a LC2MOS 8-/16-Channel High Performance Analog Multiplexers ADG406/ADG407/ADG426 FEATURES 44 V Supply Maximum Ratings VSS to VDD Analog Signal Range Low On Resistance (80 Ω max) Low Power Fast Switching tON < 160 ns t OFF < 150 ns Break Before Make Switching Action Plug-In Upgrade for DG506A/ADG506A, DG507A/ADG507A, DG526/ADG526A ADG406/ADG407 are Plug-In Replacements for DG406/DG407 FUNCTIONAL BLOCK DIAGRAMS ADG406 ADG407 S1 S1A DA S8A D S1B DB S16 S8B 1 OF 16 DECODER 1 OF 8 DECODER A0 A1 A2 A3 EN A0 A1 A2 EN ADG426 S1 APPLICATIONS Audio and Video Routing Automatic Test Equipment Data Acquisition Systems Battery Powered Systems Sample Hold Systems Communication Systems Avionics D S16 DECODER/ LATCHES WR A0 A1 A2 A3 EN RS GENERAL DESCRIPTION PRODUCT HIGHLIGHTS The ADG406, ADG407 and ADG426 are monolithic CMOS analog multiplexers. The ADG406 and ADG426 switch one of sixteen inputs to a common output as determined by the 4-bit binary address lines A0, A1, A2 and A3. The ADG426 has onchip address and control latches that facilitate microprocessor interfacing. The ADG407 switches one of eight differential inputs to a common differential output as determined by the 3bit binary address lines A0, A1 and A2. An EN input on all devices is used to enable or disable the device. When disabled, all channels are switched OFF. 1. Extended Signal Range The ADG406/ADG407/ADG426 are fabricated on an enhanced LC2MOS process giving an increased signal range which extends to the supply rails The ADG406/ADG407/ADG426 are designed on an enhanced LC2MOS process that provides low power dissipation yet gives high switching speed and low on resistance. These features make the parts suitable for high speed data acquisition systems and audio signal switching. Low power dissipation makes the parts suitable for battery powered systems. Each channel conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs. 2. Low Power Dissipation 3. Low RON 4. Single/Dual Supply Operation 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG406/ADG407/ADG426 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V. REV. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703 ADG406/ADG407/ADG426–SPECIFICATIONS1 DUAL SUPPLY (VDD = +15 V ± 10%, VSS = –15 V ± 10%, GND = 0 V, unless otherwise noted) Parameter ANALOG SWITCH Analog Signal Range RON RON Match LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) ADG406, ADG426 ADG407 Channel ON Leakage ID, IS (ON) ADG406, ADG426 ADG407 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance DYNAMIC CHARACTERISTICS2 tTRANSITION B Version –40°C to +25°C +85°C T Version –55°C to +25°C +125°C VSS to VDD 50 80 4 VSS to VDD Units Test Conditions/Comments V Ω typ Ω max Ω typ VD = ± 10 V, IS = –1 mA VDD = +13.5 V, VSS = –13.5 V VD = 0 V, IS = –1 mA 125 50 80 4 125 ± 0.5 ± 20 ± 0.5 ± 50 nA max ±1 ±1 ± 20 ± 20 ±1 ±1 ± 200 ± 100 nA max nA max ±1 ±1 ± 20 ± 20 ±1 ±1 ± 200 ± 100 nA max nA max 2.4 0.8 V min V max ±1 µA max pF typ VIN = 