LRC BCW69LT1 General purpose transistors(pnp silicon) Datasheet

LESHAN RADIO COMPANY, LTD.
General Purpose Transistors
PNP Silicon
BCW69LT1
BCW70LT1
3
COLLECTOR
1
BASE
3
2
EMITTER
1
2
MAXIMUM RATINGS
CASE 318–08, STYLE 6
Rating
Symbol
Value
Unit
Collector–Emitter Voltage
V CEO
– 45
Vdc
Emitter–Base Voltage
V
– 5.0
Vdc
– 100
mAdc
Collector Current — Continuous
EBO
IC
SOT–23 (TO–236AB)
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR– 5 Board, (1)
TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Total Device Dissipation
Alumina Substrate, (2) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Junction and Storage Temperature
Symbol
Max
Unit
PD
225
mW
1.8
mW/°C
RθJA
556
°C/W
PD
300
mW
2.4
mW/°C
417
–55 to +150
°C/W
°C
RθJA
TJ , Tstg
DEVICE MARKING
BCW69LT1 = H1; BCW70LT1 = H2,
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Max
Unit
Collector–Emitter Breakdown Voltage (IC = –2.0 mAdc, IB = 0 )
V (BR)CEO
– 45
—
Vdc
Collector–Emitter Breakdown Voltage (IC = –100 µAdc, V EB = 0 )
V (BR)CES
– 50
—
Vdc
Emitter–Base Breakdown Voltage (I E= –10 µAdc, I C = 0)
V (BR)EBO
– 5.0
—
Vdc
(VCE = –20 Vdc, I E = 0 )
—
– 100
nAdc
(VCE = –20 Vdc, I E = 0 , TA = 100°C)
—
– 10
µAdc
OFF CHARACTERISTICS
Collector Cutoff Current
I CEO
1. FR– 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
M13–1/6
LESHAN RADIO COMPANY, LTD.
BCW69LT1 BCW70LT1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
120
215
260
500
Unit
ON CHARACTERISTICS
DC Current Gain
( IC= –2.0 mAdc, VCE = –5.0 Vdc )
BCW69LT1
BCW70LT1
Collector–Emitter Saturation Voltage
( IC = – 10 mAdc, IB = –0.5 mAdc )
Base–Emitter On Voltage
( IC = – 2.0 mAdc, V CE = – 5.0Vdc )
hFE
—
V
CE(sat)
—
– 0.3
Vdc
V
BE(on)
– 0.6
– 0.75
Vdc
C obo
—
7.0
pF
NF
—
10
dB
SMALL–SIGNAL CHARACTERISTICS
Output Capacitance
( I E= 0 V CB = –10Vdc, f = 1.0 MHz)
Noise Figure
(V CE = – 5.0 Vdc, I C = – 0.2 mAdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz)
M13–2/6
LESHAN RADIO COMPANY, LTD.
BCW69LT1 BCW70LT1
TYPICAL NOISE CHARACTERISTICS
(V CE = – 5.0 Vdc, T A = 25°C)
10
10.0
BANDWIDTH = 1.0 Hz
R ~
~0
30µA
100µA
300µA
1.0mA
1.0
10
20
50
100
200
S
IC=1.0mA
3.0
5.0
2.0
8
5.0
IC=10 µA
3.0
BANDWIDTH = 1.0 Hz
R ~
~
7.0
S
I n , NOISE CURRENT (pA)
e n , NOISE VOLTAGE (nV)
7.0
500 1.0k
2.0k
5.0k
2.0
300µA
1.0
0.7
100µA
0.5
0.3
30µA
0.2
10µA
0.1
10
10k
20
50
100
200
500
1.0k
2.0k
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
Figure 1. Noise Voltage
Figure 2. Noise Current
5.0k
10k
NOISE FIGURE CONTOURS
(V CE = – 5.0 Vdc, T A = 25°C)
1.0M
1.0M
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
1.0 dB
2.0k
1.0k
2.0dB
500
3.0 dB
200
100
10
5.0 dB
20
30
50
70
100
200
300
500 700 1.0K
500k
R S , SOURCE RESISTANCE ( Ω )
R S , SOURCE RESISTANCE ( Ω )
500k
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
2.0k
1.0dB
1.0k
2.0 dB
3.0 dB
500
200
5.0 dB
100
10
20
30
50
70 100
200
300
500 700 1.0K
I C , COLLECTOR CURRENT (µA)
I C , COLLECTOR CURRENT (µA)
Figure 3. Narrow Band, 100 Hz
Figure 4. Narrow Band, 1.0 kHz
R S , SOURCE RESISTANCE ( Ω )
1.0M
500k
10 Hz to 15.7KHz
200k
100k
Noise Figure is Defined as:
50k
20k
NF = 20 log 10
10k
0.5dB
5.0k
1/ 2
S
e n = Noise Voltage of the Transistor referred to the input. (Figure 3)
2.0k
1.0dB
1.0k
2.0dB
3.0 dB
5.0 dB
500
200
100
10
e n 2 + 4KTRS + I n2 R S2
( –––––––––––––––)
4KTR
20
30
50
70
100
200
300
I n = Noise Current of the Transistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10 –23 j/°K)
T = Temperature of the Source Resistance (°K)
R s = Source Resistance ( Ω )
500 700 1.0K
I C , COLLECTOR CURRENT (µA)
Figure 5. Wideband
M13–3/6
LESHAN RADIO COMPANY, LTD.
