BTC50010-1TAA & BTC30010-1TAA Smart High-Side Power Connector 2x Single Channel, 2x 1mΩ Data Sheet 1.3, 2015-02-06 Automotive Power BTC50010-1TAA & BTC30010-1TAA Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 3.3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 5.1 5.1.1 5.1.2 5.2 5.3 5.4 5.5 5.6 5.7 5.8 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching an Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gate Driver Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection during Loss of Load or Loss of VS Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BTC50010-1TAA Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 15 17 18 19 19 20 21 22 6 6.1 6.2 6.3 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Information for Application Combining PWM Mode with Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Information for Driving Capability of Charge Pump Pin after Switch ON . . . . . . . . . . . . . . . . . . . . . . Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 31 32 32 7 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Data Sheet Connect FET & Companion 2 6 6 6 8 1.3, 2015-02-06 High-Side Power Connector 1 BTC50010-1TAA & BTC30010-1TAA Overview Applications • Switching resistive, capacitive and inductive loads in conjunction with an effective peripheral free wheeling circuit • Replaces electromechanical relay • Most suitable for high current applications, such as Start-Stop, power distribution, main switch, heating systems • PWM application with low frequencies PG-TO-263-7-8 Features • Load or Supply Line switching up to 60 A DC • Operating temperature up to 150°C • Current controlled Input pin • Low Stand-by current • Two times one channel device, easily be combined for reverse blocking or to halve the RDS(ON) • Electrostatic discharge protected (ESD) • Optimized Electromagnetic Compatibility (EMC) • Very low power consumption in ON state • Compatible to cranking pulse requirement (test pulse 4 in ISO7637 and cold start pulse in LV124) • Infineon® Reversave™: Reverse battery protection by self turn ON of the power MOSFET • Inverse operation robustness capability • Infineon® SMART CLAMPING • Green Product (RoHS compliant, halogen free package) • AEC Qualified • Dustproof Description The BTC50010-1TAA & BTC30010-1TAA are one High-Side Power Connector (BTC50010-1TAA) combined with a perfect fitting n-channel MOSFET (BTC30010-1TAA) to replace electromechanical relay. These easy to use twin devices can provide higher current-driven capability or additional reverse polarity protection feature. They offer switching without audible noise, weight reduction and increased switching cycle capability to comply with upcoming requirements on power distribution applications (e.g. battery disconnect switch). In addition, they Type Package Marking BTC50010-1TAA PG-TO-263-7-8 C50010A BTC30010-1TAA PG-TO-263-7-8 C30010A Data Sheet Connect FET & Companion 3 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Overview significantly reduce power/current consumption of the device while ON to increase energy efficiency. The device can withstand harshest cranking pulse such as test pulse 4 in ISO7637 and cold start pulse in LV124. Table 1 Product Summary Parameter Symbol Values Weight (approx.) G1 1.5 g Nominal operating voltage VS(OP) 8 V … 18 V Extended operating voltage contain dynamic undervoltage capability VS(DYN) 3.2 V … 28 V Nominal load current IL(NOM) 30 A Typical ON-state resistance at TJ = 25 °C (CP pin open) RDS(ON) 0.9 mΩ Typical input current in ON state IIN(ON) 2 mA Typical stand-by current at TJ = 25 °C IS(OFF) 3 µA Weight (approx.) G2 1.5 g Nominal load current IL(NOM)_C 30 A Typical ON-state resistance at TJ = 25 °C RDS(ON) 0.9 mΩ Operating voltage VS(OP) 8 V … 18 V Extended operating voltage contain dynamic undervoltage capability VS(DYN) 3.2 V … 28 V Nominal load current of parallel connected BTC50010-1TAA & BTC30010-1TAA IL(NOM) + IL(NOM)_C 60 A BTC50010-1TAA BTC30010-1TAA BTC50010-1TAA & BTC30010-1TAA Data Sheet Connect FET & Companion 4 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Block Diagram 2 Block Diagram R VS ON Mode Control Z (AZ )I N Pu ll-up Curren t Source Internal Power Supply IN1 Driver Logic IN2 VS Smart Clamp Gate Control & Charge Pump OUT ESD Protection V Z = 6V CP Figure 1 Block Diagram BTC50010-1TAA Drain Smart Clamp Gate ESD Protection Source Figure 2 Block Diagram BTC30010-1TAA Data Sheet Connect FET & Companion 5 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Pin Configuration 3 Pin Configuration 3.1 Pin Assignment 4 1 2 3 5 6 7 Figure 3 Pin Configuration for BTC50010-1TAA and BTC30010-1TAA 3.2 Pin Definitions and Functions Table 2 Pin definition and functions of BTC50010-1TAA Pin Symbol Function 1 IN1 IN; Pull down to module ground for channel activation1) 2 IN2 IN2; Pull down to module ground for