0 or VDD f = 1 MHz RL = 300 Ω, CL = 35 pF; V1 = ± 10 V, V2 = 710 V; Test Circuit 5 RL = 300 Ω, CL = 35 pF; VS = +5 V, Test Circuit 6 RL = 300 Ω, CL = 35 pF; VS = +5 V, Test Circuit 7 RL = 300 Ω, CL = 35 pF; VS = +5 V, Test Circuit 7 2.4 0.8 ±1 8 8 120 150 250 120 150 250 ns typ ns max Break Before Make Delay, tOPEN 10 10 10 10 ns min tON (EN, WR) 120 160 110 150 175 225 130 180 120 160 110 150 175 225 130 180 ns typ ns max ns typ ns max 100 100 10 100 tOFF (EN, RS) ADG426 Only tW, Write Pulse Width tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulse Width Charge Injection 8 8 ns min ns min ns min ns min pC typ OFF Isolation –75 –75 dB typ Channel-to-Channel Crosstalk CS (OFF) CD (OFF) ADG406, ADG426 ADG407 CD, CS (ON) ADG406, ADG426 ADG407 85 5 85 5 dB typ pF typ 50 25 50 25 pF typ pF typ 60 40 60 40 pF typ pF typ 100 100 10 100 1 5 1 5 ISS ISS VS = VD = ± 10 V; Test Circuit 4 VS = +5 V VS = 0 V, RS = 0 Ω, CL = 1 nF; Test Circuit 10 RL = 1 kΩ, f = 100 kHz; VEN = 0 V, Test Circuit 11 RL = 1 kΩ, f = 100 kHz, Test Circuit 12 f = 1 MHz f = 1 MHz f = 1 MHz POWER REQUIREMENTS IDD IDD VDD = +16.5 V, VSS = –16.5 V VD = ± 10 V, VS = 710 V, Test Circuit 2 VD = ± 10 V, VS = 710 V; Test Circuit 3 100 200 500 1 5 1 5 1 5 100 200 500 1 5 µA typ µA max µA typ µA max µA typ µA max µA typ µA max VDD = +16.5 V, VSS = –16.5 V VIN = 0 V, VEN = 0 V VIN = 0 V, VEN = 2.4 V NOTES 1 Temperature ranges are as follows: B Versions: –40°C to +85°C; T Versions: –55°C to +125°C. Guaranteed by design, not subject to production test. Specifications subject to change without notice. 2 –2– REV. 0 ADG406/ADG407/ADG426 SINGLE SUPPLY (V DD = +12 V ± 10%, VSS = 0 V, GND = 0 V, unless otherwise noted) Parameter ANALOG SWITCH Analog Signal Range RON LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) ADG406, ADG426 ADG407 Channel ON Leakage ID, IS (ON) ADG406, ADG426 ADG407 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance DYNAMIC CHARACTERISTICS2 tTRANSITION B Version –40°C to +25°C +85°C 0 to VDD 0 to VDD Units Test Conditions/Comments VD = +3 V, +8.5 V, IS = –1 mA; VDD = +10.8 V 200 90 125 200 V Ω typ Ω max ± 0.5 ± 20 ± 0.5 ± 50 nA max ±1 ±1 ± 20 ± 20 ±1 ±1 ± 200 ± 100 nA max nA max ±1 ±1 ± 20 ± 20 ±1 ±1 ± 200 ± 100 nA max nA max 2.4 0.8 V min V max ±1 µA max pF typ VIN = 0 or VDD f = 1 MHz ns typ ns max RL = 300 Ω, CL = 35 pF; V1 = 8 V/0 V, V2 = 0 V/8 V; Test Circuit 5 RL = 300 Ω, CL = 35 pF; VS = +5 V, Test Circuit 6 RL = 300 Ω, CL = 35 pF; VS = +5 V, Test Circuit 7 RL = 300 Ω, CL = 35 pF; VS = +5 V, Test Circuit 7 90 125 2.4 0.8 ±1 8 180 220 Break Before Make Delay, tOPEN 10 tON (EN, WR) 180 240 135 180 tOFF (EN, RS) T Version –55°C to +25°C +125°C 8 350 180 220 350 10 350 220 VS = VD = 8 V/0.1 V, Test Circuit 4 ns typ 180 240 135 180 350 220 ns typ ns max ns typ ns max ADG426 Only tW, Write Pulse Width tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulse Width Charge Injection 5 5 ns min ns min ns min ns min pC typ OFF Isolation –75 –75 dB typ Channel-to-Channel Crosstalk 85 85 dB typ CS (OFF) CD (OFF) ADG406, ADG426 ADG407 CD, CS (ON) ADG406, ADG426 ADG407 8 8 pF typ 80 40 80 40 pF typ pF typ 100 50 100 50 pF typ pF typ 100 100 10 100 1 5 100 200 500 1 5 100 200 500 NOTES 1 Temperature ranges are as follows: B Versions: –40°C to +85°C; T Versions: –55°C to +125°C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice. REV. 0 VS = +5 V VS = 6 V, RS = 0 Ω, CL = 1 nF; Test Circuit 10 RL = 1 kΩ, f = 100 kHz; Test Circuit 11 RL = 1 kΩ, f = 100 kHz; Test Circuit 12 f = 1 MHz f = 1 MHz f = 1 MHz POWER REQUIREMENTS IDD IDD 100 100 10 100 VDD = +13.2 V VD = 8 V/0.1 V, VS = 0.1 V/8 V; Test Circuit 2 VD = 8 V/0.1 V, VS = 0.1 V/8 V; Test Circuit 3 –3– µA typ µA max µA typ µA max VDD = +13.2 V VIN = 0 V, VEN = 0 V VIN = 0 V, VEN = 2.4 V ADG406/ADG407/ADG426 ABSOLUTE MAXIMUM RATINGS 1 (TA = +25°C unless otherwise noted) VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +25 V VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to –25 V Analog, Digital Inputs2. . . . . . . . . . . . . VSS – 2 V to VDD + 2 V or 20 mA, Whichever Occurs First Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C Extended (T Version) . . . . . . . . . . . . . . . . . –55°C to +125°C Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150°C Plastic Package θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75°C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260°C PLCC Package θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 80°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C SSOP Package θJA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 122°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220°C ORDERING GUIDE Model Temperature Range Package Option* ADG406BN ADG406BP ADG407BN ADG407BP ADG426BN ADG426BRS –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C –40°C to +85°C N-28 P-28A N-28 P-28A N-28 RS-28 *N = Plastic DIP, P = Plastic Leaded Chip Carrier (PLCC), RS = Shrink Small Outline Package (SSOP). NOTES 1 Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. 2 Overvoltages at A, S, D, WR or RS will be clamped by internal diodes. Current should be limited to the maximum ratings given. CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. –4– WARNING! ESD SENSITIVE DEVICE REV. 0 ADG406/ADG407/ADG426 Table I. Truth Table (ADG406) PIN CONFIGURATIONS X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 NONE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 VDD 1 28 D NC 2 27 VSS NC 3 26 S8 S16 4 25 S7 S15 5 25 S7 S15 5 24 S6 S14 6 24 S6 S14 6 23 S5 S13 7 ADG406 23 S5 S13 7 22 S4 8 8 S3 S11 9 TOP VIEW (Not to Scale) 22 S4 S12 TOP VIEW (Not to Scale) 21 S12 S11 9 20 S2 S10 10 20 S2 S10 10 19 S1 S9 11 19 S1 S9 11 18 EN GND 12 17 A0 NC 13 16 A1 A3 14 15 A2 VDD 1 28 DA DB 2 27 VSS NC 3 26 S8A S8B 4 25 S7A S7B 5 25 S7A S7B 5 24 S6A S6B 6 24 S6A S6B 6 23 S5A S5B 7 ADG407 23 S5A 22 S4A TOP VIEW 21 S3A (Not to Scale) S4B 8 22 S4A S3B 9 TOP VIEW (Not