Anpec APW7095AQDE-TY 6-channel dc/dc converter control ic Datasheet

APW7095/A
6-Channel DC/DC Converter Control IC
Features
General Description
•
The APW7095/A is a 6-channel, frequency-settable,
voltage-mode, DC/DC control IC providing a complete
power supply solution for high-performance portable
digital cameras. The APW7095/A uses pulse-widthmodulation (PWM) and synchronous rectification for
high efficiency step-up, step-down, up-down and inverting converters with free input and output settings
in 2 or 4-cell AA, 1-cell lithium-ion (Li+), and dualbattery designs. The APW7095/A incorporates error
amplifiers, output short-circuit detection, under-voltage lockout, soft-start and output switch control into
a chip. The AP7095/A improves performance, component count, and size compared to conventional multichannel controllers.
The APW7095/A has a power-good indicator (PGOOD)
that signals when CH1 output is within ±10% of the
set voltage by monitoring IN1 pin.
The APW7095/A is available in compact 48-pin plastic LQFP and TQFN packages.
Supports for synchronous rectification
(CH1, CH2 and CH5)
•
Supports for down or up-down Zeta conversions
(CH1 and APW7095 CH2)
•
Supports for up, flyback or up-down SEPIC
conversions (APW7095A CH2, CH3, APW7095
CH4, CH5 and CH6)
•
Supports for Inverting conversion
(APW7095A CH4)
•
•
Low Start-up Voltage : 1.4V (CH6)
Power Supply Voltage Range
- CH1 to CH5 : 3.0V to 6.5V
- CH6 : 2.4V to 6.5V
•
•
•
•
•
•
•
1% Reference Voltage Accuracy
Wide Operating Frequency 100kHz to 1MHz
Soft-Start Function (CH1 to 6)
Power Good (PGOOD) Indicator for CH1
Low Shutdown Current
Output Short-Circuit Detections
Lead Free Available (RoHS Compliant)
Applications
•
•
•
Digital Camera
Camcorder
Hand-held Instrument
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise
customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
1
www.anpec.com.tw
APW7095/A
Ordering and Marking Information
Package Code
QD : LQFP-48
QB : TQFN-48
Operating Ambient Temp. Range
E : -30 to 85 °C
Handling Code
TY : Tray
Lead Free Code
L : Lead Free Device Blank : Original Device
APW7095/A
Lead Free Code
Handling Code
Temp. Range
Package Code
XXXXX - Date Code
APW7095 QD/QB :
APW7095
XXXXX
APW7095A QD/QB :
APW7095A
XXXXX
XXXXX - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate
termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldiering
operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C
for MSL classification at lead-free peak reflow temperature.
48
47
46
45
44
43
42
41
40
39
38
37
PGOOD
OUT6
OUT5-2
OUT5-1
PGND
OUT4
PVCC
OUT3
OUT2-2
OUT2-1
OUT1-2
OUT1-1
Pinouts
DTC1
36
SWIN
FB1
35
3
FB6
IN1
34
4
IN6
DTC2
33
5
CIN6
FB2
32
6
DTC5
1
SWOUT
2
APW7095/A
IN2
31
30
7
FB5
DTC3
8
IN5
FB3
29
INA4
IN3
28
VB
27
26
25
9
10
OUTA4
DTC4
CS
VREF
GND
CSCP
VCC
CTL
CTL1,2
CTL3
CTL4
CTL5
15
16
17
18
19
20
21
22
23
24
RT
INS4
IN4
14
FB4
12
13
11
CT
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
2
IC
APW7095
APW7095A
CH1
Synchronous
Step-down
Synchronous
Step-down
CH2
Synchronous
Up-down
Synchronous
Step-up
CH3
Step-up
Step-up
CH4
Step-up
Inverting
CH5
Synchronous
Step-up
Synchronous
Step-up
CH6
Step-up
Step-up
www.anpec.com.tw
APW7095/A
Pin Description
PIN
I/O
DESCRIPTION
O
I
O
I
Output Switch Control Circuit Output Pin.
Output Switch Control Circuit Input Pin.
CH6 Error Amplifier Output Pin.
CH6 Inverted Input Pin of Error Amplifier.
CH6 Soft-Start Capacitor Connection Pin.
Leave this pin “Open” to disable the soft-start function.
CH5 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not
used.
CH5 Error Amplifier Output Pin.
CH5 Inverted Input Pin of Error Amplifier.
CH4 Inverting Amplifier Input Pin.
No.
1
2
3
4
Name
SWOUT
SWIN
FB6
IN6
5
CIN6
I
6
DTC5
I
7
8
9
FB5
IN5
INA4
O
I
I
10
OUTA4
O
11
12
13
FB4
IN4
INS4
O
I
I
14
DTC4
I
15
CS
-
16
17
VREF
GND
O
P
18
CSCP
-
19
VCC
P
20
CTL
I
21
CTL1,2
I
22
CTL3
I
23
CTL4
I
24
CTL5
I
CH4 Inverting Amplifier Output Pin.
Connect this pin to INA4 when the inverting amplifier is not used.
CH4 Error Amplifier Output Pin.
CH4 Inverted Input Pin of Error Amplifier.
CH4 Inverted Input Pin of Short Detection Comparator.
CH4 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not
used.
CH1 to CH5 Soft-Start Capacitor Connection Pin.
Leave this pin “Open” to disable the soft-start function.
Reference Voltage Output Pin.
Reference Voltage and Control Circuit Ground Pin.
Short-Circuit Detection Capacitor Connection Pin.
Connect this pin to GND with the shortest distance to disable the
timer-latch short-circuit protection circuit.
Reference Voltage and Control Circuit Power Supply Pin.
Power Supply and CH6 Control Pin.
“H” Level: Operation Mode.
“L” Level: Standby Mode
CH1 and CH2 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
CH3 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
CH4 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
CH5 Control Pin.
