = source D D D D SYNTAX EXAMPLE MOV Rs,Rd MOV R10,R11 MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) MOV EDE,TONI OPERATION R10 −−> R11 M(2+R5)−−> M(6+R6) M(EDE) −−> M(TONI) MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT) MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) D MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 D MOV #X,TONI MOV #45,TONI #45 −−> M(TONI) D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) − All clocks are active D Low-power mode 0 (LPM0) − CPU is disabled − ACLK and SMCLK remain active, MCLK is disabled − FLL+ loop control remains active D Low-power mode 1 (LPM1) − CPU is disabled − FLL+ loop control is disabled − ACLK and SMCLK remain active, MCLK is disabled D Low-power mode 2 (LPM2) − CPU is disabled − MCLK, FLL+ loop control, and DCOCLK are disabled − DCO’s dc generator remains enabled − ACLK remains active D Low-power mode 3 (LPM3) − CPU is disabled − MCLK, FLL+ loop control, and DCOCLK are disabled − DCO’s dc generator is disabled − ACLK remains active D Low-power mode 4 (LPM4) 24 − CPU is disabled − ACLK is disabled − MCLK, FLL+ loop control, and DCOCLK are disabled − DCO’s dc generator is disabled − Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0FFFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 3. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory WDTIFG KEYV (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator Fault Flash Memory Access Violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 14 Timer_B7† TBCCR0 CCIFG (see Note 2) Maskable 0FFFAh 13 Timer_B7† TBCCR1 to TBCCR6 CCIFGs TBIFG (see Notes 1 and 2) Maskable 0FFF8h 12 Comparator_A CAIFG Maskable 0FFF6h 11 Watchdog Timer WDTIFG Maskable 0FFF4h 10 USART0 Receive URXIFG0 Maskable 0FFF2h 9 USART0 Transmit UTXIFG0 Maskable 0FFF0h 8 ADC12 (see Note 4) ADC12IFG (see Notes 1 and 2) Maskable 0FFEEh 7 Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer_A3 TACCR1 and TACCR2 CCIFGs, TAIFG (see Notes 1 and 2) Maskable 0FFEAh 5 I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 4 USART1 Receive‡ URXIFG1 Maskable 0FFE6h 3 USART1 Transmit‡ UTXIFG1 Maskable 0FFE4h 2 I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 1 Basic Timer1 BTIFG Maskable 0FFE0h 0, lowest † ’43x(1) uses Timer_B3 with TBCCR0, 1 and 2 CCIFG flags, and TBIFG. ’44x(1) uses Timer_B7 with TBCCR0 CCIFG, TBCCR1 to TBCCR6 CCIFGs, and TBIFG ‡ USART1 is implemented in ’44x(1) only. NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it. 4. ADC12 is not implemented in MSP430x43x1 and MSP430x44x1 devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 7 Address 0h 6 UTXIE0 rw–0 URXIE0 rw–0 5 4 ACCVIE NMIIE rw–0 3 2 1 OFIE rw–0 rw–0 0 WDTIE rw–0 WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable URXIE0: USART0: UART and SPI receive-interrupt enable UTXIE0: USART0: UART and SPI transmit-interrupt enable 7 Address 6 BTIE 01h rw–0 5 4 UTXIE1 URXIE1 rw–0 3 2 1 0 rw–0 URXIE1: USART1: UART and SPI receive-interrupt enable (MSP430F44x(1) devices only) UTXIE1: USART1: UART and SPI transmit-interrupt enable (MSP430F44x(1) devices only) BTIE: Basic timer interrupt enable interrupt flag register 1 and 2 7 Address 02h 6 UTXIFG0 rw–1 URXIFG0 4 3 2 NMIIFG rw–0 1 OFIFG rw–0 rw–1 0 WDTIFG rw–(0) WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power up or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin URXIFG0: USART0: UART and SPI receive flag UTXIFG0: USART0: UART and SPI transmit flag 7 Address 03h 6 BTIFG rw 26 5 5 4 UTXIFG1 URXIFG1 rw–1 3 2 1 rw–0 URXIFG1: USART1: UART and SPI receive flag (MSP430F44x(1) devices only) UTXIFG1: USART1: UART and SPI transmit flag (MSP430F44x(1) devices only) BTIFG: Basic timer flag POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 0 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 module enable registers 1 and 2 7 UTXE0 Address 04h rw–0 6 URXE0 USPIE0 5 4 3 1 0 2 1 0 rw–0 URXE0: USART0: UART mode receive enable UTXE0: USART0: UART mode transmit enable USPIE0: USART0: SPI mode transmit and receive enable Address 2 7 6 5 UTXE1 05h rw–0 4 URXE1 USPIE1 3 rw–0 URXE1: USART1: UART mode receive enable (MSP430F44x(1) devices only) UTXE1: USART1: UART mode transmit enable (MSP430F44x(1) devices only) USPIE1: USART1: SPI mode transmit and receive enable (MSP430F44x(1) devices only) Legend: rw: rw–0,1: rw–(0,1): Bit Can Be Read and Written Bit Can Be Read and Written. It Is Reset or Set by PUC. Bit Can Be Read and Written. It Is Reset or Set by POR. SFR Bit Not Present in Device memory organization MSP430F435 MSP430F4351 MSP430F436 MSP430F4361 MSP430F437 MSP430F4371 MSP430F447 MSP430F448 MSP430F4481 MSP430F449 MSP430F4491 Memory Main: interrupt vector Main: code memory Size Flash Flash 16KB 0FFFFh − 0FFE0h 0FFFFh − 0C000h 24KB 0FFFFh − 0FFE0h 0FFFFh − 0A000h 32KB 0FFFFh − 0FFE0h 0FFFFh − 08000h 48KB 0FFFFh − 0FFE0h 0FFFFh − 04000h 60KB 0FFFFh − 0FFE0h 0FFFFh − 01100h Information memory Size Flash 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Boot memory Size ROM 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h Size 512 Byte 03FFh − 0200h 1KB 05FFh − 0200h 1KB 05FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 16-bit 8-bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Memory Programming User’s Guide, literature number SLAU265. BSL Function PN Package Pins PZ Package Pins Data Transmit 67 - P1.0 87 - P1.0 Data Receive 66 - P1.1 86 - P1.1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0 to n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 16KB 24KB 32KB 48KB 60KB 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh Segment 1 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh Segment 2 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0C400h 0C3FFh 0A400h 0A3FFh 08400h 083FFh 04400h 043FFh 01400h 013FFh 0C200h 0C1FFh 0A200h 0A1FFh 08200h 081FFh 04200h 041FFh 01200h 011FFh 0C000h 010FFh 0A000h 010FFh 08000h 010FFh 04000h 010FFh 01100h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01000h 01000h 01000h 01000h 01000h Segment 0 w/ Interrupt Vectors Main Memory Segment n-1 Segment n Segment A Information Memory Segment B 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number SLAU056. digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. oscillator and system clock The clock system in the MSP430x43x(1) and MSP43x44x(1) family of devices is supported by the FLL+ module, which includes support for a 32768-Hz watch crystal oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features a digital frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal Main clock (MCLK), the system clock used by the CPU Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8 brownout, supply voltage supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). hardware multiplier (MSP430x44x(1) only) The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16, 16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. watchdog timer (WDT) The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 USART0 The MSP430x43x(1) and the MSP430x44x(1) have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. USART1 (MSP430x44x(1) only) The MSP430x44x(1) has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. Operation of USART1 is identical to USART0. Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER PN PZ DEVICE INPUT SIGNAL 62 - P1.5 82 - P1.5 TACLK TACLK ACLK ACLK SMCLK SMCLK 62 - P1.5 82 - P1.5 TACLK INCLK 67 - P1.0 87 - P1.0 TA0 CCI0A 66 - P1.1 86 - P1.1 65 - P1.2 59 - P2.0 ‡ MODULE INPUT NAME 85 - P1.2 79 - P2.0 TA0 CCI0B DVSS GND DVCC VCC TA1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 OUTPUT PIN NUMBER PN PZ 67 - P1.0 87 - P1.0 14 - P1.2 85 - P1.2 TA0 ADC12 (internal)‡ CCR1 TA1 15 - P1.3 CCR2 79 - P2.0 TA2 Not implemented in MSP430x43x1 and MSP430x44x1 devices. Timer_B3 (MSP430x43x(1) only) Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 Timer_B7 (MSP430x44x(1) only) Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_B3/B7 SIGNAL CONNECTIONS† INPUT PIN NUMBER PN PZ DEVICE INPUT SIGNAL 63 - P1.4 83 - P1.4 TBCLK ACLK SMCLK SMCLK 63 - P1.4 83 - P1.4 TBCLK INCLK 58 - P2.1 78 - P2.1 TB0 CCI0A 58 - P2.1 78 - P2.1 TB0 CCI0B DVSS GND DVCC VCC 57 - P2.2 77 - P2.2 TB1 CCI1A 57 - P2.2 77 - P2.2 TB1 CCI1B GND DVCC VCC 56 - P2.3 76 - P2.3 TB2 CCI2A 56 - P2.3 76 - P2.3 TB2 CCI2B DVSS GND 67 - P3.4 67 - P3.4 DVCC VCC TB3 CCI3A TB3 CCI3B DVSS GND DVCC VCC 66 - P3.5 TB4 CCI4A 66 - P3.5 TB4 CCI4B DVSS GND 65 - P3.6 65 - P3.6 64 - P3.7 ‡ TBCLK ACLK DVSS † MODULE INPUT NAME DVCC VCC TB5 CCI5A TB5 CCI5B DVSS GND DVCC VCC TB6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0† OUTPUT PIN NUMBER PN PZ 58 - P2.1 78 - P2.1 ADC12 (internal)‡ TB0 57 - P2.2 CCR1† ADC12 (internal)‡ TB1 56 - P2.3 CCR2† 77 - P2.2 76 - P2.3 TB2 67 - P3.4 CCR3 TB3 66 - P3.5 CCR4 TB4 65 - P3.6 CCR5 TB5 64 - P3.7 CCR6 TB6 Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2 only). Not implemented in MSP430x43x1 and MSP430x44x1 devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 Comparator_A The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. ADC12 (not implemented in MSP430x43x1 and MSP430x44x1) The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. Basic Timer1 The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module. LCD driver The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog timer control WDTCTL 0120h Timer_B7/ _ Timer_B3 (see Note 1) Capture/compare register 6 TBCCR6 019Eh Capture/compare register 5 TBCCR5 019Ch Capture/compare register 4 TBCCR4 019Ah Capture/compare register 3 TBCCR3 0198h Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 6 TBCCTL6 018Eh Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 3 TBCCTL3 0188h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh Timer_A3 _ Reserved 017Eh Reserved 017Ch Reserved 017Ah Reserved 0178h Capture/compare register 2 TACCR2 0176h Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Reserved 016Eh Reserved 016Ch Reserved 016Ah Reserved Hardware Multiplier (MSP430x44x(1) only) 0168h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h NOTE 1: Timer_B7 in the MSP430x44x(1) family has seven CCRs; Timer_B3 in the MSP430x43x(1) family has three CCRs. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) Flash 34 Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h ADC12 Conversion memory 15 (not implemented in Conversion memory 14 MSP430F43x1 and Conversion memory 13 MSP430F44x1) Conversion memory 12 ADC12MEM15 015Eh ADC12MEM14 015Ch ADC12MEM13 015Ah ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h ADC memory-control register15 ADC12MCTL15 08Fh ADC memory-control register14 ADC12MCTL14 08Eh ADC memory-control register13 ADC12MCTL13 08Dh ADC memory-control register12 ADC12MCTL12 08Ch ADC memory-control register11 ADC12MCTL11 08Bh ADC memory-control register10 ADC12MCTL10 08Ah ADC memory-control register9 ADC12MCTL9 089h ADC memory-control register8 ADC12MCTL8 088h ADC memory-control register7 ADC12MCTL7 087h ADC memory-control register6 ADC12MCTL6 086h ADC memory-control register5 ADC12MCTL5 085h ADC memory-control register4 ADC12MCTL4 084h ADC memory-control register3 ADC12MCTL3 083h ADC memory-control register2 ADC12MCTL2 082h ADC memory-control register1 ADC12MCTL1 081h ADC memory-control register0 ADC12MCTL0 080h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS LCD LCD memory 20 : LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode LCDM20 : LCDM16 LCDM15 : LCDM1 LCDCTL 0A4h : 0A0h 09Fh : 091h 090h USART1 (MSP430F44x(1) only) Transmit buffer U1TXBUF 07Fh Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate U0BR1 075h Baud rate U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah USART0 Comparator_A p _ Comparator_A control1 CACTL1 059h BrownOUT, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+ Clock FLL+ Control1 FLL_CTL1 054h FLL+ Control0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h Basic Timer1 BT counter2 BT counter1 BT control BTCNT2 BTCNT1 BTCTL 047h 046h 040h Port P6 Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P4 Port P3 Port P2 Port P1 Special functions p Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable2 ME2 005h SFR module enable1 ME1 004h SFR interrupt flag2 IFG2 003h SFR interrupt flag1 IFG1 002h SFR interrupt enable2 IE2 001h SFR interrupt enable1 IE1 000h absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature, Tstg: Unprogrammed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Programmed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 recommended operating conditions MIN NOM MAX UNIT Supply voltage during program execution VCC (AVCC = DVCC1 = DVCC2 = VCC) (see Note 1) MSP430F43x(1), MSP430F44x(1) 1.8 3.6 V Supply voltage during program execution, SVS enabled, PORON=1 (see Note 1 and Note 2) VCC (AVCC = DVCC1 = DVCC2 = VCC) MSP430F43x(1), MSP430F44x(1) 2 3.6 V Supply voltage during flash memory programming VCC (AVCC = DVCC1 = DVCC2 = VCC) (see Note 1) MSP430F43x(1), MSP430F44x(1) 2.7 3.6 V 0 0 V −40 85 °C Supply voltage, VSS (AVSS = DVSS1 = DVSS2 = VSS) MSP430x43x(1), MSP430x44x(1) Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 3) LF selected, XTS_FLL=0 Watch crystal XT1 selected, XTS_FLL=1 Ceramic resonator XT1 selected, XTS_FLL=1 Crystal 32.768 450 8000 kHz 1000 8000 kHz 450 8000 1000 8000 VCC = 1.8 V DC 4.15 VCC = 3.6 V DC 8 Ceramic resonator XT2 crystal frequency, frequency f(XT2) Crystal Processor frequency (signal MCLK), MCLK) f(System) kHz kHz MHz NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. 2. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry. 3. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. fSystem (MHz) 8 MHz ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ Supply voltage range, ’F43x(1)/’F44x(1), during program execution 4.15 MHz 1.8 2.7 3 Supply Voltage − V Supply voltage range, ’F43x(1)/’F44x(1), during flash memory programming 3.6 Figure 1. Frequency vs Supply Voltage, MSP430F43x(1) or MSP430F44x(1) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS Active mode (see Note 1), f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32768 Hz XTS_FLL=0, SELM=(0,1) TA = −40°C 40°C to 85°C I(LPM0) Low power mode, (LPM0) Low-power (see Note 1 and Note 4) TA = −40°C 40°C to 85°C I(LPM2) Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, f(ACLK) = 32768 Hz, SCG0 = 0 (see Note 2 and Note 4) TA = −40°C 40°C to 85°C I(AM) VCC TYP MAX 2.2 V 280 350 3V 420 560 2.2 V 32 45 3V 55 70 2.2 V 11 14 3V 17 22 I(LPM3) Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, MHz f(ACLK) = 32,768 Hz, SCG0 = 1 ((see Note 3 and Note 4)) TA = 60°C I(LPM4) 1.5 1.5 2 3 3.5 6 1.8 2.2 1.6 1.9 2.5 3.5 TA = 85°C 4.2 7.5 TA = −40°C 0.1 0.5 TA = 25°C 0.1 0.5 0.7 1.1 TA = 60°C mode (LPM4) Low-power mode, f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1 (see Note Note ( N t 2 and dN t 4) 22V 2.2 1 1.1 TA = −40°C TA = 60°C 3V 22V 2.2 TA = 85°C 1.7 3 TA = −40°C 0.1 0.5 0.1 0.5 0.8 1.2 1.9 3.5 TA = 25°C TA = 60°C TA = 85°C µA A A µA TA = 85°C TA = 25°C UNIT A µA TA = −40°C TA = 25°C MIN 3V µA A A µA µA A µA A NOTES: 1. Timer_B is clocked by f(DCOCLK) = f(DCO) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 2. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 3. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current consumption in LPM3 is measured with active Basic Timer1 and LCD (ACLK selected). The current consumption of the Comparator_A and the SVS module are specified in the respective sections. The LPM3 currents are characterized with a KDS Daishinku DT−38 (6 pF) crystal and OSCCAPx=1h. 4. Current consumption for brownout included. Current consumption of active mode versus system frequency I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage I(AM) = I(AM) [3 V] + 175 µA/V × (VCC – 3 V) 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs − ports P1, P2, P3, P4, P5, P6 PARAMETER VIT+ Positive going input threshold voltage Positive-going VIT− Negative going input threshold voltage Negative-going Vhys Input voltage hysteresis (VIT+ − VIT−) VCC MIN TYP MAX 2.2 V 1.1 1.5 3V 1.5 1.9 2.2 V 0.4 0.9 3V 0.9 1.3 2.2 V 0.3 1.1 3V 0.5 1 UNIT V V V standard inputs − RST/NMI, JTAG (TCK, TMS, TDI/TCLK) PARAMETER VIL Low-level input voltage VIH High-level input voltage VCC MIN 22V/3V 2.2 TYP MAX UNIT VSS VSS+0.6 V 0.8×VCC VCC V MAX UNIT inputs Px.x, TAx, TBx PARAMETER t(int) TEST CONDITIONS External interrupt p timing g VCC MIN 2.2 V/3 V 1.5 2.2 V 62 3V 50 2.2 V 62 3V 50 P t P1, P1 P2: P2 P1.x P1 to t P2.x, P2 external t l trigger ti i l Port signal for the interrupt flag, (see Note 1) TA0, TA1, TA2 t(cap) f(TAext) f(TBext) f(TAint) f(TBint) Timer A Timer B capture Timer_A, Timer_B timing TB0, TB1, TB2, TB3, TB4, TB5, TB6 (see Note 2) Timer_A, Timer_B clock frequency externally applied to pin TACLK TBCLK TACLK, TBCLK, INCLK: t(H) = t(L) Timer_A, Timer_B clock frequency SMCLK or ACLK signal selected TYP cycle ns ns 2.2 V 8 3V 10 MHz 2.2 V 8 3V 10 MHz NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles. 2. Seven capture/compare registers in ’x44x(1) and three capture/compare registers in ’x43x(1). leakage current (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC MIN TYP MAX Ilkg(P1.x) Port P1 Port 1: V(P1.x) ±50 Ilkg(P2.x) Port P2 Port 2: V(P2.x) ±50 Ilkg(P3.x) Port P3 Port 3: V(P3.x) Port P4 Port 4: V(P4.x) Ilkg(P5.x) Port P5 Port 5: V(P5.x) ±50 Ilkg(P6.x) Port P6 Port 6: V(P6.x) ±50 Ilkg(P4.x) Leakage current 2 2 V/3 V 2.2 ±50 ±50 UNIT nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − ports P1, P2, P3, P4, P5, P6 PARAMETER VOH VOL High level output voltage High-level Low level output voltage Low-level TEST CONDITIONS VCC MIN IOH(max) = −1.5 mA (See Note 1) 2.2 V VCC−0.25 VCC IOH(max) = −6 mA (See Note 2) 2.2 V VCC−0.6 VCC 3V VCC−0.25 VCC IOH(max) = −6 mA (See Note 2) 3V VCC−0.6 VCC IOL(max) = 1.5 mA (See Note 1) 2.2 V VSS VSS+0.25 IOL(max) = 6 mA (See Note 2) 2.2 V VSS VSS+0.6 IOL(max) = 1.5 mA (See Note 1) 3V VSS VSS+0.25 IOL(max) = 6 mA (See Note 2) 3V VSS VSS+0.6 IOH(max) = −1.5 mA (See Note 1) TYP MAX UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER TEST CONDITIONS f(Px.y) (1 ≤ x ≤ 6 6, 0 ≤ y ≤ 7) CL = 20 pF, IL = ±1.5 mA f(ACLK) P1.1/TA0/MCLK, P1.5/TACLK/ACLK P1.4/TBCLK/SMCLK CL = 20 pF f(MCLK) f(SMCLK) t(Xdc) 40 Duty cycle of output frequency MIN MAX DC 5 VCC = 3 V DC 7.5 f(System) P1.5/TACLK/ACLK, CL = 20 pF VCC = 2.2 V / 3 V f(ACLK) = f(LFXT1) = f(XT1) 40% f(ACLK) = f(LFXT1) = f(LF) 30% P1.1/TA0/MCLK, CL = 20 pF, VCC = 2.2 V / 3 V f(MCLK) = f(XT1) P1.4/TBCLK/SMCLK, CL = 20 pF, VCC = 2.2 V / 3 V f(SMCLK) = f(XT2) POST OFFICE BOX 655303 TYP VCC = 2.2 V f(ACLK) = f(LFXT1) f(MCLK) = f(DCOCLK) f(SMCLK) = f(DCOCLK) • DALLAS, TEXAS 75265 60% 70% 50% 40% 50%− 15 ns 60% 50% 50%+ 15 ns 40% 60% 50%− 15 ns 50% 50%+ 15 ns UNIT MHz MHz MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1, P2, P3, P4, P5, and P6 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 25 TA = 25°C VCC = 2.2 V P2.7 14 12 I OL − Typical Low-level Output Current − mA I OL − Typical Low-level Output Current − mA 16 TA = 85°C 10 8 6 4 2 0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.7 20 TA = 85°C 15 10 5 0 0.0 2.5 TA = 25°C 0.5 VOL − Low-Level Output Voltage − V 1.0 Figure 2 I OL − Typical High-level Output Current − mA I OL − Typical High-level Output Current − mA −6 −8 TA = 85°C −12 TA = 25°C 0.5 3.0 3.5 0 VCC = 2.2 V P2.7 −4 −14 0.0 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 −10 2.0 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −2 1.5 VOL − Low-Level Output Voltage − V 1.0 1.5 2.0 2.5 VCC = 3 V P2.7 −5 −10 −15 −20 TA = 85°C −25 −30 0.0 TA = 25°C 0.5 VOH − High-Level Output Voltage − V 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output Voltage − V Figure 5 Figure 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS VCC MIN TYP MAX f = 1 MHz td(LPM3) 6 f = 2 MHz Delay time UNIT 6 2.2 V/3 V f = 3 MHz µs 6 RAM PARAMETER TEST CONDITIONS VRAMh MIN CPU halted (see Note 1) TYP MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. LCD PARAMETER V(33) V(23) V(13) TEST CONDITIONS Voltage at P5.5/R13 Voltage at R33 to R03 I(R03) R03 = VSS Input p leakage g P5.5/R13 = VCC/3 P5.6/R23 = 2 × VCC/3 I(R23) V(Sxx2) Segment line voltage I(Sxx) = −3 3 µA, µA 42 POST OFFICE BOX 655303 VCC + 0.2 ±20 No load at all segment and common lines lines, VCC = 3 V V(Sxx3) UNIT V [V(33)−V(03)] × 1/3 + V(03) 2.5 VCC = 3 V MAX VCC + 0.2 [V(33)−V(03)] × 2/3 + V(03) VCC = 3 V V(Sxx0) V(Sxx1) TYP 2.5 Voltage at P5.6/R23 Analog voltage V(33) − V(03) I(R13) MIN Voltage at P5.7/R33 ±20 nA ±20 V(03) V(03) − 0.1 V(13) V(13) − 0.1 V(23) V(23) − 0.1 V(33) V(33) + 0.1 • DALLAS, TEXAS 75265 V MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON 1 CARSEL CAON=1, CARSEL=0, 0 CAREF CAREF=0 0 I(Refladder/RefDiode) CAON=1, CARSEL=0, CAREF=1/2/3, No load at P1.6/CA0 and P1.7/CA1 V(Ref025) V(Ref050) Voltage @ 0.25 V V CC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 node PCA0=1, CARSEL=1, CAREF=1, No load at P1.6/CA0 and P1.7/CA1 2.2 V / 3 V 0.23 0.24 0.25 node PCA0=1, CARSEL=1, CAREF=2, No load at P1.6/CA0 and P1.7/CA1 2.2V / 3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 CC V CC Voltage @ 0.5 V VCC CC PCA0=1, CARSEL=1, CAREF=3, P1 6/CA0 and P1.7/CA1; P1 7/CA1; No load at P1.6/CA0 TA = 85°C UNIT µA A µA A V(RefVT) See Figure 6 and Figure 7 VIC Common-mode input voltage range CAON=1 2.2 V / 3 V 0 VCC−1 Vp−VS Offset voltage See Note 2 2.2 V / 3 V −30 30 mV Vhys Input hysteresis CAON = 1 2.2 V / 3 V mV t(response LH) t(response HL) mV 0 0.7 1.4 TA = 25 25°C, C, Overdrive 10 mV, without filter: CAF = 0 2.2 V 160 210 300 3V 80 150 240 TA = 25 25°C C Overdrive 10 mV, with filter: CAF = 1 2.2 V 1.4 1.9 3.4 3V 0.9 1.5 2.6 25°C TA = 25 C Overdrive 10 mV, without filter: CAF = 0 2.2 V 130 210 300 3V 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, with filter: CAF = 1 2.2 V 1.4 1.9 3.4 3V 0.9 1.5 2.6 V ns µss ns µss NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 2.2 V 600 VREF − Reference Voltage − mV VREF − Reference Voltage − mV VCC = 3 V Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 TA − Free-Air Temperature − °C Figure 6. V(RefVT) vs Temperature 0V 0 −5 15 35 55 Figure 7. V(RefVT) vs Temperature VCC CAF 1 CAON Low-Pass Filter V+ V− + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2 µs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V− 400 mV V+ t(response) Figure 9. Overdrive Definition 44 75 TA − Free-Air Temperature − °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 95 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Note 1) PARAMETER TEST CONDITIONS MIN TYP td(BOR) dVCC/dt ≤ 3 V/s (see Figure 10) VCC(start) Vhys(B_IT−) t(reset) UNIT 2000 µs 0.7 × V(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 10 through Figure 12) Brownout (see Note 2) V(B_IT−) MAX dVCC/dt ≤ 3 V/s (see Figure 10) 70 Pulse length needed at RST/NMI pin to accepted reset internally, VCC = 2.2 V/3 V 2 130 V 1.71 V 180 mV µs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+ settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit. typical characteristics VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − µs 1 ns tpw − Pulse Width − µs Figure 11. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 typical characteristics (Continued) VCC 2 t pw 3V VCC(drop) − V VCC = 3 V 1.5 Typical Conditions 1 VCC(drop) 0.5 tf = tr 0 0.001 1 1000 tf tr tpw − Pulse Width − µs tpw − Pulse Width − µs Figure 12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) supply voltage supervisor/monitor (SVS) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 13) 5 dVCC/dt ≤ 30 V/ms td(SVSon) SVSon, switch from VLD=0 to VLD ≠ 0, VCC = 3 V tsettle VLD ≠ 0‡ V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13) 20 1.55 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 13) Vhys(SVS_IT−) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 VCC/dt ≤ 3 V/s (see Figure 13) V(SVS_IT−) (SVS IT ) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 ICC(SVS) (see Note 3) NOM VLD = 2 to 14 VLD = 15 70 120 MAX UNIT 150 µs 2000 µs 150 µs 12 µs 1.7 V 155 mV V(SVS_IT−) × 0.004 V(SVS_IT−) × 0.008 4.4 10.4 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61† VLD = 13 3.24 3.5 3.76† VLD = 14 3.43 3.7† 3.99† VLD = 15 1.1 1.2 1.3 10 15 VLD ≠ 0, VCC = 2.2 V/3 V † mV V µA The recommended operating voltage range is limited to 3.6 V. tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 3: The current consumption of the SVS module is not included in the ICC current consumption data. ‡ 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 typical characteristics Software Sets VLD>0: SVS is Active VCC V(SVS_IT−) V(SVSstart) Vhys(SVS_IT−) Vhys(B_IT−) V(B_IT−) VCC(start) BrownOut Region Brownout Region Brownout 1 0 td(BOR) SVSOut t d(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT−) 1 0 td(SVSon) Set POR 1 td(SVSR) undefined 0 Figure 13. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 VCC(drop) − V Rectangular Drop VCC(drop) 1.5 Triangular Drop 1 1 ns 1 ns VCC 0.5 t pw 3V 0 1 10 100 1000 tpw − Pulse Width − µs VCC(drop) tf = tr tf tr t − Pulse Width − µs Figure 14. VCC(drop) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) DCO PARAMETER MIN f(DCOCLK) f(DCO=2) FN 8 FN 4 FN 3 FN 2 0; DCOPLUS = 1 FN_8=FN_4=FN_3=FN_2=0; f(DCO=27) FN 8 FN 4 FN 3 FN 2 0; DCOPLUS = 1 FN_8=FN_4=FN_3=FN_2=0; FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1 f(DCO=2) VCC = 2.2 V/3 V TYP MAX 1 VCC = 2.2 V 0.3 0.65 1.25 VCC = 3 V 0.3 0.7 1.3 VCC = 2.2 V 2.5 5.6 10.5 VCC = 3 V 2.7 6.1 11.3 VCC = 2.2 V 0.7 1.3 2.3 VCC = 3 V 0.8 1.5 2.5 VCC = 2.2 V 5.7 10.8 18 VCC = 3 V 6.5 12.1 20 VCC = 2.2 V 1.2 2 3 VCC = 3 V 1.3 2.2 3.5 FN 8 FN 4 FN 3 0 FN FN_8=FN_4=FN_3=0, FN_2=1; 2 1; DCOPLUS = 1 f(DCO=2) FN 8 FN 4 0 FN_3= FN_8=FN_4=0, FN 3 1, 1 FN_2=x; FN 2 x; DCOPLUS = 1 f(DCO=27) FN 8 FN 4 0 FN_3= FN_8=FN_4=0, FN 3 1, 1 FN_2=x; FN 2 x; DCOPLUS = 1 f(DCO=2) FN 8 0 FN_4= FN_8=0, FN 4 1, 1 FN_3= FN 3 FN_2=x; FN 2 x; DCOPLUS = 1 f(DCO=27) FN 8 0 FN_4=1, FN 4 1 FN_3= FN 3 FN_2=x; FN 2 x; DCOPLUS = 1 FN_8=0, f(DCO=2) FN 8 1 FN FN_8=1, FN_4=FN_3=FN_2=x; 4 FN 3 FN 2 x; DCOPLUS = 1 f(DCO=27) FN 8 1 FN 4 FN 3 FN 2 x; DCOPLUS = 1 FN_8=1,FN_4=FN_3=FN_2=x; Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n), (see Figure 16 for taps 21 to 27) 1 < TAP ≤ 20 1.06 Sn TAP = 27 1.07 Temperature drift, N(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0 D = 2; DCOPLUS = 0 VCC = 2.2 V –0.2 –0.3 –0.4 VCC = 3 V –0.2 –0.3 –0.4 0 5 15 15.5 25 17.9 28.5 VCC = 2.2 V 1.8 2.8 4.2 VCC = 3 V 2.1 3.4 5.2 13.5 21.5 33 VCC = 3 V 16 26.6 41 VCC = 2.2 V 2.8 4.2 6.2 VCC = 3 V 4.2 6.3 9.2 VCC = 2.2 V 21 32 46 VCC = 3 V 30 46 70 VCC = 2.2 V VCC = 2.2 V/3 V f (DCO) f (DCO3V) 9 10.3 VCC = 3 V Drift with VCC variation, N(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0, D= 2; DCOPLUS = 0 DV f VCC = 2.2 V MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz 1.11 1.17 %/_C %/V (DCO) (DCO205C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC − V −40 −20 0 20 40 60 Figure 15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 48 UNIT MHz f(DCO=27) Dt f TEST CONDITIONS N(DCO)=01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0, fCrystal = 32.768 kHz POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 TA − °C MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 16. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 2 5 in SCFI1 {N (DCO)} Tolerance at Tap 2 Overlapping DCO Ranges: uninterrupted frequency range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1 oscillator (see Notes 1 and 2) PARAMETER TEST CONDITIONS OSCCAPx = 0h CXIN CXOUT VIL VIH Integrated input capacitance Integrated output capacitance Input levels at XIN VCC MIN TYP 2.2 V / 3 V 2.2 V/3 V 10 OSCCAPx = 2h 2.2 V/3 V 14 OSCCAPx = 3h 2.2 V/3 V 18 OSCCAPx = 0h 2.2 V/3 V 0 OSCCAPx = 1h 2.2 V/3 V 10 OSCCAPx = 2h 2.2 V/3 V 14 OSCCAPx = 3h 2.2 V/3 V 2 2 V/3 V 2.2 UNIT 0 OSCCAPx = 1h See Note 3 MAX pF pF 18 VSS 0.2 × VCC V 0.8 × VCC VCC V NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is (CXIN x CXOUT) / (CXIN + CXOUT). This is independent of XTS_FLL. 