Maxim MAX321EPA Precision, dual-supply, spst analog switch Datasheet

19-0350; Rev 0; 12/94
Precision, Dual-Supply, SPST
Analog Switches
________________________Applications
Battery-Operated Systems
Sample-and-Hold Circuits
Heads-Up Displays
Guidance and Control Systems
Audio and Video Switching
Military Radios
Test Equipment
Communications Systems
±5V DACs and ADCs
PBX, PABX
____________________________Features
♦ Low On-Resistance, 35Ω max (16Ω typical)
♦ RON Matching Between Channels <2Ω
♦ RON Flatness <4Ω
♦ Guaranteed Charge Injection <5pC
♦ Bipolar Supply Operation (±3V to ±8V)
♦ Low Power Consumption, <1.25mW
♦ Low Leakage Current Over Temperature,
<2.5nA at +85°C
♦ Fast Switching, tON <150ns, tOFF <100ns
♦ Guaranteed Break-Before-Make (MAX322 only)
______________Ordering Information
PART
TEMP. RANGE
PIN-PACKAGE
MAX320CPA
0°C to +70°C
8 Plastic DIP
MAX320CSA
0°C to +70°C
8 SO
MAX320CUA
0°C to +70°C
8 µMAX
MAX320C/D
0°C to +70°C
Dice*
MAX320EPA
-40°C to +85°C
8 Plastic DIP
MAX320ESA
-40°C to +85°C
8 SO
MAX320EJA
-40°C to +85°C
8 CERDIP**
MAX320MJA
-55°C to +125°C
8 CERDIP**
Ordering Information continued at end of data sheet.
* Contact factory for dice specifications.
** Contact factory for availability.
_____________________Pin Configurations/Functional Diagrams/Truth Tables
TOP VIEW
MAX320
MAX321
NO1 1
8
COM1 2
7
IN1
IN2 3
6
COM2
V- 4
5
NO2
V+
MAX322
NC1 1
8
COM1 2
7
IN1
IN2 3
6
COM2
V- 4
5
NC2
DIP/SO/µMAX
DIP/SO/µMAX
MAX320
LOGIC
SWITCH
MAX321
LOGIC
SWITCH
0
1
OFF
ON
0
1
V+
ON
OFF
NO1 1
8
V+
COM1 2
7
IN1
IN2 3
6
COM2
V- 4
5
NC2
DIP/SO/µMAX
LOGIC
MAX322
SWITCH 1
SWITCH 2
0
1
OFF
ON
ON
OFF
SWITCHES SHOWN FOR LOGIC "0" INPUT
________________________________________________________________ Maxim Integrated Products
Call toll free 1-800-998-8800 for free samples or literature.
1
MAX320/MAX321/MAX322
_______________General Description
The MAX320/MAX321/MAX322 are precision, dual,
SPST analog switches designed to operate from ±3V to
±8V dual supplies. The MAX320 has two normally open
(NO) switches and the MAX321 has two normally
closed (NC) switches. The MAX322 has one NO and
one NC switch. Low power consumption (1.25mW)
makes these parts ideal for battery-powered equipment. They offer low leakage currents (100pA max) and
fast switching speeds (tON = 150ns max, tOFF = 100ns
max).
The MAX320 series, powered from ±5V supplies, offers
35Ω max on-resistance (R ON ), 2Ω max matching
between channels, and 4Ω max RON flatness.
These switches also offer 5pC max charge injection
and a minimum of 2000V ESD protection per Method
3015.7.
For equivalent devices specified for single-supply operation, see the MAX323/MAX324/MAX325 data sheet.
For quad versions of these switches, see the
MAX391/MAX392/MAX393 data sheet.