channel activation1) 3 CP Charge Pump Output; Output pin of internal charge pump voltage of BTC500101TAA for driving BTC30010-1TAA 4, Cooling Tab VS Supply Voltage; Connected to battery voltage 5, 6, 7 OUTPUT; High side power output2) OUT 1) IN1 and IN2 are internally connected 2) All output pins are connected internally. All output pins have to be connected externally together on PCB. Not shorting all outputs pins will considerably increase the ON-resistance. PCB traces have to be designed to withstand the maximum current which can flow. PCB traces for output current are recommended to be designed symmetrically or having similar line resistance for any of the three output pins from this device. Data Sheet Connect FET & Companion 6 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Pin Configuration Table 3 Pin definitions and functions of BTC30010-1TAA Pin Symbol Function 1 Gate Gate; is not allowed to be floating and has to be connected to CP pin of BTC500101TAA to be switched ON/OFF by BTC50010-1TAA. 2 NC 3 NC 4, Cooling Tab Drain Drain; Connected to battery voltage for “Parallel Circuit to halve the RDS(ON)” application in Figure 27. Connected to load for ”Blocking Current in Reverse Polarity” application in Figure 28. 5, 6, 7 Source; N-channel MOSFET Source1). Connected to BTC50010-1TAA “OUT“ pin for “Parallel Circuit to halve the RDS(ON)” application in Figure 27. Connected to BTC50010-1TAA “OUT“ pin for ”Blocking Current in Reverse Polarity” application in Figure 28. Source 1) All Source pins are connected internally. All Source pins have to be connected externally together on PCB. Not shorting all outputs pins will considerably increase the ON-resistance. PCB traces have to be designed to withstand the maximum current which can flow. PCB traces for output current are recommended to be designed symmetrically or having similar line resistance for any of the three output pins from this device. Data Sheet Connect FET & Companion 7 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Pin Configuration 3.3 Voltage and Current Definition Figure 4 and Figure 5 shows all terms used in this data sheet, with associated convention for positive values. VS(REV) VS IS VSIN Connect IN1 IIN VS or / and IN2 IN1 VDS IN2 VOUT-IN OUT VIN IL VCP ICP CP VOUT Module Ground Figure 4 Voltage and Current Definition of BTC50010-1TAA IL_C Drain VDS_C Gate VGS_C Source Figure 5 Voltage and Current Definition of BTC30010-1TAA Data Sheet Connect FET & Companion 8 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Table 4 Absolute Maximum Ratings 1) TJ = -40 °C to +150 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise specified). All parameters are specified for BTC50010-1TAA drives BTC30010-1TAA in parallel or anti serial (unless otherwise specified). Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Voltages Supply Voltage VS -0.3 – 28 V – P_4.1.1 Voltage from VS to IN pin VSIN -0.3 – 60 V – P_4.1.2 Reverse polarity voltage VS(REV) – – 16 V BTC50010-1TAA drive BTC300101TAA in parallel: t < 2 min TA = 25 °C RL ≥ 0.5Ω VIN = 0 V P_4.1.3 28 BTC50010-1TAA drive BTC300101TAA in anti serial: TA = 25 °C VIN = VS Supply voltage for load dump protection VS(LD) – – 45 V 2) RL = 1.0 Ω RIN = 100 Ω P_4.1.4 Voltage at CP pin VCP -0.3 – VCP_ON V VCP = VGS_C P_4.1.5 P_4.1.6 P_4.1.7 Voltage from OUT to IN pin VOUTIN = VOUT -VIN VOUT-IN Voltage from Gate to Source pin VGS_C of BTC30010-1TAA -64 – – V 3) -0.3 – VCP_ON V VCP = VGS_C Currents Current through CP pin ICP -20 – 20 mA for t < 0.5 ms during P_4.1.8 switch ON/OFF Device current vs. time capability at: I6.0_125°C = 0.85 x 6.0 x IRATE for IRATE = 40A4) t @ I6.0 – – 0.8 s 5) Data Sheet Connect FET & Companion 9 BTC50010-1TAA drive BTC300101TAA in parallel, current level: I6.0_125°C = 204 A, TA = 125 °C, Figure 6 P_4.1.9 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA General Product Characteristics Table 4 Absolute Maximum Ratings (cont’d)1) TJ = -40 °C to +150 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise specified). All parameters are specified for BTC50010-1TAA drives BTC30010-1TAA in parallel or anti serial (unless otherwise specified). Parameter Continuous drain current BTC50010-1TAA Symbol ID Values Min. Typ. Max. – – 163 Unit Note / Test Condition Number A P_4.1.10 TC = 25 °C VIN = 0 V, ICP ≤ 2µA Current is limited by bondwire Continuous drain current of BTC30010-1TAA ID_C – – 163 A TC = 25 °C VGS ≥ 6.2 V P_4.1.11 Current is limited by bondwire Power Stage PTOT – – 160 W 6) Junction Temperature TJ -40 – 150 °C – P_4.1.15 Dynamic Temperature increase while switching ∆T J – – 60 K – P_4.1.16 Storage Temperature TSTG -55 – 150 °C – P_4.1.17 VESD -2 – 2 kV HBM7) P_4.1.18 7) Average power dissipation BTC50010-1TAA P_4.1.14 or BTC30010-1TAA For TJ(0) ≤ 105 °C Temperatures ESD Susceptibility ESD Susceptibility (all pins) ESD Susceptibility