“H” Level: Operation Mode.
“L” Level: OFF Mode
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
3
www.anpec.com.tw
APW7095/A
Pin Description (Cont.)
PIN
I/O
DESCRIPTION
O
I
O
Oscillator Frequency Setting Resistor Connection Pin.
Oscillator Frequency Setting Capacitor Connection Pin.
Triangular Wave Oscillator Regulator Output Pin.
CH3 Inverted Input Pin of Error Amplifier.
CH3 Error Amplifier Output Pin.
CH3 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not
used.
CH2 Inverted Input Pin of Error Amplifier.
CH2 Error Amplifier Output Pin.
CH2 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not
used.
CH1 Inverted Input Pin of Error Amplifier.
CH1 Error Amplifier Output Pin.
CH1 Dead Time Control Pin.
Connect this pin to VREF directly when the dead-time control is not
used.
CH1 Main-side MOSFET Drive Pin. Connect OUT1-1 to the main
MOSFET.
CH1 MOSFET Drive Pin for Synchronous Rectifier.
CH2 Main-side MOSFET Drive Pin.
APW7095: Drive a p-channel MOSFET for a step-down converter.
APW7095A: Drive an n-channel MOSFET for a step-up converter.
CH2 MOSFET Drive Pin for Synchronous Rectifier
CH3 MOSFET Drive Pin.
Drive Circuit Power Supply Pin.
CH4 MOSFET Drive Pin.
APW7095: Drive an n-channel MOSFET for a step-up converter.
APW7095A: Drive a p-channel MOSFET for a inverting step-up/down
converter.
Drive Circuit Ground Pin.
CH5 Main-side MOSFET Drive Pin. Connect OUT5-1 to the main
MOSFET.
CH5 MOSFET Drive Pin for Synchronous Rectifier.
CH6 MOSFET Drive Pin.
Indicator Output Pin. This pin is an open-drain output used to indicate
status of the CH1 output voltage.
No.
25
26
27
28
29
Name
RT
CT
VB
IN3
FB3
30
DTC3
I
31
32
IN2
FB2
I
O
33
DTC2
I
34
35
IN1
FB1
I
O
36
DTC1
I
37
OUT1-1
O
38
OUT1-2
O
39
OUT2-1
O
40
41
42
OUT2-2
OUT3
PVCC
O
O
P
43
OUT4
O
44
PGND
P
45
OUT5-1
O
46
47
OUT5-2
OUT6
O
O
48
PGOOD
O
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
4
www.anpec.com.tw
APW7095/A
Block Diagram
PVCC
Driver 1-1
FB1
FB1
DTC1
Error
Amp.
IN1
CT2
OUT1-1
CH1
PWM
Controller
Driver 1-2
CTL1,2
OUT1-2
1.25V
SCP
Comp.
1.25V
x1.1
IN1
PGOOD
Comp.
1.0V
DTC1
1.25V
x0.9
Driver 2-1
FB2
Drive
FB2
DTC2
Error
IN2
Amp.
CT1
OUT2-1
2-1
1-1
CH2
PWM
Controller
Driver 2-2
CTL1,2
Drive
OUT2-2
1-2
1.25V
SCP
Comp.
1.0V
DTC2
FB3
FB3
DTC3
Error
Amp.
IN3
CT2
Driver 3
CH3
PWM
Controller
OUT3
CTL3
1.25V
SCP
Comp.
1.0V
DTC3
INV
Amp.
INA4
OUTA4
FB4
Driver 4
FB4
DTC4
Error
IN4
CT1
Amp.
CTL4
1.25V
INS4
CH4
PWM
Controller
OUT4
SCP
Comp.
1.0V
DTC4
Driver 5-1
FB5
FB5
OUT5-1
DTC5
Error
Amp.
IN5
CT2
CTL5
CH5
PWM
Controller
Driver 5-2
OUT5-2
1.25V
SCP
Comp.
1.0V
DTC5
FB6
Error
Amp.
37.5k
FB6
62.5k
CIN6
CT
Soft-Start
SCP Control
OUT6
(Max. Duty=80%)
SCP
Comp.
Power
Comp.
0.9V
Driver 6
CH6
PWM
Controller
UVLO
VB:2V
IN6
0.9V
SWOUT
PGND
CTL1,2
CTL3
CTL4
CTL5
CS CTL
Logic
0.8V
CT
0.3V
1.8V
CT2
1.1V
1.8V
CT1
SWIN
VCC
UVLO
1.1V
Ref
OSC
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
CTL
2.49V
2V
CS
Power
ON/OFF
CTL
SCP
VB
RT
CT
CSCP
5
VREF
GND
www.anpec.com.tw
APW7095/A
Absolute Maximum Ratings
Symbol
VCC
VPVCC
Parameter
Rating
Unit
VCC Supply Voltage (VCC to GND)
-0.3 ~ 7
V
PVCC Supply Voltage (PVCC to GND)
-0.3 ~ 7
V
-0.3 ~ VCC+0.3
V
CTL, CTL1~5, SWIN Input Voltages
-0.3 ~ 7
V
PGOOD Pull High Voltage
-0.3 ~ 7
IN1~6, INA4, INS4, DTC1~5 Input Voltages
Maximum Junction Temperature
TSTG
Storage Temperature
TSDR
Maximum Soldering Temperature, 10 Seconds
V
150
o
-65 ~ 150
o
300
o
C
C
C
Thermal Characteristics
Symbol
θJA
Parameter
Value
Junction-to-Ambient Resistance in free air
48-pin Plastic QFP
QFN
80
Unit
o
C/W
Recommended Operating Conditions
Symbol
Parameter
VCC
Start-up Power Supply Voltage
VCC
Operating Voltage
IREF
IB
Reference Voltage Output Current
VB Output Current
VIN
Input Voltage
VCTL
Control Voltage
IO
Output Current
FOSC
CT
RT
CS
CCIN6
CSCP
Condition
CH6
CH6
CH1 to CH5
VREF Pin
VB Pin
IN1 to IN5, INA4, INS4 Pins
IN6 Pin
CTL Pin
OUT Pin (CH1 to CH5)
OUT Pin (CH6)
SWOUT Pin
Oscillator Frequency
Timing Capacitor
Timing Resistor
Soft-Start Capacitor
CH1 to CH5
CH6
Short Detection Capacitor
CVB
VB Pin Capacitor
TA
Operating Ambient Temperature
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
6
APW7095/A
Min. Typ. Max.