ABSOLUTE MAXIMUM RATINGS
Voltage Referenced to VV+ ................................................................(V- - 0.3V) to +17V
IN_, COM_, NC_, NO_ (Note 1) .........(V- - 0.3V) to (V+ + 0.3V)
Continuous Current (any terminal) ......................................30mA
Peak Current, COM_, NO_, NC_
(pulsed at 1ms, 10% duty cycle max) ..............................100mA
ESD per Method 3015.7 ..................................................>2000V
Continuous Power Dissipation
Plastic DIP (derate 9.09mW/°C above +70°C) .............727mW
Narrow SO (derate 5.88mW/°C above +70°C) .............471mW
µMAX (derate 4.10mW/°C above +70°C) .....................330mW
CERDIP (derate 8.00mW/°C above +70°C) ..................640mW
Operating Temperature Ranges
MAX32_C_ _ ........................................................0°C to +70°C
MAX32_E_ _......................................................-40°C to +85°C
MAX32_MJA ...................................................-55°C to +125°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10sec) .............................+300°C
Note 1: Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to
maximum current rating.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(V+ = +5V ±10%, V- = -5V ±10%, VINH = 3.5V, VINL = 2.5V, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER
SYMBOL
MIN
CONDITIONS
TYP
(Note 2)
MAX
UNITS
ANALOG SWITCH
Analog Signal Range
On-Resistance
On-Resistance Match Between
Channels (Note 4)
On-Resistance Flatness
(Note 5)
NO or NC Off Leakage Current
(Note 6)
VCOM,
VNO,
VNC
RON
∆RON
(Note 3)
V-
V+ = 4.5V,
V- = -4.5V,
ICOM = 1.0mA,
VNO or VNC = ±3.5V
V+ = 5V, V- = -5V,
ICOM = 1.0mA,
VNO or VNC = ±3V
V+ = 5V, V- = -5V,
RFLAT(ON) ICOM = 1.0mA,
VNO or VNC = ±3V
INO(OFF)
or
INC(OFF)
V+ = 5.5V,
V- = -5.5V,
VCOM = ±4.5V,
VNO or VNC = 4.5V
±
COM Off Leakage Current
(Note 6)
ICOM(OFF)
V+ = 5.5V,
V- = -5.5V,
VCOM = ±4.5V,
VNO or VNC = 4.5V
COM On Leakage Current
(Note 6)
ICOM(ON)
V+ = 5.5V,
V- = -5.5V,
VCOM = ±4.5V,
VNO or VNC = ±4.5V
±
MAX320/MAX321/MAX322
Precision, Dual-Supply, SPST
Analog Switches
2
TA =
+25°C
V+
C, E
16
35
M
16
30
TA = TMIN to TMAX
V
Ω
45
TA = +25°C
0.3
TA = TMIN to TMAX
2
Ω
4
TA = +25°C
1
TA = TMIN to TMAX
4
Ω
6
TA = +25°C
-0.1
TA = TMIN C, E
to TMAX
M
-5
-40
TA = +25°C
-0.1
TA = TMIN C, E
to TMAX
M
-5
-40
TA = +25°C
-0.2
TA = TMIN C, E
to TMAX
M
-10
-50
0.01
0.1
5
40
0.01
0.1
5
40
0.05
_______________________________________________________________________________________
nA
nA
0.2
10
50
nA
Precision, Dual-Supply, SPST
Analog Switches
(V+ = +5V ±10%, V- = -5V ±10%, VINH = 3.5V, VINL = 2.5V, TA = TMIN to TMAX, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
(Note 2)
MAX
UNITS
LOGIC INPUT
Input Current with Input
Voltage High
IINH
-0.5
0.005
0.5
µA
Input Current with Input
Voltage Low
IINL
-0.5
0.005
0.5
µA
Input Voltage High
VINH
Input Voltage Low
VINL
V+ = 5V ±10%, V- ≤ 0V
3.5
3V < V+ < 8V, V- ≤ 0V
V
V+ - 1.5
V+ = 5V ±10%, V- ≤ 0V
2.5
3V < V+ < 8V, V- ≤ 0V
V+ - 2.5
V
DYNAMIC
Turn-On Time
tON
VCOM = ±3V, Figure 2
Turn-Off Time
tOFF
VCOM = ±3V, Figure 2
65
TA = +25°C
TA = TMIN to TMAX
150
175
TA = +25°C
35
TA = TMIN to TMAX
100
150
ns
ns
Break-Before-Make
Time Delay (Note 3)
tD
MAX322 only, RL = 300Ω, CL = 35pF, Figure 3
Charge Injection
(Note 3)
Q
CL = 1.0nF, VGEN = 0V,
RGEN = 0Ω, Figure 4
TA = +25°C
2
RL = 50Ω, CL = 5pF,
f = 1MHz, Figure 5
TA = +25°C
72
dB
RL = 50Ω, CL = 5pF,
f = 1MHz, Figure 6
TA = +25°C
85
dB
Off Isolation (Note 7)
OIRR
Crosstalk (Note 8)
NC or NO Capacitance
C(OFF)
2
5
ns
5
pC
f = 1MHz, Figure 7
TA = +25°C
9
pF
COM Off Capacitance
CCOM(OFF) f = 1MHz, Figure 7
TA = +25°C
9
pF
COM On Capacitance
CCOM(ON) f = 1MHz, Figure 8
TA = +25°C
22
pF
SUPPLY
Power-Supply Range
Positive Supply Current
Negative Supply
Current
Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
Note 7:
Note 8:
±2.7
I+
I-
V+ = 5.5V, V- = -5.5V,
VIN = 0V or V+,
all channels on or off
TA = +25°C
-125
TA = TMIN to TMAX
-200
V+ = 5.5V, V- = -5.5V,
VIN = 0V or V+,
all channels on or off
TA = +25°C
-125
TA = TMIN to TMAX
-200
±8
80
V
125
µA
200
80
125
µA
200
The algebraic convention where the most negative value is a minimum and the most positive value a maximum is used in
this data sheet.