BTC500101TAA OUT pin vs. VS VESD_out -4 – 4 kV HBM P_4.1.19 ESD Susceptibility BTC300101TAA Drain pin VESD_D -4 – 4 kV HBM7) P_4.1.20 ESD Susceptibility BTC300101TAA Source pin VESD_S -4 – 4 kV HBM7) P_4.1.21 1) 2) 3) 4) Not subject to production test, specified by design. VS(LD) is setup without DUT connected to the generator per ISO 7637-1. Relevant to application case such as loss of load, loss of battery (also negative ISO pulse). IQ_b_125°C = a x b x IRATE. “a” is the temperature re-rating factor from the fuse curve for 125°C refer to 25°C. “b” is the factor of load current to IRATE at 25°C. 5) Use test PCB with 2 x 70 µm Cu layers and size of 54 x 48 x 1.5 mm. Where applicable, thermal via array is placed under the device footprint on this PCB. BTC50010-1TAA & BTC30010-1TAA on PCB have RthJA(2P) = 19.6 K/W (referring to 1W power dissipation for each device). PCB is vertical, keep constant environment temperature by indirect airflow of 6L/s. 6) PTOT = (TJ(0) - TC) / RthJC. PTOT_max = (105°C - 25°C) / 0.5 K/W = 160 W. 7) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001-2010. Data Sheet Connect FET & Companion 10 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA General Product Characteristics BTC50010-1TAA & BTC30010-1TAA current robustness: Below diagram present the current robustness of BTC50010-1TAA & BTC30010-1TAA. Generally, module thermal characteristic is more depending on the module construction (e.g. PCB size, metal layer thickness and numbers, module connectors) than the thermal characteristic of BTC50010-1TAA & BTC30010-1TAA alone. When current pulse is longer than 0.3s, influence of module thermal characteristic is dominant. When current pulse is shorter than 0.3s, influence of thermal characteristic of BTC50010-1TAA & BTC30010-1TAA is getting significant. Combining BTC50010-1TAA & BTC30010-1TAA together with a fuse in application, the total I/t curve of the module (incl. BTC50010-1TAA & BTC30010-1TAA) has to be above the fuse I/t curve. With specified test setup 1) BTC50010-1TAA & BTC30010-1TAA can withstand minimum 10 fuse blows of a 40A ATO FUSE. BTC50010-1TAA and BTC30010-1TAA in parallel current robustness at TA=125°C and TA=25°C, Vs=13.5V PCB is vertical, keep constant enviroment temperature by airflow 1000 100 time [s] Devices absolute max. ratings @TA=125°C Devices absolute max. ratings @TA=25°C 10 1 0,1 10 100 1000 Current [A] Figure 6 BTC50010-1TAA & BTC30010-1TAA Current Robustness at TA = 25°C and TA = 125°C; VS = 13.5V 1) 1) Use test PCB with 2 x 70 µm Cu layers and size of 54 x 48 x 1.5 mm. Where applicable, thermal via array is placed under the device footprint on this PCB. BTC50010-1TAA & BTC30010-1TAA on PCB have RthJA(2P) = 19.6 K/W (referring to with 1 W power dissipation from each device). PCB is vertical, keep constant environment temperature by indirect airflow of 6l/s. Data Sheet Connect FET & Companion 11 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA General Product Characteristics Notes 1. Stresses above the ones described in Chapter 4.1 may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. 4.2 Functional Range Table 5 Functional Range TJ = 25 °C, all voltages and currents refer to definitions in and Figure 5 (unless otherwise specified). All parameters are specified for BTC50010-1TAA drive BTC30010-1TAA in parallel or anti serial (unless otherwise specified). Parameter Nominal operating voltage Symbol VS_OP Values Min. Typ. Max. 8 – 18 Unit Note / Test Condition Number V – P_4.2.1 Extended static operating voltage VS_OP_EXT 5 – 28 V 1) 2) Extended operating voltage contain dynamic undervoltage capability VS_DYN 3.2 – 28 V 1) Static undervoltage level (start of loss of functionality) VS_UV IL ≤ IL(NOM) P_4.2.2 VS decreasing P_4.2.3 according to ISO7637 according to LV124 – – 4.5 V RL=270 Ω VS decreasing VDS ≤ 0.5 V ICP_ON = 0 µA P_4.2.4 Figure 7 Undervoltage restart level static VS_UV_Restart – – 5 V RL=270 Ω VS increasing VDS ≤ 0.5 V ICP_ON = 0 µA P_4.2.5 Figure 7 Charge pump current in ON state (maximum allowed leakage current at CP pin) ICP_ON Maximum allowed Current in OFF state IN pins High IIN_OFF – 0 2 µA VIN = 0 V, t > tON – 30 µA Pull-up current flow P_4.2.7 through internal current source P_4.2.6 1) Not subject to production test, specified by design. 2) Within the range of VS_OP_EXT and out of the range of VS_OP, device parameter deviation is possible. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Data Sheet Connect FET & Companion 12 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA General Product Characteristics VOUT Switch OFF Restart VS VS_UV VS_UV_Restart VS_UV_max Figure 7 VS_UV_Restart_max Undervoltage Behavior of BTC50010-1TAA Connected with BTC30010-1TAA on its CP Pin Data Sheet Connect FET & Companion 13 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA General Product Characteristics 4.3 Thermal Resistance Table 6 Thermal Resistance1) for BTC50010-1TAA or BTC30010-1TAA at TJ = 25 °C Parameter Symbol Values RthJC Junction to Case RthJA(2S2P) Junction to Ambient RthJA(1S0p) Junction to Ambient Min. Typ. Max. – – 0.5 – 20 – – 70 – Unit Note / Test Condition Number K/W 2) P_4.3.1 K/W 2) 3) P_4.3.2 K/W 2) 4) P_4.3.3 1) Not subject to production test, specified by design. 