EP9302 Data Sheet FEATURES • • • • • Linux®, Microsoft® Windows® CE-enabled MMU 100-MHz System Bus MaverickCrunch™ Math Engine • Floating point, Integer and Signal Processing Instructions • Optimized for digital music compression and decompression algorithms. • Hardware interlocks allow in-line coding. MaverickKey™ IDs • 32-bit unique ID can be used for DRM-compliant, 128-bit random ID. Integrated Peripheral Interfaces • 16-bit SDRAM Interface (up to 4 banks) • 16-bit SRAM / FLASH / ROM • Serial EEPROM Interface • 1/10/100 Mbps Ethernet MAC • Two UARTs • Two-port USB 2.0 Full-speed Host (OHCI) (12 Mbits per second) • IrDA Interface • ADC • Serial Peripheral Interface (SPI) Port Serial Audio Interface • • • 6-channel Serial Audio Interface (I2S) • 2-channel, Low-cost Serial Audio Interface (AC'97) Internal Peripherals • 12 Direct Memory Access (DMA) Channels • Real-time Clock with Software Trim • Dual PLL controls all clock domains. • Watchdog Timer • Two General-purpose 16-bit Timers • One General-purpose 32-bit Timer • One 40-bit Debug Timer • Interrupt Controller • Boot ROM Package • 208-pin LQFP Peripheral Bus MaverickCrunch (2) UARTs w/ IrDA 12 Channel DMA MaverickKeyTM (2) USB Hosts Clocks & Timers TM ARM920T D-Cache 16KB Interrupts & GPIO I-Cache 16KB MMU Bus Bridge USER INTERFACE COMMUNICATIONS PORTS • High-speed ARM9 System-on-chip Processor with MaverickCrunch 200-MHz ARM920T Processor • 16-kbyte Instruction Cache • 16-kbyte Data Cache Processor Bus Ethernet MAC Boot ROM SRAM & Flash I/F Unified SDRAM I/F MEMORY AND STORAGE ©Copyright 2005 Cirrus Logic (All Rights Reserved) http://www.cirrus.com MAR ‘05 DS653PP3 1 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch OVERVIEW The EP9302 is an ARM920T-based system-on-a-chip design with a large peripheral set targeted to a variety of applications: • • • • • • • • • • • • • • • The ARM920T microprocessor core with separate 16 kbyte, 64-way set-associative instruction and data caches is augmented by the MaverickCrunch™ coprocessor enabling faster than real-time compression of audio CDs. The MaverickKey™ unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. Industrial controls Digital media servers Integrated home media gateways Digital audio jukeboxes Streaming audio players Set-top boxes Point-of-sale terminals Thin clients Biometric security systems GPS & fleet management systems Educational toys Industrial computers Industrial hand-held devices Voting machines Medical equipment A high-performance 1/10/100 Mbps Ethernet media access controller (EMAC) is included along with external interfaces to SPI, AC’97, and I2S audio. A two-port USB 2.0 Full-speed Host (OHCI) (12 Mbits per second), two UARTs, and a analog voltage measurement analog-todigital converter (ADC) are included as well. The EP9302 is one of a series of ARM920T-based devices. Other members of the family have different peripheral sets, coprocessors and package configurations. The EP9302 is a high-performance, low-power RISCbased, single-chip computer built around an ARM920T microprocessor core with a maximum operating clock rate of 200 MHz (184 MHz for industrial conditions). The ARM core operates from a 1.8 V supply, while the I/O operates at 3.3 V with power usage between 100 mW and 750 mW (dependent on speed). Table A. Change History 2 Revision Date Changes PP1 June 2004 Initial Release. PP2 July 2004 Update AC data. Add ADC data. PP3 March 2005 Update electrical specs with most-current characterization data. ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Table of Contents Processor Core - ARM920T ......................................................................................... 6 MaverickCrunch™ Math Engine .................................................................................. 6 MaverickKey™ Unique ID ............................................................................................ 6 General Purpose Memory Interface (SDRAM, SRAM, ROM, Flash) ........................... 6 Ethernet Media Access Controller (MAC) .................................................................... 7 Serial Interfaces (SPI, I2S, and AC ’97) ....................................................................... 7 12-bit Analog-to-digital Converter (ADC) ..................................................................... 7 Universal Asynchronous Receiver/Transmitters (UARTs) ............................................ 8 Dual-port USB Host ..................................................................................................... 8 Two-wire Interface ........................................................................................................ 8 Real-Time Clock with Software Trim ............................................................................ 8 PLL and Clocking ......................................................................................................... 9 Timers .......................................................................................................................... 9 Interrupt Controller ....................................................................................................... 9 Dual LED Drivers ......................................................................................................... 9 General Purpose Input/Output (GPIO) ......................................................................... 9 Reset and Power Management ................................................................................. 10 Hardware Debug Interface ......................................................................................... 10 12-Channel DMA Controller ....................................................................................... 10 Internal Boot ROM ..................................................................................................... 