BCR135.../SEMH9 NPN Silicon Digital Transistor • Switching circuit, inverter, interface circuit driver circuit • Built in bias resistor (R1=10kΩ, R2=47kΩ) • For 6-PIN packages: two (galvanic) internal isolated transistors with good matching in one package BCR135/F/L3 BCR135T/W BCR135S SEMH9 C C1 B2 3 6 5 E2 4 R2 R1 R1 TR2 TR1 R2 R1 R2 1 B 2 1 2 3 E E1 B1 C2 EHA07184 EHA07174 Type Marking Pin Configuration BCR135 WJs 1=B 2=E 3=C - - - SOT23 BCR135F WJs 1=B 2=E 3=C - - - TSFP-3 BCR135L3 WJ 1=B 2=E 3=C - - - TSLP-3-4 BCR135S WJs 1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT363 BCR135T WJs 1=B 2=E 3=C - - - SC75 BCR135W WJs 1=B 2=E 3=C - - - SOT323 SEMH9 WJ 1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT666 1 Package May-17-2004 BCR135.../SEMH9 Maximum Ratings Parameter Symbol Value Collector-emitter voltage VCEO 50 Collector-base voltage VCBO 50 Emitter-base voltage VEBO 6 Input on voltage Vi(on) 20 Collector current IC 100 Total power dissipation Ptot 200 BCR135F, TS ≤ 128°C 250 BCR135L3, TS ≤ 135°C 250 BCR135S, T S ≤ 115°C 250 BCR135T, TS ≤ 109°C 250 BCR135W, TS ≤ 124°C 250 SEMH9, TS ≤ 75°C 250 Tj Storage temperature Tstg Thermal Resistance Parameter Junction - soldering point 1) Symbol RthJS V mA mW BCR135, TS ≤ 102°C Junction temperature Unit 150 °C -65 ... 150 Value BCR135 ≤ 240 BCR135F ≤ 90 BCR135L3 ≤ 60 BCR135S ≤ 140 BCR135T ≤ 165 BCR135W ≤ 105 SEMH9 ≤ 300 Unit K/W 1For calculation of R thJA please refer to Application Note Thermal Resistance 2 May-17-2004 BCR135.../SEMH9 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. DC Characteristics Collector-emitter breakdown voltage V(BR)CEO 50 V IC = 100 µA, IB = 0 Collector-base breakdown voltage 50 - - I CBO - - 100 nA I EBO - - 167 µA h FE 70 - - - - - 0.3 V Vi(off) 0.5 - 1 Vi(on) 0.5 - 1.4 7 10 13 0.19 0.21 0.24 fT - 150 - MHz Ccb - 3 - pF V(BR)CBO IC = 10 µA, IE = 0 Collector-base cutoff current VCB = 40 V, IE = 0 Emitter-base cutoff current VEB = 6 V, IC = 0 DC current gain1) IC = 5 mA, VCE = 5 V Collector-emitter saturation voltage1) VCEsat IC = 10 mA, IB = 0.5 mA Input off voltage IC = 100 µA, VCE = 5 V Input on voltage IC = 2 mA, VCE = 0.3 V Input resistor R1 Resistor ratio R1/R 2 kΩ - AC Characteristics Transition frequency IC = 10 mA, VCE = 5 V, f = 100 MHz Collector-base capacitance VCB = 10 V, f = 1 MHz 1Pulse test: t < 300µs; D < 2% 3 May-17-2004 BCR135.../SEMH9 DC current gain hFE = ƒ(IC) VCE = 5V (common emitter configuration) Collector-emitter saturation voltage VCEsat = ƒ(IC), hFE = 20 10 2 10 3 - 10 2 IC h FE mA 10 1 10 1 10 0 -1 10 10 0 10 1 mA 10 10 0 0 2 0.2 0.4 V 0.6 IC 1 VCEsat Input on Voltage Vi(on) = ƒ(I C) VCE = 0.3V (common emitter configuration) Input off voltage V i(off) = ƒ(IC) VCE = 5V (common emitter configuration) 10 1 10 2 mA mA 10 0 IC IC 10 1 10 -1 10 0 10 -2 10 -1 -1 10 10 0 10 1 V 10 10 -3 0 2 Vi(on) 0.5 1 V 2 Vi(off) 4 May-17-2004 BCR135.../SEMH9 Total power dissipation Ptot = ƒ(TS) BCR135 Total power dissipation Ptot = ƒ(TS) BCR135F 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 20 40 60 80 100 TS 150 TS Total power dissipation Ptot = ƒ(TS) BCR135L3 Total power dissipation Ptot = ƒ(TS) BCR135S 300 300 mW mW 200 Ptot Ptot 120 °C 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 TS 20 40 60 80 100 120 °C 150 TS 5 May-17-2004 BCR135.../SEMH9 Total power dissipation Ptot = ƒ(TS) BCR135T Total power dissipation Ptot = ƒ(TS) BCR135W 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 TS 20 40 60 80 100 120 °C 150 TS Total power dissipation Ptot = ƒ(TS) SEMH9 300 Ptot mW 200 150 100 50 0 0 20 40 60 80 100 120 °C 150 TS 6 May-17-2004 BCR135.../SEMH9 Permissible Pulse Load RthJS = ƒ(tp ) BCR135 Permissible Pulse Load Ptotmax/P totDC = ƒ(tp) BCR135 10 3 10 3 P totmax / P totDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 tp Permissible Pulse Load BCR135F Ptotmax/P totDC = ƒ(tp) BCR135F 10 2 0 10 0 10 3 Ptotmax /PtotDC K/W RthJS 10 tp Permissible Puls Load RthJS = ƒ (tp) D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 1 10 0 10 -1 -6 10 s 10 -5 10 -4 10 -3 10 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 7 May-17-2004 BCR135.../SEMH9 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR135L3 Ptotmax/P totDC = ƒ(tp) BCR135L3 10 3 Ptotmax/ P totDC RthJS 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 s 10 10 0 -7 10 0 10 -6 10 -5 10 -4 10 -3 10 tp -2 s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR135S Ptotmax/P totDC = ƒ(tp) BCR135S 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 8 May-17-2004 BCR135.../SEMH9 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR135T Ptotmax/P totDC = ƒ(tp) BCR135T 10 3 10 3 P totmax / P totDC K/W RthJS 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 1 10 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 tp s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR135W Ptotmax/P totDC = ƒ(tp) BCR135W 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 9 May-17-2004 BCR135.../SEMH9 Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load SEMH9 Ptotmax/P totDC = ƒ(tp) SEMH9 10 3 10 3 P totmax/ P totDC K/W RthJS 10 2 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 1 10 0 10 -1 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 s 10 10 0 -7 10 0 tp 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 10 May-17-2004