ADA-4789 Silicon Bipolar Darlington Amplifier Data Sheet Description Features Avago Technologies’ ADA-4789 is an economical, easyto-use, general purpose silicon bipolar RFIC gain block amplifiers housed in SOT-89 surface mount plastic package. • • • • • • • • • The Darlington feedback structure provides inherent broad bandwidth performance, resulting in useful operating frequency up to 2.5 GHz. This is an ideal device for small-signal gain cascades or IF amplification. ADA-4789 is fabricated using Avago’s HP25 silicon bipolar process, which employs a double-diffused single poly-silicon process with self-aligned submicron emitter geometry. The process is capable of simultaneous high fT and high NPN breakdown (25 GHz fT at 6V BVCEO). The process utilizes industry standard device oxide isolation technologies and submicron aluminum multi-layer inter-connects to achieve superior performance, high uniformity, and proven reliability. Package Marking and Pin Connections 4GX #1 #2 RFin GND Top View #3 RFout #3 #2 RFout GND #1 RFin Bottom View Note: Package marking provides orientation and identification “4G” = Device Code “x” = Month code indicates the month of manufacture Small Signal Gain Amplifier Operating Frequency: DC – 2.5 GHz Unconditionally Stable 50 Ohms Input & Output Flat, Broadband Frequency Response up to 1 GHz Operating Current: 40 – 80 mA Industry Standard SOT-89 Package Single Supply VSWR < 2 Throughput Operating Frequency Specifications 900MHz, 3.80V, 60mA (Typical) • 16.50 dB Associated Gain • 17.10 dBm P1dB • 32.60 dBm OIP3 • 4.20 dB Noise Figure 900MHz, 4.10V, 80mA (Typical) • 16.90 dB Associated Gain • 18.80 dBm P1dB • 33.20 dBm OIP3 • 4.30 dB Noise Figure Applications • • • • Cellular/PCS/WLL Base Stations Wireless Data/WLAN Fiber-Optic Systems ISM Table 1. Absolute Maximum Ratings [1] at Tc = +25°C Typical Biasing Configuration RC = V CC =5 V V CC - V d Id Rc RFC RF input C bypass C block 3Tx V d = 3.8 V C block RF output Symbol Parameter Unit MaxRating Id Device Current mA 90 Pdiss Total Power Dissipation[2] mW 370 Pin max RF Input Power dBm 20 Tj Junction Temperature 0C 150 Tstg Storage Temperature 0C -65 to 150 qjc Thermal Resistance[3] 0C/W 50 Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to the device. 2. Ground lead temperature is 25°C. Derate 20 mW/°C for Tc > 131.5 °C. 3. Thermal Resistance is measured from junction to board using IR method. Table 2. Electrical Specifications at Tc = +25°C Symbol Parameter and Test Condition:Id = 60mA, Zo = 50 Vd Device Voltage Gp Power Gain Gp Gain Flatness F3dB 3dB Bandwidth VSWRin Input Voltage Standing Wave Ratio 0.1 to 4.0 GHz 1.3:1 VSWRout Output Voltage Standing Wave Ratio 0.1 to 4.0 GHz 1.5:1 NF 50W Noise Figure 100 MHz 900 MHz [1,2] 2.0 GHz dB P1dB Output Power at 1dB