FUJITSU SEMICONDUCTOR DATA SHEET DS07-12514-2E 8-bit Proprietary Microcontroller CMOS F2MC-8L MB89670/A Series MB89673/677A/P677A/PV670A ■ DESCRIPTION The MB89670/A series has been developed as a line of proprietary 8-bit, single-chip microcontrollers. In addition to the F2MC*-8L CPU core which can operate at low voltage but at high speed, the microcontrollers contain pheripheral functions such as timers, a serial interface, an A/D converter, a UART, an up/down counter, and an external interrupt. The MB89670/A series is applicable to a wide range of applications from welfare products to industrial equipment, including portable devices. *: F2MC stands for FUJITSU Flexible Microcontroller. ■ FEATURES • F2MC-8L family CPU core Instruction set optimized for controllers Multiplication and division instructions 16-bit arithmetic operations Test and branch instructions Bit manipulation instructions, etc. • High-speed processing at low voltage • Minimum execution time: 0.4 µs/3.5 V, 0.8 µs/2.7 V, 2.0 µs/2.2 V • I/O ports: max. 69 channels (Continued) ■ PACKAGE 80-pin Plastic QFP (FPT-80P-M11) 80-pin Plastic QFP (FPT-80P-M06) 80-pin Ceramic MQFP (MQP-80C-P01) MB89670/A Series (Continued) • Timers: 9 channels (MB89670A: 12 channels) 8-bit PWM timer: 3 channels (MB89670A: 6 channels) (also usable as a reload timer) 16-bit timer/counter 21-bit time-base timer 8/16-bit timer (8 bits × 2 channels or 16 bits) 8/16-bit up/down counter timer (8 bits × 2 channels or 16 bits) • Two serial interfaces 8-bit synchronized serial: 1 channel (Switchable transfer direction allows communication with various equipment.) UART: 1 channel (with full-duplex double buffer) • External interrupts: 8 channels Eight channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function). • Buzzer output • 10-bit A/D converter 8-channel input • Low-power consumption modes Stop mode (Oscillation stops to minimize the current consumption.) Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.) • Bus interface function Including hold and ready functions 2 MB89670/A Series ■ PRODUCT LINEUP Part number Parameter Classification MB89673*1 MB89677A Mass production products (mask ROM products) ROM size 8 K × 8 bits (internal mask ROM) RAM size 384 × 8 bits 32 K × 8 bits (internal mask ROM) MB89P677A MB89PV670A One-time PROM product Piggyback/ evaluation product (for development) (for development) 32 K × 8 bits (internal PROM) 48 K × 8 bits (external ROM) 1 K × 8 bits CPU functions Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time: 136 8 bits 1 to 3 bytes 1, 8, 16 bits 0.4 µs/10 MHz to 6.4 µs/10 MHz 3.6 µs/10 MHz to 57.6 µs/10 MHz Ports Output ports (N-channel open-drain): Output ports (CMOS): I/O ports (N-channels open-drain): I/O ports (CMOS): Input ports: Total: 14 (12 also serve as peripherals.) 8 (All also serve as peripherals.) 7 (All also serve as peripherals.) 32 (All also serve as peripherals.) 8 (All also serve as peripherals.) 69 Option 21-bit timebase timer 8/16-bit up/ down counter Specify when ordering masking Set with EPROM programmer 21 bits (0.81 ms, 3.27 ms, 26.21 ms, 419 ms/10 MHz) 8 bits × 2 channels or 16 bits × 1 channel Timer operation Up/down counter operation Phase difference counting (successive double mode, quadruple mode) 16-bit timer/ counter 16-bit timer operation 16-bit event counter operation (edge selectability) 8/16-bit timer counter 8 bits × 2 channels or 16 bits × 1 channel Reload timer operation (toggled output capable) Event counter operation 8-bit PWM timer 1, 8-bit PWM timer 2 8-bit PWM timer 3, 8-bit PWM timer 4, 5, 6 8-bit serial I/O Setting not possible 8 bits × 2 channels reload timer operation (toggled output capable) 8 bits × 2 channels PWM operation (four fixed frequency) 8 bits × 1 channel PPG operation (variable frequency) Capable of output switching between 2 channels 8-bit reload timer operation (toggled output capable) 8-bit PWM operation (four fixed frequency) Capable of output switching between 2 channels 8 bits LSB first/MSB first selectability One clock selectable from four transfer clocks (one external shift clock, three internal shift clocks) (Continued) 3 MB89670/A Series (Continued) Part number MB89673*1 Parameter UART MB89677A MB89P677A MB89PV670A Variable data length (7 or 8 bits) Internal baud rate generator Error detection function Intenal full-duplex double buffer NRZ transfer format CLK synchrnous/asynchronous data transfer capable 10-bit A/D converter 10 bit × 8 channels External interrupt 8 channels (Rising edge/falling edge) Operating voltage*2 2.2 V to 6.0 V 2.7 V to 6.0 V EPROM for use MBM27C512-20TV (LCC package) *1: 8-bit PWM timer 4, 5, and 6 is not provided for the MB89673. *2: The minimum operating voltage varies with the operating frequency, the function, and the connected ICE. ■ PACKAGE AND CORRESPONDING PRODUCTS MB89673 MB89677A MB89P677A Package MB89PV670A FPT-80P-M06 × FPT-80P-M11 ×* MQP-80C-P01 : Available × × : Not available * : Lead pitch converter sockets (manufacturer: Sun Hayato Co., Ltd.) are available 80QF-80QF2-8L-UP + (MQP-80C-P01 or FPT-80P-M06) → for conversion to FPT-80P-M11 80QF-80QF2-8L-DWN Note: For more information about each package, see section “■ Package Dimensions.” 4 MB89670/A Series ■ DIFFERENCES AMONG PRODUCTS 1. Memory Size Before evaluating using the piggyback product, verify its differences from the product that will actually be used. Take particular care on the following points: • On the MB89P677A, the program area starts from address 8007H but on the MB89677A and MB89PV670A starts from 8000H. (On the MB89P677A, addresses 8000H to 8006H comprise the option setting area, option settings can be read by reading these addresses. On the MB89677A and MB89PV670A, addresses 8000H to 8006H could also be used as a program ROM. However, do not use these addresses in order to maintain compatibility of the MB89P677A.) • The stack area, etc., is set at the upper limit of the RAM. • The external area is used. 2. Current Consumption • In the case of the MB89PV670A, add the current consumed by the EPROM which is connected to the top socket. • When operated at low speed, the product with an OTPROM (one-time PROM) or an EPROM will consume more current than the product with a mask ROM. However, the current consumption in sleep/stop modes is the same. (For more information, see sections “■ Electrical Characteristics” and “■ Example Characteristics.”) 3. Mask Options Functions that can be selected as options and how to designate these options vary by the product. Before using options check section “■ Mask Options.” Take particular care on the following point: • Options are fixed on the MB89PV670A. ■ CORRESPONDENCE BETWEEN THE MB89670/A AND MB89670R/AR SERIES • The MB89670R/AR series is the reduction version of the MB89670/A series. For their differences, refer to the MB89670R/AR series data sheet. MB89670/A series MB89673 — MB89677A MB89670R/AR series MB89673R MB89675R MB89677AR MB89P677A MB89PV670A 5 MB89670/A Series ■ PIN ASSIGNMENT 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 P74/SCK P75/SO P76/SI AVSS AVR AVCC P50/AN0 P51/AN1 P52/AN2 P53/AN3 P54/AN4 P55/AN5 P56/AN6 P57/AN7 P60/INT0/ADST P61/INT1 P62/INT2 P63/INT3 P64/INT4 P65/INT5 (Top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P21/HAK P20/BUFC P17/A15 P16/A14 P15/A13 P14/A12 P13/A11 P12/A10 P11/A09 P10/A08 P07/AD7 P06/AD6 P05/AD5 P04/AD4 P03/AD3 P02/AD2 P01/AD1 P00/AD0 P37/UDA2 P36/UDB2 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P73/UI P72/UO P71/UCK P70/BZ1 P83 P82 P81 P80 MOD0 MOD1 X0 X1 VSS RST P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ (FPT-80P-M11) 6 P66/INT6 P67/INT7 P84 P85 VSS P40/PWM00 P41/PWM01 VCC P42/PWM10/BZ2 P43/PWM11 P44/TCI P45/TCO1 P46/TCO2 P47/EC P30/PWM20 P31/PWM21 P32/UDZ1 P33/UDB1 P34/UDA1 P35/UDZ2 MB89670/A Series 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 P76/SI AVSS AVR AVCC P50/AN0 P51/AN1 P52/AN2 P53/AN3 P54/AN4 P55/AN5 P56/AN6 P57/AN7 P60/INT0/ADST P61/INT1 P62/INT2 P63/INT3 (Top view) 100 99 98 97 96 95 94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 93 92 91 90 89 88 87 86 85 110 111 112 81 82 83 84 101 102 103 104 105 106 107 108 109 Each pin inside the dashed line is for the MB89PV670A only. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 P64/INT4 P65/INT5 P66/INT6 P67/INT7 P84 P85 VSS P40/PWM00 P41/PWM01 VCC P42/PWM10/BZ2 P43/PWM11 P44/TCI P45/TCO1 P46/TCO2 P47/EC P30/PWM20 P31/PWM21 P32/UDZ1 P33/UDB1 P34/UDA1 P35/UDZ2 P36/UDB2 P37/UDA2 P17/A15 P16/A14 P15/A13 P14/A12 P13/A11 P12/A10 P11/A09 P10/A08 P07/AD7 P06/AD6 P05/AD5 P04/AD4 P03/AD3 P02/AD2 P01/AD1 P00/AD0 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P75/SO P74/SCK P73/UI P72/UO P71/UCK P70/BZ1 P83 P82 P81 P80 MOD0 MOD1 X0 X1 VSS RST P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC (FPT-80P-M06) (MQP-80C-P01) • Pin assignment on package top (MB89PV670A only) Pin no. Pin name Pin no. Pin name Pin no. Pin name Pin no. Pin name 81 N.C. 89 A2 97 N.C. 105 OE/VPP 82 A15 90 A1 98 O4 106 N.C. 83 A12 91 A0 99 O5 107 A11 84 A7 92 N.C. 100 O6 108 A9 85 A6 93 O1 101 O7 109 A8 86 A5 94 O2 102 O8 110 A13 87 A4 95 O3 103 CE 111 A14 88 A3 96 VSS 104 A10 112 VCC N.C.: Internally connected. Do not use. 7 MB89670/A Series ■ PIN DESCRIPTION Pin no. QFP*2 MQFP*3 11 13 X0 12 14 X1 Circuit type Function A Clock oscillator pins B Operating mode selection pins Connect directly to VCC or VSS. 9 11 MOD0 10 12 MOD1 14 16 RST C Reset I/O pin This pin is an N-ch open-drain output type with pull-up resistor and a hysteresis input. “L” is output from this pin by an internal reset source. The internal circuit is initialized by the input of “L”. 38 to 31 40 to 33 P00/AD0 to P07/AD7 D General-purpose I/O ports When an external bus is used, these ports function as multiplex pins of lower address output and data I/O. 30 to 23 32 to 25 P10/A08 to P17/A15 22 24 P20/BUFC F General-purpose output port When an external bus is used, this port can also be used as a buffer control output by setting the BCTR. 21 23 P21/HAK F General-purpose output port When an external bus is used, this port can also be used as a hold acknowledge output by setting the BCTR. 20 22 P22/HRQ D General-purpose output port When an external bus is used, this port can also be used as a hold request input by setting the BCTR. 19 21 P23/RDY D General-purpose output port When an external bus is used, this port functions as a ready input. 18 20 P24/CLK F General-purpose output port When an external bus is used, this port functions as a clock output. 17 19 P25/WR F General-purpose output port When an external bus is used, this port functions as a write signal output. 16 18 P26/RD F General-purpose output port When an external bus is used, this port functions as a read signal output. 15 17 P27/ALE F General-purpose output port When an external bus is used, this port functions as an address latch signal output. *1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01 8 Pin name QFP*1 General-purpose I/O ports When an external bus is used, these ports function as upper address output pins. (Continued) MB89670/A Series Pin no. Pin name Circuit type Function QFP*1 QFP*2 MQFP*3 46 48 P30/PWM20 D General-purpose I/O port Also serves as the PWM20 output for the 8-bit PWM timer. 45 47 P31/PWM21 D General-purpose I/O port Also serves as the PWM21 output for the 8-bit PWM timer. 44 46 P32/UDZ1 E General-purpose I/O port Also serves as the Z-phase input for the 16-bit up/down counter/timer. 43 45 P33/UDB1 E General-purpose I/O port Also serves as the B-phase input for the 16-bit timer/ counter. 42 44 P34/UDA1 E General-purpose I/O ports Also serves as the A-phase input for the 16-bit up/down counter/timer. 41 43 P35/UDZ2 E General-purpose I/O port Also serves as the Z-phase input for the 16-bit up/down counter/timer. 40 42 P36/UDB2 E General-purpose I/O port Also serves as the B-phase input for the 16-bit up/down counter/timer. 39 41 P37/UDA2 E General-purpose I/O port Also serves as the A-phase input for the 16-bit up/down counter/timer. 55 57 P40/PWM00 D General-purpose I/O port Also serves as the PWM00 output for the 8-bit PWM timer. 54 56 P41/PWM01 D General-purpose I/O port Also serves as the PWM01 output for the 8-bit PWM timer. 52 54 P42/PWM10/ BZ2 D General-purpose I/O port Also serves as the PWM10 and the BZ2 output for the 8bit PWM timer. 51 53 P43/PWM11 D General-purpose I/O port Also serves as the PWM11 output for the 8-bit PWM timer. 50 52 P44/TCI E General-purpose I/O port Also serves as the TCI input for the 8/16-bit timer/ counter. 49 51 P45/TCO1 D General-purpose I/O port Also serves as the TCO1 output for the 8/16-bit timer/ counter. *1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01 (Continued) 9 MB89670/A Series (Continued) Pin no. Circuit type Function QFP*2 MQFP*3 48 50 P46/TCO2 D General-purpose I/O port Also serves as the TCO2 output for the 8/16-bit timer/ counter. 47 49 P47/EC E General-purpose I/O port Also serves as input for the16-bit timer/counter. The EC input is a hysteresis input type. 74 to 67 76 to 69 P50/AN0 to P57/AN7 I N-ch open-drain output ports Also serve as the analog input for the A/D converter. 66 68 P60/INT0/ ADST J General-purpose input port The software pull-up resistor is provided. Also serves as an external interrupt input (INT0) and an A/D converter external activation. This port is a hysteresis input type. 65 to 59 67 to 61 P61/INT1 to P67/INT7 J General-purpose input ports A software pull-up resistor is provided. Also serve as an external interrupt input (INT1 to INT7). These ports are a hysteresis input type. 4 6 P70/BZ1 G N-ch open-drain I/O port Also serves as a buzzer output. 3 5 P71/UCK K N-ch open-drain I/O port Also serves as a UART clock I/O (UCK) switchable to CMOS. 2 4 P72/UO K N-ch open-drain I/O port Also serves as a UART data output (UO) switchable to CMOS. 1 3 P73/UI G N-ch open-drain I/O port Also serves as a UART data input (UI). 80 2 P74/SCK K N-ch open-drain I/O port Also serves as the clock I/O for the serial I/O (SCK) switchable to CMOS. 79 1 P75/SO K N-ch open-drain I/O port Also serves as the data output (SO) for the serial I/O switchable to CMOS. 78 80 P76/SI G N-ch open-drain I/O port Also serves as the data input (SI) for the serial I/O. 8 to 5 57, 58 10 to 7 59, 60 P80 to P83 P85, P84 H N-ch open-drain output ports 53 55 VCC — Power supply pin 13, 56 15, 58 VSS — Power supply (GND) pin 75 77 AVCC — A/D converter power supply pin 76 78 AVR — A/D converter reference voltage input pin 77 79 AVSS — A/D converter power supply pin Use this pin at the same voltage as VSS. *1: FPT-80P-M11 *2: FPT-80P-M06 *3: MQP-80C-P01 10 Pin name QFP*1 MB89670/A Series • External EPROM pins (MB89PV670A only) Pin no. Pin name I/O Function 82 83 84 85 86 87 88 89 90 91 A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 O Address output pins 93 94 95 O1 O2 O3 I Data input pins 96 VSS O Power supply (GND) pin 98 99 100 101 102 O4 O5 O6 O7 O8 I Data input pins 103 CE O ROM chip enable pin Outputs “H” during standby. 104 A10 O Address output pin 105 OE/VPP O ROM output enable pin Outputs “L” at all times. 107 108 109 A11 A9 A8 O Address output pins 110 A13 O 111 A14 O 112 VCC O 81 92 97 106 N.C. — Internally connected pins Be sure to leave them open. 11 MB89670/A Series ■ I/O CIRCUIT TYPE Type A Circuit Remarks Crystal or ceramic oscillation type • At an oscillation feedback resistor of approximately 1 MΩ/5.0 V X1 X0 Standby control signal B C • At an output pull-up resistor (P-ch) of approximately 50 kΩ/5.0 V • Hysteresis input R P-ch N-ch D • CMOS output • CMOS inout R P-ch P-ch N-ch • Pull-up resistor optional (except P22 and P23) E • CMOS output • CMOS input • The peripheral is a hysteresis input type. R P-ch P-ch N-ch Peripheral Port • Pull-up resistor optional (Continued) 12 MB89670/A Series (Continued) Type Circuit Remarks F • CMOS output P-ch N-ch G • N-ch open-drain output • Hysteresis input R P-ch P-ch N-ch • Pull-up resistor optional H • N-ch open-drain output N-ch I • N-ch open-drain output • Analog input P-ch N-ch Analog input J • Hysteresis input • With software pull-up resistor R P-ch Pull-up control signal K • CMOS output • Hysteresis input R P-ch P-ch N-ch • Pull-up resistor optional 13 MB89670/A Series ■ HANDLING DEVICES 1. Preventing Latchup Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum Ratings” in section “■ Electrical Characteristics” is applied between VCC and VSS. When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings. Also, take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital power supply (VCC) when the analog system power supply is turned on and off. 2. Treatment of Unused Input Pins Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor. 3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use. 4. Treatment of N.C. Pins Be sure to leave (internally connected) N.C. pins open. 5. Power Supply Voltage Fluctuations Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power is switched. 