IRF IRF6618 Hexfet power mosfet Datasheet

PD - 94726D
IRF6618/IRF6618TR1
HEXFET® Power MOSFET
Application Specific MOSFETs
Ideal for CPU Core DC-DC Converters
l Low Conduction Losses
l Low Switching Losses
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount
Techniques
l
l
VDSS
RDS(on) max
Qg
30V
2.2mΩ@VGS = 10V
3.4mΩ@VGS = 4.5V
43 nC
DirectFET™ ISOMETRIC
MT
Applicable DirectFET Package/Layout Pad (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6618 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package
allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.
The IRF6618 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation
of processors operating at higher frequencies. The IRF6618 has been optimized for parameters that are critical in synchronous buck
converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6618 offers particularly low Rds(on) and high Cdv/
dt immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
VDS
VGS
I D @ TC = 25°C
I D @ TA = 25°C
I D @ TA = 70°C
I DM
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
g
g
c
Power Dissipation
TJ
TSTG
Linear Derating Factor
Operating Junction and
Storage Temperature Range
EAS
I AR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
Max.
Units
30
±20
170
30
24
240
2.8
1.8
89
V
A
W
W/°C
°C
0.022
-40 to + 150
Avalanche Characteristics
Thermal Resistance
c
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
i
Junction-to-PCB Mounted
Notes  through ˆ are on page 9
www.irf.com
fj
g
h
d
Typ.
–––
–––
Max.
210
24
Units
mJ
A
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
1
11/3/04
IRF6618/IRF6618TR1
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
–––
–––
3.4
VGS(th)
Gate Threshold Voltage
1.35
1.64
2.35
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.7
–––
mV/°C
–––
–––
5.0
–––
–––
1.0
30
–––
–––
–––
23
–––
–––
1.7
2.2
IDSS
Drain-to-Source Leakage Current
–––
–––
150
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Qg
Forward Transconductance
100
–––
–––
V
Conditions
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 30A
VGS = 4.5V, ID
VDS = VGS, ID = 250µA
VDS = 30V, VGS = 0V
µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 150°C
nA
VGS = 20V
S
VDS = 15V, ID = 24A
VGS = -20V
Total Gate Charge
–––
43
65
Qgs1
Pre-Vth Gate-to-Source Charge
–––
12
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.0
–––
Qgd
Gate-to-Drain Charge
–––
15
23
ID = 24A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
12
–––
See Fig. 16
Qsw
–––
19
–––
VDS = 15V
nC
Qoss
Output Charge
–––
28
–––
nC
RG
Gate Resistance
–––
1.0
2.2
Ω
td(on)
Turn-On Delay Time
–––
21
–––
tr
Rise Time
–––
71
–––
td(off)
Turn-Off Delay Time
–––
27
–––
tf
Fall Time
–––
8.1
–––
Ciss
Input Capacitance
–––
5640
–––
Coss
Output Capacitance
–––
1260
–––
Crss
Reverse Transfer Capacitance
–––
570
–––
e
= 24A e
VGS = 4.5V
VDS = 15V, VGS = 0V
e
VDD = 15V, VGS = 4.5V
ID = 24A
ns
Clamped Inductive Load
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
30
ISM
(Body Diode)
Pulsed Source Current
–––
–––
240
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
1.2
p-n junction diode.