2) Device is dissipating 1W power. 3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip + package) was simulated on a 76,4 x 114,3 x 1,5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacted the first inner copper layer. 4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; The product (chip + package) was simulated on a 76,4 x 114,3 x 1,5 mm board with 1 copper layer (1 x 70 µm Cu). 100 2s2p Tj=105°C 2s2p Tj=25°C 1s0p Tj=105°C 10 Zth [K/W] 1s0p Tj=25°C 1 0.1 0.01 0.001 1E-06 1E-05 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 Time [s] Figure 8 Typical Transient Thermal Impedance Zth(JA) = f(t) for Different Cooling Areas Figure 8 is showing the typical thermal impedance of BTC50010-1TAA or BTC30010-1TAA mounted on different PCB setup on FR4 1s0p (single layer) and 2s2p (quad layer) boards at TJ of 25°C and 105°C according to Jedec JESD51-2,-5,-7 at natural convection. Data Sheet Connect FET & Companion 14 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description 5 Functional Description 5.1 Power Stage 5.1.1 Output ON-State Resistance The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 18 shows the dependencies in terms of temperature and supply voltage, for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 5.7. A LOW signal (see Chapter 5.2) at the input pin causes a current IIN flowing internally from the VS pin out of the IN pin to the module Ground, thus the power DMOS is switched ON with a dedicated slope, which is optimized in terms of EMC emission. 5.1.2 Switching an Inductive Load When switching OFF inductive loads with high side switches, the voltage VOUT is driven below ground potential, due to the fact that the inductance intends to continue driving the current. To prevent the destruction of the device due to high voltages, the device implements an overvoltage protection, which clamps the voltage between VS and VOUT at VDS(CL) (see Figure 9). Z(AZ)IN VSIN IN VBAT Pull-Up Current Source Nevertheless it is not recommended to operate the device repetitively under this condition. Therefore, when driving inductive loads, a free wheeling diode must be always placed. VS RVS Overvoltage clamp VDS LOGIC IL RIN OUT IIN Figure 9 L, RL VOUT Overvoltage Clamp Data Sheet Connect FET & Companion 15 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description I I IN IN t t VOUT VOUT VS VS t t VS-VDS(CL) VS-VDS(CL) IL IL t t Without free wheeling diode Figure 10 With free wheeling diode Switching an Inductance with or without free wheeling diode It is important to verify the effectiveness of the freewheeling solution (see Figure 10), which means the selection of the proper diode and of an appropriate free wheeling path. With regard to the choice of the free wheeling diode, low threshold and fast response are key parameter to achieve an effective result. Moreover the diode should be placed in order to have the shortest wire connection with the load (see Figure 11). BTC30010-1TAA BTC50010-1TAA Free Wheeling Diode Inductive Load Not optimized free wheeling path Inductive Load Recommended free wheeling path BTC50010-1TAA BTC30010-1TAA Free Wheeling Diode Figure 11 Optimization of the free wheeling path Data Sheet Connect FET & Companion 16 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description 5.2 Gate Driver Functionality BTC50010-1TAA has an embedded gate driver. It is used to drive the gate of an integrated power DMOS. The gate driver charges and discharges the gate of the DMOS with current ICHARGE and IDISCHARGE. Refer to Figure 12, the gate driver is accessible via the CP pin. BTC50010-1TAA is suitable for driving the BTC30010-1TAA in parallel to halve the connect resistance or in anti serial to block the reverse current. During Switch ON, BTC50010-1TAA charges the Gate capacitor of BTC30010-1TAA. VS VCP I CHARGE IDISCHARGE S1 OUT CP Figure 12 Gate Driver Block Diagram of BTC50010-1TAA During switch OFF, when Vout decreases to around 2.5V below VS, the internal switch S1 between gate and source will switch ON to reduce the high energy consuming switch OFF time. Additionally, when S1 is switched ON, the device is much more robust against electromagnetic disturbance which could come from VS or output pin to ensure the device doesn’t suffer from an unwanted switch ON. Data Sheet Connect FET & Companion 17 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description I IN IIN_ON IIN_OFF t VOUT tON 90% VS tOFF_delay 50% VS 25% VS tON_delay tOFF 10% VS t ICP I CP_SW_ON ICP_ON 0 t ICP_SW _OFF Figure 13 Timing Diagram of BTC50010-1TAA Connected with BTC30010-1TAA on its CP Pin Note: Figure 13 shows the general switching behavior. Under real condition, voltage or current sketch deviation is possible. 