AD ADM206AR 0.1 uf, 5 v powered cmos rs-232 drivers/receiver Datasheet

a
0.1 mF, +5 V Powered
CMOS RS-232 Drivers/Receivers
ADM205–ADM211/ADM213
TYPICAL OPERATING CIRCUIT
FEATURES
0.1 mF to 10 mF Capacitors
120 kB/s Data Rate
2 Receivers Active in Shutdown (ADM213)
On-Board DC-DC Converters
69 V Output Swing with +5 V Supply
Low Power (15 mW)
Low Power Shutdown ≤5 mW
630 V Receiver Input Levels
Latch-Up FREE
Plug-In Upgrade for MAX205-211/213
+5V INPUT
TTL/CMOS
INPUTS*
APPLICATIONS
Computers
Peripherals
Modems
Printers
Instruments
TTL/CMOS
OUTPUTS
12 C1+
0.1µF
16V
14 C1–
0.1µF
16V
16 C2–
15 C2+
T1 IN
7
T2 IN
6
T3 IN
20
T4 IN
21
R1 OUT
8
R2 OUT
5
R3 OUT
26
R4 OUT
22
R5 OUT
19
EN
24
+5V TO +10V
VOLTAGE
DOUBLER
V CC 11
+10V TO –10V
VOLTAGE
INVERTER
V– 17
V+ 13
T1
T2
T3
T4
R1
R2
R3
R4
R5
GND
ADM211
0.1µF
6.3V
0.1µF
0.1µF
16V
2
T1 OUT
3
T2 OUT
1
T3 OUT
28
T4 OUT
9
R1 IN
4
R2 IN
27
R3 IN
23
R4 IN
18
R5 IN
25
SD
RS-232
OUTPUTS
RS-232
INPUTS**
10
*INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
GENERAL DESCRIPTION
The ADM2xx family of line drivers/receivers is intended for all
EIA-232-E and V.28 communications interfaces, especially in
applications where ± 12 V is not available. The ADM205,
ADM206, ADM211 and ADM213 feature a low power shutdown mode which reduces power dissipation to less than 5 µW
making them ideally suited for battery powered equipment. The
ADM205 does not require any external components and is particularly useful in applications where printed circuit board space
is critical. The ADM213 has an active-low shutdown and an
active-high receiver enable control. Two receivers of the
ADM213 remain active during shutdown. This feature is useful
for ring indicator monitoring.
All members of the ADM2xx family, except the ADM209, include two internal charge pump voltage converters which allow
operation from a single +5 V supply. These converters convert
the +5 V input power to the ± 10 V required for RS-232 output
levels. The ADM209 is designed to operate from +5 V and
+12 V supplies. An internal +12 V to –12 V charge pump voltage converter generates the –12 V supply.
Table I. Selection Table
Part
Number
Power
Supply Voltage
No. of
RS-232
Drivers
No. of
RS-232
Receivers
External
Capacitors
Low Power
Shutdown
(SD)
TTL
Three-State
EN
No. of Receivers
Active in
Shutdown
ADM205
ADM206
ADM207
ADM208
ADM209
ADM211
ADM213
+5 V
+5 V
+5 V
+5 V
+5 V & +9 V to +13.2 V
+5 V
+5 V
5
4
5
4
3
4
4
5
3
3
4
5
5
5
None
4
4
4
2
4
4
Yes
Yes
No
No
No
Yes
Yes (SD)
Yes
Yes
No
No
Yes
Yes
Yes (EN)
0
0
0
0
0
0
2
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
© Analog Devices, Inc., 1994
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 617/329-4700
Fax: 617/326-8703
(VCC = +5 V 6 10% (206, 207, 208, 2O9,
211, 213); VCC = +5 V 6 5% (ADM205);
V+ = +9 V to +13.2 V (ADM209); C1–C4 = 0.1 mF Ceramic. All Specifications TMIN to TMAX unless otherwise noted.)