Guaranteed by design.
∆RON = ∆RON max - ∆RON min.
Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the
specified analog signal range.
Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.
Off Isolation = 20 log10 [ VCOM ⁄ (VNC or VNO) ], VCOM = output, VNC or VNO = input to off switch.
Between any two switches.
_______________________________________________________________________________________
3
MAX320/MAX321/MAX322
ELECTRICAL CHARACTERISTICS
__________________________________________Typical Operating Characteristics
(V+ = +5V, V- = -5V, TA = +25°C, unless otherwise noted.)
A
25
B
0.35
20
15
C
∆RON (Ω)
V± = ±5V
RON (Ω)
RON (Ω)
20
15
D
10
10
V± = ±8V
A:
B:
C:
D:
5
5
0
0
-6
-4
-2
0
2
4
6
-5 -4 -3
8
-2 -1
ON LEAKAGE CURRENT vs. TEMPERATURE
2
3
0.20
0
-5
0.1
0.01
0.001
-1
-3
1
3
5
VCOM (V)
CHARGE INJECTION vs.
VOLTAGE AT COM PIN
V+ = +5.5V, V- = -5.5V
VCOM = ±4.5V
VNC or VNO = 4.5V
20
15
10
1
5
Q (pC)
1
10
A
0.05
4 5
100
OFF LEAKAGE CURRENT (nA)
V+ = +5.5V, V- = -5.5V
VCOM = ±4.5V, VNC or VNO = ±4.5V
D
B
C
0.10
OFF LEAKAGE CURRENT vs. TEMPERATURE
MAX320-04
100
ON LEAKAGE CURRENT (nA)
1
0.25
VCOM (V)
VCOM (V)
10
0
TA = -55°C
TA = +25°C
TA = +85°C
TA = +125°C
0.30
0.15
TA = +125°C
TA = +85°C
TA = +25°C
TA = -55°C
MAX320-05
-8
A:
B:
C:
D:
0.40
MAX320-06
25
0.50
0.45
MAX320-03
30
MAX320-02
MAX320-01
V± = ±3V
ON-RESISTANCE MATCH vs. VOLTAGE
AT COM PIN (OVER TEMPERATURE)
ON-RESISTANCE vs. VOLTAGE AT COM PIN
(OVER TEMPERATURE)
ON-RESISTANCE vs. VOLTAGE AT COM PIN
30
±
0.1
0
-5
0.01
-10
0.001
-15
0.0001
-20
0.0001
-55 -35 -15
5
25
45 65
85 105 125
-55 -35 -15
TEMPERATURE (°C)
5
25
45 65
85 105 125
-5 -4 -3
-2
-1
SUPPLY CURRENT vs. TEMPERATURE
MAX320-07
140
120
100
80
60
40
20
0
-55 -35 -15
5
25
45 65 85 105 125
TEMPERATURE (°C)
4
0
1
VCOM (V)
TEMPERATURE (°C)
ISUPPLY (µA)
MAX320/MAX321/MAX322
Precision, Dual-Supply, SPST
Analog Switches
_______________________________________________________________________________________
2
3
4
5
Precision, Dual-Supply, SPST
Analog Switches
POSITIVE SUPPLY
PIN
NAME
FUNCTION
D1
NO1
(MAX320/MAX322)
Normally Open Analog
Switch Terminal
V+
1
NC1
(MAX321)
Normally Closed Analog
Switch Terminal
2, 6
COM1, COM2
Analog Switch Common
Terminals
3, 7
IN2, IN1
4
V-
Negative Supply
Normally Open Analog
Switch Terminal
5
NC2
(MAX321/MAX322)
V+
COM
Logic Inputs
NO2
(MAX320)
8
NO
Vg
Normally Closed Analog
Switch Terminal
Positive Supply
__________Applications Information
Logic Levels
Calculate the logic thresholds typically as follows: VIH =
(V+ - 1.5V) and VIL = (V+ - 2.5V).