6. Precautions when Using an External Clock Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode. 14 MB89670/A Series ■ PROGRAMMING TO THE EPROM ON THE MB89P677A The MB89P677A is an OTPROM version of the MB89670/A series. 1. Features • 32-Kbyte PROM on chip • Options can be set using the EPROM programmer. • Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer) 2. Memory Space Memory space in the EPROM mode is diagrammed below. Normal operating mode 0000H EPROM mode (Corresponding addresses on the EPROM programmer) I/O 0080H 0100H 0200H Register RAM 0480H External area 8000H 0000H Option area Option area 8007H 0007H PROM FFFFH Program area (EPROM) 7FFFH 15 MB89670/A Series 3. Programming to the EPROM In EPROM mode, the MB89P677A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter. • Programming procedure (1) Set the EPROM programmer to the MBM27C256A. (2) Load program data into the EPROM programmer at 0007H to 7FFFH (note that addresses 8007H to FFFFH while operating as a normal operating mode assign to 0007H to 7FFFH in EPROM mode). Load option data into addresses 0000H to 0006H of the EPROM programmer. (For information about each corresponding option, see “7. Bit Map for PROM Options.”) (3) Program with the EPROM programmer. 4. Recommended Screening Conditions High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program. Program, verify Aging +150°C, 48 Hrs. Data verification Assembly 5. Programming Yield All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times. 6. EPROM Programmer Socket Adapter Package Compatible socket adapter FPT-80P-M11 ROM-80QF2-28DP-8L FPT-80P-M06 ROM-80QF-28DP-8L2 Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 Note: Depending on the EPROM programmer, inserting a capacitor of about 0.1 µF between VPP and VSS or VCC and VSS can stabilize programming operations. 16 MB89670/A Series 7. PROM Option Bit Map The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map: Bit 7 Bit 6 Bit 5 Bit 4 Vacancy Vacancy Vacancy Vacancy Readable Readable Readable Readable 0001H P17 Pull-up 1: No 0: Yes P16 Pull-up 1: No 0: Yes P15 Pull-up 1: No 0: Yes 0002H P37 Pull-up 1: No 0: Yes P36 Pull-up 1: No 0: Yes 0003H P47 Pull-up 1: No 0: Yes 0000H 0004H 0005H 0006H Bit 3 Bit 2 Bit 1 Bit 0 Reset pin output 1: Yes 0: No Power-on reset 1: Yes 0: No Oscillation stabilization time 00: 24/FC 10: 217/FC 01: 214/FC 11: 218/FC P14 Pull-up 1: No 0: Yes P13 Pull-up 1: No 0: Yes P12 Pull-up 1: No 0: Yes P11 Pull-up 1: No 0: Yes P10 Pull-up 1: No 0: Yes P35 Pull-up 1: No 0: Yes P34 Pull-up 1: No 0: Yes P33 Pull-up 1: No 0: Yes P32 Pull-up 1: No 0: Yes P31 Pull-up 1: No 0: Yes P30 Pull-up 1: No 0: Yes P46 Pull-up 1: No 0: Yes P45 Pull-up 1: No 0: Yes P44 Pull-up 1: No 0: Yes P43 Pull-up 1: No 0: Yes P42 Pull-up 1: No 0: Yes P41 Pull-up 1: No 0: Yes P40 Pull-up 1: No 0: Yes Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Vacancy Readable Readable Readable Readable Readable Readable Readable Readable Vacancy Vacancy Vacancy Readable Readable Readable P74 Pull-up 1: No 0: Yes P73 Pull-up 1: No 0: Yes P72 Pull-up 1: No 0: Yes P71 Pull-up 1: No 0: Yes P70 Pull-up 1: No 0: Yes Vacancy Vacancy Vacancy Vacancy Readable Readable Readable Readable P04 to P07 Pull-up 1: No 0: Yes P00 to P03 Pull-up 1: No 0: Yes P76 Pull-up 1: No 0: Yes P75 Pull-up 1: No 0: Yes Notes: • Set each bit to 1 to erase. • Do not write 0 to the vacant bit. The read value of the vacant bit is 1, unless 0 is written to it. 17 MB89670/A Series ■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE 1. EPROM for Use MBM27C512-20TV 2. Programming Socket Adapter To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below. Package Adapter socket part number LCC-32(Rectangle) ROM-32LC-28DP-YG Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760 3. Memory Space Memory space in each mode is diagrammed below. Address Normal operating mode 0000H Corresponding address on the EPROM programmer 0000H I/O 0080H Not available RAM 0480H External area 4000H 8000H 4000H 8000H * 8007H * 8007H PROM 48 KB FFFFH EPROM 48 KB FFFFH *: Note that for the MB89P677A this area comprise an option setting area. 4. Programming to the EPROM (1) Set the EPROM programmer to the MBM27C512. (2) Load program data into the EPROM programmer at 4000H to FFFFH. (3) Program to 4000H to FFFFH with the EPROM programmer. 18 MB89670/A Series ■ BLOCK DIAGRAM 1. MB89673 X0 X1 Time-base timer Oscillator Clock controller CMOS I/O port 16-bit up/down counter Reset circuit (WDT) Internal bus RST RAM 8-bit up/down counter P37/UDA2 P36/UDB2 P35/UDZ2 8-bit up/down counter P34/UDA1 P33/UDB1 P32/UDZ1 F2MC-8L CPU 16-bit timer/counter P47/EC ROM 8/16-bit timer CMOS I/O port 8 8-bit timer P00/AD0 to P07/AD7 8 P46/TCO2 P45/TCO1 P44/TCI 2-channel 8-bit PWM timer P10/A08 to P17/A15 MOD0 MOD1 External bus interface 8-bit timer #2 8-bit timer #1 P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC P43/PWM11 P42/PWM10/BZ2 P41/PWM01 P40/PWM00 P31/PWM21 8-bit PWM timer #3 P30/PWM20 CMOS output port 6 P80 to P85 P50/AN0 to P57/AN7 8-bit timer 8 N-ch open-drain output port 8-bit serial P76/SI P75/SO P74/SCK UART P73/UI P72/UO P71/UCK Buzzer output P70/BZ1 8 10-bit A/D converter AVR AVCC AVSS Input port P60/INT0/ADST to P67/INT7 8 N-ch open-drain I/O port 8 External interrupt 19 MB89670/A Series 2. MB89677A/89P677A/89PV670A Time-base timer X0 X1 Oscillator CMOS I/O port Clock controller RST RAM F2MC-8L CPU Internal bus 16-bit up/down counter Reset circuit (WDT) 8-bit up/down counter P37/UDA2 P36/UDB2 P35/UDZ2 8-bit up/down counter P34/UDA1 P33/UDB1 P32/UDZ1 16-bit timer/counter P47/EC 8/16-bit timer ROM CMOS I/O port 8-bit timer P46/TCO2 8-bit timer P45/TCO1 P44/TCI 8 P00/AD0 to P07/AD7 8-bit PWM timer #3 P30/PWM20 8-bit PWM timer #4 P31/PWM21 8-bit PWM timer #5 P41/PWM01 8-bit PWM timer #6 P43/PWM11 8 P10/A08 to P17/A15 MOD0 MOD1 External bus interface P27/ALE P26/RD P25/WR P24/CLK P23/RDY P22/HRQ P21/HAK P20/BUFC 2-channel 8-bit PWM timer 8-bit timer #1 CMOS output port 6 P80 to P85 P50/AN0 to P57/AN7 8 N-ch open-drain output port 8-bit timer #2 8-bit serial P76/SI P75/SO P74/SCK UART P73/UI P72/UO P71/UCK Buzzer output P70/BZ1 8 10-bit AD converter AVR AVCC AVSS P40/PWM00 P42/PWM10/BZ2 Input port P60/INT0/ADST to P67/INT7 20 8 8 External interrupt N-ch open-drain I/O port MB89670/A Series ■ CPU CORE 1. Memory Space The microcontrollers of the MB89670/A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89670/A series is structured as illustrated below. Memory Space MB89P677A MB89677A MB89673 0000H 0080H 0100H 0000H I/O RAM 0080H 0100H Register MB89PV670A 0000H I/O RAM 0080H 0100H Register 0200H I/O RAM Register 0200H 0200H 0480H 0480H External area External area External area 8000H 8000H 8000H Option PROM (One-time PROM product)* * 8007H 4000H * 8007H 8007H Programmable ROM E000H Programmable ROM ROM FFFFH FFFFH FFFFH *: Since addresses 8000H to 8006H for the MB89P677A comprise an option area, do not use this area for the other products in this series. 21 MB89670/A Series 2. Registers The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided: Program counter (PC): A 16-bit register for indicating instruction storage positions Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8-bit data processing instruction, the lower byte is used. Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used. Index register (IX): A 16-bit register for index modification Extra pointer (EP): A 16-bit pointer for indicating a memory address Stack pointer (SP): A 16-bit register for indicating a stack area Program status (PS): A 16-bit register for storing a register pointer, a condition code Initial value 16 bits FFFDH : Program counter PC A : Accumulator Undefined T : Temporary accumulator Undefined IX : Index register Undefined EP : Extra pointer Undefined SP : Stack pointer Undefined PS : Program status I-flag = 0, IL1, 0 = 11 Other bits are undefined. The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.) Structure of the Program Status Register 15 PS 14 13 12 RP 10 9 8 Vacancy Vacancy Vacancy RP 22 11 7 6 H I 5 4 IL1, 0 3 2 1 0 N Z V C CCR MB89670/A Series The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below. Rule for Conversion of Actual Addresses of the General-purpose Register Area RP Lower OP codes “0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ b1 b0 ↓ ↓ Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt. H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions. I-flag: Interrupt is allowed when this flag is set to 1. Interrupt is prohibited when the flag is set to 0. Set to 0 when reset. IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit. IL1 IL0 Interrupt level 0 0 0 1 1 0 2 1 1 3 1 High-low High Low = no interrupt N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0. Z-flag: Set when an arithmetic operation results in 0. Cleared otherwise. V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur. C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction. 23 MB89670/A Series The following general-purpose registers are provided: General-purpose registers: An 8-bit register for storing data The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89677A. On the MB89673, there are 16 banks in internal RAM. The remaining 16 banks can be extended externally by allocating an external RAM to addresses 0180H to 01FFH using an external circuit. The bank currently in use is indicated by the register bank pointer (RP). Note: The number of register banks that can be used varies with the RAM size. Register Bank Configuration This address = 0100H + 8 × (RP) R0 R1 R2 R3 R4 R5 R6 R7 32 banks Memory area 24 MB89670/A Series ■ I/O MAP Address Read/write Register name 00H (R/W) PDR0 Port 0 data register XXXX XXXXB 01H (W) DDR0 Port 0 data direction register 0000 0000B 02H (R/W) PDR1 Port 1 data register XXXX XXXXB 03H (W) DDR1 Port 1 data direction register 0000 0000B 04H (R/W) PDR2 Port 2 data register 0000 0000B 05H (W) BCTR External bus pin control register XXXX XX0 1 B 06H Register description Initial value Vacancy 07H (R/W) SYCC System clock control register X – – M MX 0 0 B 08H (R/W) STBC Standby control register 0001 XXXXB 09H (R/W) WDTE Watchdog timer control register XXXX XXXXB 0AH (R/W) TBCR Time-base timer control register 0 0 XX X0 0 0 B Vacancy 0BH 0CH (R/W) PDR3 Port 3 data register XXXX XXXXB 0DH (W) DDR3 Port 3 data direction register 0000 0000B 0EH (R/W) PDR4 Port 4 data register XXXX XXXXB 0FH (W) DDR4 Port 4 data direction register 0000 0000B 10H (R/W) PDR5 Port 5 data register 1111 1111B 11H (R) PDR6 Port 6 data register XXXX XXXXB 12H (R/W) PPCR Port 6 pull-up control register 0000 0000B 13H (R/W) PDR7 Port 7 data register X1 1 1 1111B 14H (R/W) PDR8 Port 8 data/port 7 swiching register 0011 1111B 15H (R/W) BUZR Buzzer control register XXXX X0 0 0 B 16H (R/W) CNTR PWM control register #3 0000 0000B 17H (R/W) COMP PWM compare register #3 XXXX XXXXB 18H (R/W) TMCR 16-bit timer control register 0000 0000B 19H (R/W) TCHR 16-bit timer count register H 0000 0000B 1AH (R/W) TCLR 16-bit timer count register L 0000 0000B Vacancy 1BH 1CH (R/W) SMR Serial mode register 0000 0000B 1DH (R/W) SDR Serial data register XXXX XXXXB 1EH Vacancy 1FH Vacancy –: Unused, X: Undefined, M: Set using the mask option (Continued) 25 MB89670/A Series Address Read/write Register name Register description 20H (R/W) ADC1 A/D converter control register 1 0000 0000B 21H (R/W) ADC2 A/D converter control register 2 X0 0 0 0001B 22H (R/W) ADCH A/D converter data register H –––– – – XXB 23H (R/W) ADCL A/D converter data register L XXXX XXXXB 24H (R/W) T2CR Timer 2 control register X0 0 0 XXX0 B 25H (R/W) T1CR Timer 1 control register X0 0 0 XXX0 B 26H (R/W) T2DR Timer 2 data register XXXX XXXXB 27H (R/W) T1DR Timer 1 data register XXXX XXXXB 28H (R/W) CNTR1 PWM timer control register 1 0000 0000B 29H (R/W) CNTR2 PWM timer control register 2 0000 0000B 2AH (R/W) CNTR3 PWM timer control register 3 XXX0 0000B 2BH (W) COMR2 PWM timer compare register 2 XXXX XXXXB 2CH (W) COMR1 PWM timer compare register 1 XXXX XXXXB 2DH Vacancy 2EH Vacancy 2FH Vacancy 30H (R) (W) UDCR1 RCR1 Up/down counter register 1 Reload compare register1 XXXX XXXX XXXXB XXXXB 31H (R) (W) UDCR2 RCR2 Up/down counter register 2 Reload compare register2 XXXX XXXX XXXXB XXXXB 32H (R/W) CCRA1 Counter control register A1 0000 0000B 33H (R/W) CCRA2 Counter control register A2 0000 0000B 34H (R/W) CCRB1 Counter control register B1 0000 0000B 35H (R/W) CCRB2 Counter control register B2 0000 0000B 36H (R/W) CSR1 Counter status register 1 0000 0000B 37H (R/W) CSR2 Counter status register 2 0000 0000B 38H (R/W) EIC1 External interrupt 1 control register 1 0000 0000B 39H (R/W) EIC2 External interrupt 1 control register 2 0000 0000B 3AH (R/W) EIE2 External interrupt 2 enable register 0000 0000B 3BH (R/W) EIF2 External interrupt 2 flag register XXXX 0000B 3CH Vacancy 3DH Vacancy 3EH Vacancy 3FH Vacancy –: Unused, X: Undefined, M: Set using the mask option 26 Initial value (Continued) MB89670/A Series (Continued) Address Read/write Register name 40H (R/W) USMR UART mode register 0000 0000B 41H (R/W) USCR UART control register 0000 0000B 42H (R/W) USTR UART status register 0000 1 XXXB 43H (R) (W) RXDR TXDR UART receiver data register UART transmitter data register XXXX XXXX XXXXB XXXXB XXXX XXXXB 44H 45H Register description Initial value Vacancy (R/W) RRDR Baud rate generator reload data register 46H Vacancy 47H Vacancy 48H* (R/W) CNTR #4 PWM timer control register #4 0 X0 0 0000B 49H* (R/W) COMP #4 PWM timer compare register #4 XXXX XXXXB 4AH* (R/W) CNTR #5 PWM timer control register #5 0 X0 0 0000B 4BH* (R/W) COMP #5 PWM timer compare register #5 XXXX XXXXB 4CH* (R/W) CNTR #6 PWM timer control register #6 0 X0 0 0000B 4DH* (R/W) COMP #6 PWM timer compare register #6 XXXX XXXXB 4E to 7AH Vacancy 7BH Vacancy 7CH (W) ILR1 Interrupt level setting register 1 1111 1111B 7DH (W) ILR2 Interrupt level setting register 2 1111 1111B 7EH (W) ILR3 Interrupt level setting register 3 1111 1111B 7FH Vacancy –: Unused, X: Undefined, M: Set using the mask option * : For the MB89673, these are vacancies. Note: Do not use vacancies. 27 MB89670/A Series ■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings (AVSS = VSS = 0.0 V) Parameter Symbol Value Unit Remarks Min. Max. VCC VSS – 0.3 VSS + 7.0 V AVCC VSS – 0.3 VCC + 0.3 V A/D converter reference input voltage AVR VSS – 0.3 VCC + 0.3 V Input voltage VI VSS – 0.3 VCC + 0.3 V VO1 VSS – 0.3 VCC + 0.3 V Except P80 to P85 VO2 VSS – 0.3 VSS + 7.0 V P80 to P85 IOL — 20 mA IOLAV1 — 4 mA Average value (operating current × operating rate) IOLAV2 — 8 mA Average value (operating current × operating rate) P80 to P85 “L” level total maximum output current ∑IOL — 100 mA “L” level total average output current ∑IOLAV — 40 mA “H” level maximum output current IOH — –20 mA “H” level average output current IOHAV — –4 mA “H” level total maximum output current ∑IOH — –50 mA “H” level total average output current ∑IOHAV — –20 mA Power consumption PD — 300 mW Operating temperature TA –40 +85 °C Storage temperature Tstg –55 +150 °C Power supply voltage Output voltage “L” level maximum output current “L” level average output current * AVR must not exceed AVCC + 0.3 V. Average value (operating current × operating rate) Average value (operating current × operating rate) Average value (operating current × operating rate) * : Use AVCC and VCC set at the same voltage. Take care so that AVR does not exceed AVCC + 0.3 V and AVCC does not exceed VCC, such as when power is turned on. Precautions: Permanent device damage may occur if the above “Absolute Maximum Ratings” are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 28 MB89670/A Series 2. Recommended Operating Conditions (AVSS = VSS = 0.0 V) Symbol Parameter Power supply voltage VCC Value Unit Remarks Min. Max. 2.2* 6.0 V Normal operation assurance range MB89673/677A 2.7* 6.0 V Normal operation assurance range MB89PV670A/P677A 1.5 6.0 V Retains the RAM state in stop mode A/D converter reference input voltage AVR 0.0 AVCC V Operating temperature TA –40 +85 °C * : These values vary with the operating frequency, and analog assurance range. See Figure 1 and “5. A/D Converter Electrical Characteristics.” 