Gain Compression 100 MHz 900 MHz [1,2] 2.0 GHz dBm 16.0 17.7 17.1 16.2 OIP3 Output Third Order Intercept Point 100 MHz [3] 900 MHz [1,2,3] 2.0 GHz [3] dBm 27 33.4 32.6 28.8 dV/dT Device Voltage Temperature Coefficient W Frequency Units Min. Typ. Max. V 3.3 3.8 4.3 100 MHz 900 MHz [1,2] 2.0 GHz dB 15 16.9 16.5 16.2 18 100 to 900 MHz 0.1 to 2.0 GHz dB 0.3 0.5 GHz 4 Notes: 1. Typical value determined from a sample size of 500 parts from 3 wafers. 2. Measurement obtained using production test board described in the block diagram below. 3. i) 100 MHz OIP3 Test Condition: F1 = 100 MHz, F2 = 105 MHz, Pin = -20 dBm per tone. ii)900 MHz OIP3 Test Condition: F1 = 900 MHz, F2 = 905 MHz, Pin = -20 dBm per tone. iii) 2000 MHz OIP3 Test Condition: F1 = 2000 MHz, F2 = 2005 MHz, Pin = -20 dBm per tone. 2 mV/0C 4.1 4.2 4.4 -4.9 Table 3. Typical Electrical performance at Tc = +25°C, Id=80mA, Zo= 50 Ω Symbol Parameter and Test Condition: Vd Device Voltage Gp Power Gain NF Frequency Units Min. Typ. V 4.1 100 MHz 900 MHz [1,2] 2.0 GHz dB 17.1 16.9 16.3 50W Noise Figure 100 MHz 900 MHz [1,2] 2.0 GHz dB 4.1 4.3 4.5 P1dB Output Power at 1dB Gain Compression 100 MHz 900 MHz [1,2] 2.0 GHz dBm 19.3 18.8 16.9 OIP3 Output Third Order Intercept Point 100 MHz [3] 900 MHz [1,2,3] 2.0 GHz [3] dBm 35.4 33.2 29 50 Ohm Transmission including Bias (0.5 dB loss) Output Notes: 1. Typical value determined from a sample size of 200 parts from 2 wafers. 2. Measurement obtained using production test board described in the block diagram below. 3 i) 100 MHz OIP3 Test Condition: F1 = 100 MHz, F2 = 105 MHz, Pin = -20 dBm per tone. ii) 900 MHz OIP3 Test Condition: F1 = 900 MHz, F2 = 905 MHz, Pin = -20 dBm per tone. iii) 2000 MHz OIP3 Test Condition: F1 = 2000 MHz, F2 = 2005 MHz, Pin = -20 dBm per tone. Max. Block Diagram Input 50 Ohm Transmission (0.5 dB loss) DUT Block diagram of 900 MHz production test board used for Vd, Gain, P1dB, OIP3, and NF measurements show in table 2 & 3. Circuit losses have been de-embedded from actual measurement. 3 Product Consistency Distribution Charts at 900 MHz, Id=60mA Figure 1. Vd Distribution@60mA. Figure 2. Gain Distribution@60mA. LSL=3.3V, Nominal=3.8V, USL=4.3V LSL=15 dB, Nominal=16.5 dB, USL=18 dB Figure 3. P1dB Distribution@60mA Figure 4. OIP3 Distribution@60mA. LSL=16.0 dBm, Nominal=17.1dBm LSL=27 dBm, Nominal=32.6 dBm Notes: 1. Statistics distribution determined from a sample size of 500 parts taken from 3 different wafers. 2. Future wafers allocated to this product may have typical values anywhere between the minimum and maximum specification limits. 