to Scale) ADG406 4 3 2 1 28 27 26 S8 X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 PLCC DIP VSS ON SWITCH VDD EN D A0 NC A1 S16 A2 NC A3 21 S3 A1 A0 EN DA VSS S8A 1 28 27 26 A2 2 A3 DB VDD NC GND 12 13 14 15 16 17 18 NC = NO CONNECT S5B 7 S4B 8 A3 A2 A1 A0 EN X X X X X X X X X X X 0 X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 WR RS 1 ON SWITCH NC 3 20 S2A S2B 10 S2B 10 19 S1B 11 19 S1A S1A S1B 11 18 EN GND 12 17 A0 NC 13 16 A1 NC 14 15 A2 Retains Previous Switch Condition NONE (Address and Enable Latches Cleared) NONE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 12 13 14 15 16 17 18 NC = NO CONNECT PIN CONFIGURATION DIP/SSOP VDD 1 28 D NC 2 27 VSS RS 3 26 S8 S16 4 25 S7 S15 5 24 S6 S14 6 23 S5 S13 7 22 S4 S12 8 TOP VIEW (Not to Scale) 21 S3 S11 9 20 S2 S10 10 19 S1 S9 11 18 EN GND 12 17 A0 WR 13 16 A1 A3 14 15 A2 ADG426 –5– A0 9 NC = NO CONNECT REV. 0 21 S3A 20 S2A S3B Table III. Truth Table (ADG426) ADG407 4 EN NONE 1 2 3 4 5 6 7 8 A1 0 1 1 1 1 1 1 1 1 ON SWITCH PAIR A2 X 0 1 0 1 0 1 0 1 EN NC X 0 0 1 1 0 0 1 1 A0 NC X 0 0 0 0 1 1 1 1 A1 GND A2 S8B Table II. Truth Table (ADG407) ADG406/ADG407/ADG426 TIMING DIAGRAMS (ADG426) TERMINOLOGY VDD VSS 3V WR 50% 50% 0V tW tS 3V A0, A1, A2, (A3) EN 0V GND RON RON Match tH 2V 0.8V Figure 1. Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while WR is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of WR. IS (OFF) ID (OFF) ID, IS (ON) VD (VS) CS (OFF) CD (OFF) 3V RS 50% 50% CD, CS (ON) CIN tON (EN) 0V t RS t OFF (RS) V0 0.8V0 SWITCH OUTPUT tOFF (EN) 0V Figure 2. Figure 2 shows the Reset Pulse Width, tRS, and the Reset Turn Off Time, tOFF (RS). Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V. tR = tF = 20 ns. tTRANSITION tOPEN VINL VINH IINL (IINH) Crosstalk Off Isolation Charge Injection IDD ISS –6– Most positive power supply potential. Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground. Ground (0 V) reference. Ohmic resistance between D and S. Difference between the RON of any two channels. Source leakage current when the switch is off. Drain leakage current when the switch is off. Channel leakage current when the switch is on. Analog voltage on terminals D, S. Channel input capacitance for “OFF” condition. Channel output capacitance for “OFF” condition. “ON” switch capacitance. Digital input capacitance. Delay time between the 50% and 90% points of the digital input and switch “ON” condition. Delay time between the 50% and 90% points of the digital input and switch “OFF” condition. Delay time between the 50% and 90% points of the digital inputs and the switch “ON” condition when switching from one address state to another. “OFF” time measured between 80% points of both switches when switching from one address state to another. Maximum input voltage for logic “0.” Minimum input voltage for logic “1.” Input current of the digital input. A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. A measure of unwanted signal coupling through