BCW69LT1 BCW70LT1
I C , COLLECTOR CURRENT (mA)
1.0
T J = 25°C
0.8
0.6
50 mA
10 mA
I C= 1.0 mA
100 mA
0.4
0.2
T A = 25°C
PULSE WIDTH =300 µs
DUTY CYCLE<2.0%
80
I B= 400 mA
350µA
250 µA
300µA
200 µA
60
150 µA
40
100 µA
50µA
20
0
0
0.002 0.0050.010.02
0.05 0.1 0.2
0.5 1.0 2.0
5.0
10
5.0
15
20
25
30
35
40
I B , BASE CURRENT (mA)
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 7. Collector Characteristics
1.2
1.0
V BE(sat) @ I C /I B = 10
0.6
1.6
*APPLIES for I C / I B< h FE / 2
0.8
∗ θ VC for V CE(sat)
25°C to 125°C
0
–55°C to 25°C
–0.8
V BE(on)@ V CE= 1.0 V
0.4
25°C to 125°C
–1.6
0.2
10
Figure 6. Collector Saturation Region
T J=25°C
0.8
0
20
1.4
V, VOLTAGE (VOLTS)
100
θ V , TEMPERATURE COEFFICIENTS (mV/°C)
V CE , COLLECTOR– EMITTER VOLTAGE (VOLTS)
TYPICAL STATIC CHARACTERISTICS
V CE(sat) @ I C /I B = 10
θ VB for V BE
–55°C to 25°C
–2.4
0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 10. “On” Voltages
Figure 11. Temperature Coefficients
M13–4/6
LESHAN RADIO COMPANY, LTD.
BCW69LT1 BCW70LT1
TYPICAL DYNAMIC CHARACTERISTICS
500
1000
V CC= 3.0 V
IC /I B= 10
T J= 25°C
300
200
500
t, TIME (ns)
t, TIME (ns)
70
50
tr
20
200
100
70
50
tf
30
td @ V BE(off)= 0.5 V
10
ts
300
100
30
VCC= –3.0 V
IC /I B= 10
IB1=IB2
T J= 25°C
700
20
7.0
10
2.0
3.0
5.0
7.0
10
20
30
50
70
–1.0
100
–2.0 –3.0
–5.0 –7.0 –10
–20
–30
–50
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 10. Turn–On Time
Figure 11. Turn–Off Time
–70 –100
10.0
500
T J= 25°C
T J = 25°C
7.0
V CE=20 V
C ib
C, CAPACITANCE (pF)
300
5.0 V
200
100
r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
f T, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
5.0
1.0
70
50
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
5.0
3.0
C ob
2.0
1.0
0.05
50
0.1
0.2
0.5
1.0
2.0
5.0
10
I C , COLLECTOR CURRENT (mA)
V R , REVERSE VOLTAGE (VOLTS)
Figure 12. Current–Gain — Bandwidth Product
Figure 13. Capacitance
1.0
0.7
0.5
50
D = 0.5
0.3
0.2
0.2
0.1
0.1
FIGURE 16
DUTY CYCLE, D = t 1 / t 2
0.05
0.07
0.05
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
P(pk)
0.02
0.03
t
0.01
0.02
0.05
0.1
0.2
0.5
1.0
t
2.0
5.0
10
20
50
100
200
READ TIME AT t 1 (SEE AN–569)
Z θJA(t) = r(t) • RθJA
1
SINGLE PULSE
0.02
0.01
0.01
20
2
500
T J(pk) – T A = P (pk) Z θJA(t)
1.0k
2.0k
5.0k
10k
20k
50k
100k
t, TIME (ms)
Figure 14. Thermal Response
M13–5/6
LESHAN RADIO COMPANY, LTD.
BCW69LT1 BCW70LT1
I C , COLLECTOR CURRENT (nA)
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
V CC = 30 V
103
I CEO
102
I
101
CBO
AND
I CEX @ V BE(off) = 3.0 V
100
10–1
10–2
–4
–2
0
+20
+40
+60
+80
+100
+120
+140
T J , JUNCTION TEMPERATURE (°C)
Figure 15. Typical Collector Leakage Current
+160
A train of periodical power pulses can be represented by the
model as shown in Figure 16. Using the model and the device
thermal response the normalized effective transient thermal resistance of Figure 14 was calculated for various duty cycles.
To find Z θJA(t) , multiply the value obtained from Figure 14 by the
steady state value R θJA .
Example:
Dissipating 2.0 watts peak under the following conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading
of r(t) is 0.22.
The peak rise in junction temperature is therefore
∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
M13–6/6
Similar pages