6 5 A/D converter accuracy assured in the VCC = AVCC = 3.5 V to 6.0 V range. Operating voltage (V) Operation assurance range 4 3 2 1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 Clock operating frequency (MHz) 4.0 2.0 0.8 0.4 Minimum execution time (µs) Note: The shaded area is assured only for the MB89673/677A. Figure 1 Operating Voltage vs. Clock Operating Frequency Figure 1 indicates the operating frequency of the external oscillator at an minimum execution time of 4/FC. Since the operating voltage range is dependent on the minimum execution time, see minimum execution time if the operating speed is switched using a gear. 29 MB89670/A Series 3. DC Characteristics (AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Pin Symbol VIH Condition Value Min. Typ. Max. Unit Remarks P32 to P37, P00 to P07, P10 to P17, 0.7 VCC P30 to P37, P40 to P47 VCC + 0.3 V P44, and P47 are port input. “H” level input voltage P32 to P37, RST, MOD0, MOD1, VIHS 0.8 VCC P32 to P37, P44, P47, VCC + 0.3 V P60 to P67, P70 to P76 P44, and P47 are peripheral input. VIL P00 to P07, P10 to P17, — P30 to P37, P40 to P47 P32 to P37, VSS − 0.3 0.3 VCC V P44, and P47 are port input. “L” level input voltage P32 to P37, RST, MOD0, MOD1, VILS VSS − 0.3 P32 to P37, P44, P47, 0.2 VCC V P60 to P67, P70 to P76 P44, and P47 are peripheral input. Open-drain output pin application voltage VD VSS − 0.3 VSS + 6.0 V IOH = –2.0 mA 4.0 V IOL = 4.0 mA 0.4 V P80 to P85 P00 to P07, P10 to P17, “H” level output voltage VOH P20 to P27, P30 to P37, P40 to P47, P71, P72, P74, P75 P00 to P07, P10 to P17, VOL1 “L” level output voltage P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P76 VOL2 P80 to P85 IOL = 10 mA 0.5 V VOL3 RST IOL = 4.0 mA — — 0.4 V 0.0 V < VI < VCC — — ±5 µA 0.0 V < VI < VCC — — ±1 µA VI = 0.0 V 25 50 100 kΩ P00 to P07, P10 to P17, P20 to P27, P30 to P37, Input leakage current (Hi-z output leakage current) ILI1 P40 to P47, P50 to P57, P60 to P67, P70 to P76, Without pullup resistor MOD0, MOD1 ILI2 P80 to P85 P00 to P07, P10 to P17, Pull-up resistance RPULL P30 to P37, P40 to P47, P60 to P67, P70 to P76, With pull-up resistor RST (Continued) 30 MB89670/A Series (Continued) (AVCC = VCC = 5.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Condition Value Unit Min. Typ. Max. — 12 20 mA — 1 2 mA — 1.5 2.5 mA — 3 7 mA — 1 1.5 mA ICCH VCC = 3.0 V TA = +25°C Stop mode — — 1 mA IA FC = 10 MHz When A/D converter starts — 6 8 mA FC = 10 MHz TA = +25°C When A/D converter stops — — 1 µA f = 1 MHz — 10 — pF ICC1 FC = 10 MHz VCC = 5.0 V tinst*2 = 0.4 µs ICC2 FC = 10 MHz VCC = 3.0 V tinst*2 = 6.4 µs ICCS1 Power supply current*1 Pin Symbol ICCS2 AVCC IAH Input capacitance CIN Other than AVCC, AVSS, VCC, and VSS Remarks MB89673 MB89677A MB89PV670A MB89P677A FC = 10 MHz VCC Sleep mode Parameter VCC = 5.0 V t inst*2 = 0.4 µs FC = 10 MHz VCC = 3.0 V t inst*2 = 6.4 µs *1: The measurement conditions of the power supply current are as follows: the external clock and open output pins. *2: For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.” 31 MB89670/A Series 4. AC Characteristics (1) Reset Timing (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Symbol Parameter RST “L” pulse width Value Condition tZLZH — Min. Max. 48 tHCYL — Unit Remarks ns tZLZH RST 0.2 VCC 0.2 VCC (2) Power-on Reset (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Power supply rising time tR Power supply cut-off time tOFF Condition — Value Unit Remarks Min. Max. — 50 ms Power-on reset function only 1 — ms Due to repeated operations Note: Make sure that power supply rises within the selected oscillation stabilization time. If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended. tR tOFF 2.0 V VCC 32 0.2 V 0.2 V 0.2 V MB89670/A Series (3) Clock Timing (AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Symbol Parameter Pin Value Condition Min. Max. Unit Remarks Clock frequency FC X0, X1 1 10 MHz Clock cycle time tXCYL X0, X1 100 1000 ns Input clock pulse width PWH PWL X0 20 — ns External clock Input clock rising/falling time tCR tCF X0 — 10 ns External clock — X0 and X1 Timing and Conditions tXCYL PWH PWL tCF tCR 0.8 VCC 0.8 VCC X0 0.2 VCC 0.2 VCC 0.2 VCC Clock Conditions When a crystal or ceramic resonator is used X0 When an external clock is used X1 X0 FC C1 X1 Open C2 (4) Instruction Cycle Parameter Symbol Instruction cycle tinst (minimum execution time) Value (typical) Unit 4/FC, 8/FC, 16/FC, 64/FC µs Remarks (4/FC) tinst = 0.4 µs when operating at FC = 10 MHz 33 MB89670/A Series (5) Recommended Resonator Manufacturers Sample Application of Piezoelectric Resonator (FAR series) X0 X1 FAR* C1 C2 *: Fujitsu Acoustic Resonator C1 = C2 = 20 pF±8 pF (built-in FAR) FAR part number (built-in capacitor type) Frequency Initial deviation of FAR frequency (TA = +25°C) Temperature characteristics of FAR frequency (TA = –20°C to +60°C) FAR-C4CB-08000-M02 8.00 MHz ±0.5% ±0.5% FAR-C4CB-10000-M02 10.00 MHz ±0.5% ±0.5% Inquiry: FUJITSU LIMITED 34 MB89670/A Series Sample Application of Ceramic Resonator X0 X1 * C1 Resonator manufacturer* Kyocera Corporation Murata Mfg. Co., Ltd. Resonator C2 Frequency C1 (pF) C2 (pF) R (kΩ) KBR-7.68MWS 7.68 MHz 33 33 — KBR-8.0MWS 8.0 MHz 33 33 — CSA8.00MTZ 8.0 MHz 30 30 — Inquiry: Kyocera Corporation • AVX Corporation North American Sales Headquarters: TEL 1-803-448-9411 • AVX Limited European Sales Headquarters: TEL 44-1252-770000 • AVX/Kyocera H.K. Ltd. Asian Sales Headquarters: TEL 852-363-3303 Murata Mfg. Co., Ltd. • Murata Electronics North America, Inc.: TEL 1-404-436-1300 • Murata Europe Management GmbH: TEL 49-911-66870 • Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233 35 MB89670/A Series (6) Clock Output Timing (AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Cycle time tCYC CLK CLK ↑ → CLK ↓ tCHCL CLK Condition — Value Max. 1/2 tinst* — µs 1/4 tinst – 0.07 1/4 tinst µs * : For information on tinst, see “(4) Instruction Cycle.” tCYC tCHCL 2.4 V 2.4 V CLK 0.8 V 36 Unit Min. Remarks MB89670/A Series (7) Bus Read Timing (AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Condition Value Unit Min. Max. 1/4 tinst* – 0.06 — µs 1/2 tinst *– 0.02 — µs Remarks Valid address → RD ↓ time tAVRL RD pulse width tRLRH RD Valid address → Data read time tAVDV AD7 to 0, A15 to 08 — 1/2 tinst * µs Wait RD ↓ → Data read time tRLDV RD, AD7 to 0 — 1/2 tinst *– 0.08 µs No wait RD ↑ → Data hold time tRHDX AD7 to 0, RD 0 — ns RD ↑ → ALE ↑ time tRHLH RD, ALE 1/4 tinst* – 0.04 — µs RD, A15 to 08, AD7 to 0 — RD ↑ → Address loss time tRHAX RD, A15 to 08 1/4 tinst* – 0.04 — µs RD ↓ → CLK ↑ time tRLCH RD, CLK 1/4 tinst* – 0.04 — µs CLK ↓ → RD ↑ time tCLRH RD, CLK 0 — ns RD ↓ → BUFC ↓ time tRLBL RD, BUFC –5 — ns BUFC ↑ → Valid address time tBHAV A15 to 08, AD7 to 0, BUFC 5 — ns * : For information on tinst, see “(4) Instruction Cycle.” 2.4 V CLK 0.8 V tRHLH ALE 0.8 V AD 2.4 V 0.7 VCC 0.7 VCC 2.4 V 0.8 V 0.3 VCC 0.3 VCC 0.8 V tAVDV tRHDX 2.4 V A 2.4 V tCLRH 0.8 V tRLCH 0.8 V tAVRL tRLDV 2.4 V 0.8 V tRHAX tRLRH 2.4 V RD 0.8 V tRLBL tBHAV 2.4 V BUFC 0.8 V 37 MB89670/A Series (8) Bus Write Timing (AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Value Condition Min. Max. Valid address → ALE ↓ time tAVLL AD7 to 0, ALE, A15 to 08 1/4 tinst* 2 – 0.064 — µs ALE ↓ time → Address loss time tLLAX AD7 to 0, ALE, A15 to 08 5*1 — ns Valid address → WR ↓ time tAVWL WR, ALE 1/4 tinst* 2 – 0.06 — µs WR pulse width tWLWH WR 1/2 tinst* 2 – 0.02 — µs Writing data → WR ↑ time tDVWL AD7 to 0, WR 1/2 tinst* 2 – 0.06 — ns — 1/4 t inst* 2 – 0.04 — µs inst* 2 WR ↑ → Address loss time tWHAX WR, A15 to 08 WR ↑ → Data hold time tWHDX AD7 to 0, WR 1/4 t – 0.04 — µs WR ↑ → ALE ↑ time tWHLH WR, ALE 1/4 tinst* – 0.04 — µs WR ↓ → CLK ↑ time tWLCH WR, CLK 1/4 tinst* 2 – 0.04 — µs CLK ↓ → WR ↑ time tCLWH WR, CLK 0 — ns ALE pulse width tLHLL ALE 1/4 t – 0.035 — µs ALE ↓ → CLK ↑ time tLLCH ALE, CLK 1/4 tinst* 2 – 0.03 — µs inst* 2 *1: These characteristics are also applicable to the bus read timing. *2: For information on tinst, see “(4) Instruction Cycle.” 