ADM205–ADM211/ADM213–SPECIFICATIONS
Parameter
Min
Typ
Output Voltage Swing
±5
±9
VCC Power Supply Current
V+ Power Supply Current
Shutdown Supply Current
Input Logic Threshold Low, VINL
Input Logic Threshold High, VINH
Logic Pull-Up Current
RS-232 Input Voltage Range
RS-232 Input Threshold Low
RS-232 Input Threshold High
RS-232 Input Hysteresis
RS-232 Input Resistance
TTL/CMOS Output Voltage Low, VOL
TTL/CMOS Output Voltage High, VOH
TTL/CMOS Output Leakage Current
Output Enable Time (TEN)
3
5
0.4
3.5
1
Max
7
9
1
5
5
0.8
10
0.2
3
1.2
1.7
0.5
5
3.5
0.05
115
25
+30
2.4
1.0
7
0.4
±5
Output Disable Time (TDIS)
165
Propagation Delay
Instantaneous Slew Ratel
Transition Region Slew Rate
0.5
25
6
5
30
± 12
± 60
Output Resistance
RS-232 Output Short Circuit Current
3
300
Test Conditions/Comments
Volts
All Transmitter Outputs Loaded with 3 kΩ to
Ground
No Load, ADM206, ADM211, ADM213
No Load, ADM205, ADM207, ADM208
No Load, ADM209
No Load, V+ = 12 V ADM209 Only
mA
mA
mA
mA
µA
V
V
µA
V
V
V
V
kΩ
V
V
µA
ns
2.0
–30
0.8
Units
ns
µs
V/µs
V/µs
Ω
mA
TIN, EN, SD, EN, SD
TIN, EN, SD, EN, SD
TIN = 0 V
IOUT = 1.6 mA
IOUT = –1.0 mA
EN = VCC, EN = 0 V, 0 V ≤ ROUT ≤ VCC
ADM205, ADM206, ADM209, ADM211
(Figure 25. CL = 150 pF)
ADM205, ADM206, ADM209, ADM211
(Figure 25. RL = 1 kΩ)
RS-232 to TTL
CL = 10 pF, RL = 3-7 kΩ, TA = +25°C
RL = 3 kΩ, CL = 2500 pF
Measured from +3 V to –3 V or –3 V to +3 V
VCC = V+ = V– = 0 V, VOUT = ± 2 V
NOTE
1
Sample tested to ensure compliance.
Specifications subject to change without notice.
ABSOLUTE MAXIMUM RATINGS*
(TA = +25°C unless otherwise noted)
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +6 V
V+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . (VCC – 0.3 V) to +14 V
V– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –14 V
Input Voltages
TIN . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to (VCC + 0.3 V)
RIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Output Voltages
TOUT . . . . . . . . . . . . . . . . . . . (V+, + 0.3 V) to (V–, –0.3 V)
ROUT . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to (VCC + 0.3 V)
Short Circuit Duration
TOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous
Power Dissipation
N-24 DIP (Derate 13.5 mW/°C above +70°C) . . . 1000 mW
N-24A DIP (Derate 13.5 mW/°C above +70°C) . . 500 mW
R-24 SOIC (Derate 12 mW/°C above +70°C) . . . . . 850 mW
R-28 SOIC (Derate 12.5 mW/°C above +70°C) . . 900 mW
RS-28 SSOP (Derate 10 mW/°C above +70°C) . . . . 900 mW
Q-24 Cerdip (Derate 12.5 mW/°C above +70°C) . 1000 mW
D-24 Ceramic (Derate 20 mW/°C above +70°C) . . 1000 mW
Thermal Impedance, θJA
N-24 DIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W
N-24A DIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110°C/W
R-24 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85°C/W
R-28 SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80°C/W
RS-28 SSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100°C/W
Q-14 Cerdip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105°C/W
Q-16 Cerdip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100°C/W
Q-20 Cerdip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100°C/W
Q-24 Cerdip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55°C/W
D-24 Ceramic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50°C/W
Operating Temperature Range
Industrial (A Version) . . . . . . . . . . . . . . . . . -40°C to +85°C
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature, Soldering . . . . . . . . . . . . . . . . . . . +300°C
Vapour Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . +215°C
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . > 2000 V
*This is a stress rating only and functional operation of the device at these or any
other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended
periods of time may affect reliability.
–2–
REV. 0
ADM205–ADM211/ADM213
ORDERING GUIDE
Model
Temperature
Range
Package
Option*
ADM205
ADM205AN
–40°C to +85°C
N-24A
ADM208
ADM208AN –40°C to +85°C
ADM208AR –40°C to +85°C
ADM208ARS –40°C to +85°C
N-24
R-24
RS-24
ADM213
ADM213AR –40°C to +85°C
ADM213ARS –40°C to +85°C
R-28
RS-28
Model
Temperature
Range
Package
Option* Model
ADM206
ADM206AN –40°C to +85°C
ADM206AR –40°C to +85°C
ADM206ARS –40°C to +85°C
N-24
R-24
RS-24
ADM209
ADM209AN –40°C to +85°C
ADM209AR –40°C to +85°C
ADM209ARS –40°C to +85°C
N-24
R-24
RS-24
Temperature
Range
Package
Option*
ADM207
ADM207AN –40°C to +85°C
ADM207AR –40°C to +85°C
ADM207ARS –40°C to +85°C
N-24
R-24
RS-24
ADM211
ADM211AR –40°C to +85°C
ADM211ARS –40°C to +85°C
R-28
RS-28
*N = Plastic DIP; R = Small Outline IC (SOIC); RS = Small Shrink Outline Package (SSOP).