10 Electrical Specifications ................................................................................. 11 Absolute Maximum Ratings ........................................................................................11 Recommended Operating Conditions .......................................................................11 DC Characteristics ..................................................................................................... 12 Timings .............................................................................................................13 Memory Interface ....................................................................................................... 14 Ethernet MAC Interface ............................................................................................ 27 Audio Interface ........................................................................................................... 29 AC’97 ........................................................................................................................ 33 ADC ........................................................................................................................... 34 JTAG .......................................................................................................................... 35 208 Pin LQFP Package Outline .....................................................................36 208 Pin LQFP Pinout ................................................................................................. 37 Acronyms and Abbreviations ........................................................................41 Units of Measurement .....................................................................................41 Ordering Information ......................................................................................42 DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch List of Figures Figure 1. Timing Diagram Drawing Key ................................................................................. 13 Figure 2. SDRAM Load Mode Register Cycle Timing Measurement ..................................... 14 Figure 3. SDRAM Burst Read Cycle Timing Measurement ................................................... 15 Figure 4. SDRAM Burst Write Cycle Timing Measurement ................................................... 16 Figure 5. SDRAM Auto Refresh Cycle Timing Measurement ................................................ 17 Figure 6. Static Memory Multiple Word Read 8-bit Cycle Timing Measurement .................... 18 Figure 7. Static Memory Multiple Word Write 8-bit Cycle Timing Measurement .................... 19 Figure 8. Static Memory Multiple Word Read 16-bit Cycle Timing Measurement .................. 20 Figure 9. Static Memory Multiple Word Write 16-bit Cycle Timing Measurement .................. 21 Figure 10. Static Memory Burst Read Cycle Timing Measurement ....................................... 22 Figure 11. Static Memory Burst Write Cycle Timing Measurement ....................................... 23 Figure 12. Static Memory Single Read Wait Cycle Timing Measurement ............................. 24 Figure 13. Static Memory Single Write Wait Cycle Timing Measurement .............................. 25 Figure 14. Static Memory Turnaround Cycle Timing Measurement ....................................... 26 Figure 15. Ethernet MAC Timing Measurement ..................................................................... 28 Figure 16. TI Single Transfer Timing Measurement ............................................................... 30 Figure 17. Microwire Frame Format, Single Transfer ............................................................ 30 Figure 18. SPI Format with SPH=1 Timing Measurement ..................................................... 31 Figure 19. Inter-IC Sound (I2S) Timing Measurement ........................................................... 32 Figure 20. AC ‘97 Configuration Timing Measurement .......................................................... 33 Figure 21. ADC Transfer Function ......................................................................................... 34 Figure 22. JTAG Timing Measurement .................................................................................. 35 4 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch List of Tables Table A. Change History .......................................................................................................... 2 Table B. General Purpose Memory Interface Pin Assignments .............................................. 6 Table C. Ethernet Media Access Controller Pin Assignments ................................................. 7 Table D. Audio Interfaces Pin Assignment .............................................................................. 7 Table E. 12-bit Analog-to-Digital Converter Pin Assignments ................................................. 7 Table F. Universal Asynchronous Receiver/Transmitters Pin Assignments ............................ 8 Table G. Dual Port USB Host Pin Assignments ....................................................................... 8 Table H. Two-Wire Port with EEPROM Support Pin Assignments .......................................... 8 Table I. Real-Time Clock with Pin Assignments ..................................................................... 8 Table J. PLL and Clocking Pin Assignments .......................................................................... 9 Table K. Interrupt Controller Pin Assignment .......................................................................... 9 Table L. Dual LED Pin Assignments ....................................................................................... 9 Table M.General Purpose Input/Output Pin Assignment ........................................................ 