6.5
1.4
2.4 5.0
6.5
3.0 5.0
6.5
-1
0
0
-0.5
0
VCC
0
VCC
0
6.5
2
15
2
15
1
4
100 500 1000
47 100 560
8.2 18
100
0.02
1.0
7
0.47 1.0
0.1
1.0
0.08
0.1
2
-30 25
85
Unit
V
V
mA
mA
V
V
mA
kHz
pF
kΩ
µF
µF
µF
o
C
www.anpec.com.tw
APW7095/A
Electrical Characteristics
Refer to the typical application circuit. These specifications apply over, VCC = 5V and T A = -30 to 85°C, unless
otherwise specified. Typical values refer to TA = 25°C.
Symbol
Parameter
ICCS
VCC Standby Current
IPVCC
PVCC Standby Current
ICC
VCC Nominal Supply Current
Under Voltage Lockout
VTH
Threshold Voltage
CH1 to
VH
Hysteresis Width
CH5
VRST
Reset Voltage
CH6
Threshold Voltage
VTH
Reference Voltage
VREF
Reference Voltage
Output
Voltage Temperature
∆VREF/
Stability
VREF
Line
Input Stability
Load Load Stability
IOS
Short-Circuit Output Current
Soft-Start
Input Standby Voltage
VSTB
Soft-Start Charge Current
ICS
Short-Circuit Detection
VTH
Threshold Voltage
VSTB
Input Standby Voltage
Input Latch Voltage
VI
ICSCP Input Source Current
Triangular Wave Oscillator
Oscillator Frequency
fOSC
∆f/fdv Frequency Stability for Voltage
Frequency Stability for
∆f/fdt
Temperature
Error Amplifier (CH1 to CH5)
VTH
Threshold Voltage
∆VT/
VT Temperature Stability
VT
IB
Input Bias Current
AV
Voltage Gain
Frequency Bandwidth
BW
Maximum Output Voltage
VOH
Minimum Output Voltage
VOL
ISOURCE Output Source Current
ISINK
Output Sink Current
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
Test Condition
CTL = 0V
CTL = 0V
CTL, CTL1 to CTL5 = 5V
Rising VCC
Min.
-
APW7095/A
Typ.
Max.
10
10
1.8
5
Unit
µA
mA
Falling VCC
Rising VCC
2.5
1.2
1.25
2.7
0.2
1.3
1.4
2.9
1.4
1.55
V
IREF = 0mA
2.46
2.49
2.51
V
TA = -30°C to 85°C
-
0.5
-
%
VCC = 3.0V to 6.5V
IREF = 0mA to –1mA
VREF = 2V
-10
-10
-25
-18
10
10
-1
mV
mV
mA
-1.4
50
-1.0
100
-0.6
mV
µA
0.65
-1.4
0.70
50
50
-1.0
0.75
100
100
-0.6
V
mV
mV
µA
450
-
500
1
550
10
kHz
%
-
1
-
%
1.23
1.25
1.27
V
-
0.5
-
%
-50
60
4.9
5
100
1.0
4.99
3
-25
16
50
-10
-
nA
dB
MHz
V
mV
mA
mA
CT=100pF, RT=18kΩ,VB=2V
VCC = 3V to 6.5V
TA = -30°C to 85°C
FB = 1.45V
TA = -30°C to 85°C
IN = 0V (CH1 to CH5)
DC
AV = 0dB
FB = 1.45V
FB = 1.45V
7
www.anpec.com.tw
APW7095/A
Electrical Characteristics (Cont.)
Refer to the typical application circuit. These specifications apply over, V CC=5V and T A= -30 to 85°C, unless otherwise specified. Typical values refer to T A =25°C.
Symbol
Parameter
Error Amplifier (CH6)
VTH
Threshold Voltage
∆VTH/
VTH Temperature Stability
VTH
IB
Input Bias Current
AV
Voltage Gain
Frequency Bandwidth
BW
VOH
Maximum Output Voltage
Minimum Output Voltage
VOL
ISOURCE Output Source Current
Output Sink Current
ISINK
Inverted Amplifier (CH4)
VIO
Input Offset Voltage
Input Bias Current
IB
Voltage Gain
AV
BW
Frequency Bandwidth
Maximum Output Voltage
VOH
Minimum Output Voltage
VOL
ISOURCE Output Source Current
ISINK
Output Sink Current
Short Detect Comparator (CH1 to CH5)
Threshold Voltage
VTH
IB
Input Bias Current
Test Condition
FB = 0.55V
TA = -30°C to 85°C
IN6 = 0V
DC
AV = 0dB
FB = 0.55V
FB = 0.55V
OUT = 1.25V
IN = 0V
DC
AV = 0dB
OUT = 1.25V
OUT = 1.25V
CH1 to CH5
IN = 0V (CH1 to CH3, CH5)
INS4 = 0V (CH4)
Short Detect Comparator (CH6)
VTH
Threshold Voltage
PWM Comparator (CH1 to CH5)
Duty = 0%
VT0
Threshold Voltage
VT100
Duty = 100%
IDTC
Input Current
DTC = 0.4V (CH1 to CH5)
PWM Comparator (CH6)
Duty = 0%
VT0
Threshold Voltage
Duty = Max.