20 20 15 15 P1dB (dBm) Gain (dB) Typical Performance Curve (at Tc=25°C, unless specified otherwise) 10 5 0 5 0 1 2 3 4 Frequency (GHz) Figure 5. Gain vs Frequency at Id = 60 mA. 4 10 5 6 0 0 1 2 3 4 Frequency (GHz) Figure 6. P1dB vs Frequency at Id = 60 mA. 5 6 35 6 30 NF (dB) OIP3 (dBm) 5 25 20 3 15 10 0 1 2 3 4 Frequency (GHz) 5 2 6 Figure 7. OIP3 vs Frequency at Id = 60 mA. 1 2 -40C 25C 85C 70 Gain (dB) 50 40 15.5 15.0 20 -40C 25C 85C 14.5 10 0 1 2 3 4 14.0 5 0 20 Vd (V) Figure 9. Id vs. Vd and Temperature. 40 60 Id (mA) 80 100 Figure 10. Gain vs. Id and Temperature at 900 MHz. 20 40 18 35 16 30 14 25 12 OIP3 (dBm) P1dB (dB) 6 16.0 30 10 8 6 2 0 0.02 0.04 0.06 Id (mA) Figure 11. P1dB vs. Id and Temperature at 900 MHz. 0.08 20 15 10 -40C 25C 85C 4 5 5 16.5 60 0 3 4 Frequency (GHz) 17.0 80 Id (mA) 0 Figure 8. NF vs Frequency at Id = 60 mA. 90 0 4 -40C 25C 85C 5 0.1 0 0 20 40 60 Id (mA) Figure 12. OIP3 vs. Id and Temperature at 900 MHz. 80 100 6 18 5 17 0.1 0.9 1.5 2 3 4 16 15 Gain (dB) NF (dB) 4 3 2 -40C 25C 85C 1 0 0 20 40 60 Id (mA) 80 20 40 60 0.1 0.9 1.5 2 3 35 30 6 25 4 5 6 20 15 0 20 40 60 80 10 100 0 20 Figure 15. P1dB vs Id and Frequency (GHz). 80 100 0 6 -5 5.5 5 -10 5 IRL (dB) NF (dB) 60 Figure 16. OIP3 vs Id and Frequency (GHz). 6 4 3 2 1.5 0.9 0.1 4.5 4 0 20 40 60 Id (mA) Figure 17. NF vs Id and Frequency (GHz). 6 40 Id (mA) Id (mA) 3.5 100 40 5 0 80 Figure 14. Gain vs Id and Frequency (GHz). OIP3 (dBm) P1dB (dBm) 0 Id (mA) 4 5 6 9 100 3 10 12 10 0.1 0.9 1.5 2 15 5 13 11 Figure 13. NF vs. Id and Temperature at 900 MHz. 20 14 80 -15 Id=50mA Id=60mA Id=80mA -20 100 -25 0 2 4 6 8 Frequency (GHz) Figure 18. Input Return Loss vs Id and Frequency. 10 12 20 0 15 -10 Gain (dB) ORL (dB) -5 -15 Id=50mA Id=60mA Id=80mA -20 5 -25 0 2 4 6 8 Frequency (GHz) 10 10 0 12 Figure 19. Output Return Loss vs Id and Frequency. 0 1 2 3 4 Frequency (GHz) 5 6 Figure 20. Gain vs Frequency at Id = 80 mA 20 40 35 15 OIP3 (dBm) P1dB (dBm) 30 10 5 25 20 15 0 0 1 2 3 4 Frequency (GHz) 5 6 NF (dB) 5 4 3 1 2 3 4 Frequency (GHz) Figure 23. NF vs Frequency at Id = 80 mA 7 1 2 3 Figure 22. OIP3 vs Frequency at Id = 80 mA 6 0 0 Frequency (GHz) Figure 21. P1dB vs Frequency at Id = 80 mA 2 10 5 6 4 5 6 Typical Scattering Parameters At 25°C, Id = 50mA S11 S21 S12 S22 Freq. GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. 0.1 0.168 3.0 16.469 6.660 171.3 0.099 -0.2 0.168 -8.4 0.5 0.110 -12.5 16.213 6.466 164.0 0.098 -7.0 0.188 -28.0 0.9 0.087 -50.0 16.182 6.443 144.7 0.094 -14.4 0.157 -72.9 1.0 0.083 -60.1 16.172 6.436 140.0 0.092 -19.2 0149 -84.4 1.9 0.093 -155.0 15.741 6.124 107.1 0.085 -26.3 0.218 -110.7 2.0 0.103 -144.8 15695 6.092 103.4 0.084 -27.1 0.226 -114.1 2.5 0.095 176.1 15.528 5.976 84.8 0.084 -31.3 0.292 -146.6 3.0 0.114 144.7 15.362 5.863 66.0 0.085 -35.4 0.358 181.0 3.5 0.154 123.7 15.199 5.754 47.4 0.087 -39.4 0.422 149.3 4.0 0.196 106.1 15.035 5.646 28.7 0.088 -43.6 0.486 115.4 4.5 0.246 98.3 14.357 5.222 9.2 0.086 -49.3 0.559 100.4 5.0 0.344 85.8 13.120 4.529 -11.0 0.084 -56.4 06.29 87.6 5.5 0.405 74.7 11.925 3.947 -31.4 0.083 -64.8 0.669 73.2 6.0 0.489 61.4 10.243 3.252 -50.4 0.080 -72.9 0.700 59.1 6.5 0.540 52.2 9.030 2.828 -67.1 0.076 -79.7 0.732 47.9 7.0 0.582 44.3 7.854 2.470 -82.5 0.071 -86.8 0.764 37.3 7.5 0.625 36.5 6.477 2.108 -97.9 0.067 -93.6 0.794 26.6 8.0 0.667 28.5 4.851 1.748 -113.2 0.061 -100.6 0.827 16.0 8.5 0.696 23.7 3.027 1.417 -122.2 0.055 -104.6 0.827 12.5 9.0 0.728 18.8 0.725 1.087 228.9 0.049 251.6 0.826 9.2 9.5 0.737 13.2 -0.715 0.921 221.1 0.046 245.4 0.816 6.2 10.0 0.738 9.9 -1.809 0.812 -148.1 0.045 238.0 0.797 1.8 Notes: S parameters are measured on a micro-strip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the RFin lead. The output reference plane is at the end of the RFout lead. 8 Typical Scattering Parameters At 25°C, Id = 60mA S11 S21 S12 S22 Freq. GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. 0.1 0.160 3.1 16.586 6.750 171.3 0.099 -0.2 0.160 -8.5 0.5 0.110 -6.1 16.325 6.550 164.1 0.098 -6.9 0.180 -30.7 0.9 0.087 -44.2 16.292 6.525 144.8 0.093 -14.2 0.150 -75.4 1.0 0.081 -54.5 16.284 6.519 140.0 0.092 -19.1 0.143 -86.6 1.9 0.089 -151.3 15.855 6.205 107.1 0.084 -26.3 0.212 -112.3 2.0 0.097 -142.1 15.806 6.170 103.4 0.083 -27.1 0.220 -115.2 2.5 0.090 178.3 15.639 6.053 84.7 0.084 -31.2 0.287 -147.7 3.0 0.109 146.7 15.471 5.937 66.0 0.085 -35.3 0.353 179.8 3.5 0.149 126.8 15.298 5.820 47.4 0.086 -39.3 0.420 147.3 4.0 0.198 110.5 15.122 5.703 28.7 0.087 -43.4 0.487 114.7 4.5 0.253 97.5 14.441 5.273 9.3 0.085 -49.1 0.560 100.2 5.0 0.350 85.3 13.217 4.580 -10.9 0.083 -56.2 0.630 87.5 5.5 0.410 74.5 12.019 3.990 -31.3 0.082 -64.6 0.670 73.2 6.0 0.493 61.0 10.344 3.290 -50.2 0.080 -72.3 0.703 59.2 6.5 0.544 52.0 9.124 2.859 -66.9 0.075 -79.3 0.735 47.9 7.0 0.586 44.1 7.945 2.496 -82.3 0.070 -86.2 0.767 37.3 7.5 0.628 36.2 6.580 2.133 -97.6 0.066 -93.1 0.798 26.6 8.0 0.670 28.3 4.959 1.770 -113.0 0.061 -100.0 0.830 16.0 8.5 0.700 23.5 3.317 1.435 -122.0 0.055 -104.0 0.830 12.6 9.0 0.730 18.6 0.828 1.100 229.1 0.049 252.0 0.830 9.2 9.5 0.740 13.1 -0.630 0.930 221.4 0.046 246.0 0.820 6.2 10.0 0.740 9.7 -1.724 0.820 -147.8 0.045 238.6 0.800 1.7 Notes: S parameters are measured on a micro-strip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the RFin lead. The output reference plane is at the end of the RFout lead. 9 Typical Scattering Parameters At 25°C, Id = 80mA S11 S21 S12 S22 Freq. GHz Mag. Ang. dB Mag. Ang. Mag. Ang. Mag. Ang. 0.1 0.151 3.1 16.716 6.852 171.3 0.098 -0.2 0.150 -8.5 0.5 0.112 1.1 16.45 6.645 164.1 0.097 -6.8 0.171 -34.4 0.9 0.087 -37.7 16.416 6.619 144.7 0.092 -14.2 0.142 -78.4 1.0 0.081 -48.0 16.408 6.613 140.0 0.091 -18.9 0.135 -89.3 1.9 0.086 -147.0 15.980 6.295 107.0 0.084 -26.1 0.204 -114.1 2.0 0.093 -138.8 