TJ = 25°C, IS = 24A, VGS = 0V
trr
Reverse Recovery Time
–––
43
65
ns
Qrr
Reverse Recovery Charge
–––
46
69
nC
2
c
MOSFET symbol
A
D
G
S
0.78
V
TJ = 25°C, IF = 24A
di/dt = 100A/µs
e
e
www.irf.com
IRF6618/IRF6618TR1
1000
1000
100
BOTTOM
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
BOTTOM
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100
2.7V
10
2.7V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
1
Tj = 150°C
10
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
1000
100
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
10
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
100
T J = 150°C
T J = 25°C
10
1
VDS = 10V
≤60µs PULSE WIDTH
0.1
ID = 30A
VGS = 10V
1.0
0.5
1.5
2.0
2.5
3.0
3.5
4.0
Fig 3. Typical Transfer Characteristics
100000
Fig 4. Normalized On-Resistance vs. Temperature
VGS, Gate-to-Source Voltage (V)
ID= 24A
C oss = C ds + C gd
Ciss
Coss
1000
20 40 60 80 100 120 140 160 180
6.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
10000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
1
V DS, Drain-to-Source Voltage (V)
Crss
VDS= 24V
VDS= 15V
5.0
4.0
3.0
2.0
1.0
0.0
100
1
10
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
www.irf.com
100
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
3
IRF6618/IRF6618TR1
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.00
T J = 150°C
100.00
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10.00
T J = 25°C
1.00
100µsec
10
Tj = 150°C
Single Pulse
VGS = 0V
0.4
0.6
0.8
1.0
0
1.2
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
180
2.5
VGS(th) Gate threshold Voltage (V)
160
140
ID, Drain Current (A)
10msec
1
0.10
0.2
1msec
T C = 25°C
120
100
80
60
40
20
2.0
1.5
ID = 250µA
1.0
0.5
0.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
Thermal Response ( Z thJA )
10
1
0.1
τJ
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ
τ2
τ1
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
Ri (°C/W)
τi (sec)
0.6784
0.00086
17.299
0.57756
17.566
8.94
9.4701
106
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
IRF6618/IRF6618TR1
RDS(on), Drain-to -Source On Resistance (m Ω)
6
900
EAS , Single Pulse Avalanche Energy (mJ)
ID = 30A
5
4
T J = 125°C
3
2
T J = 25°C
1
ID
9.3A
11A
BOTTOM 24A
800
TOP
700
600
500
400
300
200
100
0
0
2
3
4
5
6
7
8
9
10
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 13. Maximum Avalanche Energy
vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
Current Regulator
Same Type as D.U.T.
V(BR)DSS
tp
15V
50KΩ
12V
.3µF
DRIVER
L
VDS
.2µF
+
V
- DS
D.U.T.
D.U.T
RG
+
- VDD
IAS
20V
VGS
tp
VGS
A
0.01Ω
I AS
3mA
IG
ID
Current Sampling Resistors
Fig 15. Gate Charge Test Circuit
Fig 14. Unclamped Inductive Test Circuit
and Waveform
LD
VDS
VDS
+
90%
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 16. Switching Time Test Circuit
www.irf.com
10%
VGS
td(on)
tr
td(off)
tf
Fig 17. Switching Time Waveforms
5
IRF6618/IRF6618TR1
D.U.T
Driver Gate Drive
ƒ
+
‚
-
P.W.
+
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
*
VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Waveform
6
www.irf.com
IRF6618/IRF6618TR1
DirectFET™ Outline Dimension, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all
recommendations for stencil and substrate designs.
DIMENSIONS
NOTE: CONTROLLING
DIMENSIONS ARE IN MM
www.irf.com
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
3.85
C
0.45
D
0.35
0.82
E
0.78
0.92
F
0.88
1.82
G
1.78
0.98 1.02
H
0.67
J
0.63
1.01
K
O.88
2.63
L
2.46
0.70
M
0.59
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
MAX
0.246
0.250
0.189
0.199
0.152
0.156
0.014
0.018
0.031
0.032
0.035
0.036
0.070
0.072
0.039
0.040
0.025
0.026
0.035
0.039
0.097
0.104
0.023
0.028
0.001
0.003
0.003
0.007
7
IRF6618/IRF6618TR1
DirectFET™ Board Footprint, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
1- Drain
2- Drain
3- Source
4- Source
5- Gate
6- Drain
7- Drain
6
3
1
5
7
4
2
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,
order IRF6618TR1
STANDARD OPTION
METRIC
CODE
MAX
MIN
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
8
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
METRIC
IMPERIAL
MAX
MIN
MIN
MAX
MAX
MIN
N.C
6.9
12.992
N.C
177.77 N.C
N.C
0.75
0.795
N.C
19.06
N.C
0.50
0.53
0.504
0.520
13.5
12.8
0.059
0.059
N.C
1.5
N.C
N.C
2.31
3.937
N.C
N.C
58.72
N.C
N.C
N.C
0.53
N.C
13.50
0.724
0.47
0.488
N.C
11.9
0.567
12.01
0.47
0.469
N.C
0.606
11.9
12.01
www.irf.com
IRF6618/IRF6618TR1
DirectFET™ Part Marking
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
‚ Starting TJ = 25°C, L = 0.75mH, RG = 25Ω, IAS = 24A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
Used double sided cooling , mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of
part.
ˆ Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/04
www.irf.com
9
Similar pages