VTmax
Dtr
Maximum Duty Cycle
CT = 100pF, RT = 18kΩ
PWM Controller Driver for P-MOS (CH1, CH2, CH5)
ISOURCE Output Source Current
Duty ≤ 5%, OUT = 0V
ISINK
Output Sink Current
Duty ≤ 5%, OUT = 5V
OUT = -15mA
ROH
Output ON Resistance
OUT = 15mA
ROL
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
8
APW7095/A
Min. Typ. Max.
Unit
1.24
1.26
1.28
V
-
0.5
-
%
-50
60
4.9
60
75
1.0
4.99
3
-50
120
50
-10
-
nA
dB
MHz
V
mV
mA
µA
-10
-50
60
4.9
5
0
100
1.0
4.99
3
-26
16
10
50
-1.0
-
mV
nA
dB
MHz
V
mV
mA
mA
0.97
-50
-50
1.00
-
1.03
-
V
0.8
0.9
1.0
1.0
-50
1.1
1.8
-
1.9
-
0.2
70
0.3
0.74
80
0.84
90
100
-
-130
160
18
10
-80
30
20
nA
V
V
nA
V
%
mA
Ω
www.anpec.com.tw
APW7095/A
Electrical Characteristics (Cont.)
Refer to the typical application circuit. These specifications apply over, V CC=5V and T A= -30 to 85°C, unless otherwise specified. Typical values refer to T A =25°C.
Symbol
Parameter
Test Condition
PWM Controller Driver for N-MOS (CH1, CH2, CH5, CH6)
ISOURCE Output Source Current
Duty ≤ 5%, OUT = 0V
ISINK
Output Sink Current
Duty ≤ 5%, OUT = 5V
ROH
OUT = -15mA
Output ON Resistance
ROL
OUT = 15mA
PWM Controller Driver for P-MOS (CH3, CH4)
ISOURCE Output Source Current
Duty ≤ 5%, OUT = 0V
ISINK
Output Sink Current
Duty ≤ 5%, OUT = 5V
ROH
OUT = -15mA
Output ON Resistance
ROL
OUT = 15mA
Output Switch Control (SW)
VIH
SWOUT = ”L” level
SW Input Voltage
VIL
SWOUT = ”H” level
SWIN = 5V
ISWIN
Input Current
ISOURCE Output Source Current
SWOUT = 0V
Output Sink Current
ISINK
SWOUT = 5V
ROH
OUT = -4mA
Output ON Resistance
ROL
OUT = 4mA
Power Good
Rising IN1
VTH
IN1 Upper Threshold Voltage
VTH
Rising IN1
IN1 Lower Threshold Voltage
Upper/Lower Hysteresis
VPGOOD PGOOD Output Voltage
Control Block (CTL, CT1 to CT5)
VIH
CTL Input Voltage
VIL
Input Current
ICTL
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
APW7095/A
Typ. Max.
Min.
Unit
100
-
-130
160
18
10
-80
30
20
300
-
-290
470
7
4
-180
15
10
1.2
0
-
2.5
-7
19
325
85
6.5
0.5
20
400
150
µA
mA
mA
IPGOOD = 4mA
-
110
94
2
0.17
0.8
%
%
%
V
Active Mode
Standby Mode
CTL = 5V
1.5
0
-
2.6
6.5
0.5
20
9
mA
Ω
mA
Ω
V
Ω
V
µA
www.anpec.com.tw
APW7095/A
Typical Characteristics
Power Supply Current vs.
Power Supply Voltage
Reference Voltage Current vs.
Power Supply Voltage
5
5
IREF=0mA
Reference Voltage, V REF(V)
Power Supply Current, I CC(mA)
VCC =5V
TA=25°C
4
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
3
2
1
TA=25°C
4
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
3
2
1
0
0
0
1
2
3
4
5
6
7
0
8
Power Supply Voltage, VCC(V)
2.52
3
4
5
6
7
8
Reference Voltage vs. Control Voltage
5
VCC =5V
Reference Voltage, V REF(V)
Reference Voltage, V REF(V)
2.54
2
Power Supply Voltage, VCC(V)
Reference Voltage vs. Ambient Temperature
2.56
1
TA=25°C
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
IREF=0mA
2.50
2.48
2.46
2.44
VCC =5V
TA=25°C
IREF=0mA
4
3
2
1
0
-40
-20
0
20
40
60
80
100
0
Ambient Temperature, TA(°C)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
10
1
2
3
4
Control Voltage, VCTL(V)
5
www.anpec.com.tw
APW7095/A
Typical Characteristics (Cont.)
Control Current vs. Control Voltage
Upper & Lower Threshold Voltage, V CT(V)
5
Control Current, ICTL(µA)
VCC =5V
TA=25°C
4
3
VTL, CTL1,2~CTL5
2
1
0
0
1
2
3
4
5
6
7
8
Control Voltage, VCTL(V)
Triangular Wave Upper & Lower Threshold
Voltages vs. Oscillator Frequency
1.0
0.9
0.8
VCC =5V
0.6
TA=25°C
RT=18kΩ
0.5
0.4
0.3
Lower
0.2
0.1
0.0
0
200
400
600
800
1000 1200
Oscillator Frequency, fosc(kHz)
Oscillator Frequency vs. Timing Capacitor
Oscillator Frequency vs. Timing Resistor
10000
Oscillator Frequency, fosc(kHz)
10000
Oscillator Frequency, fosc(kHz)
Upper
0.7
VCC =5V
TA=25°C
1000
RT=4.3kΩ
100
RT=18kΩ
RT=100kΩ
10
10
100
1000
10000
Rev. A.3 - Jul., 2005
TA=25°C
1000
CT=47pF
100
CT=100pF
CT=1000pF
CT=470pF
CT=220pF
10
1
10
100
1000
Timing Resistor, RT(kΩ)
Timing Capacitor, CT(pF)
Copyright  ANPEC Electronics Corp.
VCC =5V
11
www.anpec.com.tw
APW7095/A
Typical Characteristics (Cont.)