Power-supply consumption is minimized when IN1 and
IN2 are driven with logic-high levels equal to V+ and logiclow levels well below the calculated VIL of (V+ - 2.5V). IN1
and IN2 can be driven to V- without damage.
Analog Signal Levels
Analog signals that range over the entire supply voltage
(V- to V+) can be switched, with very little change in onresistance over the entire voltage range (see Typical
Operating Characteristics). All switches are bidirectional, so NO_, NC_, and COM_ pins can be used as
either inputs or outputs.
Power-Supply Sequencing
and Overvoltage Protection
Do not exceed the absolute maximum ratings, because
stresses beyond the listed ratings may cause permanent damage to the devices.
Proper power-supply sequencing is recommended for
all CMOS devices. Always apply V+, followed by V-,
before applying analog signals or logic inputs, especially if the analog or logic signals are not current-limited. If
VD2
NEGATIVE SUPPLY
MAX320
MAX321
MAX322
Figure 1. Overvoltage Protection Using Two External Blocking
Diodes
this sequencing is not possible, and if the analog or
logic inputs are not current-limited to <30mA, add two
small signal diodes (D1, D2) as shown in Figure 1.
Adding protection diodes reduces the analog signal
range to a diode drop (about 0.7V) below V+ for D1,
and a diode drop above V- for D2. Leakage is not
affected by adding the diodes. On-resistance increases by a small amount at low supply voltages. Maximum
supply voltage (V- to V+) must not exceed 17V.
Adding protection diode D1 causes the logic thresholds to be shifted relative to the positive power-supply
rail. This can be significant when low positive supply
voltages (+5V or less) are used. Driving IN1 and IN2 all
the way to the supply rails (i.e., to a diode drop higher
than the V+ pin or a diode drop lower than the V- pin) is
always acceptable.
The protection diodes D1 and D2 also protect against
some overvoltage situations. With the circuit of Figure 1,
if the supply voltage is below the absolute maximum
rating and if a fault voltage up to the absolute maximum
rating is applied to an analog signal pin, no damage
will result. For example, with ±5V supplies, analog signals up to ±8.5V will not damage the circuit of Figure 1.
If only a single fault signal is present, the fault voltage
can rise to +12V or to -12V without damage.
_______________________________________________________________________________________
5
MAX320/MAX321/MAX322
_____________________Pin Description
MAX320/MAX321/MAX322
Precision, Dual-Supply, SPST
Analog Switches
______________________________________________Test Circuits/Timing Diagrams
MAX320
MAX321
MAX322
SWITCH
INPUT
+5V
V+
NO
or NC
COM
V COM
LOGIC
INPUT
SWITCH
OUTPUT
t r < 20ns
t f < 20ns
50%
VOUT
RL
300Ω
CL
35pF
t OFF
IN
VOUT
V-
LOGIC
INPUT
SWITCH
OUTPUT
0V
0.9 x VOUT
t ON
-5V
CL INCLUDES FIXTURE AND STRAY CAPACITANCE.
RL
VOUT = VCOM
RL + RON
(
0.9 x V0UT
LOGIC INPUT WAVEFORMS INVERTED FOR SWITCHES
THAT HAVE THE OPPOSITE LOGIC SENSE.