2.4 V CLK 0.8 V tLHLL tLLCH tWHLH 2.4 V ALE 0.8 V tAVLL 0.8 V tLLAX 2.4 V 2.4 V 2.4 V 0.8 V 0.8 V 0.8 V 2.4 V AD tDVWH 2.4 V 0.8 V tWHDX 2.4 V tCLWH tWLCH A 0.8 V 0.8 V tAVWL tWHAX tWLWH 2.4 V WR 0.8 V 38 Unit Remarks MB89670/A Series (9) Ready Input Timing (AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol RDY valid → CLK ↑ time tYVCH CLK ↑ → RDY invalid time tCHYX Pin Condition RDY, CLK Value Unit Remarks Min. Max. 60 — ns * 0 — ns * — RDY, CLK * : These characteristics are also applicable to the read cycle. 2.4 V CLK 2.4 V ALE AD Address Data A WR tYVCH tCHYX RDY tYVCH tCHYX Note: The bus cycle is also extended in the read cycle in the same manner. 39 MB89670/A Series (10) Serial I/O Timing (VCC = +5.0 V±10%, AVSS = VSS= 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Value Condition Serial clock cycle time tSCYC SCK SCK ↓ → SO time tSLOV SCK, SO Valid SI → SCK ↑ tIVSH SI, SCK SCK ↑ → valid SI hold time tSHIX SCK, SI Serial clock “H” pulse width tSHSL SCK Serial clock “L” pulse width tSLSH SCK Internal shift clock mode Max. 2 tinst* — µs –200 200 ns 1/2 tinst* — µs 1/2 tinst* — µs 1 tinst* — µs 1 tinst* — µs 0 200 ns External shift clock mode SCK ↓ → SO time tSLOV SCK, SO Valid SI → SCK ↑ tIVSH SI, SCK 1/2 tinst* — µs SCK ↑ → valid SI hold time tSHIX SCK, SI 1/2 tinst* — µs * : For information on tinst, see “(4) Instruction Cycle.” Internal Shift Clock Mode tSCYC SCK 2.4 V 0.8 V 0.8 V tSLOV 2.4 V SO 0.8 V tIVSH tSHIX 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC SI External Shift Clock Mode tSLSH tSHSL SCK 0.8 VCC 0.2 VCC 0.8 VCC 0.2 VCC tSLOV 2.4 V SO 0.8 V tIVSH tSHIX 0.8 VCC 0.8 VCC 0.2 VCC 0.2 VCC SI 40 Unit Min. Remarks MB89670/A Series (11) Peripheral Input Timing (VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Symbol Parameter Pin Condition Value Min. Max. Unit Peripheral input “H” pulse width 1 tILIH1 TCI 1 tinst* — µs Peripheral input “L” pulse width 1 tIHIL1 TCI 1 tinst* — µs Peripheral input “H” pulse width 2 tILIH2 EC, INT0 to INT7 2 tinst* — µs Peripheral input “L” pulse width 2 tIHIL2 EC, INT0 to INT7 2 tinst* — µs Peripheral input “H” pulse width 3 tILIH3 ADST 64 tinst* — µs Peripheral input “L” pulse width 3 tIHIL3 ADST A/D mode 64 tinst* — µs Peripheral input “H” pulse width 3 tILIH3 ADST 64 tinst* — µs Peripheral input “L” pulse width 3 tIHIL3 ADST Sense mode 64 tinst* — µs — Remarks * : For information on tinst, see “(4) Instruction Cycle.” tIHIL1 tILIH1 0.8 VCC TCI 0.2 VCC 0.2 VCC tIHIL2 EC INT0 to INT7 0.8 VCC tILIH2 0.8 VCC 0.2 VCC 0.2 VCC tIHIL3 tILIH3 0.8 VCC ADST 0.2 VCC 0.8 VCC 0.8 VCC 0.2 VCC 41 MB89670/A Series (12) Up/down Counter Input Timing (AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Pin Value Min. Max. Unit AIN input “1” pulse width tAHL 2 tinst* — µs AIN input “0” pulse width tALL 2 tinst* — µs BIN input “1” pulse width tBHL 2 tinst* — µs BIN input “0” pulse width tBLL 2 tinst* — µs AIN ↑ → BIN ↑ time tAUBU 1 tinst* — µs BIN ↑ → AIN ↓ time tBUAD 1 tinst* — µs AIN ↓ → BIN ↓ time tADBD 1 tinst* — µs BIN ↓ → AIN ↑ time tBDAU 1 tinst* — µs BIN ↑ → AIN ↑ time tBUAU 1 tinst* — µs AIN ↑ → BIN ↓ time tAUBD 1 tinst* — µs BIN ↓ → AIN ↓ time tBDAD 1 tinst* — µs AIN ↓ → BIN ↑ time tADBU 1 tinst* — µs ZIN input “1” pulse width tZHL 1 tinst* — µs ZIN input “0” pulse width tZLL 1 tinst* — µs P36, P37, P33, P34 — P32, P35 * : For information on tinst, see “(4) Instruction Cycle.” 42 Condition Remarks MB89670/A Series tAHL AIN tALL 0.8 VCC 0.8 VCC 0.2 VCC tAUBU tBUAD 0.2 VCC tADBD 0.8 VCC tBDAU 0.8 VCC BIN 0.2 VCC tBHL 0.2 VCC tBLL tBHL tBLL 0.8 VCC 0.8 VCC 0.8 VCC BIN 0.2 VCC tBUAU tAUBD tBDAD 0.8 VCC 0.2 VCC tADBU 0.8 VCC AIN 0.2 VCC tAHL 0.8 VCC 0.2 VCC tALL 0.8 VCC tZHL ZIN tZLL 0.2 VCC 0.2 VCC 43 MB89670/A Series 5. A/D Converter Electrical Characteristics (AVCC = VCC = +3.5 V to +6.0 V, FC = 10 MHz, AVSS = VSS = 0.0 V, TA = –40°C to +85°C) Parameter Symbol Value Pin Unit Min. Typ. Max. — — 10 bit — — ±2.0 LSB Differential linearity error — — ±1.5 LSB Total error — — ±3.0 LSB Resolution Linearity error — — Zero transition voltage VOT AN0 to AN7 AVSS – 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB mV Full-scale transition voltage VFST AN0 to AN7 AVR – 3.5 LSB AVR – 1.5 LSB AVR + 0.5 LSB mV — — 4 LSB — — 13.2 µs AN0 to AN7 — — 10 µA AN0 to AN7 0 — AVR V AVR 0 — AVCC V AVR — 200 µA Interchannel disparity — A/D mode conversion time Analog port input current IAIN Analog input voltage — Reference voltage Reference voltage supply current IR — Remarks AVCC = AVR = VCC At 10-MHz oscillation AVR = 5.0 V Precautions: • The smaller | AVR – AVSS |, the greater the error would become relatively. • The output impedance of the external circuit for the analog input must satisfy the following conditions: Output impedance of the external circuit < Approx. 10 kΩ If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = 6 µs at 10 MHz oscillation). An analog input equivalent circuit is shown below. Sample hold circuit R ≤ 10 kΩ is recommended. . C =. 60 pF AN . R =. 3 kΩ Comparator ( ) Analog channel selector If R > 10 kΩ, it is recommended to connect an external capacitor of approx. 0.1 µF. Close for approx. 15 instruction cycles after activating A/D conversion. Microcontroller’s internal circuit Since the A/D converter contains sample hold circuit, the level of the analog input pin might not stabilize within the sampling period after A/D activation, resulting in inaccurate A/D conversion values, if the input impedance to the analog pin is too high. Be sure to maintain an appropriate input impedance to the analog pin. It is recommended to keep the input impedance to the analog pin not exceed 10 kΩ. If it exceeds 10 kΩ, it is recommended to connect a capacitor of approx. 0.1 µF for the analog input pin. Except for the sampling period after A/D activation, the input leakage current of the analog input pin is less than 10 µA. 44 MB89670/A Series (1) A/D Converter Glossary • Resolution Analog changes that are identifiable with the A/D converter. • Linearity error The deviation of the straight line connecting the zero transition point (“00 0000 0000” ↔ “00 0000 0001”) with the full-scale transition point (“11 1111 1111” ↔ “11 1111 1110”) from actual conversion characteristics • Differential linearity error The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value • Total error The difference between theoretical and actual conversion values, caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise. Theoreticall I/O characteristics Total error VFST 3FF 3FF 3FE 3FE 3FD 1.5 LSB Digital output Digital output 3FD 004 003 Actual conversion value {1 LSB × N + 0.5 LSB} 004 VNT 003 VOT 002 Actual conversion value 002 1 LSB Theoretical value 001 001 0.5 LSB AVSS AVR 1 LSB = VFST – VOT 1022 AVSS AVR Analog input Analog input (V) Total error of digital output N VNT – {1 LSB × N + 0.5 LSB} 1 LSB (Continued) 45 MB89670/A Series (Continued) Zero transition error Full-scale transition error 004 Theoretical value Actual conversion value 3FF Actual conversion value Digital output Digital output 003 002 Theoretical value 3FE VFST (Actual measured value) 3FD Actual conversion value Actual conversion value 001 3FC VOT (Actual measured value) AVSS 3FF AVR Analog input Analog input Linearity error Differential linearity error Theoretical value Actual conversion value N+1 3FE {1 LSB × N + VOT} Actual conversion value VNT VFST (Actual measured value) 004 003 V(N + 1)T N N–1 Actual conversion value 002 Digital output Digital output 3FD VNT Actual conversion value Theoretical value N–2 001 VOT (Actual measured value) AVSS AVR Analog input Linearity error of digital output N = 46 AVSS AVR Analog input VNT – {1 LSB × N + VOT} 1 LSB Differential linearity error of digital output N = V(N+1)T – VNT 1 LSB –1 MB89670/A Series ■ EXAMPLE CHARACTERISTICS (2) “H” Level Output Voltage (1) “L” Level Output Voltage VOL vs. IOL VOL (V) VCC = 2.5 V TA = +25°C 0.5 VCC = 3.0 V 0.4 VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V 0.3 0.2 VCC – VOH (V) 1.0 TA = +25°C 0.9 VCC – VOH vs. IOH