Triangular Wave Upper & Lower Threshold
Voltages vs. Ambient Temperature
560
540
Upper & Lower Threshold Voltage, V CT(V)
Oscillator Frequency, fosc(kHz)
Oscillator Frequency vs. Ambient Temperature
VCC =5V
CTL=CTL1,2=CTL3=CTL4=CTL5=5V
RT=18kΩ
CT=100pF
520
500
480
460
440
-40
-20
0
20
40
60
80
100
Rev. A.3 - Jul., 2005
0.9
0.8
Upper
0.7
VCC =5V
RT=18kΩ
CT=100pF
0.6
0.5
0.4
Lower
0.3
0.2
0.1
0.0
-40
-20
0
20
40
60
80
100
Ambient Temperature, TA (°C)
Ambient Temperature, TA (°C)
Copyright  ANPEC Electronics Corp.
1.0
12
www.anpec.com.tw
APW7095/A
Typical Applications
vvv
1.VBAT=2.7V~6V (4-Cell Battery or 1-Cell LI-ION) for 2 Buck and 4 Boost Converter (Using APW7095)
VBAT
7.5V/20mA
D7
APW7095
C28
22uF
L6
22uH
VBAT
APM2301A
OUT1-1
SS12
C27
22uF
Q11
OUT4
CH4
Boost
Controller
Driver
APM2300A
R28
15k
CH1 Buck
Controller
Driver
OUT1-2
1.25V
Vref
FB4
IN4
R4 VREF
L5
22uH
1.25V
Vref
C4
22uF
Q3
L2
22uH
10uF
C5
APM2300A
C23
22uF
R24
300K
OUT5-2
Q9
APM2301A
R22
C22
1K
VREF
CH5
Boost
Controller
Driver
CH2 Buck
Controller
Driver
22uH
C7
FB2
IN5
18K
R21 24K
5V
R20 47K
C21
22uF
22uH
R7
R10
47K
T1
C8
22uF
SS12
D3
D5
APM2301A
C19
22uF
Q7
R18
309K
C20
22uF
D4
APM2312
C18
R17
R19
100K
APM2300A
Q6
SS12
1K
0.1uF
C17
OUT6
CH3
Boost
Controller
CH6
Boost
Controller
Driver
FB3
IN3
IN6
CIN6
Q5
C12
1.25V
Vref
SWOUT
VCC
CTL3
PVCC
C10
22uF
R11
165K
R12
1K
VREF
15K
18K
R15
47K
CTL4
SWIN
13
C14
100PF
C13
0.22uF
GND
CT
R16
30K
VREF
C15
CSCP
C16
0.1uF
RT
VB
CS
PGND
CTL5
0.1uF
Rev. A.3 - Jul., 2005
4700PF
R14
CTL
CTL1,2
Copyright  ANPEC Electronics Corp.
C9
22uF
15V/20mA
SS12
R13
0.1uF
DTC3
1.26V
Vref
-10V/20mA
C11
OUT3
Driver
FB6
0.33uF
15K
R9 VREF
VBAT
L4
24K
1K
DTC2
1.25V
Vref
1.25V
Vref
C6
100uF
R6
R8
0.1uF
IN2
DTC5
D2
SS12
Q4
OUT2-2
FB5
0.1uF
R23
100K
3.3V/300mA
L3
OUT5-1
APM2300A
Q10
5V
VBAT
APM2301A
OUT2-1
D6 SS12
Q8
15K
24K
R5
PGOOD
47K
VREF DTC4
VBAT
R26 24K
R25 47K
C25
22uF
R2
1K
DTC1
INS4
R27
0
C24
22uF
OUTA4
R1
6.8K
R3
0.1uF
IN1
C26
0.1uF
R29
1K
C2
100uF
D1
SS0520
Q2
C3
FB1
INA4
1.8V/300mA
22uH
APM2300A
R31
75k
5V/300mA
APM2301A
C1
22uF
L1
Q1
VREF
www.anpec.com.tw
APW7095/A
Typical Applications (Cont.)
2.VBAT=1.4V~3V (2-Cell Battery) for 1 Buck , 1 Inverting and 4 Boost Converter s (Using APW7095A)
VBAT
3.3V ( from CH5 )
C28
Q11
APW7095A
22uF
APM2301A
-7.5V/20mA
APM2301A
C1
22uF
L1
D7
Q1
OUT1-1
SS12
C27
22uF
L5
22uH
R31
60k
OUT4
CH4
Inverting
Controller
Driver
CH1
Buck
Controller
Driver
OUT1-2
R30
C3
C26
0.1uF
R29
1K
R28
OUTA4
FB4
IN4
10k
R4 VREF
0
L4
22uH
3.3V/300mA
APM2301A
47K
VBAT
1.25V
Vref
V R E F DTC4
VBAT
R26 24K
R25 47K
C25
22uF
C4
22uF
L2
22uH
D6 SS12
D2
SS12
4V/300mA
Q4
OUT2-1
Q8
15K
24K
R5
PGOOD
INS4
R27
R2
1K
DTC1
1.25V
Vref
R1
6.8K
R3
0.1uF
IN1
C2
100uF
D1
SS0520
Q2
FB1
INA4
10k
1.8V/300mA
22uH
APM2300A
C5
OUT5-1
1uF
APM2300A
Q10
C24
22uF
C23
22uF
R24
24K
Q9
APM2300A
OUT5-2
CH5
Boost
Controller
Driver
APM2301A
C22
R22
1K
0.1uF
Q3
CH2
Boost
Controller
OUT2-2
Driver
VREF
C7
FB5
FB2
IN5
IN2
1.25V
Vref
DTC5
R9 V R E F
18K
R10
47K
R21 24K
R20
47K
C19
22uF
Q7
L6
22uH
C20
22uF
APM2300A
Q6
SS12
R18
OUT6
APM2312
CH6
Boost
Controller
Driver
309K
100K
CH3
Boost
Controller
Driver
OUT3
C18
R17
R19
FB3
FB6
1K
0.1uF
IN6
IN3
C12
1.26V
Vref
0.33uF
CTL
SWOUT
CTL1,2
VCC
CTL3
PVCC
SS12
C10
22uF
R11
165K
R12
1K
VREF
15K
18K
R15
47K
14
C14
100PF
C13
0.22uF
GND
CT
R16
30K
VREF
C15
0.1uF
CSCP
C16
0.1uF
RT
VB
CS
CTL5
PGND
Rev. A.3 - Jul., 2005
15V/20mA
CTL4
SWIN
Copyright  ANPEC Electronics Corp.