)
Figure 2. Switching Time
+5V
MAX322
VCOM1 = +3V
VCOM2 = +3V
V+
COM1
VOUT2
NC2
COM2
RL2
300Ω
IN
LOGIC
INPUT
LOGIC
INPUT
VOUT1
NO1
RL1
300Ω
CL1
35pF
CL2
35pF
SWITCH
OUTPUT 1
(VOUT1)
50%
0.9 x V0UT1
0V
SWITCH
OUTPUT 2
(VOUT2)
V-5V
0.9 x VOUT2
0V
tD
tD
CL INCLUDES FIXTURE AND STRAY CAPACITANCE.
Figure 3. Break-Before-Make Interval (MAX322 only)
+5V
MAX320
MAX321
MAX322
∆VOUT
V+
RGEN
COM
V GEN
VOUT
NC
or NO
VOUT
IN
OFF
CL
ON
OFF
V-
IN
-5V
VIN
IN
OFF
ON
OFF
Q = (∆V OUT )(C L )
IN DEPENDS ON SWITCH CONFIGURATION;
INPUT POLARITY DETERMINED BY SENSE OF SWITCH.
Figure 4. Charge Injection
6
_______________________________________________________________________________________
Precision, Dual-Supply, SPST
Analog Switches
10nF
SIGNAL
GENERATOR 0dBm
MAX320
MAX321
MAX322
+5V
COM
SIGNAL
GENERATOR 0dBm
V+
IN
VIN
V+
COM1
N01
IN1
IN2
50Ω
VIN
0V or 2.4V
NC
COM
or NO
ANALYZER
MAX320
MAX321
MAX322
10nF +5V
COM2
N02
ANALYZER
V-
N.C.
V-
RL
RL
-5V
10nF
Figure 5. Off Isolation
10nF
-5V
Figure 6. Crosstalk
10nF
+5V
10nF
MAX320
MAX321
MAX322
V+
+5V
MAX320
MAX321
MAX322
V+
COM
COM
CAPACITANCE
METER
IN
CAPACITANCE
METER
NC or
NO
f = 1MHz
VIN
IN
f = 1MHz
V-
V-
-5V
Figure 7. Channel-Off Capacitance
VIN
NC or
NO
10nF
-5V
10nF
Figure 8. Channel-On Capacitance
_______________________________________________________________________________________
7
MAX320/MAX321/MAX322
_________________________________Test Circuits/Timing Diagrams (continued)
MAX320/MAX321/MAX322
Precision, Dual-Supply, SPST
Analog Switches
__Ordering Information (continued)
PART
TEMP. RANGE
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-55°C to +125°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-55°C to +125°C
MAX321CPA
MAX321CSA
MAX321CUA
MAX321C/D
MAX321EPA
MAX321ESA
MAX321EJA
MAX321MJA
MAX322CPA
MAX322CSA
MAX322CUA
MAX322C/D
MAX322EPA
MAX322ESA
MAX322EJA
MAX322MJA
PIN-PACKAGE
8 Plastic DIP
8 SO
8 µMAX
Dice*
8 Plastic DIP
8 SO
8 CERDIP**
8 CERDIP**
8 Plastic DIP
8 SO
8 µMAX
Dice*
8 Plastic DIP
8 SO
8 CERDIP**
8 CERDIP**
___________________Chip Topography
NO1 (MAX320/2)
NC1 (MAX321)
V+
COM1
IN1
0.075"
(1.90mm)
IN2
COM2
NO2 (MAX320)
NC2 (MAX321/2)
V-
0.055"
(1.40mm)
TRANSISTOR COUNT: 91
SUBSTRATE CONNECTED TO V+
* Contact factory for dice specifications.
** Contact factory for availability.
________________________________________________________Package Information
DIM
C
α
A
0.101mm
0.004 in
e
B
A1
E
L
A
A1
B
C
D
E
e
H
L
α
INCHES
MAX
MIN
0.044
0.036
0.008
0.004
0.014
0.010
0.007
0.005
0.120
0.116
0.120
0.116
0.0256
0.198
0.188
0.026
0.016
6°
0°
MILLIMETERS
MIN
MAX
0.91
1.11
0.10
0.20
0.25
0.36
0.13
0.18
2.95
3.05
2.95
3.05
0.65
4.78
5.03
0.41
0.66
0°
6°
H
8-PIN µMAX
MICROMAX SMALL OUTLINE
PACKAGE
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
8 ___________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1994 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
Similar pages