LESHAN RADIO COMPANY, LTD. General Purpose Transistors PNP Silicon BCW69LT1 BCW70LT1 3 COLLECTOR 1 BASE 3 2 EMITTER 1 2 MAXIMUM RATINGS CASE 318–08, STYLE 6 Rating Symbol Value Unit Collector–Emitter Voltage V CEO – 45 Vdc Emitter–Base Voltage V – 5.0 Vdc – 100 mAdc Collector Current — Continuous EBO IC SOT–23 (TO–236AB) THERMAL CHARACTERISTICS Characteristic Total Device Dissipation FR– 5 Board, (1) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Total Device Dissipation Alumina Substrate, (2) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Junction and Storage Temperature Symbol Max Unit PD 225 mW 1.8 mW/°C RθJA 556 °C/W PD 300 mW 2.4 mW/°C 417 –55 to +150 °C/W °C RθJA TJ , Tstg DEVICE MARKING BCW69LT1 = H1; BCW70LT1 = H2, ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) Characteristic Symbol Min Max Unit Collector–Emitter Breakdown Voltage (IC = –2.0 mAdc, IB = 0 ) V (BR)CEO – 45 — Vdc Collector–Emitter Breakdown Voltage (IC = –100 µAdc, V EB = 0 ) V (BR)CES – 50 — Vdc Emitter–Base Breakdown Voltage (I E= –10 µAdc, I C = 0) V (BR)EBO – 5.0 — Vdc (VCE = –20 Vdc, I E = 0 ) — – 100 nAdc (VCE = –20 Vdc, I E = 0 , TA = 100°C) — – 10 µAdc OFF CHARACTERISTICS Collector Cutoff Current I CEO 1. FR– 5 = 1.0 x 0.75 x 0.062 in. 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina. M13–1/6 LESHAN RADIO COMPANY, LTD. BCW69LT1 BCW70LT1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued) Characteristic Symbol Min Max 120 215 260 500 Unit ON CHARACTERISTICS DC Current Gain ( IC= –2.0 mAdc, VCE = –5.0 Vdc ) BCW69LT1 BCW70LT1 Collector–Emitter Saturation Voltage ( IC = – 10 mAdc, IB = –0.5 mAdc ) Base–Emitter On Voltage ( IC = – 2.0 mAdc, V CE = – 5.0Vdc ) hFE — V CE(sat) — – 0.3 Vdc V BE(on) – 0.6 – 0.75 Vdc C obo — 7.0 pF NF — 10 dB SMALL–SIGNAL CHARACTERISTICS Output Capacitance ( I E= 0 V CB = –10Vdc, f = 1.0 MHz) Noise Figure (V CE = – 5.0 Vdc, I C = – 0.2 mAdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz) M13–2/6 LESHAN RADIO COMPANY, LTD. BCW69LT1 BCW70LT1 TYPICAL NOISE CHARACTERISTICS (V CE = – 5.0 Vdc, T A = 25°C) 10 10.0 BANDWIDTH = 1.0 Hz R ~ ~0 30µA 100µA 300µA 1.0mA 1.0 10 20 50 100 200 S IC=1.0mA 3.0 5.0 2.0 8 5.0 IC=10 µA 3.0 BANDWIDTH = 1.0 Hz R ~ ~ 7.0 S I n , NOISE CURRENT (pA) e n , NOISE VOLTAGE (nV) 7.0 500 1.0k 2.0k 5.0k 2.0 300µA 1.0 0.7 100µA 0.5 0.3 30µA 0.2 10µA 0.1 10 10k 20 50 100 200 500 1.0k 2.0k f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 1. Noise Voltage Figure 2. Noise Current 5.0k 10k NOISE FIGURE CONTOURS (V CE = – 5.0 Vdc, T A = 25°C) 1.0M 1.0M BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 0.5 dB 5.0k 1.0 dB 2.0k 1.0k 2.0dB 500 3.0 dB 200 100 10 5.0 dB 20 30 50 70 100 200 300 500 700 1.0K 500k R S , SOURCE RESISTANCE ( Ω ) R S , SOURCE RESISTANCE ( Ω ) 500k BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 0.5 dB 5.0k 2.0k 1.0dB 1.0k 2.0 dB 3.0 dB 500 200 5.0 dB 100 10 20 30 50 70 100 200 300 500 700 1.0K I C , COLLECTOR CURRENT (µA) I C , COLLECTOR CURRENT (µA) Figure 3. Narrow Band, 100 Hz Figure 4. Narrow Band, 1.0 kHz R S , SOURCE RESISTANCE ( Ω ) 1.0M 500k 10 Hz to 15.7KHz 200k 100k Noise Figure is Defined as: 50k 20k NF = 20 log 10 10k 0.5dB 5.0k 1/ 2 S e n = Noise Voltage of the Transistor referred to the input. (Figure 3) 2.0k 1.0dB 1.0k 2.0dB 3.0 dB 5.0 dB 500 200 100 10 e n 2 + 4KTRS + I n2 R S2 ( –––––––––––––––) 4KTR 20 30 50 70 100 200 300 I n = Noise Current of the Transistor referred to the input. (Figure 4) K = Boltzman’s Constant (1.38 x 10 –23 j/°K) T = Temperature of the Source Resistance (°K) R s = Source Resistance ( Ω ) 500 700 1.0K I C , COLLECTOR CURRENT (µA) Figure 5. Wideband M13–3/6 LESHAN RADIO COMPANY, LTD. BCW69LT1 BCW70LT1 I C , COLLECTOR CURRENT (mA) 1.0 T J = 25°C 0.8 0.6 50 mA 10 mA I C= 1.0 mA 100 mA 0.4 0.2 T A = 25°C PULSE WIDTH =300 µs DUTY CYCLE<2.0% 80 I B= 400 mA 350µA 250 µA 300µA 200 µA 60 150 µA 40 100 µA 50µA 20 0 0 0.002 0.0050.010.