VCC = 2.5 V 0.8 0.7 VCC = 3.0 V 0.6 0.5 VCC = 4.0 V VCC = 5.0 V VCC = 6.0 V 0.4 0.3 0.2 0.1 0.1 0.0 0 1 2 3 4 5 6 7 8 9 10 IOL (mA) (3) “H” Level Input Voltage/“L” Level Input Voltage (CMOS Input) 0.0 0.0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 IOH (mA) (4) “H” Level Input Voltage/“L” Level Input Voltage (Hysteresis Input) VIN vs. VCC VIN (V) 5.0 4.5 VIN vs. VCC VIN (V) 5.0 4.5 TA = +25°C 4.0 TA = +25°C 4.0 VIHS 3.5 3.0 3.5 2.5 3.0 2.0 2.5 VILS 1.5 2.0 1.0 1.5 0.5 1.0 0.0 0.5 0.0 0 1 2 3 4 5 6 7 VCC (V) 0 1 2 3 4 5 6 7 VCC (V) VIHS: Threshold when input voltage in hysteresis characteristics is set to “H” level VILS: Threshold when input voltage in hysteresis characteristics is set to “L” level 47 MB89670/A Series (5) Power Supply Current (External Clock) ICCS1 vs. VCC, ICCS2 vs. VCC ICC1 vs. VCC, ICC2 vs. VCC ICC (mA) 25 TA = +25°C FC = 10 MHz External clock 20 ICC1 (Divide by 4) ICCS (mA) 25 TA = +25°C FC = 10 MHz External clock 20 15 15 10 10 ICCS1 (Divide by 4) ICC2 (Divide by 64) 5 5 ICCS2 (Divide by 64) 0 0 2 3 4 5 6 7 VCC (V) 2 3 4 (6) Pull-up Resistance RPULL vs. VCC RPULL (kΩ) 1000 TA = +25°C 500 100 50 10 1 48 2 3 4 5 6 VCC (V) 5 6 7 VCC (V) MB89670/A Series ■ INSTRUCTIONS Execution instructions can be divided into the following four groups: • • • • Transfer Arithmetic operation Branch Others Table 1 lists symbols used for notation of instructions. Table 1 Instruction Symbols Symbol Meaning dir Direct address (8 bits) off Offset (8 bits) ext Extended address (16 bits) #vct Vector table number (3 bits) #d8 Immediate data (8 bits) #d16 Immediate data (16 bits) dir: b Bit direct address (8:3 bits) rel Branch relative address (8 bits) @ Register indirect (Example: @A, @IX, @EP) A Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.) AH Upper 8 bits of accumulator A (8 bits) AL Lower 8 bits of accumulator A (8 bits) T Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.) TH Upper 8 bits of temporary accumulator T (8 bits) TL Lower 8 bits of temporary accumulator T (8 bits) IX Index register IX (16 bits) (Continued) 49 MB89670/A Series (Continued) Symbol Meaning EP Extra pointer EP (16 bits) PC Program counter PC (16 bits) SP Stack pointer SP (16 bits) PS Program status PS (16 bits) dr Accumulator A or index register IX (16 bits) CCR Condition code register CCR (8 bits) RP Register bank pointer RP (5 bits) Ri General-purpose register Ri (8 bits, i = 0 to 7) × Indicates that the very × is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.) (×) Indicates that the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) (( × )) The address indicated by the contents of × is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) Columns indicate the following: Mnemonic: Assembler notation of an instruction ~: Number of instructions #: Number of bytes Operation: Operation of an instruction TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following: • “–” indicates no change. • dH is the 8 upper bits of operation description data. • AL and AH must become the contents of AL and AH immediately before the instruction is executed. • 00 becomes 00. N, Z, V, C: An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag. OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule: Example: 48 to 4F ← This indicates 48, 49, ... 4F. 50 MB89670/A Series Table 2 Transfer Instructions (48 instructions) Mnemonic ~ # Operation TL TH AH NZVC OP code MOV dir,A MOV @IX +off,A MOV ext,A MOV @EP,A MOV Ri,A MOV A,#d8 MOV A,dir MOV A,@IX +off MOV A,ext MOV A,@A MOV A,@EP MOV A,Ri MOV dir,#d8 MOV @IX +off,#d8 MOV @EP,#d8 MOV Ri,#d8 MOVW dir,A MOVW @IX +off,A 3 4 4 3 3 2 3 4 4 3 3 3 4 5 4 4 4 5 2 2 3 1 1 2 2 2 3 1 1 1 3 3 2 2 2 2 – – – – – AL AL AL AL AL AL AL – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –––– –––– –––– –––– –––– ++–– ++–– ++–– ++–– ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– 45 46 61 47 48 to 4F 04 05 06 60 92 07 08 to 0F 85 86 87 88 to 8F D5 D6 MOVW ext,A MOVW @EP,A MOVW EP,A MOVW A,#d16 MOVW A,dir MOVW A,@IX +off 5 4 2 3 4 5 3 1 1 3 2 2 – – – AL AL AL – – – AH AH AH – – – dH dH dH –––– –––– –––– ++–– ++–– ++–– D4 D7 E3 E4 C5 C6 MOVW A,ext MOVW A,@A MOVW A,@EP MOVW A,EP MOVW EP,#d16 MOVW IX,A MOVW A,IX MOVW SP,A MOVW A,SP MOV @A,T MOVW @A,T MOVW IX,#d16 MOVW A,PS MOVW PS,A MOVW SP,#d16 SWAP SETB dir: b CLRB dir: b XCH A,T XCHW A,T XCHW A,EP XCHW A,IX XCHW A,SP MOVW A,PC 5 4 4 2 3 2 2 2 2 3 4 3 2 2 3 2 4 4 2 3 3 3 3 2 3 1 1 1 3 1 1 1 1 1 1 3 1 1 3 1 2 2 1 1 1 1 1 1 (dir) ← (A) ( (IX) +off ) ← (A) (ext) ← (A) ( (EP) ) ← (A) (Ri) ← (A) (A) ← d8 (A) ← (dir) (A) ← ( (IX) +off) (A) ← (ext) (A) ← ( (A) ) (A) ← ( (EP) ) (A) ← (Ri) (dir) ← d8 ( (IX) +off ) ← d8 ( (EP) ) ← d8 (Ri) ← d8 (dir) ← (AH),(dir + 1) ← (AL) ( (IX) +off) ← (AH), ( (IX) +off + 1) ← (AL) (ext) ← (AH), (ext + 1) ← (AL) ( (EP) ) ← (AH),( (EP) + 1) ← (AL) (EP) ← (A) (A) ← d16 (AH) ← (dir), (AL) ← (dir + 1) (AH) ← ( (IX) +off), (AL) ← ( (IX) +off + 1) (AH) ← (ext), (AL) ← (ext + 1) (AH) ← ( (A) ), (AL) ← ( (A) ) + 1) (AH) ← ( (EP) ), (AL) ← ( (EP) + 1) (A) ← (EP) (EP) ← d16 (IX) ← (A) (A) ← (IX) (SP) ← (A) (A) ← (SP) ( (A) ) ← (T) ( (A) ) ← (TH),( (A) + 1) ← (TL) (IX) ← d16 (A) ← (PS) (PS) ← (A) (SP) ← d16 (AH) ↔ (AL) (dir): b ← 1 (dir): b ← 0 (AL) ↔ (TL) (A) ↔ (T) (A) ↔ (EP) (A) ↔ (IX) (A) ↔ (SP) (A) ← (PC) AL AL AL – – – – – – – – – – – – – – – AL AL – – – – AH AH AH – – – – – – – – – – – – – – – – AH – – – – dH dH dH dH – – dH – dH – – – dH – – AL – – – dH dH dH dH dH ++–– ++–– ++–– –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– ++++ –––– –––– –––– –––– –––– –––– –––– –––– –––– –––– C4 93 C7 F3 E7 E2 F2 E1 F1 82 83 E6 70 71 E5 10 A8 to AF A0 to A7 42 43 F7 F6 F5 F0 Notes: • During byte transfer to A, T ← A is restricted to low bytes. • Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of F2MC-8 family) 51 MB89670/A Series Table 3 Mnemonic ~ # ADDC A,Ri ADDC A,#d8 ADDC A,dir ADDC A,@IX +off ADDC A,@EP ADDCW A ADDC A SUBC A,Ri SUBC A,#d8 SUBC A,dir SUBC A,@IX +off SUBC A,@EP SUBCW A SUBC A INC Ri INCW EP INCW IX INCW A DEC Ri DECW EP DECW IX DECW A MULU A DIVU A ANDW A ORW A XORW A CMP A CMPW A RORC A 3 2 3 4 3 3 2 3 2 3 4 3 3 2 4 3 3 3 4 3 3 3 19 21 3 3 3 2 3 2 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ROLC A 2 1 CMP A,#d8 CMP A,dir CMP A,@EP CMP A,@IX +off CMP A,Ri DAA DAS XOR A XOR A,#d8 XOR A,dir XOR A,@EP XOR A,@IX +off XOR A,Ri AND A AND A,#d8 AND A,dir 2 3 3 4 3 2 2 2 2 3 3 4 3 2 2 3 2 2 1 2 1 1 1 1 2 2 1 2 1 1 2 2 Arithmetic Operation Instructions (62 instructions) Operation TL TH AH NZVC OP code (A) ← (A) + (Ri) + C (A) ← (A) + d8 + C (A) ← (A) + (dir) + C (A) ← (A) + ( (IX) +off) + C (A) ← (A) + ( (EP) ) + C (A) ← (A) + (T) + C (AL) ← (AL) + (TL) + C (A) ← (A) − (Ri) − C (A) ← (A) − d8 − C (A) ← (A) − (dir) − C (A) ← (A) − ( (IX) +off) − C (A) ← (A) − ( (EP) ) − C (A) ← (T) − (A) − C (AL) ← (TL) − (AL) − C (Ri) ← (Ri) + 1 (EP) ← (EP) + 1 (IX) ← (IX) + 1 (A) ← (A) + 1 (Ri) ← (Ri) − 1 (EP) ← (EP) − 1 (IX) ← (IX) − 1 (A) ← (A) − 1 (A) ← (AL) × (TL) (A) ← (T) / (AL),MOD → (T) (A) ← (A) ∧ (T) (A) ← (A) ∨ (T) (A) ← (A) ∀ (T) (TL) − (AL) (T) − (A) → C→A – – – – – – – – – – – – – – – – – – – – – – – dL – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 00 – – – – – – – – – – – dH – – – – – – dH – – – – dH – – – dH dH 00 dH dH dH – – – ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++– –––– –––– ++–– +++– –––– –––– ++–– –––– –––– ++R– ++R– ++R– ++++ ++++ ++–+ 28 to 2F 24 25 26 27 23 22 38 to 3F 34 35 36 37 33 32 C8 to CF C3 C2 C0 D8 to DF D3 D2 D0 01 11 63 73 53 12 13 03 C ← A← – – – ++–+ 02 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– 14 15 17 16 18 to 1F 84 94 52 54 55 57 56 58 to 5F 62 64 65 (A) − d8 (A) − (dir) (A) − ( (EP) ) (A) − ( (IX) +off) (A) − (Ri) Decimal adjust for addition Decimal adjust for subtraction (A) ← (AL) ∀ (TL) (A) ← (AL) ∀ d8 (A) ← (AL) ∀ (dir) (A) ← (AL) ∀ ( (EP) ) (A) ← (AL) ∀ ( (IX) +off) (A) ← (AL) ∀ (Ri) (A) ← (AL) ∧ (TL) (A) ← (AL) ∧ d8 (A) ← (AL) ∧ (dir) (Continued) 52 MB89670/A Series (Continued) Mnemonic ~ # AND A,@EP AND A,@IX +off AND A,Ri OR A OR A,#d8 OR A,dir OR A,@EP OR A,@IX +off OR A,Ri CMP dir,#d8 CMP @EP,#d8 CMP @IX +off,#d8 CMP Ri,#d8 INCW SP DECW SP 3 4 3 2 2 3 3 4 3 5 4 5 4 3 3 1 2 1 1 2 