an “OFF” channel. A measure of the glitch impulse transferred from the digital input to the analog output during switching. Positive supply current. Negative supply current. REV. 0 ADG406/ADG407/ADG426 Typical Performance Graphs 150 400 TA = +25°C TA = +25°C 350 VDD = +5V VSS = 0V 120 VDD = +5V VSS = –5V 250 VDD = +10V VSS = –10V RON – Ω RON – Ω 90 300 60 30 0 –15 200 VDD = +10V VSS = 0V 150 –10 100 VDD = +12V VSS = –12V VDD = +15V VSS = –15V –5 0 5 10 VDD = +12V VSS = 0V V DD = +15V V SS = 0V 50 0 15 0 2.5 5 VD (V S) – Volts 7.5 10 VD (V S) – Volts 12.5 15 Figure 6. RON as a Function of VD (VS): Single Supplies Figure 3. RON as a Function of VD (VS): Dual Supplies 100 150 VDD = +15V VSS = –15V VDD = +12V VSS = 0V 80 120 +125°C +125°C 90 RON – Ω RON – Ω 60 +85°C 40 +25°C 20 0 –15 0 –10 –5 0 5 VD (V S) – Volts 10 15 0 LEAKAGE CURRENT – nA 4 6 8 VD (V S) – Volts 10 12 0.02 VDD = +15V VSS = –15V TA = +25°C V DD = +12V V SS = 0V TA = +25°C LEAKAGE CURRENT – nA ID(ON) 0.06 0.04 ID(OFF) 0.02 0.00 0.01 IS(OFF) 0.00 ID(OFF) ID(ON) –0.01 IS(OFF) –0.02 –10 –5 0 5 VD (V S) – Volts 10 0 15 2 4 6 VD (V S) – Volts 8 10 12 Figure 8. Leakage Currents as a Function of VD (VS) Figure 5. Leakage Currents as a Function of VD (VS) REV. 0 2 Figure 7. RON as a Function of VD (VS) for Different Temperatures 0.10 –0.02 –15 +25°C 60 30 Figure 4. RON as a Function of VD (VS) for Different Temperatures 0.08 +85°C –7– ADG406/ADG407/ADG426 100 100 VDD = +15V VSS = –15V VDD = +15V VSS = –15V 10 10 EN = 2.4V ISS – mA IDD – mA 1 EN = 2.4V 1 0.1 EN = 0V 0.01 0.001 EN = 0V 0.1 2 10 10 3 10 4 5 10 10 6 10 0.0001 2 10 7 10 3 10 FREQUENCY – Hz 4 10 5 6 10 7 Figure 12. Negative Supply Current vs. Switching Frequency Figure 9. Positive Supply Current vs. Switching Frequency 160 220 VDD = +15V VSS = –15V tON VDD = +12V VSS = 0V 200 140 tON tTRANSITION 180 tTRANSITION t – ns t – ns 120 10 FREQUENCY – Hz 160 140 100 120 80 tOFF tOFF 100 60 1 3 5 7 9 11 13 80 15 2 VIN – V 4 6 8 10 12 VIN – V Figure 10. Switching Time vs. VIN (Bipolar Supply) Figure 13. Switching Time vs. VIN (Single Supply) 300 500 VIN = +5V VIN = +5V 400 tTRANSITION tON 200 t – ns t – ns 300 tON 200 tTRANSITION 100 tOFF tOFF 100 0 ±5 ±7 ±9 ±11 ±13 ±15 ±17 ±19 0 ±21 5 SUPPLY VOLTAGE – Volts Figure 11. Switching Time vs. Bipolar Supply 7 9 11 SUPPLY VOLTAGE – Volts 13 15 Figure 14. Switching Time vs. Single Supply –8– REV. 0 ADG406/ADG407/ADG426 140 140 VDD = +15V VSS = –15V 120 CROSSTALK – dB OFF ISOLATION – dB VDD = +15V VSS = –15V 120 100 80 60 100 80 60 40 2 10 10 3 10 4 5 10 10 6 10 40 10 2 7 10 4 10 3 FREQUENCY – Hz 10 5 10 6 10 7 FREQUENCY – Hz Figure 16. Crosstalk vs. Frequency Figure 15. OFF Isolation vs. Frequency Test Circuits IDS VDD VSS VDD VSS V1 S1 ID (OFF) S2 S D A D VD S16 VS +0.8V EN VS RON = V1/IDS Test Circuit 3. ID (OFF) Test Circuit 1. On Resistance IS (OFF) A S1 VDD VSS VDD VSS VDD VSS VDD VSS ID (ON) S2 D S16 VS A VD S16 EN +0.8V EN VD VS Test Circuit 4. ID (ON) Test Circuit 