15.931 6.260 103.3 0.083 -27.0 0.212 -116.3 2.5 0.085 181.0 15.768 6.143 84.6 0.083 -31.0 0.279 -148.7 3.0 0.104 148.5 15.596 6.023 65.8 0.084 -35.1 0.347 178.6 3.5 0.145 129.5 15.414 5.898 47.2 0.085 -39.2 0.417 144.7 4.0 0.199 114.6 15.227 5.772 28.5 0.086 -43.2 0.487 113.6 4.5 0.259 98.5 14.543 5.335 9.0 0.084 -48.8 0.562 99.6 5.0 0.356 85.3 13.319 4.634 -11.2 0.083 -55.9 0.630 87.1 5.5 0.417 74.4 12.108 4.031 -31.6 0.081 -64.1 0.670 73.0 6.0 0.500 60.9 10.428 3.322 -50.6 0.079 -72.1 0.702 59.0 6.5 0.551 51.8 9.191 2.881 -67.2 0.075 -78.7 0.735 47.8 7.0 0.592 43.9 8.000 2.512 -82.6 0.070 -85.6 0.767 37.1 7.5 0.634 36.0 6.629 2.145 -97.9 0.066 -92.6 0.798 26.5 8.0 0.674 28.0 4.994 1.777 -113.2 0.060 -99.6 0.830 15.9 8.5 0.705 23.3 3.161 1.439 -122.1 0.054 -103.5 0.830 12.5 9.0 0.733 18.4 0.844 1.102 229.0 0.049 252.9 0.830 9.1 9.5 0.743 12.9 -.0.602 0.933 221.4 0.046 -113.4 0.820 6.2 10.0 0.744 9.6 -1.713 0.821 -147.7 0.045 239.1 0.800 1.6 Notes: S parameters are measured on a micro-strip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the RFin lead. The output reference plane is at the end of the RFout lead. 10 Part Number Ordering Information SOT89 Package Dimensions D D D1 D1 E1 POLISH E1 OR E L L e e S S e1 C e1 1.625 D2 MATTE FINISH HALF ETCHING DEPTH 0.100 1.23 2.35 0.77 0.2 D1 E b b1 b POLISH 1.24 E A OR b1 Dimensions in mm 11 Dimensions in inches Symbols Minimum Nominal Maximum Minimum Nominal Maximum A 1.40 1.50 1.60 0.055 0.059 0.063 L 0.89 1.04 1.20 0.0350 0.041 0.047 b 0.36 0.42 0.48 0.014 0.016 0.018 b1 0.41 0.47 0.53 0.016 0.018 0.030 C 0.38 0.40 0.43 0.014 0.015 0.017 D 4.40 4.50 4.60 0.173 0.177 0.181 D1 1.40 1.60 1.75 0.055 0.062 0.069 D2 1.45 1.65 1.80 0.055 0.062 0.069 E 3.94 - 4.25 0.155 - 0.167 E1 2.40 2.50 2.60 0.094 0.098 0.102 e1 2.90 3.00 3.10 0.114 0.118 0.122 S 0.65 0.75 0.85 0.026 0.030 0.034 e 1.40 1.50 1.60 0.054 0.059 0.063 Device Orientation USER FEED DIRECTION 4GX 4GX 4GX CARRIER TAPE 4GX REEL COVER TAPE Tape Dimensions Ø 1.5 +0.1/-0.0 8.00 0.30 ± .05 Ø 1.50 MIN. 2.00 ± .05 SEE NOTE 3 4.00 SEE NOTE 1 A R 0.3 MAX. 1.75 ± .10 5.50 ± .05 SEE NOTE 3 Bo 12.0 ± .3 Ko SECTION A - A 12 Ao Ao = 4.60 Bo = 4.90 Ko = 1.90 R 0.3 TYP. A DIMENSIONS IN MM NOTES: 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 2. CAMBER IN COMPLIANCE WITH EIA 481 3. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE Reel Dimensions – 13” Reel R LOKREEL R MINNEAPOLIS USA U.S PAT 4726534 102.0 REF 1.5 ATTENTION Electrostatic Sensitive Devices Safe Handling Required 88 REF 330.0 REF "A" 96.5 6 PS Detail "B" 6 PS Detail "A" Ø 20.2 +0.3 (MEASURED AT HUB) 8.4 - 0.2 (MEASURED AT HUB) 11.1 MAX. Dimensions in mm M IN +0.5 Ø 13.0 -0.2 2.0 ± 0.5 For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV01-0295EN AV02-0052EN - May 23, 2013