C11
1uF
R14
DTC3
1.25V
Vref
D4
R13
0.1uF
18V/3mA
C9
22uF
SS0520
Q5
CIN6
C17
3.3V
D8
SS0520
D3
C8
22uF
D5
APM2301A
15K
5V
C21
22uF
22uH
5V
R7
1K
0.1uF
DTC2
1.25V
Vref
33K
R8
VBAT
L3
R6
APM2301A
R23
15K
C6
100uF
VREF
www.anpec.com.tw
APW7095/A
Function Descriptions
General
The APW7095/A provides voltage-mode feedback controls for six DC/DC PWM converters(CH1 to CH6).
Each channel operates with an error amplifier, PWM
comparator, short-circuit comparator, ON/OFF control and output driver. An internal temperature-compensated voltage provides reference voltages for each
channel. An triangular-wave oscillator(CT) with a timing resistor and capacitor generates triangular waves
to each channel. A inverting amplifier(CH4) cooperates with the error amplifier for an inverting converter
(with negative output voltage) .
capacitor from the output pin(FB) to inverted input pin
of the error amplifier for stable operations.
Inverting Amplifier (Inv Amp)
The inverting amplifier detects the inverting DC/DC converter output voltage (as a negative voltage) and outputs a control signal to the error amp.
Channel Control Function
The channel control function turns on/off one or more
channels depending on the states (“H” or “L” level) at
CTL, CTL1,2 to CTL5 pins. The on/off control logic is
shown as the following table:
Reference Voltage
The APW7095 outputs a temperature- compensated
reference voltage(2.49V) at VREF pin. It is regulated
from the voltage at VCC pin and can source current of
max. 1mA to external loads. It also supplies bias for
the IC’s internal circuitry.
Channel on/off Setting Tabl e
Vol tage Level at CTL Pin
CTL CTL1,2 CTL3 CTL4 CTL5
L
x
x
x
L
L
H
L
L
H
Triangular-wave Oscillator
The triangular-wave oscillator is designed to generates a triangular oscillation signal (CT) with amplitude
of 0.3V~0.8V at CT pin, providing signal to CH6. The
oscillator frequency is settable from 100kHz to 1MHz
and set by a timing resistor and a timing capacitor
connected respectively from RT and CT pins to ground.
Additional two triangular oscillation signals (CT1 and
CT2) are also internally generated with amplitude of 1.
1V~1.8V. The CT1 is in phase with the CT to the PWM
comparators of CH2 and CH4; the CT2 is out of phase
with the CT to the PWM comparators of CH1, CH3
and CH5.
H
H
L
L
H
H
L
H
H
MOSFET Drive Circuits
APW7095/A uses push-pull configuration at output of
each MOSFET driver for providing large drive current
to MOSFET gate. The following table shows the
MOSFETs connected to the drivers:
IC
CH1
Error Amplifier
The error amplifier is designed with unit-gain-bandwidth
of 1MHz and to satisfy wide application requirements.
It works with enternal resistor-capacitor network for
each converter’s feedback compensation. The loop gain
can be set by connecting a feedback resistor and
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
x
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
Channel ON/OFF State
Power CH1
CH3 CH4 CH6
/CH6 /CH2
OFF(Standby State)
OFF
OFF
ON
OFF
OFF
ON
ON
OFF
OFF
OFF
ON
ON
OFF
ON
ON
ON
OFF
OFF
ON
OFF
OFF
ON
ON
ON
OFF
OFF
ON
ON
OFF
ON
ON
CH2
CH3
CH4
CH5
CH6
15
APW7095
OUT1-1 : PMOS
OUT1-2 : NMOS
OUT2-1 : PMOS
OUT2-2 : NMOS
OUT3 : NMOS
OUT4 : NMOS
OUT5-1 : NMOS
OUT5-2 : PMOS
OUT6 : NMOS
APW7095A
OUT1-1 : PMOS
OUT1-2 : NMOS
OUT2-1 : NMOS
OUT2-2 : PMOS
OUT3 : NMOS
OUT4 : PMOS
OUT5-1 : NMOS
OUT5-2 : PMOS
OUT6 : NMOS
www.anpec.com.tw
APW7095/A
Function Descriptions (Cont.)
Timer-latch short-circuit protection circuit
rising voltage at CIN6 reaches 0.9V, the reference voltage starts to regulate and the internal source current
starts to charge the CS , starting a soft-start operation
on CH1 to CH5. During soft-start interval, the error
amplifiers compares the CH1 to CH5 output voltage to
the voltage at the CS pin. When any control pins (CH1,
2 to CH5) go “H” from “L” during the soft-start interval
(CH1 to CH5), the output rises rapidly to follow the
rising voltage at CS pin.
The short-circuit protection comparator in each channel (CH1 to CH5) monitors converter’s output voltage
via input pin of error amplifier. In CH6, the short-circuit
comparator detects the voltage at output of error
amplifier. As any detected voltages of CH1 to CH5
falls below 1.0V or the detected voltage of CH6 is larger
than 0.9V, the timer circuits is actuated to start charging the external capacitor CSCP connected from CSCP
pin to ground. When the rising voltage of CSCP reaches
0.7V, the IC turns off all external MOSFETs and pulls
up the voltage at SWOUT pin. Then the IC is latched.