2. IS (OFF) REV. 0 D S1 –9– 2.4V ADG406/ADG407/ADG426 VIN 50Ω VDD VSS VDD VSS A3 S1 A2 S2 THRU S15 A1 S16 ADDRESS DRIVE – V IN 50% 50% V2 ADG426* A0 2.4V 3V V1 D EN RS GND VOUT RL 300Ω WR 90% VOUT CL 35pF 90% tTRANSITION tTRANSITION *SIMILAR CONNECTION FOR ADG406/ADG407 Test Circuit 5. Switching Time of Multiplexer, tTRANSITION VDD VSS VDD VSS A3 VIN 3V S1 VS ADDRESS DRIVE – V IN A2 S2 THRU S15 50Ω A1 ADG426* A0 S16 RS 2.4V D EN GND VOUT RL 300Ω WR OUTPUT CL 35pF 80% 80% 0V tOPEN *SIMILAR CONNECTION FOR ADG406/ADG407 Test Circuit 6. Break-Before-Make Delay, tOPEN VDD VSS VDD VSS A3 S1 A2 3V VS ENABLE DRIVE–V IN S2 THRU S16 A1 ADG426* 50% 50% 0V A0 2.4V tOFF (EN) VO RS D EN GND VIN 50Ω WR VOUT RL 300Ω 90% 90% OUTPUT CL 35pF 0V tON (EN) *SIMILAR CONNECTION FOR ADG406/ADG407 Test Circuit 7. Enable Delay, tON (EN), tOFF (EN) –10– REV. 0 ADG406/ADG407/ADG426 VDD VSS VDD VSS A3 S1 3V VS A2 S2 THRU S16 A1 A0 ADG426 RL 300Ω RS VRS WR 50% 0V VOUT D EN 2.4V WR CL 35pF V0 tON (WR) OUTPUT GND 0.2V0 0V VWR Test Circuit 8. Write Turn-On Time, tON (WR) VDD VSS VDD VSS A3 3V S1 A2 A1 VS 50% RS S2 THRU S16 0V ADG426 tOFF (RS) A0 2.4V V0 EN D RS GND VIN VOUT RL 300Ω WR CL 35pF 0.8V 0 OUTPUT 0V Test Circuit 9. Reset Turn-Off Time, tOFF (RS) VDD VSS VDD A3 VSS RS 2.4V 3V A2 A1 ADG426* A0 D S VS RS EN VIN VOUT CL 1nF GND LOGIC INPUT (VIN ) ∆ VOUT VOUT QINJ = C L x ∆VOUT WR *SIMILAR CONNECTION FOR ADG406/ADG407 Test Circuit 10. Charge Injection REV. 0 –11– ADG406/ADG407/ADG426 VDD VDD VDD S16 VDD A2 A1 S2 S1 VIN S16 1kΩ VIN 1kΩ ADG426* A1 RS EN GND VOUT A0 ADG426* A0 2.4V D S1 WR A2 VOUT D A3 RL 1kΩ VSS C1905–18–4/94 A3 EN 2.4V RS WR GND VSS VSS *SIMILAR CONNECTION FOR ADG406/407 VSS *SIMILAR CONNECTION FOR ADG406/407 Test Circuit 11. OFF Isolation Test Circuit 12. Crosstalk OUTLINE DIMENSIONS Dimensions shown in inches an (mm). 28-Pin Plastic (N-28) 28-Pin PLCC (P-28A) 0.048 (1.21) 0.042 (1.07) 15 0.048 (1.21) 0.042 (1.07) 4 1 14 1.565 (39.70) 1.380 (35.10) 0.060 (1.52) 0.015 (0.38) 0.250 (6.35) MAX 0.150 (3.81) MIN 0.200 (5.05) 0.125 (3.18) 0.022 (0.558) 0.014 (0.356) 0.050 (1.27) BSC 0.100 (2.54) BSC 0.070 (1.77) MAX 0.625 (15.87) 0.600 (15.24) 0.025 (0.63) 0.015 (0.38) 26 PIN 1 IDENTIFIER 5 0.580 (14.73) 0.485 (12.32) PIN 1 0.180 (4.57) 0.165 (4.19) 25 0.021 (0.53) 0.013 (0.33) 0.430 (10.92) 0.390 (9.91) TOP VIEW 0.032 (0.81) 0.026 (0.66) 0.195 (4.95) 0.125 (3.18) 19 11 0.015 (0.381) 0.008 (0.204) 0.020 (0.50) R 12 SEATING PLANE 18 0.040 (1.01) 0.025 (0.64) 0.456 (11.58) SQ 0.450 (11.43) 0.495 (12.57) SQ 0.485 (12.32) 0.110 (2.79) 0.085 (2.16) 28-Pin SSOP (RS-28) 28 15 PRINTED IN U.S.A. 28 0.056 (1.42) 0.042 (1.07) 0.212 (5.38) 0.205 (5.207) 0.311 (7.9) 0.301 (7.64) PIN 1 1 14 0.07 (1.78) 0.066 (1.67) 0.407 (10.34) 0.397 (10.08) 0.008 (0.203) 0.002 (0.050) 0.0256 (0.65) BSC 0.009 (0.229) 0.005 (0.127) 8° 0° 0.03 (0.762) 0.022 (0.558) 1. LEAD NO. 1 IDENTIFIED BY A DOT. 2. LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS –12– REV. 0