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed. − Keep the trace between the ’F43x(1)/44x(1) and the crystal as short as possible. − Design a good ground plane around the oscillator pins. − Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. − Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. − Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. − If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. − Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator. 4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h. crystal oscillator, XT2 oscillator (see Note 1) PARAMETER TEST CONDITIONS CXT2IN Integrated input capacitance VCC = 2.2 V/3 V CXT2OUT Integrated output capacitance VCC = 2.2 V/3 V VIL VIH Input levels at XT2IN MIN NOM MAX 2 pF 2 VCC = 2 2.2 2 V/3 V (see Note 2) UNIT pF VSS 0.2 × VCC V 0.8 × VCC VCC V NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. USART0, USART1 (see Note 1) PARAMETER t(τ) USART0/1: deglitch time TEST CONDITIONS MIN NOM MAX VCC = 2.2 V, SYNC = 0, UART mode 200 430 800 VCC = 3 V, SYNC = 0, UART mode 150 280 500 UNIT ns NOTE 1: The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of t(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line. 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, power supply and input range conditions (see Note 1) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(P6.x/Ax) Analog input voltage range (see Note 2) All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1, 0 ≤ x ≤ 7; V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC) IADC12 Operating supply current into AVCC terminal (see Note 3) fADC12CLK = 5.0 MHz ADC12ON = 1 1, REFON = 0 SHT0=0, SHT1=0, ADC12DIV=0 IREF+ CI RI NOTES: 1. 2. 3. 4. Operating supply current i t AVCC tterminal into i l (see Note 4) fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5.0 MHz ADC12ON = 0 0, REFON = 1, REF2_5V = 0 VCC MIN NOM MAX UNIT 2.2 3.6 V 0 VAVCC V 2.2 V 0.65 1.3 3V 0.8 1.6 3V 0.5 0.8 2.2 V 0.5 0.8 3V 0.5 0.8 mA mA mA Input capacitance Only one terminal can be selected at one time, P6.x/Ax Input MUX ON resistance 0V ≤ VAx ≤ VAVCC 2.2 V 3V 40 pF 2000 Ω The leakage current is defined in the leakage current table with P6.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. 12-bit ADC, external reference (see Note 1) PARAMETER TEST CONDITIONS MAX UNIT 1.4 VAVCC V VeREF+ > VREF−/VeREF− (see Note 3) 0 1.2 V Differential external reference voltage input VeREF+ > VREF−/VeREF− (see Note 4) 1.4 VAVCC V IVeREF+ Static input current 0V ≤VeREF+ ≤ VAVCC 2.2 V/3 V ±1 µA IVREF−/VeREF− Static input current 0V ≤ VeREF− ≤ VAVCC 2.2 V/3 V ±1 µA VeREF+ Positive external reference voltage input VeREF+ > VREF−/VeREF− (see Note 2) VREF− /VeREF− Negative external reference voltage input (VeREF+ − VREF−/VeREF−) VCC MIN NOM NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, built-in reference PARAMETER TEST CONDITIONS Positive built-in built in reference voltage output VREF+ MIN REF2_5V = 1 for 2.5 V IVREF+ ≤ IVREF+max 3V 2.4 2.5 2.6 REF2_5V = 0 for 1.5 V IVREF+ ≤ IVREF+max 2.2 V/3 V 1.44 1.5 1.56 VREF+ + 0.15 REF2_5V = 1, IVREF+ ≤ 1mA VREF+ + 0.15 Load current out of VREF+ terminal IL(VREF)+ UNIT V 0.01 −0.5 mA 3V −1 2.2 V ±2 3V ±2 IVREF+ = 500 µA ± 100 µA Analog input voltage ~1.25 V; REF2_5V = 1 3V ±2 LSB 3V 20 ns IVREF+ = 500 µA +/− 100 µA Analog input voltage ~0.75 0 75 V; REF2_5V = 0 Load current regulation VREF+ Load-current terminal MAX 2.2 REF2_5V = 1, IVREF+ ≤ 0.5mA 2.2 V IVREF+ TYP V REF2_5V = 0, IVREF+ ≤ 1mA AVCC minimum i i voltage, lt P Positive iti built-in reference active AVCC(min) VCC IDL(VREF) + Load current regulation VREF+ terminal IVREF+ =100 µA → 900 µA, CVREF+=5 5 µF µF, Ax ~0.5 0 5 x VREF+ Error of conversion result ≤ 1 LSB CVREF+ Capacitance at pin VREF+ (see Note 1) REFON =1, 0 mA ≤ IVREF+ ≤ IVREF+max 2.2 V/3 V TREF+ Temperature coefficient of built-in reference IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA 2.2 V/3 V tREFON Settle time of internal reference voltage (see Figure 18 and Note 2) IVREF+ = 0.5 mA, CVREF+ = 10µF, VREF+ = 1.5 V 2.2 V 5 LSB µF 10 ±100 17 ppm/°C ms NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF−/VeREF− and AVSS: 10 µF tantalum and 100 nF ceramic. 2. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. CVREF+ 100 µF tREFON ≈ .66 x CVREF+ [ms] with CVREF+ in µF 10 µF 1 µF 0 1 ms 10 ms 100 ms tREFON Figure 18. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 DVCC1/DVCC2 From Power Supply + − 10 µ F DVSS1/DVSS2 100 nF AVCC + − 10 µ F Apply External Reference [VeREF+] or Use Internal Reference [VREF+] AVSS 10 µ F VREF+ or VeREF+ 100 nF VREF−/VeREF− + − 10 µ F MSP430F44x 100 nF + − Apply External Reference MSP430F43x 100 nF Figure 19. Supply Voltage and Reference Voltage Design VREF−/VeREF− External Supply From Power Supply DVCC1/DVCC2 + − 10 µ F DVSS1/DVSS2 100 nF AVCC + − Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 10 µ F AVSS MSP430F44x 100 nF VREF+ or VeREF+ + − 10 µ F MSP430F43x 100 nF Reference Is Internally Switched to AVSS VREF−/VeREF− Figure 20. Supply Voltage and Reference Voltage Design VREF−/VeREF− = AVSS, Internally Connected POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, timing parameters PARAMETER TEST CONDITIONS fADC12CLK fADC12OSC tCONVERT Internal ADC12 oscillator Conversion time VCC MIN TYP MAX UNIT For specified performance of ADC12 linearity parameters 2.2V/3 V 0.45 5 6.3 MHz ADC12DIV=0, fADC12CLK=fADC12OSC 2.2 V/ 3 V 3.7 6.3 MHz CVREF+ ≥ 5 µF, Internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz 2.2 V/ 3 V 2.06 3.51 µs External fADC12CLK from ACLK, MCLK or SMCLK: ADC12SSEL ≠ 0 tADC12ON Turn on settling time of the ADC See Note 1 tSample Sampling time RS = 400 Ω, RI = 1000 Ω, CI = 30 pF τ = [RS + RI] x CI;(see Note 2) 13×ADC12DIV× 1/fADC12CLK µs 100 3V 1220 2.2 V 1400 ns ns NOTES: 1. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. 2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. 12-bit ADC, linearity parameters PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ − VREF−/VeREF−) min ≤ 1.6 V EI Integral linearity error 1.6 V < (VeREF+ − VREF−/VeREF−) min ≤ [V(AVCC)] ED Differential linearity error EO VCC MIN TYP MAX ±2 UNIT 2 2 V/3 V 2.2 ±1.7 LSB (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±1 LSB Offset error (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), Internal impedance of source RS < 100 Ω, CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±2 ±4 LSB EG Gain error (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±1.1 ±2 LSB ET Total unadjusted error (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V/3 V ±2 ±5 LSB 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, temperature sensor and built-in VMID PARAMETER TEST CONDITIONS VCC MIN TYP MAX REFON = 0, INCH = 0Ah, ADC12ON=NA, TA = 25_C 2.2 V 40 120 3V 60 160 ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V 986 986±5% VSENSOR 3V 986 986±5% 2.2 V 3.55 3.55±3% TCSENSOR ADC12ON = 1 1, INCH = 0Ah 3V 3.55 3.55±3% ISENSOR Operating supply current into AVCC terminal (see Note 1) Sample time required if channel 10 is selected (see Note 2) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 2.2 V 30 tSENSOR(sample) 3V 30 NA Current into divider at channel 11 ADC12ON = 1, INCH = 0Bh, (see Note 3) 2.2 V IVMID 3V NA 1.1 1.1±0.04 AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 x VAVCC 2.2 V VMID 3V 1.5 1.50±0.04 tVMID(sample) Sample time required if channel 11 is selected (see Note 4) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 3V 1220 UNIT µA A mV mV/°C µss A µA V ns NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). Therefore it includes the constant current through the sensor and the reference. 2. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). 3. No additional current is needed. The VMID is used during sampling. 4. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) flash memory TEST CONDITIONS PARAMETER VCC MIN TYP MAX UNIT VCC(PGM/ ERASE) Program and Erase supply voltage 2.7 3.6 V fFTG Flash Timing Generator frequency 257 476 kHz IPGM Supply current from DVCC during program 2.7 V/ 3.6 V 3 5 mA IERASE Supply current from DVCC during erase 2.7 V/ 3.6 V 3 7 mA tCPT Cumulative program time See Note 1 2.7 V/ 3.6 V 10 ms tCMErase Cumulative mass erase time See Note 2 2.7 V/ 3.6 V 200 104 Program/Erase endurance TJ = 25°C ms 105 tRetention Data retention duration tWord Word or byte program time 35 tBlock, 0 Block program time for 1st byte or word 30 tBlock, 1-63 Block program time for each additional byte or word tBlock, End Block program end-sequence wait time tMass Erase Mass erase time 5297 tSeg Erase Segment erase time 4819 cycles 100 years 21 see Note 3 tFTG 6 NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/fFTG,max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required). 3. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). JTAG interface TEST CONDITIONS PARAMETER fTCK TCK input frequency see Note 1 RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK see Note 2 VCC MIN 2.2 V 3V 2.2 V/ 3 V 25 MIN TYP MAX UNIT 0 5 MHz 0 10 MHz 60 90 kΩ TYP MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG fuse (see Note 1) PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow: F versions IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TEST CONDITIONS TA = 25°C 2.5 6 UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. 56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION input/output schematics port P1, P1.0 to P1.5, input/output with Schmitt trigger Pad Logic CAPD.x P1SEL.x 0: Input 1: Output 0 P1DIR.x Direction Control From Module P1OUT.x 1 0 P1.x 1 Module X OUT Bus Keeper P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1IN.x EN D Module X IN P1IE.x P1IRQ.x P1IFG.x Q EN Set Interrupt Edge Select P1IES.x Note: 0 < x< 5 Note: Port function is active if CAPD.x = 0 PnSel.x PnDIR.x P1Sel.0 P1DIR.0 P1Sel.1 ‡ P1DIR.0 P1DIR.1 P1OUT.0 P1OUT.1 P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 P1Sel.5 † P1DIR.1 Direction PnOUT.x Control From Module P1DIR.5 P1DIR.5 P1OUT.5 P1SEL.x Module X OUT Out0 sig. † PnIN.x P1IN.0 P1IN.1 MCLK † Module X IN CCI0A CCI0B † † † P1IN.2 CCI1A SVSOUT P1IN.3 TBOUTH SMCLK P1IN.4 TBCLK Out1 sig. ACLK P1IN.5 TACLK ‡ ‡ † PnIE.x PnIFG.x PnIES.x P1IE.0 P1IFG.0 P1IES.0 P1IE.1 P1IFG.1 P1IES.1 P1IE.2 P1IFG.2 P1IES.2 P1IE.3 P1IFG.3 P1IES.3 P1IE.4 P1IFG.4 P1IES.4 P1IE.5 P1IFG.5 P1IES.5 Timer_A Timer_B POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P1, P1.6, P1.7, input/output with Schmitt trigger Pad Logic Note: Port function is active if CAPD.6 = 0 CAPD.6 P1SEL.6 0: Input 1: Output 0 P1DIR.6 P1.6/ CA0 1 P1DIR.6 0 P1OUT.6 1 DVSS Bus Keeper P1IN.6 EN D unused P1IE.7 P1IRQ.07 EN Interrupt Edge Select Q P1IFG.7 Set P1IES.x P1SEL.x Comparator_A P2CA AVcc CAREF CAEX CA0 CAF CCI1B + to Timer_Ax − CA1 2 CAREF Reference Block Pad Logic CAPD.7 Note: Port function is active if CAPD.7 = 0 P1SEL.7 0: input 1: output 0 P1DIR.7 P1.7/ CA1 1 P1DIR.7 0 P1OUT.7 1 DVSS Bus keeper P1IN.7 EN unused D P1IE.7 P1IRQ.07 EN Q P1IFG.7 Set Interrupt Edge Select P1IES.7 58 P1SEL.7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P2, P2.0, P2.4 to P2.5, input/output with Schmitt trigger Pad Logic DVSS DVSS P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module 1 0 1 P2OUT.x Module X OUT Bus Keeper P2.0/TA2 P2.4/UTXD0 P2IN.x P2.5/URXD0 EN Module X IN D P2IE.x P2IRQ.x P2IFG.x EN Interrupt Edge Select Q Set P2IES.x Note: P2SEL.x x {0,4,5} PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 Out2 sig. † P2IN.0 CCI2A † P2IE.0 P2IFG.0 P2IES.0 P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4 P2IN.5 URXD0 P2IE.5 P2IFG.5 P2IES.5 P2Sel.4 P2DIR.4 DVCC P2OUT.4 UTXD0 P2Sel.5 P2DIR.5 DVSS P2OUT.5 DVSS ‡ ‡ PnIES.x †Timer_A ‡USART0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P2, P2.1 to P2.3, input/output with Schmitt trigger Pad Logic DVSS DVSS Module IN of pin P1.3/TBOUTH/SVSOUT P1DIR.3 P1SEL.3 P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module P2OUT.x 1 0 1 Module X OUT Bus Keeper P2.1/TB0 P2.2/TB1 P2IN.x P2.3/TB2 EN D Module X IN P2IE.x P2IRQ.x Q P2IFG.x EN Interrupt Edge Select Set P2IES.x Note: P2SEL.x 1<x <3 PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 Out0 sig. † P2IN.1 P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 Out1 sig. † P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 Out2 sig. † Module X IN PnIE.x PnIFG.x CCI0A † CCI0B P2IE.1 P2IFG.1 P2IES.1 P2IN.2 CCI1A † CCI1B P2IE.2 P2IFG.2 P2IES.2 P2IN.3 CCI2A † CCI2B P2IE.3 P2IFG.3 P2IES.3 †Timer_B 60 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PnIES.x MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P2, P2.6 to P2.7, input/output with Schmitt trigger 0: Port active 1: Segment xx function active Pad Logic Port/LCD‡ Segment xx‡ P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module 1 0 P2OUT.x 1 Module X OUT Bus Keeper P2.6/CAOUT/S19‡ P2.7/ADC12CLK/S18‡ P2IN.x ‡Segment function only available with MSP430x43x(1)IPN EN D Module X IN P2IE.x P2IRQ.x P2IFG.x EN Q Set Interrupt Edge Select P2IES.x Note: P2SEL.x 6<x <7 ‡ PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 CAOUT † P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6 0: LCDM<40h ‡ P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 ADC12CLK§ P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7 0: LCDM<40h Port/LCD ‡ † Comparator_A signal is 1 only with MSP430xIPN and LCDM ≥40h. § ADC12 ‡Port/LCD POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P3, P3.0 to P3.3, input/output with Schmitt trigger MSP430x43x(1)IPN (80-Pin) Only 0: Port active 1: Segment xx function active LCDM.5 LCDM.6 LCDM.7 Pad Logic Segment xx x43xIPZ and x44xIPZ have no segment function on Port P3: Both lines are low. P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 0 1 P3OUT.x Module X OUT Bus Keeper P3.0/STEO/S31† P3.1/SIMO0/S30† P3.2/SOMI0/S29† P3.3/UCLK0/S28† P3IN.x EN Module X IN D Note: 0 ≤ x ≤ 3 † Direction Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P3OUT.0 DVSS P3IN.0 STE0(in) DCM_SIMO0 P3OUT.1 SIMO0(out) P3IN.1 SIMO0(in) P3DIR.2 DCM_SOMI0 P3OUT.2 SOMIO(out) P3IN.2 SOMI0(in) P3DIR.3 DCM_UCLK0 P3OUT.3 UCLK0(out) P3IN.3 UCLK0(in) PnSel.x PnDIR.x P3Sel.0 P3DIR.0 P3Sel.1 P3DIR.1 P3Sel.2 P3Sel.3 DVSS S24 to S31 shared with port function only at MSP430x43x(1)IPN (80-pin QFP) Direction Control for SIMO0 and UCLK0 SYNC MM 62 DCM_SIMO0 DCM_UCLK0 Direction Control for SOMI0 SYNC MM STC STC STE STE POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 DCM_SOMI0 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P3, P3.4 to P3.7, input/output with Schmitt trigger LCDM.7† or