2 1 2 1 3 2 3 2 1 1 Operation (A) ← (AL) ∧ ( (EP) ) (A) ← (AL) ∧ ( (IX) +off) (A) ← (AL) ∧ (Ri) (A) ← (AL) ∨ (TL) (A) ← (AL) ∨ d8 (A) ← (AL) ∨ (dir) (A) ← (AL) ∨ ( (EP) ) (A) ← (AL) ∨ ( (IX) +off) (A) ← (AL) ∨ (Ri) (dir) – d8 ( (EP) ) – d8 ( (IX) + off) – d8 (Ri) – d8 (SP) ← (SP) + 1 (SP) ← (SP) – 1 Table 4 Mnemonic BZ/BEQ rel BNZ/BNE rel BC/BLO rel BNC/BHS rel BN rel BP rel BLT rel BGE rel BBC dir: b,rel BBS dir: b,rel JMP @A JMP ext CALLV #vct CALL ext XCHW A,PC RET RETI ~ # 3 3 3 3 3 3 3 3 5 5 2 3 6 6 3 4 6 2 2 2 2 2 2 2 2 3 3 1 3 1 3 1 1 1 Mnemonic PUSHW A POPW A PUSHW IX POPW IX NOP CLRC SETC CLRI SETI ~ # 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++R– ++++ ++++ ++++ ++++ –––– –––– 67 66 68 to 6F 72 74 75 77 76 78 to 7F 95 97 96 98 to 9F C1 D1 Branch Instructions (17 instructions) Operation If Z = 1 then PC ← PC + rel If Z = 0 then PC ← PC + rel If C = 1 then PC ← PC + rel If C = 0 then PC ← PC + rel If N = 1 then PC ← PC + rel If N = 0 then PC ← PC + rel If V ∀ N = 1 then PC ← PC + rel If V ∀ N = 0 then PC ← PC + reI If (dir: b) = 0 then PC ← PC + rel If (dir: b) = 1 then PC ← PC + rel (PC) ← (A) (PC) ← ext Vector call Subroutine call (PC) ← (A),(A) ← (PC) + 1 Return from subrountine Return form interrupt Table 5 TL TL TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – dH – – –––– –––– –––– –––– –––– –––– –––– –––– –+–– –+–– –––– –––– –––– –––– –––– –––– Restore FD FC F9 F8 FB FA FF FE B0 to B7 B8 to BF E0 21 E8 to EF 31 F4 20 30 Other Instructions (9 instructions) Operation TL TH AH NZVC OP code – – – – – – – – – – – – – – – – – – – dH – – – – – – – –––– –––– –––– –––– –––– –––R –––S –––– –––– 40 50 41 51 00 81 91 80 90 53 L 54 B C D E F MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP CLRB BBC MOVW MOVW MOVW XCHW A,dir A,dir A,dir A,dir dir,A A,dir A,dir A,dir dir,#d8 dir,#d8 dir: 5 dir: 5,rel A,dir dir,A SP,#d16 A,SP 5 A SUBC A XCH XOR AND OR A, T A A A MOV MOV CLRB BBC INCW DECW MOVW MOVW @A,T A,@A dir: 2 dir: 2,rel IX IX IX,A A,IX AND CMP A,@IX +d MOVW @IX +d,A MOVW MOVW XCHW IX,#d16 A,IX MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BZ A,R5 A,R5 A,R5 A,R5 R5,A A,R5 A,R5 A,R5 R5,#d8 R5,#d8 dir: 5 dir: 5,rel R5 R5 #5 MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BGE A,R6 A,R6 A,R6 A,R6 R6,A A,R6 A,R6 A,R6 R6,#d8 R6,#d8 dir: 6 dir: 6,rel R6 R6 #6 rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BLT A,R7 A,R7 A,R7 A,R7 R7,A A,R7 A,R7 A,R7 R7,#d8 R7,#d8 dir: 7 dir: 7,rel R7 R7 #7 rel D E F rel rel rel rel MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNZ A,R4 A,R4 A,R4 A,R4 R4,A A,R4 A,R4 A,R4 R4,#d8 R4,#d8 dir: 4 dir: 4,rel R4 R4 #4 rel @EP,#d8 @EP,#d8 C CMP MOV MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BN A,R3 A,R3 A,R3 A,R3 R3,A A,R3 A,R3 A,R3 R3,#d8 R3,#d8 dir: 3 dir: 3,rel R3 R3 #3 CLRB BBC MOVW MOVW MOVW XCHW dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16 A,EP CLRB BBC dir: 6 dir: 6,rel B @IX +d,#d8 @IX +d,#d8 MOV MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BP A,R2 A,R2 A,R2 A,R2 R2,A A,R2 A,R2 A,R2 R2,#d8 R2,#d8 dir: 2 dir: 2,rel R2 R2 #2 A,@IX +d OR A A,@IX +d A,@IX +d XOR MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BC A,R1 A,R1 A,R1 A,R1 R1,A A,R1 A,R1 A,R1 R1,#d8 R1,#d8 dir: 1 dir: 1,rel R1 R1 #1 +d,A MOV @IX 9 A,@IX +d SUBC MOV CMP ADDC SUBC MOV XOR AND OR MOV CMP SETB BBS INC DEC CALLV BNC A,R0 A,R0 A,R0 A,R0 R0,A A,R0 A,R0 A,R0 R0,#d8 R0,#d8 dir: 0 dir: 0,rel R0 R0 #0 rel A,@IX +d ADDC CLRB BBC MOVW MOVW MOVW XCHW dir: 4 dir: 4,rel A,ext ext,A A,#d16 A,PC 8 A,@IX +d A,@IX +d DAS MOV CMP ADDC SUBC MOV XOR AND OR A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP CMP MOV XOR AND OR DAA A,#d8 A,#d8 A,#d8 7 6 MOV CMP ADDC SUBC A,#d8 A,#d8 A,#d8 A,#d8 ADDC CLRB BBC INCW DECW MOVW MOVW dir: 1 dir: 1,rel SP SP SP,A A,SP MOVW MOVW CLRB BBC INCW DECW MOVW MOVW CMPW ADDCW SUBCW XCHW XORW ANDW ORW A A A, T A A A @A,T A,@A dir: 3 dir: 3,rel EP EP EP,A A,EP A A SETC 4 A CMP PUSHW POPW MOV MOVW CLRC JMP CALL IX IX ext,A PS,A addr16 addr16 RORC A DIVU 3 CLRB BBC INCW DECW JMP MOVW dir: 0 dir: 0,rel A A @A A,PC A ROLC A SETI 7 PUSHW POPW MOV MOVW CLRI A A A,ext A,PS 6 9 5 8 4 2 A RETI 3 MULU RET 2 1 SWAP 1 NOP 0 0 H MB89670/A Series ■ INSTRUCTION MAP MB89670/A Series ■ MASK OPTIONS Part number MB89673 MB89677A MB89P677A MB89PV670A Specifying procedure Specify when ordering masking Set with EPROM programmer Setting not possible No. 1 Pull-up resistors P10 to P17, P30 to P37, P40 to P47, P70 to P76 Selectable by pin Selectable by pin 2 Pull-up resistors P00 to P03 Selectable by pin Selectable in 4-pin unit 3 Pull-up resistors P04 to P07 Selectable by pin Selectable in 4-pin unit 4 Power-on reset With power-on reset Without power-on reset Selectable Selectable Fixed to with power-on reset Selectable Selectable Fixed to Approx. 218/FC (Approx. 26.2 ms) Selectable Selectable Fixed to with reset output Fixed to without pull-up resistor Oscillation stabilization time selection (at 10 MHz) Approx. 218/FC (about 26.2 ms) 5 Approx. 217/FC (about 13.1 ms) Approx. 214/FC (about 1.6 ms) Approx. 24/FC (about 0 ms) FC: Clock frequency 6 Reset pin output With reset output Without reset output ■ ORDERING INFORMATION Part number Package MB89673PF MB89677APF MB89P677APF 80-pin Plastic QFP (FPT-80P-M06) MB89673PFM MB89677APFM MB89P677APFM 80-pin Plastic QFP (FPT-80P-M11) MB89P670ACF Remarks 80-pin Ceramic MQFP (MQP-80C-P01) 55 MB89670/A Series ■ PACKAGE DIMENSIONS 80-pin Plastic QFP (FPT-80P-M11) +0.20 1.50 –0.10 +.008 .059 –.004 16.00±0.20(.630±.008)SQ 14.00±0.10(.551±.004)SQ 60 41 61 40 12.35 15.00 (.486) (.591) REF NOM 1 PIN INDEX 80 LEAD No. 21 1 0.65(.0256)TYP 0.30±0.10 (.012±.004) 0.13(.005) 0.10(.004) C 56 1994 FUJITSU LIMITED F80016S-1C-2 Details of "A" part "A" 20 M 0.127 .005 0.10±0.10 (STAND OFF) (.004±.004) +0.05 –0.02 +.002 –.001 0 10° 0.50±0.20 (.020±.008) Dimensions in mm (inches) MB89670/A Series 80-pin Plastic QFP (FPT-80P-M06) 23.90±0.40(.941±.016) 64 20.00±0.20(.787±.008) 3.35(.132)MAX 0.05(.002)MIN (STAND OFF) 41 65 40 14.00±0.20 (.551±.008) 12.00(.472) REF 17.90±0.40 (.705±.016) 16.30±0.40 (.642±.016) INDEX 80 25 "A" LEAD No. 1 24 0.80(.0315)TYP 0.35±0.10 (.014±.004) 0.16(.006) 0.15±0.05(.006±.002) M Details of "A" part Details of "B" part 0.25(.010) "B" 0.10(.004) 18.40(.724)REF 22.30±0.40(.878±.016) C 1994 FUJITSU LIMITED F80010S-3C-2 0.30(.012) 0.18(.007)MAX 0.58(.023)MAX 0 10° 0.80±0.20 (.031±.008) Dimensions in mm (inches) 57 MB89670/A Series 80-pin Ceramic MQFP (MQP-80C-P01) 18.70(.736)TYP 12.00(.472)TYP INDEX AREA 16.30±0.33 (.642±.013) 15.58±0.20 (.613±.008) 1.50(.059)TYP 1.00(.040)TYP 4.50(.177) TYP 1.27±0.13 (.050±.005) 22.30±0.33 (.878±.013) 24.70(.972) TYP 0.30(.012) TYP 0.80±0.25 (.0315±.010) 0.80±0.25 (.0315±.010) +0.40 1.20 –0.20 +.016 .047 –.008 INDEX AREA 18.12±0.20 12.02(.473) (.713±.008) TYP 10.16(.400) 14.22(.560) TYP TYP 18.40(.724) REF INDEX 1.27±0.13 (.050±.005) 6.00(.236) TYP 0.30(.012)TYP 7.62(.300)TYP 9.48(.373)TYP 11.68(.460)TYP 0.40±0.10 (.016±.004) 1.50(.059) TYP 1.00(.040) TYP 0.40±0.10 (.016±.004) +0.40 1.20 –0.20 +.016 .047 –.008 0.15±0.05 8.70(.343) (.006±.002) MAX C 58 1994 FUJITSU LIMITED M80001SC-4-2 Dimensions in mm (inches) MB89670/A Series FUJITSU LIMITED For further information please contact: Japan FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 1015, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211, Japan Tel: (044) 754-3753 Fax: (044) 754-3329 North and South America FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, U.S.A. Tel: (408) 922-9000 Fax: (408) 432-9044/9045 Europe FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122 Asia Pacific FUJITSU MICROELECTRONICS ASIA PTE. LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 189554 Tel: 336-1600 Fax: 336-1609 All Rights Reserved. Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given. The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies. The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu. Fujitsu reserves the right to change products or specifications without notice. No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu. The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support. F9602 FUJITSU LIMITED Printed in Japan 59