5.3 Undervoltage Protection Below VS_UV maximum value, the under voltage condition is met. Upon further decrease of VS, the device will begin to lose functionality, until finally it will turn OFF. During VS increasing, as soon as the supply voltage is above the static level VS_UV_Restart, device can be switched ON. Figure 7 sketches the undervoltage mechanism. Data Sheet Connect FET & Companion 18 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description 5.4 Overvoltage Protection The BTC50010-1TAA & BTC30010-1TAA provides Infineon® SMART CLAMPING functionality, which suppresses non nominal over voltages by actively clamping the overvoltage across the power stage and the load. This is achieved by controlling the clamp voltage VDS(CL) depending on the junction temperature TJ and the load current IL. Protection during Loss of Load or Loss of VS Condition 5.5 In case of loss of VS with charged line inductances, the maximum supply voltage has to be limited. It is recommended to use a diode and a Z-diode (VZ1 + VD1 < 16V, please refer to Figure 14). by case Loss of Vs Vbat Module RVS VZ1 RIN B R/L cable VD1 IN Module Ground VIN VS Logic VD1 Pull-up Current Source External components D1 according to either A or B is Z1 required, not both Z(AZ)IN A VZ1 D1 Load Z1 R/L cable Figure 14 Ground External Component for BTC50010-1TAA Loss of VS Protection In case of loss of load with charged primary power line inductances, the maximum supply voltage also has to be limited. It is recommended to use a Z-diode (VZ2 < 28V) or VS clamping power switches between VS and Module Ground (please refer to Figure 15). Data Sheet Connect FET & Companion 19 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description Module R/L cable Vbat VZ2 VS Logic Pull-up Current Source Z(AZ)IN RVS by case Loss of Load R/L cable RIN IN Load Module Ground VIN Ground Figure 15 External Component for BTC50010-1TAA Loss of Load Protection The 16V Z-diode refers to the maximum VS(REV) voltage of the chip. The 28V Z-diode refers to the maximum supply voltage (VS) of the chip. 5.6 BTC50010-1TAA Inverse Current Capability In case of inverse current, meaning a voltage VOUT at the output higher than the supply voltage VS (e.g. caused by a load operating as a generator), a current IL will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 16). In case the IN pin is LOW1), the power DMOS is already activated and keeps ON. In case, the input goes from “H” to “L”, the DMOS will be activated. Due to the limited speed of INV comparator, the output voltage slope needs to be limited. In case the IN pin is HIGH2), power DMOS will not be switched ON automatically. Current will flow through the intrinsic body diode. This power dissipation could cause heating effect, which has to be considered. VBAT VS Gate driver INV OL Comp. comp. OUT VOUT > VS -IL Figure 16 BTC50010-1TAA Inverse Current Circuitry 1) LOW means IN pin is pulled-down by external transistor or IIN > 0 2) HIGH (H) means IIN = 0 Data Sheet Connect FET & Companion 20 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description 5.7 Reverse Polarity Protection In case of reverse polarity for BTC50010-1TAA drive BTC30010-1TAA in parallel or BTC50010-1TAA alone, the intrinsic body diode of the power DMOS causes power dissipation. To limit the risk of over temperature, the device provides Infineon® Reversave™ function. The power in this intrinsic body diode is limited by turning the DMOS ON. The DMOS resistance is then equal to RDS(ON)_REV (please refer to Figure 19 and Figure 20). Additionally, the current into the logic has to be limited. The device includes a RVS resistor which limits the current in the diodes. To avoid over current in the RVS resistor, it is nevertheless recommended to use a RIN resistor. Please refer to maximum current described in Table 4. Figure 17 shows a typical application. The recommended typical values for RIN is 100Ω. Vbat RVS VS Rev. ON Pull-up Current Source Z(AZ)IN IRVS -IL OUT VIN RIN IIN Module Ground GND Figure 17 Load Control Unit IN DOUT Ground BTC50010-1TAA Reverse Polarity Protection with External Components Note: The RVS has a typical value of 80Ω at 25°C. Refer to Figure 17, the RVS and RIN build up a voltage divider to split up the supply voltage on BTC50010-1TAA, which protect the device during high voltage pulse (e.g. ISO pulse 3b). Data Sheet Connect FET & Companion 21 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description 5.8 Electrical Characteristics Table 7 Electrical Characteristics: Power Stage VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise specified). All parameters are specified for BTC50010-1TAA drive BTC30010-1TAA in parallel or anti serial (unless otherwise specified). Parameter Symbol Voltage drop (VDS and VDS_C) VDROP Values Unit Note / Test Condition Number Min. Typ. Max. – 27 36 mV IL = 30 A and IL_C = 30 A BTC50010-1TAA drive BTC300101TAA in parallel P_5.8.1 – 0.9 1.2 mΩ BTC50010-1TAA or BTC30010-1TAA, Figure 18 P_5.8.2 ON-state resistance RDS(ON) ON-state resistance hot RDS(ON)_HOT – – 2.0 mΩ BTC50010-1TAA or BTC30010-1TAA, TJ= 150 °C Figure 18 P_5.8.3 ON-state resistance in Infineon® Reversave™ RDS(ON)_REV – 0.9 – mΩ BTC50010-1TAA or BTC30010-1TAA, VIN = 0 V P_5.8.4 ON-state resistance during inverse operation RDS(ON)_INV – 0.9 – mΩ BTC50010-1TAA or BTC30010-1TAA, VIN = 0 V P_5.8.5 BTC50010-1TAA & BTC30010-1TAA supply current stand-by IN pins floating IS_OFF – 3 13 µA Leakage current flow P_5.8.6 through OUT pin 28 – 60 V IL_C = 50 mA TJ= 25 °C to 150°C Drain to source smart clamp VDS(CL) voltage (VDS(CL) = VS - VOUT for BTC50010-1TAA; VDS(CL) = VD - VS for BTC30010-1TAA) Table 8 P_5.8.7 Electrical Characteristics: Input Stage VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise specified). All parameters are specified for BTC50010-1TAA drive BTC30010-1TAA in parallel or anti serial (unless otherwise specified). Parameter Input current in ON state IN pins Low Data Sheet Connect FET & Companion Symbol IIN_ON Values Min. Typ. Max. – 2 3 22 Unit Note / Test Condition Number mA VS = 18 V P_5.8.8 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description Table 9 Electrical Characteristics: Charge Pump VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise specified). All parameters are specified for BTC50010-1TAA (unless otherwise specified). Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Charge pump current during SWITCH ON ICP_SW_ON 0.7 2.2 – mA VIN = 0 V VCP = 0 V P_5.8.9 Charge pump current during SWITCH OFF ICP_SW_OFF 350 850 – µA VIN = VS = 8 V VCP =VCP_ON VOUT = VS P_5.8.10 Charge pump voltage VCP_ON – 7 V VIN = 0 V P_5.8.11 5 Figure 30 Table 10 Electrical Characteristics: Timing VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise specified). All parameters are specified for BTC50010-1TAA alone (unless otherwise specified). Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Turn ON time tON – 200 500 µs See timing Figure 13 P_5.8.12 CP pin open Turn OFF time tOFF – 200 500 µs See timing Figure 13 P_5.8.13 CP pin open Turn ON delay time tON_delay – 80 150 µs See timing Figure 13 P_5.8.14 CP pin open Turn OFF delay time tOFF_delay – 180 300 µs See timing Figure 13 P_5.8.15 CP pin open Data Sheet Connect FET & Companion 23 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description Typical RDS(O N ) [m Ω ] 2.5 150°C 25°C 2 -40°C 1.5 1 0.5 0 4.5 9.5 14.5 19.5 24.5 V S [V] Figure 18 RDS(ON) vs. VS of BTC50010-1TAA or BTC30010-1TAA 30 Typical RDS(ON)_REV [mΩ] 25 20 150 °C 25 °C -40 °C 15 10 5 0 6.0 6.5 7.0 7.5 8.0 VS(REV) [V] Figure 19 Typical RDS(ON)_REV of BTC50010-1TAA or BTC30010-1TAA vs. VS(REV) with VIN = 0V in Reverse Mode for lower values of VS(REV) Data Sheet Connect FET & Companion 24 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description 1.5 1.4 Typical RDS(ON)_REV [mΩ] 1.3 150 °C 1.2 25 °C 1.1 -40 °C 1.0 0.9 0.8 0.7 0.6 8 9 10 11 12 13 14 15 16 VS(REV) [V] Figure 20 Typical RDS(ON)_REV of BTC50010-1TAA or BTC30010-1TAA vs. VS(REV) with VIN = 0V in Reverse Mode for higher values of VS(REV) Typical TON of BTC50010-1TAA w ith/w itout BTC30010-1TAA 6.00E-04 150°C 25°C -40 Typical TON [s] 5.00E-04 4.00E-04 3.00E-04 2.00E-04 1.00E-04 0.00E+00 0 Figure 21 Number of Companion (BTC30010-1TAA) 1 TON of BTC50010-1TAA with/without BTC30010-1TAA Data Sheet Connect FET & Companion 25 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description Typical TOFF of BTC50010-1TAA with/witout BTC30010-1TAA 1.20E-03 150°C 25°C 1.00E-03 T y p ic a l T O F F [s ] -40°C 8.00E-04 6.00E-04 4.00E-04 2.00E-04 0.00E+00 0 Figure 22 1 Number of Companion (BTC30010-1TAA) TOFF of BTC50010-1TAA with/without BTC30010-1TAA Typical TON_delay of BTC50010-1TAA with/witout BTC30010-1TAA 2.00E-04 150°C 1.80E-04 25°C 1.60E-04 -40°C T yp ical T ON _dela y [s] 1.40E-04 1.20E-04 1.00E-04 8.00E-05 6.00E-05 4.00E-05 2.00E-05 0.00E+00 0 1 Number of Companion (BTC30010-1TAA) Figure 23 TON_delay of BTC50010-1TAA with/without BTC30010-1TAA Data Sheet Connect FET & Companion 26 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description Typical TOFF_delay of BTC50010-1TAA with/witout BTC30010-1TAA 1.00E-03 150°C 25°C -40°C 9.00E-04 T y p i c a l T O F F _ d e l a y [s ] 8.00E-04 7.00E-04 6.00E-04 5.00E-04 4.00E-04 3.00E-04 2.00E-04 1.00E-04 0.00E+00 0 1 Number of Companion (BTC30010-1TAA) Figure 24 TOFF_delay of BTC50010-1TAA with/without BTC30010-1TAA Typical VOUT_on_slewrate of BTC50010-1TAA