DVSS‡ 0: Port active 1: Segment xx function active Pad Logic Segmentxx† or DVSS‡ TBOUTHiZ# or DVSS§ P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module P3OUT.x 1 0 1 Module XOUT Bus Keeper ’x43x(1)IPN 80-Pin ’x43x(1)IPZ ’x44x(1) 100-Pin P3IN.x P3.4/S27 P3.5/S26 P3.6/S25 P3.7/S24 EN Module X IN Note: D P3.4 P3.5 P3.6 P3.7 P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 4<x <7 Module IN of pin P1.3/TBOUTH/SVSOUT P1DIR.3 P1SEL.3 P3DIR.x P3SEL.x TBOUTHiZ PnSel.x PnDIR.x Dir. Control from module PnOUT.x P3Sel.4 P3DIR.4 P3DIR.4 P3OUT.4 P3Sel.5 P3DIR.5 P3DIR.5 P3OUT.5 P3Sel.6 P3DIR.6 P3DIR.6 P3OUT.6 P3Sel.7 P3DIR.7 P3DIR.7 P3OUT.7 Module X OUT DVSS OUT3 DVSS OUT4 DVSS OUT5 DVSS OUT6 § # § # § # § # PnIN.x P3IN.4 P3IN.5 P3IN.6 P3IN.7 Module X IN unused § CCI3A/B# unused § CCI4A/B# unused § CCI5A/B# unused § CCI6A # † MSP430x43x(1)IPN MSP430x43x(1)IPZ, MSP430x44x(1)IPZ § MSP430x43x(1) # MSP430x44x(1) ‡ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P4, P4.0 to P4.7, input/output with Schmitt trigger 0: Port active 1: Segment xx function active Pad Logic Port/LCD§ Segment xx P4SEL.x 0: Input 1: Output 0 P4DIR.x Direction Control From Module 1 0 1 P4OUT.x Module X OUT Bus Keeper x43x(1)IPN 80-Pin QFP: x43x(1)IPZ 100-Pin QFP: P4.7/S2 P4.6/S3 P4.5/S4 P4.3/S6 P4.4/S5 P4.2/S7 P4.1/S8 P4.0/S9 P4.7/S34 P4.6/S35 P4.5/S36 P4.3/S37 P4.4/S38 P4.2/S39 P4.0 P4.1 x44x(1) P4IN.x EN Module X IN Note: † ‡ D 0<x<7 PnSel.x PnDIR.x P4Sel.0 P4DIR.0 Direction Control From Module Module X PnOUT.x OUT PnIN.x Module X IN P4OUT.0 DVSS† UTXD1‡ P4IN.0 unused DVSS‡ P4OUT.1 DVSS P4IN.1 URXD1‡ DVSS P4IN.2 unused† STE1(in)‡ unused† SIMO1(in)‡ P4DIR.0† DVCC‡ P4DIR.1† unused† P4Sel.1 P4DIR.1 P4Sel.2 P4DIR.2 P4DIR.2† DVSS‡ P4OUT.2 P4Sel.3 P4DIR.3 P4DIR3.† DCM_SIMO1‡ P4OUT.3 DVSS† SIMO1(out)‡ P4IN.3 P4Sel.4 P4DIR.4 P4DIR4.† DCM_SOMI1‡ P4OUT.4 DVSS† SOMI1(out)‡ P4IN.4 unused SOMI1(in)‡ P4Sel.5 P4DIR.5 P4DIR5.† DCM_UCLK1‡ P4OUT.5 DVSS† UCLK1(out)‡ P4IN.5 unused† UCLK1(in)‡ P4Sel.6 P4DIR.6 P4DIR.6 P4OUT.6 DVSS P4IN.6 unused P4Sel.7 P4DIR.7 P4DIR.7 P4OUT.7 DVSS P4IN.7 unused Signal at MSP430x43x(1) Signal at MSP430x44x(1) 64 DEVICE PORT BITS PORT FUNCTION x43x(1)IPN 80-pin QFP P4.0 . . .P4.7 LCDM < 020h LCDM ≥ 020h x43x(1)IPZ 100-pin QFP P4.2 . . .P4.5 LCDM < 0E0h LCDM ≥ 0E0h x44x(1)IPZ 100-pin QFP P4.6 . . .P4.7 LCDM < 0C0h LCDM ≥ 0C0h POST OFFICE BOX 655303 LCD SEG. FUNCTION • DALLAS, TEXAS 75265 P4.7/S34 P4.6/S35 P4.5/UCLK1/S36 P4.4/SMO1/S37 P4.3/SIMO1/S38 P4.2/STE1/S39 P4.1/URXD1 P4.0/UTXD1 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P4, P4.0 to P4.7, input/output with Schmitt trigger (continued) Direction Control for SIMO1 and UCLK1 Direction Control for SOMI1 SYNC SYNC MM DCM_SIMO1 DCM_UCLK1 MM DCM_SOMI1 STC STC STE STE port P5, P5.0 to P5.1, input/output with Schmitt trigger 0: Port active 1: Segment function active Port/LCD Segment Pad Logic Segment Port Pad Logic P5SEL.x 0 P5DIR.x Direction Control From Module 0: Input 1 1: Output 0 P5OUT.x 1 Module X OUT Bus Keeper P5.0/S1 P5.1/S0 P5IN.x EN Module X IN Note: D 0 <x <1 PnSel.x PnDIR.x P5Sel.0 P5DIR.0 P5Sel.1 P5DIR.1 PnOUT.x Module X OUT PnIN.x Module X IN Segment P5DIR.0 P5OUT.0 DVSS P5IN.0 unused S1 0: LCDM<20h P5DIR.1 P5OUT.1 DVSS P5IN.1 unused S0 0: LCDM<20h Dir. Control from module POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Port/LCD 65 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P5, P5.2 to P5.4, input/output with Schmitt trigger 0: Port active 1: LCD function active Port/LCD LCD signal Pad Logic P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 0 1 P5OUT.x Module X OUT Bus Keeper P5.2/COM1 P5.3/COM2 P5.4/COM3 P5IN.x EN Module X IN D Note: 66 2<x <4 PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN P5Sel.2 P5DIR.2 P5DIR.2 P5OUT.2 DVSS P5IN.2 unused COM1 P5SEL.2 P5Sel.3 P5DIR.3 P5DIR.3 P5OUT.3 DVSS P5IN.3 unused COM2 P5SEL.3 P5Sel.4 P5DIR.4 P5DIR.4 P5OUT.4 DVSS P5IN.4 unused COM3 P5SEL.4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LCD signal Port/LCD MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P5, P5.5 to P5.7, input/output with Schmitt trigger 0: Port active 1: LCD function active Port/LCD LCD signal Pad Logic P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 0 1 P5OUT.x Module X OUT Bus Keeper P5.5/R13 P5.6/R23 P5.7/R33 P5IN.x EN Module X IN D Note: 5<x <7 PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN P5Sel.5 P5DIR.5 P5DIR.5 P5OUT.5 DVSS P5IN.5 unused R13 P5SEL.5 P5Sel.6 P5DIR.6 P5DIR.6 P5OUT.6 DVSS P5IN.6 unused R23 P5SEL.6 P5Sel.7 P5DIR.7 P5DIR.7 P5OUT.7 DVSS P5IN.7 unused R33 P5SEL.7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LCD signal Port/LCD 67 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P6, P6.0 to P6.6, input/output with Schmitt trigger P6SEL.x 0 P6DIR.x Direction Control From Module 1 0: Input 1: Output Pad Logic P6.0/A0 .. P6.6/A6 0 P6OUT.x Module X OUT 1 Bus Keeper P6IN.x EN Module X IN D Note: Not implemented in the MSP430x43x1 and MSP430x44x1 devices From ADC To ADC x: Bit Identifier, 0 to 6 for Port P6 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12. PnSel.x PnDIR.x Dir. Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module. 68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION port P6, P6.7, input/output with Schmitt trigger P6SEL.x VLP(SVS)=15 0 P6DIR.x Direction Control From Module 1 0: Input 1: Output Pad Logic P6.7/A7/SVSIN 0 P6OUT.x Module X OUT 1 Bus Keeper P6IN.x EN Module X IN D Note: Not implemented in the MSP430x43x1 and MSP430x44x1 devices From ADC To ADC To Brownout/SVS Module x: Bit Identifier, 7 for Port P6 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12. PnSel.x PnDIR.x Dir. Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module. The signal at pin P6.7/A7/SVSIN is also connected to the input multiplexer in the module brownout/supply voltage supervisor. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 69 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger or output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DVCC TDI Burn and Test Fuse TDI/TCLK Test and Emulation DVCC TMS Module TMS DVCC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK 70 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G D U S G D U S MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 APPLICATION INFORMATION JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I(TF) ) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 21). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination. Time TMS Goes Low After POR TMS ITDI/TCLK I(TF) Figure 21. Fuse Check Mode Current MSP430x43x(1), MSP430x44x(1) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 71 MSP430x43x1, MSP430x43x, MSP430x44x1, MSP430x44x MIXED SIGNAL MICROCONTROLLER SLAS344G − JANUARY 2002 − REVISED OCTOBER 2009 Data Sheet Revision History Literature Number Summary SLAS344E Added MSP430F43x1 devices Updated functional block diagram (page 6) Clarified test conditions in recommended operating conditions table (page 27) Clarified test conditions in electrical characteristics table (page 28) Added Port 2 through Port 5 to leakage current table (page 29) Corrected y-axis unit on Figures 6 and 7; changed from V to mV (page 34) Clarified test conditions in USART0/USART1 table (page 40) Changed tCPT maximum value from 4 ms to 10 ms in Flash memory table (page 46) SLAS344F Added MSP430F43x1 devices in PZ (100 pin) package SLAS344G Added MSP430F44x1 devices NOTE: Page and figure numbers refer to the respective document revision. 