+5V INPUT
T4OUT
1
24
R3 IN
T3OUT
2
23
R3 OUT
T1OUT
3
22
T5 IN
T2OUT
4
21
SD
R2 IN
5
20 EN
R2 OUT
6
ADM205
19
T5 OUT
T2IN
7
Top View
(Not to Scale)
18
R4 IN
T1IN
8
17
R4 OUT
R1 OUT
9
16
T4 IN
R1 IN 10
15
T3 IN
GND 11
14
R5 OUT
12
13
R5 IN
VCC
0.1µF
12
VCC
TTL/CMOS
INPUTS *
TTL/CMOS
OUTPUTS
Figure 1. ADM205 DIP Pin Configuration
T1 IN
8
T1
3
T1OUT
T2 IN
7
T2
4
T2OUT
T3 IN
15
T3
2
T3OUT
T4 IN
16
T4
1
T4OUT
T5 IN
22
T5
19
T5OUT
R1 OUT
9
R1
10
R1 IN
R2 OUT
6
R2
5
R2 IN
R3 OUT
23
R3
24
R3 IN
R4 OUT
17
R4
18
R4 IN
R5 OUT
14
R5
13
R5 IN
EN
20
21
SD
GND
ADM205
RS-232
OUTPUTS
RS-232
INPUTS **
11
* INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
Figure 2. ADM205 Typical Operating Circuit
REV. 0
–3–
ADM205–ADM211/ADM213
24
T3OUT
1
23 R2 IN
T1OUT
2
23 R2IN
T2OUT
3
22
R2 OUT
21
T5IN
T3OUT
1
24
T1OUT
2
T4OUT
T4OUT
T2OUT
3
22
R2 OUT
R1 IN
4
21
SD
R1 IN
4
R1 OUT
5
20 EN
R1 OUT
5
20
T5 OUT
T2IN
6
ADM206
T2IN
6
ADM207
19
T4IN
7
Top View
(Not to Scale)
7
Top View
(Not to Scale)
18
T3IN
T1IN
19
T4IN
18
T3IN
T1IN
GND
8
17
R3 OUT
GND
8
17
R3 OUT
VCC
9
16
R3IN
VCC
9
16
R3IN
C1+
C1+
10
15
V–
10
15
V–
V+ 11
14
C2–
V+ 11
14
C2–
C1– 12
13
C2+
C1– 12
13
C2+
Figure 3. ADM206 DIP/SOIC/SSOP Pin Configuration
Figure 5. ADM207 DIP/SOIC/SSOP Pin Configuration
+5V INPUT
+5V INPUT
0.1µF
6.3V
0.1µF
16V
TTL/CMOS
INPUTS *
TTL/CMOS
OUTPUTS
10 C1+
12 C1–
13 C2+
14 C2–
+5V TO +10V
VOLTAGE
DOUBLER
VCC 9
+10V TO –10V
VOLTAGE
INVERTER
V+ 11
V– 15
0.1µF
6.3V
0.1µF
16V
7
T1
2
T1OUT
T2IN
6
T2
3
T2OUT
T3IN
18
T3
1
T3OUT
T4IN
19
T4
24
T4OUT
R1 OUT
5
R1
4
R1 IN
R2 OUT
22
R2
23
R2 IN
R3 OUT
17
R3
16
R3 IN
EN
20
21
SD
ADM206
0.1µF
0.1µF
16V
T1IN
GND
0.1µF
6.3V
TTL/CMOS
INPUTS *
RS-232
OUTPUTS
RS-232
INPUTS **
TTL/CMOS
OUTPUTS
10 C1+
+5V TO +10V
VOLTAGE
DOUBLER
12 C1–
13 C2+
14 C2–
+10V TO –10V
VOLTAGE
INVERTER
V+ 11
V– 15
0.1µF
6.3V
0.1µF
0.1µF
16V
T1IN
7
T1
2
T1OUT
T2IN
6
T2
3
T2OUT
T3IN
18
T3
1
T3OUT
T4IN
19
T4
24
T4OUT
T5IN
21
T5
20
T5OUT
R1 OUT
5
R1
4
R1 IN
R2 OUT
22
R2
23
R2 IN
R3 OUT
17
R3
16
R3 IN
GND
8
VCC 9
RS-232
OUTPUTS
RS-232
INPUTS **
ADM207
8
* INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
* INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
Figure 4. ADM206 Typical Operating Circuit
Figure 6. ADM207 Typical Operating Circuit
–4–
REV. 0
ADM205–ADM211/ADM213
24
T2OUT
1
T3OUT
T1OUT
2
23 R3IN
R2 IN
3
22
R3 OUT
R2OUT
4
21
T4IN
T1IN
5
20
R1 OUT
6
ADM208
19
Top View
(Not to Scale)
24
R1 OUT
1
R1 IN
2
23 T2IN
GND
3
22
R2OUT
VCC
4
21
R2 IN
T4 OUT
V+
5
20
T2OUT
T3IN
C+
6
ADM209
19
T1OUT
7
Top View
(Not to Scale)
18
R3 IN
R1 IN
7
18
T2IN
GND
8
17
R4 OUT
VCC
9
16
R4IN
C1+
C–
T1IN
V–
8
17
R3OUT
R5 IN
9
16
T3IN
10
15
V–
R5 OUT
10
15
NC
V+ 11
14
C2–
R4 OUT
11
14
EN
C1– 12
13
C2+
R4 IN
12
13
T3OUT
NC = NO CONNECT
Figure 7. ADM208 DIP/SOIC/SSOP Pin Configuration
Figure 9. ADM209 DIP/SOIC/SSOP Pin Configuration
+5V INPUT
+5V INPUT
0.1µF
0.1µF
6.3V
0.1µF
16V
TTL/CMOS
INPUTS *
+5V TO +10V
VOLTAGE
DOUBLER
12 C1–
13 C2+
14 C2–
VCC 9
+10V TO –10V
VOLTAGE
INVERTER
V+ 11
V– 15
T2IN
18
T2
1
T2OUT
T3IN
19
T3
24
T3OUT
T4IN
21
T4
20
T4OUT
7
R1 IN
R2 OUT
R1
6
4
R2
3
0.1µF
0.1µF
16V
T1OUT
TTL/CMOS
INPUTS *
RS-232
OUTPUTS
TTL/CMOS
OUTPUTS
22
R3
23
R3 IN
R4 OUT
17
R3
16
R4 IN
ADM208
C1–
VCC 4
V+
+9V TO +13.2V
INPUT
5
V– 8
T1IN
24
T1
19
T1OUT
T2IN
23
T2
20
T2OUT
T3IN
16
T3
13
T3OUT
R1 OUT
1
R1
2
R1 IN
R2 OUT
22
R2
21
R2 IN
R3 OUT
17
R3
18
R3 IN
R4 OUT
11
R4
12
R4 IN
R5 OUT
10
R5
9
R5 IN
EN
14
15
NC
RS-232
OUTPUTS
RS-232
INPUTS **
GND
ADM209
3
* INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
*INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
Figure 10. ADM209 Typical Operating Circuit
Figure 8. ADM208 Typical Operating Circuit
REV. 0
7
+12V TO –12V
VOLTAGE
INVERTER
R2 IN
R3 OUT
8
C1+
0.1µF
16V
RS-232
INPUTS **
GND
6
0.1µF
16V
5
T1
2
0.1µF
6.3V
T1IN
R1 OUT
TTL/CMOS
OUTPUTS
10 C1+
–5–
ADM205–ADM211/ADM213
T3OUT
1
T1OUT
2
27 R3IN
T2OUT
3
26 R3 OUT
R2 IN
4
25
SD
R2 OUT
5
24
EN
T2IN
6
T1IN
7
ADM211
R1 OUT
8
Top View
(Not to Scale)
R1 IN
9
28
23
VCC
21
T3OUT
1
28
T1OUT
2
27 R3 IN
T2OUT
3
26 R3 OUT
R2 IN
4
25
SD
R2 OUT
5
24
EN
T2IN
6
23
R4 IN *
T1IN
7
ADM213
R1 OUT
8
Top View
(Not to Scale)
R1 IN
9
R4IN
22 R4 OUT
20
GND 10
T4OUT
T4IN
T3IN
GND 10
19 R5 OUT
11
VCC
18 R5IN
C1+ 12
17
V–
V+ 13
16
C2–
C1– 14
15
T4OUT
22 R4 OUT *
21
T4IN
20
T3IN
19 R5 OUT *
11
18 R5 IN *
C1+ 12
17
V–
V+ 13
16
C2–
C1– 14
15
C2+
C2+
* ACTIVE IN SHUTDOWN
Figure 11. ADM211 SOIC/SSOP Pin Configuration
Figure 13. ADM213 SOIC/SSOP Pin Configuration
+5V INPUT
+5V INPUT
0.1µF
16V
0.1µF
16V
TTL/CMOS
INPUTS *
TTL/CMOS
OUTPUTS
12 C1+
14 C1–
15 C2+
16 C2–
+5V TO +10V
VOLTAGE
DOUBLER
VCC 11
+10V TO –10V
VOLTAGE
INVERTER
V– 17
V+ 13
0.1µF
6.3V
7
T1
2
T1OUT
T2IN
6
T2
3
T2OUT
T3IN
20
T3
1
T3OUT
T4IN
21
T4
28
T4OUT
R1 OUT
8
R1
9
R1 IN
R2 OUT
5
R2
4
R2 IN
R3 OUT
26
R3
27
R3 IN
R4 OUT
22
R4
23
R4 IN
R5 OUT
19
R5
18
R5 IN
EN
24
25
SD
ADM211
0.1µF
0.1µF
16V
0.1µF
16V
T1IN
GND
0.1µF
16V
TTL/CMOS
INPUTS *
RS-232
OUTPUTS
TTL/CMOS
OUTPUTS
RS-232
INPUTS **
12 C1+
14 C1–
15 C2+
16 C2–
+5V TO +10V
VOLTAGE
DOUBLER
VCC 11
+10V TO –10V
VOLTAGE
INVERTER
V– 17
V+ 13
0.1µF
6.3V
0.1µF
0.1µF
16V
T1IN
7
T1
2
T1OUT
T2IN
6
T2
3
T2OUT
T3IN
20
T3
1
T3OUT
T4IN
21
T4
28
T4OUT
R1 OUT
8
R1
9
R1 IN
R2 OUT
5
R2
4
R2 IN
R3 OUT
26
R3
27
R3 IN
R4 OUT ***
22
R4
23
R4 IN *** RS-232