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 5.0 15 20 25 30 35 40 I B , BASE CURRENT (mA) V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 7. Collector Characteristics 1.2 1.0 V BE(sat) @ I C /I B = 10 0.6 1.6 *APPLIES for I C / I B< h FE / 2 0.8 ∗ θ VC for V CE(sat) 25°C to 125°C 0 –55°C to 25°C –0.8 V BE(on)@ V CE= 1.0 V 0.4 25°C to 125°C –1.6 0.2 10 Figure 6. Collector Saturation Region T J=25°C 0.8 0 20 1.4 V, VOLTAGE (VOLTS) 100 θ V , TEMPERATURE COEFFICIENTS (mV/°C) V CE , COLLECTOR– EMITTER VOLTAGE (VOLTS) TYPICAL STATIC CHARACTERISTICS V CE(sat) @ I C /I B = 10 θ VB for V BE –55°C to 25°C –2.4 0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 10. “On” Voltages Figure 11. Temperature Coefficients M13–4/6 LESHAN RADIO COMPANY, LTD. BCW69LT1 BCW70LT1 TYPICAL DYNAMIC CHARACTERISTICS 500 1000 V CC= 3.0 V IC /I B= 10 T J= 25°C 300 200 500 t, TIME (ns) t, TIME (ns) 70 50 tr 20 200 100 70 50 tf 30 td @ V BE(off)= 0.5 V 10 ts 300 100 30 VCC= –3.0 V IC /I B= 10 IB1=IB2 T J= 25°C 700 20 7.0 10 2.0 3.0 5.0 7.0 10 20 30 50 70 –1.0 100 –2.0 –3.0 –5.0 –7.0 –10 –20 –30 –50 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 10. Turn–On Time Figure 11. Turn–Off Time –70 –100 10.0 500 T J= 25°C T J = 25°C 7.0 V CE=20 V C ib C, CAPACITANCE (pF) 300 5.0 V 200 100 r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED) f T, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz) 5.0 1.0 70 50 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 5.0 3.0 C ob 2.0 1.0 0.05 50 0.1 0.2 0.5 1.0 2.0 5.0 10 I C , COLLECTOR CURRENT (mA) V R , REVERSE VOLTAGE (VOLTS) Figure 12. Current–Gain — Bandwidth Product Figure 13. Capacitance 1.0 0.7 0.5 50 D = 0.5 0.3 0.2 0.2 0.1 0.1 FIGURE 16 DUTY CYCLE, D = t 1 / t 2 0.05 0.07 0.05 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN P(pk) 0.02 0.03 t 0.01 0.02 0.05 0.1 0.2 0.5 1.0 t 2.0 5.0 10 20 50 100 200 READ TIME AT t 1 (SEE AN–569) Z θJA(t) = r(t) • RθJA 1 SINGLE PULSE 0.02 0.01 0.01 20 2 500 T J(pk) – T A = P (pk) Z θJA(t) 1.0k 2.0k 5.0k 10k 20k 50k 100k t, TIME (ms) Figure 14. Thermal Response M13–5/6 LESHAN RADIO COMPANY, LTD. BCW69LT1 BCW70LT1 I C , COLLECTOR CURRENT (nA) 104 DESIGN NOTE: USE OF THERMAL RESPONSE DATA V CC = 30 V 103 I CEO 102 I 101 CBO AND I CEX @ V BE(off) = 3.0 V 100 10–1 10–2 –4 –2 0 +20 +40 +60 +80 +100 +120 +140 T J , JUNCTION TEMPERATURE (°C) Figure 15. Typical Collector Leakage Current +160 A train of periodical power pulses can be represented by the model as shown in Figure 16. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 14 was calculated for various duty cycles. To find Z θJA(t) , multiply the value obtained from Figure 14 by the steady state value R θJA . Example: Dissipating 2.0 watts peak under the following conditions: t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2) Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore ∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C. For more information, see AN–569. M13–6/6