72 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Manual Update Sheet SLAZ555 – December 2013 Corrections to MSP430x43x, MSP430x43x1, MSP430x44x Data Sheet (SLAS344J) Document Being Updated: MSP430x43x, MSP430x43x1, MSP430x44x Mixed Signal Microcontroller Literature Number Being Updated: SLAS344J Page Change or Add 61 In both entries in the "Port/LCD" column of the table: 0: LCDM < 40h should be changed to 0: LCDPx < 02h. In note ‡: LCDM ≥ 40h should be changed to LCDPx ≥ 02h. 62 In top left of the figure: LCDM.5 should be changed to bit 0 of LCDPx, which is bit 5 of the LCDCTL register. LCDM.6 should be changed to bit 1 of LCDPx, which is bit 6 of the LCDCTL register. LCDM.7 should be changed to bit 2 of LCDPx, which is bit 7 of the LCDCTL register. 63 In top left of the figure: LCDM.7 should be changed to bit 2 of LCDPx, which is bit 7 of the LCDCTL register. 64 In the table at the bottom of the page: LCDM < 020h should be changed to LCDPx < 01h. LCDM ≥ 020h should be changed to LCDPx ≥ 01h. LCDM < 0E0h should be changed to LCDPx < 07h. LCDM ≥ 0E0h should be changed to LCDPx ≥ 07h. LCDM < 0C0h should be changed to LCDPx < 06h. LCDM ≥ 0C0h should be changed to LCDPx ≥ 06h. 65 In both entries in the "Port/LCD" column of the table: 0: LCDM < 20h should be changed to 0: LCDPx < 01h. SLAZ555 – December 2013 Submit Documentation Feedback Corrections to MSP430x43x, MSP430x43x1, MSP430x44x Data Sheet (SLAS344J) Copyright © 2013, Texas Instruments Incorporated 1 PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430A046IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F449 REV # MSP430A047IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F437 MSP430A062IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F448 MSP430A066IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F437-80 MSP430F4351IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4351 MSP430F4351IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4351 MSP430F4351IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4351 MSP430F4351IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4351 MSP430F435IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F435-80 MSP430F435IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F435-80 MSP430F435IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F435 MSP430F435IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F435 MSP430F4361IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4361 MSP430F4361IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4361 MSP430F4361IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4361 MSP430F436IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F436-80 MSP430F436IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F436-80 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 15-Apr-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F436IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F436 MSP430F436IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F436 MSP430F4371IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4371 MSP430F4371IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4371 MSP430F4371IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4371 MSP430F4371IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4371 MSP430F437IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F437-80 MSP430F437IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F437-80 MSP430F437IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F437 MSP430F437IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F437 MSP430F447IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F447 MSP430F447IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F447 MSP430F4481IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4481 MSP430F4481IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4481 MSP430F448IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F448 MSP430F448IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F448 MSP430F4491IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4491 MSP430F4491IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F4491 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 15-Apr-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F449IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F449 MSP430F449IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 M430F449 REV # (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 15-Apr-2017 Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 6-Jun-2014 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing MSP430F4351IPNR LQFP MSP430F4351IPZR MSP430F435IPNR SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F435IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F4361IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F4361IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F436IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F436IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F4371IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F4371IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F437IPNR LQFP PN 80 1000 330.0 24.4 15.0 15.0 2.1 20.0 24.0 Q2 MSP430F437IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F447IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F4481IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F448IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F4491IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F449IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 6-Jun-2014 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F4351IPNR LQFP MSP430F4351IPZR LQFP PN 80 1000 367.0 367.0 45.0 PZ 100 1000 367.0 367.0 45.0 MSP430F435IPNR LQFP MSP430F435IPZR LQFP PN 80 1000 367.0 367.0 45.0 PZ 100 1000 367.0 367.0 MSP430F4361IPNR LQFP 45.0 PN 80 1000 367.0 367.0 45.0 MSP430F4361IPZR MSP430F436IPNR LQFP PZ 100 1000 367.0 367.0 45.0 LQFP PN 80 1000 367.0 367.0 45.0 MSP430F436IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F4371IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F4371IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F437IPNR LQFP PN 80 1000 367.0 367.0 45.0 MSP430F437IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F447IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F4481IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F448IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F4491IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F449IPZR LQFP PZ 100 1000 367.0 367.0 45.0 Pack Materials-Page 2 MECHANICAL DATA MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996 PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s noncompliance with the terms and provisions of this Notice. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated