PD - 94726D IRF6618/IRF6618TR1 HEXFET® Power MOSFET Application Specific MOSFETs Ideal for CPU Core DC-DC Converters l Low Conduction Losses l Low Switching Losses l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l l VDSS RDS(on) max Qg 30V 2.2mΩ@VGS = 10V 3.4mΩ@VGS = 4.5V 43 nC DirectFET ISOMETRIC MT Applicable DirectFET Package/Layout Pad (see p.8,9 for details) SQ SX ST MQ MX MT Description The IRF6618 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6618 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6618 has been optimized for parameters that are critical in synchronous buck converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6618 offers particularly low Rds(on) and high Cdv/ dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS VGS I D @ TC = 25°C I D @ TA = 25°C I D @ TA = 70°C I DM PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation g g c Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range EAS I AR Parameter Single Pulse Avalanche Energy Avalanche Current Max. Units 30 ±20 170 30 24 240 2.8 1.8 89 V A W W/°C °C 0.022 -40 to + 150 Avalanche Characteristics Thermal Resistance c Parameter RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case i Junction-to-PCB Mounted Notes through are on page 9 www.irf.com fj g h d Typ. ––– ––– Max. 210 24 Units mJ A Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 1 11/3/04 IRF6618/IRF6618TR1 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance ––– ––– 3.4 VGS(th) Gate Threshold Voltage 1.35 1.64 2.35 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.7 ––– mV/°C ––– ––– 5.0 ––– ––– 1.0 30 ––– ––– ––– 23 ––– ––– 1.7 2.2 IDSS Drain-to-Source Leakage Current ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Qg Forward Transconductance 100 ––– ––– V Conditions VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 30A VGS = 4.5V, ID VDS = VGS, ID = 250µA VDS = 30V, VGS = 0V µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 150°C nA VGS = 20V S VDS = 15V, ID = 24A VGS = -20V Total Gate Charge ––– 43 65 Qgs1 Pre-Vth Gate-to-Source Charge ––– 12 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 4.0 ––– Qgd Gate-to-Drain Charge ––– 15 23 ID = 24A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 12 ––– See Fig. 16 Qsw ––– 19 ––– VDS = 15V nC Qoss Output Charge ––– 28 ––– nC RG Gate Resistance ––– 1.0 2.2 Ω td(on) Turn-On Delay Time ––– 21 ––– tr Rise Time ––– 71 ––– td(off) Turn-Off Delay Time ––– 27 ––– tf Fall Time ––– 8.1 ––– Ciss Input Capacitance ––– 5640 ––– Coss Output Capacitance ––– 1260 ––– Crss Reverse Transfer Capacitance ––– 570 ––– e = 24A e VGS = 4.5V VDS = 15V, VGS = 0V e VDD = 15V, VGS = 4.5V ID = 24A ns Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 30 ISM (Body Diode) Pulsed Source Current ––– ––– 240 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– 1.2 p-n junction diode. TJ = 25°C, IS = 24A, VGS = 0V trr Reverse Recovery Time ––– 43 65 ns Qrr Reverse Recovery Charge ––– 46 69 nC 2 c MOSFET symbol A D G S 0.78 V TJ = 25°C, IF = 24A di/dt = 100A/µs e e www.irf.com IRF6618/IRF6618TR1 1000 1000 100 BOTTOM VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP BOTTOM VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 100 2.7V 10 2.7V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C 1 Tj = 150°C 10 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 1000 100 1.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 10 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 100 T J = 150°C T J = 25°C 10 1 VDS = 10V ≤60µs PULSE WIDTH 0.1 ID = 30A VGS = 10V 1.0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 Fig 3. Typical Transfer Characteristics 100000 Fig 4. Normalized On-Resistance vs. Temperature VGS, Gate-to-Source Voltage (V) ID= 24A C oss = C ds + C gd Ciss Coss 1000 20 40 60 80 100 120 140 160 180 6.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd 10000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) 1 V DS, Drain-to-Source Voltage (V) Crss VDS= 24V VDS= 15V 5.0 4.0 3.0 2.0 1.0 0.0 100 1 10 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 100 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRF6618/IRF6618TR1 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.00 T J = 150°C 100.00 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10.00 T J = 25°C 1.00 100µsec 10 Tj = 150°C Single Pulse VGS = 0V 0.4 0.6 0.8 1.0 0 1.2 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 180 2.5 VGS(th) Gate threshold Voltage (V) 160 140 ID, Drain Current (A) 10msec 1 0.10 0.2 1msec T C = 25°C 120 100 80 60 40 20 2.0 1.5 ID = 250µA 1.0 0.5 0.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 0.1 τJ 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ τ2 τ1 τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri Ri (°C/W) τi (sec) 0.6784 0.00086 17.299 0.57756 17.566 8.94 9.4701 106 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com IRF6618/IRF6618TR1 RDS(on), Drain-to -Source On Resistance (m Ω) 6 900 EAS , Single Pulse Avalanche Energy (mJ) ID = 30A 5 4 T J = 125°C 3 2 T J = 25°C 1 ID 9.3A 11A BOTTOM 24A 800 TOP 700 600 500 400 300 200 100 0 0 2 3 4 5 6 7 8 9 10 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage Current Regulator Same Type as D.U.T. V(BR)DSS tp 15V 50KΩ 12V .3µF DRIVER L VDS .2µF + V - DS D.U.T. D.U.T RG + - VDD IAS 20V VGS tp VGS A 0.01Ω I AS 3mA IG ID Current Sampling Resistors Fig 15. Gate Charge Test Circuit Fig 14. Unclamped Inductive Test Circuit and Waveform LD VDS VDS + 90% VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 16. Switching Time Test Circuit www.irf.com 10% VGS td(on) tr td(off) tf Fig 17. Switching Time Waveforms 5 IRF6618/IRF6618TR1 D.U.T Driver Gate Drive + - P.W. + * D.U.T. ISD Waveform Reverse Recovery Current + RG • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform 6 www.irf.com IRF6618/IRF6618TR1 DirectFET Outline Dimension, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS NOTE: CONTROLLING DIMENSIONS ARE IN MM www.irf.com METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 3.85 C 0.45 D 0.35 0.82 E 0.78 0.92 F 0.88 1.82 G 1.78 0.98 1.02 H 0.67 J 0.63 1.01 K O.88 2.63 L 2.46 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.246 0.250 0.189 0.199 0.152 0.156 0.014 0.018 0.031 0.032 0.035 0.036 0.070 0.072 0.039 0.040 0.025 0.026 0.035 0.039 0.097 0.104 0.023 0.028 0.001 0.003 0.003 0.007 7 IRF6618/IRF6618TR1 DirectFET Board Footprint, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 3 1 5 7 4 2 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel, order IRF6618TR1 STANDARD OPTION METRIC CODE MAX MIN A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 8 REEL DIMENSIONS (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC IMPERIAL MAX MIN MIN MAX MAX MIN N.C 6.9 12.992 N.C 177.77 N.C N.C 0.75 0.795 N.C 19.06 N.C 0.50 0.53 0.504 0.520 13.5 12.8 0.059 0.059 N.C 1.5 N.C N.C 2.31 3.937 N.C N.C 58.72 N.C N.C N.C 0.53 N.C 13.50 0.724 0.47 0.488 N.C 11.9 0.567 12.01 0.47 0.469 N.C 0.606 11.9 12.01 www.irf.com IRF6618/IRF6618TR1 DirectFET Part Marking Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.75mH, RG = 25Ω, IAS = 24A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04 www.irf.com 9