Applying a signal from “L” to “H” to CTL pin enables
operation again. The short-circuit detection function
remains working during soft start operation on CH1 to
CH5.
Input
CTL
CTL1,2
CTL3
CTL4
CTL5
Output
2V
VB
0.9V
CIN6
CH6 Output
Voltage (Vo6)
2.49V
VREF
1.25V
CS
Under-Voltage Lockout (UVLO) Circuit
The under-voltage lockout circuit monitors the supply
voltage at VCC pin to prevent wrong logic control. The
IC starts operation after the supply voltage rises above
it’s rising threshold. As the supply voltage falls below
it’s falling threshold, the IC turns off the external
MOSFETs and pulls up the voltage at SWOUT pin.
CH1 to CH5
Output Voltages
(Vo1 to Vo5)
t
(1)
(3)
(2)
(4)
(1) to (2) : CH6 Soft-Start Interval
(3)
: VREF Output start
(3) to (4) : CH1 to CH5 Soft-Start Interval
Figure 1 Soft-start waveforms
Input
CTL
CTL1,2
CTL3
CTL4
CTL5
Soft-Start Operation
The soft-start function controls the output voltage rate
of rise to limit the current surge at start-up. For CH1
to CH5, the soft-start interval is programmed by the
soft-start capacitor, CS connected from CS pin to
Output
2V
VB
0.9V
CIN6
CH6 Output
Voltage (Vo6)
2.49V
VREF
ground and charged by an internal 1µA current source.
For CH6, a soucing current from the internal resistordivider charges the capacitor, CCIN6 connected from
CIN6 pin to ground, providing soft-start control.
Figure 1 and 2 show the soft-start processes. In figure
1, when all control pins (CTL, CTL1,2 to CTL 5) are
driven high (“H” level) at the same time, the voltage at
CIN6 pin starts to rise up by charging the capacitor
CCIN6 , starting a soft-start operation on CH6. After the
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
1.25V
CS
1.25V
CH1 to CH3
Output Voltages
(Vo1 to Vo3)
CH4 to CH5
Output Voltages
(Vo4 to Vo5)
(1)
(3)
(2)
(4)
(5)
(6)'
(6)
(7)
t
(7)'
(1) to (2) : CH6 soft-start interval
(3)
: VREF Output start
(4) to (5) : CH1 to CH3 soft-start Interval
(6) to (7) : CH4, CH5 soft-start Interval
(6)' to (7)' : CH4(CH5) soft start interval as CTL4 (CTL5) go
"H" from "L" during CH1 to CH3 soft start interval
Figure 2 Soft-start waveforms
16
www.anpec.com.tw
APW7095/A
Function Descriptions (Cont.)
f OSC (kHz) ≈
Output Switch Control Circuit
The output switch control circuit outputs a signal to
control external p-channel MOSFETs for preventing
reactive current flow to external step-up circuits on
CH5 and CH6. When a “H” level
signal is applied to SWIN pin after releasing the UVLO
and the voltage at CIN6 pin rises above 0.9V(typical),
the IC pulls low the voltage at SWOUT pin, turning on
the external p-channel MOSFETs to generate output
voltages.
900000
RT (k Ω ) ⋅ CT (pF)
Output Voltage Settings
The output voltage is set by the external resistor-divider connected with converter output, error amplifier
input, and ground.
(1) CH1 to CH3, CH5
 R1 
Vo (V) = 1.25V ⋅ 1 +

 R2 
VO
R1
Application Information
Error
Amp. 1
IN1
R2
1.25V
Soft-Start Interval Settings
The CH6 soft-start time depends on the capacitor CCIN6
and is determined as the following equation:
(2) CH4
Vo (V) = - 1.25V ⋅
R1
R2
VO
CCIN6 (F) ⋅ 37.5 (kΩ ) ⋅ 62.5 (kΩ ) 
VCIN6 (V) 

ts (S) = ⋅ ln1 −
100 (k Ω )
1.26 (V) 

VB(2V)
V CIN6
CIN6
R1
R2
OUTA4
Error
Amp. 6
R3
Error
Amp. 4
IN4
37.5k
1.25V
62.5k
CC I N 6
INV
Amp. 4
INA4
(3) CH6
 R1 
Vo (V) = 1.26V ⋅  1 +

 R2 
The soft-start time until CH6 output voltage reaches
95% of the set voltage is determined as the following
equation:
ts (S) ≈ 0.07 ⋅ C CIN6 ( µ F)
VO
VB(2V)
R1
IN6
Error
Amp. 6
37.5k
R2
CIN6
On CH1 to CH5, the soft-start time depending on the
capacitor CS determined as the following equation :
62.5k
ts (S) ≈ 1.25 ⋅ C S ( µ F)
Time Constant Setting for Timer-Latch Short-Circuit Protection Circuit
Triangular Oscillator Frequency Setting
The triangular oscillator frequency set by the timing
The time constant for timer-latch short-circuit protection is set by the capacitor CSCP and determined as
capacitor (CT) connected to the CT pin and the timing
resistor (RT) connected to the RT pin determined as
the following equation :
tPE (S) = 0.70 ⋅ C SCP ( µ F)
the following equation:
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
17
www.anpec.com.tw
APW7095/A
Application Information (Cont.)
Dead-Time Setting
The dead-time control pin (DTC) is designed to set
the maximum ON duty of the main-side MOSFET.
When the device is set for step-up inverted output based
on the step-up or step-up/down Zeta method or flyback
method, the FB pin voltage may reach and exceed
the triangular wave voltage due to load fluctuation. If
this is the case, the output MOSFET is fixed to a ON
duty of 100 %. To prevent this, set the maximum duty
of the output MOSFET. Connecting a resistor- divider
between VREF, DTC and GND pins provides a voltage VDTC to DTC pin. When the the voltage at the
DTC pin is higher than the triangular wave voltage (CT1/
2), the output transistor is turned on. The maximum
duty is calculated as the following equation:
ON Duty (max) =
VDTC (V) =
VDTC - 1.1 V
⋅ 100 (%)
0.7 V
R2
⋅ VREF
R1 + R2
VREF
R1
VDTC
DTC1
R2
where VREF is the output of the reference voltage (2.