INPUTS **
R5 OUT ***
19
R5
18
R5 IN ***
EN
24
25
SD
GND
ADM213
RS-232
OUTPUTS
10
10
*INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
**INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
* INTERNAL 400kΩ PULL-UP RESISTOR ON EACH TTL/CMOS INPUT
** INTERNAL 5kΩ PULL-DOWN RESISTOR ON EACH RS-232 INPUT
*** ACTIVE IN SHUTDOWN
Figure 12. ADM211 Typical Operating Circuit
Figure 14. ADM213 Typical Operating Circuit
–6–
REV. 0
ADM205–ADM211/ADM213
PIN FUNCTION DESCRIPTION
Mnemonic
Function
VCC
Power Supply Input 5 V ± 10% (+5 V ± 5% ADM205).
V+
Internally generated positive supply (+10 V nominal) on all parts except ADM209.
ADM209 requires external 9 V to 13.2 V supply.
V–
Internally generated negative supply (–10 V nominal).
GND
Ground pin. Must be connected to 0 V.
C+
(ADM209 only) External capacitor (+ terminal) is connected to this pin.
C–
(ADM209 only) External capacitor (– terminal) is connected to this pin.
C1+
(ADM206, ADM207, ADM208, ADM211, ADM213) External capacitor (+ terminal) is connected to this pin.
C1–
(ADM206, ADM207, ADM208, ADM211, ADM213) External capacitor (– terminal) is connected to this pin.
C2+
(ADM206, ADM207, ADM208, ADM211, ADM213) External capacitor (+ terminal) is connected to this pin.
C2–
(ADM206, ADM207, ADM208, ADM211, ADM213) External capacitor (– terminal) is connected to this pin.
TIN
Transmitter (Driver) Inputs. These inputs accept TTL/CMOS levels. An internal 400 kΩ pull-up resistor to Vcc is
connected on each input.
TOUT
Transmitter (Driver) Outputs. These are RS-232 levels (typically ± 10 V).
RIN
Receiver Inputs. These inputs accept RS-232 signal levels. An internal 5 kΩ pull-down resistor to GND is connected on each input.
ROUT
Receiver Outputs. These are TTL/CMOS levels.
EN/EN
Enable Input. Active low on ADM205, ADM206, ADM209, ADM211. Active high on ADM213. This input is
used to enable/disable the receiver outputs. With EN = Low (EN = High ADM213), the receiver outputs are enabled. With EN =High (EN = low ADM213), the outputs are placed in a high impedance state. This facility is
useful for connecting to microprocessor systems.
SD/SD
Shutdown Input. Active high on ADM205, ADM206, ADM211. Active low on ADM213. With SD = high on the
ADM205, ADM206, ADM211, the charge pump is disabled, the receiver outputs are placed in a high impedance
state and the driver outputs are turned off. With SD low on the ADM213, the charge pump is disabled, the driver
outputs are turned off and all receivers except R4 and R5 are placed in a high impedance state. In shutdown, the
power consumption reduces to 5 µW.
NC
No Connect. No connections are required to this pin.
Table II. ADM205, ADM206, ADM211 Truth Table
SD
EN
Status
Transmitters T1–T5
Receivers R1–R5
0
0
1
0
1
0
Normal Operation
Normal Operation
Shutdown
Enabled
Enabled
Disabled
Enabled
Disabled
Disabled
Table III. ADM213 Truth Table
REV. 0
SD
EN
Status
Transmitters T1-T4
Receivers R1-R3
Receivers R4, R5
0
0
1
1
0
1
0
1
Shutdown
Shutdown
Normal Operation
Normal Operation
Disabled
Disabled
Enabled
Enabled
Disabled
Disabled
Disabled
Enabled
Disabled
Enabled
Disabled
Enabled
–7–
ADM205–ADM211/ADM213–Typical Performance Characteristics
10
10
V+
VOUT (1 O/P LOADED)
| V– |
VOUT – V
VOUT — Volts
8
6
8
4
VOUT (ALL O/Ps LOADED)
6
2
0
4
0
10
20
IOUT — mA
30
40
3.0
4.0
Figure 15. Charge Pump V+, V– vs. Current
Figure 17. Transmitter Output Voltage vs. VCC
18
12
16
10
T OUT HIGH
14
8
12
TOUT – V
SLEW RATE – V/µs
5.0
VCC – V
10
6
T OUT LOW
4
8
2
6
4
0
0
500
1000
1500
CAPACITIVE LOAD – pF
2000
2500
0
Figure 16. Transmitter Slew Rate vs. Load Capacitance
2
4
IOUT – mA
6
8
Figure 18. Transmitter Output Voltage vs. Current
300
V+, V– IMPEDANCE – Ω
V– (UNLOADED)
200
V– (LOADED)
V+ (UNLOADED)
100
V+ (LOADED)
0
3
4
VCC – V
5
Figure 19. Charge Pump Impedance vs. VCC
–8–
REV. 0
ADM205–ADM211/ADM213
A3
The ADM205, ADM206, ADM211, and ADM213 are particularly useful in battery powered systems as they feature a low
power shutdown mode which reduces power dissipation to less
than 5 µW.
0.8 V
100
90
The ADM205 is designed for applications where space saving is
important as the charge pump capacitors are molded into the
package.
The ADM209 includes only a negative charge pump converter
and are intended for applications where a positive 12 V is available.
10
0%
5V
5V
B
Lw
5
1Ms
H
O
To facilitate sharing a common line or for connection to a microprocessor data bus the ADM205, ADM206, ADM209,
ADM211 and ADM213 feature an enable (EN) function. When
disabled, the receiver outputs are placed in a high impedance
state.
Figure 20. Charge Pump, V+, V– Exiting Shutdown
A3
0.8 V
100
CIRCUIT DESCRIPTION
90
The internal circuitry in the ADM205-ADM211 and ADM213
consists of three main sections. These are:
(a) A charge pump voltage converter
(b) RS-232 to TTL/CMOS receivers
(c) TTL/CMOS to RS-232 transmitters
10
0%
B
Lw
5V
5
5µs
Charge Pump DC-DC Voltage Converter
H
O
The charge pump voltage converter consists of an oscillator and
a switching matrix. The converter generates a ± 10 V supply
from the input 5 V level. This is done in two stages using a
switched capacitor technique as illustrated in Figures 23 and 24.
First, the 5 V input supply is doubled to 10 V using capacitor
C1 as the charge storage element. The 10 V level is then inverted to generate –10 V using C2 as the storage element.
Figure 21. Transmitter Output Loaded Slew Rate
A3
0.8 V
100
90
S1
S3
VCC
V+ = 2V CC
C1
10
S2
0%
S4
GND
5V
B
Lw
5
1µs
VCC
H
O
INTERNAL
OSCILLATOR
Figure 22. Transmitter Output Unloaded Slew Rate
Figure 23. Charge-Pump Voltage Doubler
GENERAL INFORMATION
The ADM205-ADM211 and ADM213 family of RS-232 drivers/receivers are designed to solve interface problems by meeting
the EIA-232-E specifications while using a single digital +5 V
supply. The EIA-232-E standard requires transmitters which
will deliver ± 5 V minimum on the transmission channel and receivers which can accept signal levels down to ± 3 V. The
ADM205-ADM211 and ADM213 meet these requirements by
integrating step up voltage converters and level shifting transmitters and receivers onto the same chip. CMOS technology is
used to keep the power dissipation to an absolute minimum. A
comprehensive range of transmitter/receiver combinations is
available to cover most communications needs. The ADM205–
ADM211 and ADM213 are modifications, enhancements and
improvements to the AD230–AD241 family and derivatives
thereof. They are essentially plug-in compatible and do not have
materially different applications.
REV. 0
C3
S1
S3
V+
FROM
VOLTAGE
DOUBLER
GND
C2
S2
C4
S4
GND
V– = – (V+)
INTERNAL
OSCILLATOR
Figure 24. Charge-Pump Voltage Inverter
Capacitors C3 and C4 are used to reduce the output ripple.
Their values are not critical and can be reduced if higher levels
of ripple are acceptable. The charge pump capacitors C1 and
C2 may also be reduced at the expense of higher output impedance on the V+ and V– supplies.
The V+ and V– supplies may also be used to power external circuitry if the current requirements are small.
–9–
ADM205–ADM211/ADM213
Transmitter (Driver) Section
Enable Input
The drivers convert TTL/CMOS input levels into EIA-232-E
output levels. With VCC = +5 V and driving a typical EIA-232-E
load, the output voltage swing is ± 9 V. Even under worst case
conditions the drivers are guaranteed to meet the ± 5 V EIA-232-E
minimum requirement.
The ADM205, ADM209, ADM211, and ADM213 feature an
enable input used to enable or disable the receiver outputs. The
enable input is active low on the ADM205, ADM209, ADM211
and active-high on the ADM213. Refer to Tables II and III.
When disabled, all receiver outputs are placed in a high impedance state. This function allows the outputs to be connected directly to a microprocessor data bus. It can also be used to allow
receivers from different devices to share a common data line.
The timing diagram for the enable function is shown in Figure
25.
The input threshold levels are both TTL and CMOS compatible with the switching threshold set at VCC/4. With a nominal
VCC = 5 V the switching threshold is 1.25 V typical. Unused inputs may be left unconnected, as an internal 400 kΩ pull-up resistor pulls them high forcing the outputs into a low state.
As required by the EIA-232-E standard, the slew rate is limited
to less than 30 V/µs without the need for an external slew limiting capacitor and the output impedance in the power-off state is
greater than 300 Ω.
3V
EN*
0V
TEN
Receiver Section
The receivers are inverting level shifters which accept EIA-232-E
input levels (± 5 V to ± 15 V) and translate them into 5 V TTL/
CMOS levels. The inputs have internal 5 kΩ pull-down resistors
to ground and are also protected against overvoltages of up to
± 30 V. The guaranteed switching thresholds are 0.8 V minimum and 2.4 V maximum which are well within the ± 3 V
EIA-232-E requirement. The low level threshold is deliberately
positive as it ensures that an unconnected input will be interpreted as a low level.
The receivers have Schmitt trigger inputs with a hysteresis level
of 0.5 V. This ensures error-free reception for both noisy inputs
and for inputs with slow transition times.
Shutdown (SD)
The ADM205, ADM206, ADM211 and ADM213 feature a
control input which may be used to disable the part and reduce
the power consumption to less than 5 µW. This is very useful in
battery operated systems. During shutdown the charge pump is
turned off, the transmitters are disabled and all receivers except
R4 and R5 on the ADM213 are put into a high-impedance disabled state. Receivers R4 and R5 on the ADM213 remain enabled during shutdown. This feature allows monitoring external
activity such as ring indicator monitoring while the device is in a
low power shutdown mode. The shutdown control input is active high on all parts except the ADM213 where it is active low.
Refer to Tables II and III.
TDIS
3.5V
VOH – 0.1V
0.8V
VVOL + 0.1V
ROUT
* POLARITY OF EN IS REVERSED FOR ADM213
Figure 25. Enable Timing
APPLICATION HINTS
Driving Long Cables
In accordance with the EIA-232-E standard, long cables are
permissible provided that the total load capacitance does not exceed 2500 pF. For longer cables which do exceed this, then it is
possible to trade off baud rate vs. cable length. Large load capacitances cause a reduction in slew rate, and hence the maximum
transmission baud rate is decreased. The ADM205–ADM211 and
ADM213 are designed so that the slew rate reduction with increasing load capacitance is minimized.
For the receivers, it is important that a high level of noise immunity be inbuilt so that slow rise and fall times do not cause multiple output transitions as the signal passes slowly through the
transition region. The ADM205–ADM211 and ADM213 have
0.5 V of hysteresis to guard against this. This ensures that, even
in noisy environments, error-free reception can be achieved.
High Baud Rate Operation
The ADM205–ADM211 and ADM213 feature high slew rates
permitting data transmission at rates well in excess of the
EIA-232-E specification. The drivers maintain ± 5 V signal
levels at data rates up to 120-kB/s under worst-case loading
conditions.
–10–
REV. 0
ADM205–ADM211/ADM213
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
24-Lead Cerdip (Q-24)
24-Lead Plastic DIP (N-24)
12
1
24
13
1
12
PIN 1
13
24
PIN 1
0.295 (7.493)
MAX
0.260 ± 0.001
(6.61 ± 0.03)
0.320 (8.128)
0.290 (7.366)
1.290 (32.77) MAX
0.130 (3.30)
0.128 (3.25)
0.11 (2.79)
0.09 (2.28)
SEATING
PLANE
0.125
(3.175)
MIN
SEATING
PLANE
0.02 (0.5)
0.016 (0.41)
0.180
(4.572)
MAX
0.225
(5.715)
MAX
0.32 (8.128)
0.30 (7.62)
1.228 (31.19)
1.226 (31.14)
15 °
0
0.07 (1.78)
0.05 (1.27)
0.021 (0.533)
0.015 (0.381)
TYP
0.011 (0.28)
0.009 (0.23)
0.110 (2.794)
0.090 (2.286)
TYP
0.070 (1.778)
0.020 (0.508)
15 °
0°
1. LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH.
2. CERDIP LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED
NOTES
1. LEAD NO. 1 IDENTIFIED BY DOT OR NOTCH
2. PLASTIC LEADS WILL BE EITHER SOLDER DIPPED OR TIN PLATED
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS.
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS.
24-Lead Plastic DIP (N-24A)
28-Lead SOIC (R-28)
13
24
24
0.55 (13.97)
0.53 (13.47)
PIN 1
13
0.299 (7.6)
0.291 (7.39)
12
1
1.25 (31.75)
1.24 (31.5)
0.606 (15.4)
0.594 (15.09)
0.2
(5.08)
MAX
PIN 1
12
1
0.414 (10.52)
0.398 (10.10)
0.16 (4.07)
0.14 (3.56)
0.175 (4.45)
0.12 (3.05)
0.02 (0.508)
0.015 (0.381)
0.065 (1.651)
0.055 (1.397)
TYP
0.105 (2.67)
0.095 (2.42)
0.065 (1.66)
0.045 (1.15)
SEATING
PLANE
15 °
0°
0.096 (2.44)
0.089 (2.26)
0.608 (15.45)
0.596 (15.13)
0.012 (0.305)
0.008 (0.203)
0.01 (0.254)
0.006 (0.15)
0.05 (1.27)
BSC
0.019 (0.49)
0.014 (0.35)
0.013 (0.32)
0.009 (0.23)
0.03 (0.76)
0.02 (0.51)
6°
0°
0.042 (1.067)
0.018 (0.447)
1. LEAD NO. 1 IDENTIFIED BY A DOT.
2. SOIC LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS
28-Lead SSOP (RS-28)
24
13
0.212 (5.38)
0.205 (5.207)
0.311 (7.9)
0.301 (7.64)
PIN 1
12
1
0.328 (8.33)
0.318 (8.08)
0.008 (0.203)
0.002 (0.050)
0.0256 (0.65)
BSC
0.07 (1.78)
0.066 (1.67)
0.009 (0.229)
0.005 (0.127)
8°
0°
1. LEAD NO. 1 IDENTIFIED BY A DOT.
2. LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS
REV. 0
–11–
0.037 (0.94)
0.022 (0.559)
0.012 (0.305)
0.008 (0.203)
TYP
ADM205–ADM211/ADM213
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
28
15
28
15
0.299 (7.6)
0.291 (7.39)
PIN 1
14
1
0.212 (5.38)
0.205 (5.207)
0.414 (10.52)
0.398 (10.10)
0.311 (7.9)
0.301 (7.64)
PIN 1
1
0.096 (2.44)
0.089 (2.26)
0.708 (18.02)
0.696 (17.67)
0.05 (1.27)
BSC
0.019 (0.49)
0.014 (0.35)
0.013 (0.32)
0.009 (0.23)
0.03 (0.76)
0.02 (0.51)
6°
0°
14
0.407 (10.34)
0.397 (10.08)
0.07 (1.78)
0.066 (1.67)
0.042 (1.067)
0.018 (0.457)
0.008 (0.203)
0.002 (0.050)
1. LEAD NO. IDENTIFIED BY A DOT.
2. SOICLEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS.
0.0256 (0.65)
BSC
0.009 (0.229)
0.005 (0.127)
8°
0°
0.037 (0.94)
0.022 (0.559)
1. LEAD NO. 1 IDENTIFIED BY A DOT.
2. LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED
IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS
PRINTED IN U.S.A.
0.01 (0.254)
0.006 (0.15)
C1897–18–4/94
28-Lead SSOP (RS-28)
28-Lead SOIC (R-28)
–12–
REV. 0
Similar pages