with/witout BTC30010-1TAA 4.50E-01 25°C 4.00E-01 -40°C 150°C T yp ical V OU T_on_s lewrate [V/u s] 3.50E-01 3.00E-01 2.50E-01 2.00E-01 1.50E-01 1.00E-01 5.00E-02 0.00E+00 0 Figure 25 Number of Companion (BTC300101-1TAA) 1 VOUT_ON_slewrate of BTC50010-1TAA with/without BTC30010-1TAA Data Sheet Connect FET & Companion 27 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Functional Description Typical VOUT_OFF_slewrate of BTC50010-1TAA with/witout BTC30010-1TAA 4.00E+00 150°C 25°C 3.50E+00 -40°C T y p ic a l V O U T_ O FF _ s le w r a te [ V /u s ] 3.00E+00 2.50E+00 2.00E+00 1.50E+00 1.00E+00 5.00E-01 0.00E+00 0 Figure 26 Number of Companion (BTC30010-1TAA) 1 VOUT_OFF_slewrate of BTC50010-1TAA with/without BTC30010-1TAA Data Sheet Connect FET & Companion 28 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Application Information 6 Application Information This chapter describes especially how BTC50010-1TAA & BTC30010-1TAA can be combined and used together in application environment. Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. VBAT R/L cable Depending on application requirement, either fuse A or fuse B will be placed Fuse B Module BTC30010-1TAA D S G RIN IN1 Vs Options for free wheeling path of inductive load T1 CVS Option A Option B Fuse A OUT IN2 Z2 Za COUT VZ2 CP Za R/L cable Zb VZ1 T2 Optional: MOSFET to block reverse current Load D Control signal from control unit S BTC50010-1TAA G Z1 Module Ground Ground Figure 27 Application Diagram with BTC50010-1TAA & BTC30010-1TAA Data Sheet Connect FET & Companion 29 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Application Information VBAT R/L cable Depending on application requirement, either fuse A or fuse B will be placed Fuse B Module RIN Vs IN1 Options for free wheeling path of inductive load BTC30010-1TAA Option A CVS T1 OUT IN2 S Option B Fuse A D Z2 Za COUT VZ2 Za G CP R/L cable Zb VZ1 Z1 BTC50010-1TAA Load Module Ground Ground Figure 28 Application Diagram with BTC50010-1TAA and BTC30010-1TAA for Reverse Blocking. Table 11 Bill of material Reference Value Purpose T1 NPN or MOSFET transistor NPN (e.g. BCR133) or MOSFET (e.g. BSS123) transistor suitable for 5V voltage range controlled by control unit for driving the BTC50010-1TAA RIN 100 Ω Protection of BTC50010-1TAA and the microcontroller or control unit during over voltage and reverse polarity, which could be created by huge negative pulse (like ISO pulse 1) Z1 and Z2 Zener diodes Protection of the BTC50010-1TAA & BTC30010-1TAA during loss of load (correspond to fuse blow on fuse A) or loss of battery (correspond to fuse blow on fuse B) or against huge negative pulse (like ISO pulse 1), please refer to Figure 14 and Figure 15. Data Sheet Connect FET & Companion 30 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Application Information Table 11 Bill of material (cont’d) Reference Value Purpose Za Schottky diode Protection of BTC50010-1TAA & BTC30010-1TAA when driving an inductive load, stand alone (option B) or together with Zb (option A). Zb Zener transient suppressor Protection of BTC50010-1TAA & BTC30010-1TAA when driving an inductive load, to be used together with Za in option A to accelerate the demagnetization process. T2 MOSFET transistor Added optionally only for blocking the reverse current in free wheeling path, needed only for option A or B. FUSE e.g. 40A ATO FUSE1) Protection of the BTC50010-1TAA & BTC30010-1TAA, wire harness and the load during short circuit. Depending on application requirement, either fuse A or fuse B will be placed. CVS 100 nF Improve EMC behavior (in layout, please place it close to the pin) COUT 10 nF Improve EMC behavior (in layout, please place it close to the pins) and/or 1) or 30A ATO see Figure 28) 6.1 Information for Application Combining PWM Mode with Fuse When the Connect FET (BTC50010-1TAA) is driving a Companion (BTC30010-1TAA) with its CP pin, the switch ON/OFF time will increase significantly compare to Connect FET (BTC50010-1TAA) alone (please refer to Figure 21, Figure 22 and BTC50010-1TAA data sheet), therefore the PWM frequency will decrease clearly compare to Connect FET (BTC50010-1TAA) alone. The maximum of average power dissipation 1)Ploss is not allowed to be exceeded. Above all, the condition of tDC > tfuseblow_max must be fulfilled. The tfuseblow_max is the maximum fuse blow time at certain fuse blow current on the I/t curve of the selected fuse for certain application. During short circuit, the load current could rise up to multiple of the nominal current value until fuse blow. The tDC is defined in Figure 29. Ploss = (switching_ON_energy + switching_OFF_energy + IL2 * RDS(ON) * tDC) / tperiod IIN I IN_ON IIN_OFF t tperiod P PLoss Figure 29 t tDC Definition of Average Power Dissipation of BTC50010-1TAA & BTC30010-1TAA 1) In real application with Rthj,a and Tamb the maximum allowed average power