49V typical) at VREF pin. The amplitude of the triangular waves CT1 and CT2 are typically 0.7V from 1.
1V to 1.8V.
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
18
www.anpec.com.tw
APW7095/A
Package Information
LQFP-48
A
A2
A1
C
b
θ
L
L1
e
E
DETAIL "E"
48
37
1
D
36
Hd
25
"E"
12
13
24
He
Dim
A
A1
A2
b
c
D
E
e
Millimeters
Min.
0.050
Inches
Max.
1.600
0.150
Min.
0.0020
Max.
0.0630
0.0059
1.400±0.05
0.200TYP
0.127TYP
7.000±0.100
7.000±0.100
0.500TYP
0.0551±0.0020
0.0078TYP
0.0050TYP
0.2756±0.0039
0.2756±0.0039
0.0196TYP
Hd
9.000±0.250
0.3543±0.0098
He
L
L1
y
θ
9.000±0.250
0.600±0.150
1.000REF
0.3543±0.0098
0°
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
0.0236
0.006
0.0393REF
0.100
7°
19
0°
0.0039
7°
www.anpec.com.tw
APW7095/A
Package Information
TQFN-48
D
48
47
46
45
44
43
42
41
40
39
38
D2
37
1
36
2
35
3
34
4
33
5
32
E 6
31
7
30
8
29
9
28
10
27
11
26
47
L
48
1
2
E2
25
12
13
14
15
16
17
18
19
20
21
22
23
24
e
b
A2
A
A3
A1
Dim
A
A1
A2
A3
b
D
D2
E
E2
e
L
Millimeters
Min.
0.80
0
0
Max.
1.00
0.05
1.00
Min.
0.03
0
0
0.30
0.007
0.20REF
0.18
4.15
5.25
0.09
0.21
0.28BSC
5.25
0.09
0.50BSC
0.30
0.01
0.28BSC
7BSC
4.15
Max.
0.04
0.002
0.04
0.008REF
7BSC
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
Inches
0.21
0.02BSC
0.50
20
0.01
0.01
www.anpec.com.tw
APW7095/A
Physical Specifications
Terminal Material
Lead Solderability
Solder-Plated Copper (Solder Material : 90/10 or 63/37 SnPb), 100%Sn
Meets EIA Specification RSI86-91, ANSI/J-STD-002 Category 3.
Reflow Condition
(IR/Convection or VPR Reflow)
tp
TP
Critical Zone
T L to T P
Temperature
Ramp-up
TL
tL
Tsmax
Tsmin
Ramp-down
ts
Preheat
25
t 25 °C to Peak
Time
Classification Reflow Profiles
Profile Feature
Average ramp-up rate
(TL to TP)
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (min to max) (ts)
Time maintained above:
- Temperature (TL)
- Time (tL)
Peak/Classificatioon Temperature (Tp)
Time within 5°C of actual
Peak Temperature (tp)
Ramp-down Rate
Sn-Pb Eutectic Assembly
Pb-Free Assembly
3°C/second max.
3°C/second max.
100°C
150°C
60-120 seconds
150°C
200°C
60-180 seconds
183°C
60-150 seconds
217°C
60-150 seconds
See table 1
See table 2
10-30 seconds
20-40 seconds
6°C/second max.
6°C/second max.
6 minutes max.
8 minutes max.
Time 25°C to Peak Temperature
Notes: All temperatures refer to topside of the package .Measured on the body surface.
(mm)
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
21
www.anpec.com.tw
APW7095/A
Classification Reflow Profiles(Cont.)
Table 1. SnPb Entectic Process – Package Peak Reflow Temperature s
3
3
Package Thickness
Volume mm
Volume mm
<350
≥350
<2.5 mm
240 +0/-5°C
225 +0/-5°C
≥2.5 mm
225 +0/-5°C
225 +0/-5°C
Table 2. Pb-free Process – Package Classification Reflow Temperatures
3
3
3
Package Thickness
Volume mm
Volume mm
Volume mm
<350
350-2000
>2000
<1.6 mm
260 +0°C*
260 +0°C*
260 +0°C*
1.6 mm – 2.5 mm
260 +0°C*
250 +0°C*
245 +0°C*
≥2.5 mm
250 +0°C*
245 +0°C*
245 +0°C*
*Tolerance: The device manufacturer/supplier shall assure process compatibility up to and
including the stated classification temperature (this means Peak reflow temperature +0°C.
For example 260°C+0°C) at the rated MSL level.
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TST
ESD
Latch-Up
Method
MIL-STD-883D-2003
MIL-STD-883D-1005.7
JESD-22-B,A102
MIL-STD-883D-1011.9
MIL-STD-883D-3015.7
JESD 78
Description
245°C, 5 SEC
1000 Hrs Bias @125°C
168 Hrs, 100%RH, 121°C
-65°C~150°C, 200 Cycles
VHBM > 2KV, VMM > 200V
10ms, 1tr > 100mA
7X7mm Shipping Tray
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
22
www.anpec.com.tw
APW7095/A
7X7mm Shipping Tray (Cont.)
Customer Service
Anpec Electronics Corp.
Head Office :
5F, No. 2 Li-Hsin Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
7F, No. 137, Lane 235, Pac Chiao Rd.,
Hsin Tien City, Taipei Hsien, Taiwan, R. O. C.
Tel : 886-2-89191368
Fax : 886-2-89191369
Copyright  ANPEC Electronics Corp.
Rev. A.3 - Jul., 2005
23
www.anpec.com.tw
Similar pages