dissipation is defined: Ploss=(150°C - Tamb) / Rthj,a Data Sheet Connect FET & Companion 31 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Application Information 6.2 Information for Driving Capability of Charge Pump Pin after Switch ON Curves below show that the driving capability of BTC50010-1TAA’s charge pump has a dependency on its gate voltage and battery voltage. It defines the relevant range of charge pump current for driving the gate capacity of BTC30010-1TAA. 250 Vout = Vs = 13.5V T = 150°C ICP [µA] 200 T = 85°C T = 25°C 150 T = -40°C 100 50 0 0 1 2 3 4 5 6 7 VCP [V] Figure 30 Typical Charge Pump Driving Capability of BTC50010-1TAA vs. its Gate-Source Voltage 6.3 Further Application Information • Please contact us for information regarding the pin FMEA • For further information you may contact http://www.infineon.com/ Data Sheet Connect FET & Companion 32 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Package Outlines 7 Package Outlines 4.4 10 ±0.2 1.27 ±0.1 0...0.3 B 0.05 4.7 ±0.5 2.7 ±0.3 2.4 0.1 1.3 ±0.3 7.55 1) 1 ±0.3 9.25 ±0.2 (15) A 8.5 1) 0...0.15 6 x 0.6 ±0.1 6 x 1.27 0.5 ±0.1 0.25 M A B 8˚ MAX. 1) Typical Metal surface min. X = 7.25, Y = 6.9 All metal surfaces tin plated, except area of cut. 0.1 B GPT09063 Dimension in mm Figure 31 PG-TO-263-7-8 (RoHS compliant) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). BTC50010-1TAA & BTC30010-1TAA meet the MSL 1 (Moisture Sensitivity Level 1) according to IPC/JEDEC J-STD-020D and can withstand until 245°C peak reflow process. For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet Connect FET & Companion 33 Dimensions in mm 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Revision History 8 Revision History Revision Date Changes 1.0 2011-12-21 Data Sheet released 1.1 2012-06-15 Page 3, Application: in the first bullet point, “inductive” removed Page 4, Product Summary: in the 11th row, rename “Continuous drain current ID _C” to “Nominal load current IL(NOM) _C” Page 4, Product Summary: in the 16th row, rename “ID _C” to “IL(NOM) _C” Page 8, Figure 5 modified, rename “ID _C” to “IL _C” Page 10, parameter NIND (P_4.1.11) removed Page 10, parameter N0 (P_4.1.10) renamed as P_4.1.12 Page 10, parameter ID (P_4.1.10) and ID _C(P_4.1.11) added Page 10, parameter EAR (P_4.1.13) removed Page 11, Figure 6 modified, EAR curve removed Page 11, Figure 7 removed Page 15, Chapter 5.1.2 title modified, note added Page 20 ~ 21, Chapter 5.5 description modified Page 20 ~ 21, Figure 15 and Figure 16 modified Page 21, Figure 17 modified Page 22, Figure 18 modified Page 24, Table 11 first row, seventh column, rename “IDS” to “IL _C” Page 24, Table 11 seventh row, seventh column, rename “IDs” to “IL _C” Page 29, Figure 27 modified Page 30, Figure 28 modified Page 33, Figure 31 modified Page 33 ~ 34, Figure 32 and Table 12 added Page 34, Note “The following application information represents only as a recommendation for switching an inductive load. The function must be verified in the real application” added 1.2 2012-11-16 Page 9, Note “When driving resistive loads with remaining wire or parasitic inductances it must be ensured, that the device will not enter clamping mode during normal operating” added Data Sheet Connect FET & Companion 34 1.3, 2015-02-06 BTC50010-1TAA & BTC30010-1TAA Revision History Revision Date Changes 1.3 2015-01-26 Comprehensive rework of rev. 1.2; several figures have been renumbered Chapter 1: Overview Table 1 removed wording “over life time”, updated various symbols Applications: first, third and fourth bullet: changed wording Features: Change of wording Description: Change of wording Chapter 3.2: Updated Footnote 2 Chapter 3.3:Figure 4 Change VOUTIN to VOUT-IN Chapter 4: Removed Note Chapter 4.1: P_4.1.6: Change VOUTIN to VOUT-IN P_4.1.12: removed from table P_4.1.13: removed from table Table 4: Correction within footnote 5 Page 11: Footnote 1 modified Removed figure about Total Energy Capability for Switch Off Inductive Loads Reduced figures about Current Robustness Chapter 4.3 Page 14: modified text Chapter 5.1.2: Completely reworked subchapter Chapter 5.2: Change of wording, removed remarks about energy capability. Chapter 5.5: modified Figure 14, Figure 15 Chapter 5.6: modified text about negative load current, new footnote (1) about definition of LOW and HIGH state Chapter 5.7: modified Figure 17 Chapter 5.8 P_5.8.11 add max. value P_5.8.12, P_5.8.13, P_5.8.14, P_5.8.15: add typical value Figure 19, Figure 20 new generated out of former figure Chapter 6: Reworked text and note; removed figure 27,28 list of required external components New Figure 27, Figure 28, updated Table 11 Removed former chapter 6.3 (now within Chapter 6) Chapter 6.1: and text modified Data Sheet Connect FET & Companion 35 1.3, 2015-02-06 Edition 2015-02-06 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.