9 Table N. Reset and Power Management Pin Assignments ................................................... 10 Table O. Hardware Debug Interface ...................................................................................... 10 Table P. Pin List in Numerical Order by Pin Number ............................................................. 37 Table Q. Pin Descriptions ..................................................................................................... 39 Table R. Pin Multiplex Usage Information .............................................................................. 40 DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 5 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Processor Core - ARM920T The ARM920T is a Harvard architecture processor with separate 16-kbyte instruction and data caches with an 8word line length but a unified memory. The processor utilizes a five-stage pipeline consisting of fetch, decode, execute, memory, and write stages. Key features include: • • • • • • • • ARM (32-bit) and Thumb (16-bit compressed) instruction sets 32-bit Advanced Micro-Controller Bus Architecture (AMBA) 16 kbyte Instruction Cache with lockdown 16 kbyte Data Cache (programmable write-through or write-back) with lockdown MMU for Linux®, Microsoft® Windows® CE and other operating systems Translation Look Aside Buffers with 64 Data and 64 Instruction Entries Programmable Page Sizes of 1 Mbyte, 64 kbyte, 4 kbyte, and 1 kbyte Independent lockdown of TLB Entries MaverickCrunch™ Math Engine The MaverickCrunch Engine is a mixed-mode coprocessor designed primarily to accelerate the math processing required to rapidly encode digital audio formats. It accelerates single and double precision integer and floating point operations plus an integer multiply-accumulate (MAC) instruction that is considerably faster than the ARM920T's native MAC instruction. The ARM920T coprocessor interface is utilized thereby sharing its memory interface and instruction stream. Hardware forwarding and interlock allows the ARM to handle looping and addressing while MaverickCrunch handles computation. Features include: • • • • • • • • IEEE-754 single and double precision floating point 32 / 64-bit integer Add / multiply / compare Integer MAC 32-bit input with 72-bit accumulate Integer Shifts Floating point to/from integer conversion Sixteen 64-bit register files Four 72-bit accumulators MaverickKey™ Unique ID provide OEMs with a method of utilizing specific hardware IDs such as those assigned for SDMI (Secure Digital Music Initiative) or any other authentication mechanism. Both a specific 32-bit ID as well as a 128-bit random ID are programmed into the EP9302 through the use of laser probing technology. These IDs can then be used to match secure copyrighted content with the ID of the target device the EP9302 is powering, and then deliver the copyrighted information over a secure connection. In addition, secure transactions can benefit by also matching device IDs to server IDs. MaverickKey IDs provide a level of hardware security required for today’s Internet appliances. General Purpose Memory Interface (SDRAM, SRAM, ROM, Flash) The EP9302 features a unified memory address model where all memory devices are accessed over a common address/data bus. Memory accesses are performed via the Processor bus. The SRAM memory controller supports 8 and 16-bit devices and accommodates an internal boot ROM concurrently with 16-bit SDRAM memory. • • • 1 to 4 banks of 16-bit ,100-MHz SDRAM Address and data bus shared between SDRAM, SRAM, ROM, and FLASH memory NOR FLASH memory supported Table B. General Purpose Memory Interface Pin Assignments Pin Mnemonic Pin Description SDCLK SDRAM Clock SDCLKEN SDRAM Clock Enable SDCSn[3:0] SDRAM Chip Selects 3-0 RASn SDRAM RAS CASn SDRAM CAS SDWEn SDRAM Write Enable CSn[7:6] and CSn[3:0] Chip Selects 7, 6, 3, 2, 1, 0 AD[25:0] Address Bus 25-0 DA[15:0] Data Bus 15-0 DQMn[1:0] SDRAM Output Enables / Data Masks WRn SRAM Write Strobe RDn SRAM Read / OE Strobe WAITn SRAM Wait Input MaverickKey unique hardware programmed IDs are a solution to the growing concern over secure web content and commerce. With Internet security playing an important role in the delivery of digital media such as books or music, traditional software methods are quickly becoming unreliable. The MaverickKey unique IDs 6 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Ethernet Media Access Controller (MAC) Table D. Audio Interfaces Pin Assignment The MAC subsystem is compliant with the ISO/TEC 802.3 topology for a single shared medium with several stations. Multiple MII-compliant PHYs are supported. Features include: • • Supports 1/10/100 Mbps transfer rates for home / small-business / large-business applications Interfaces to an off-chip PHY through industrystandard Media-independent Interface (MII) Pin Name Normal Mode I2S on SSP Mode I2S on AC'97 Mode Pin Description Pin Description Pin Description SCLK1 SPI Bit Clock SFRM1 SPI Frame Clock I2S Frame Clock I2S Serial Clock SSPRX1 SPI Serial Input SSPTX1 SPI Serial Output MDC Pin Description Management Data Clock MDIO Management Data I / O RXCLK Receive Clock MIIRXD[3:0] Receive Data RXDVAL Receive Data Valid RXERR Receive Data Error TXCLK Transmit Clock MIITXD[3:0] Transmit Data TXEN Transmit Enable TXERR Transmit Error CRS Carrier Sense CLD Collision Detect SPI Serial Input I2S Serial Output SPI Serial Output ARSTn AC'97 Reset ABITCLK AC'97 Bit Clock AC'97 Reset I2S Master Clock AC'97 Bit Clock I2S Serial Clock ASYNC AC'97 Frame Clock AC'97 Frame Clock I2S Frame Clock ASDI AC'97 Serial Input AC'97 Serial Input I2S Serial Input ASDO AC'97 Serial Output AC'97 Serial Output I2S Serial Output 12-bit Analog-to-digital Converter (ADC) Serial Interfaces (SPI, I2S, and AC ’97) The Serial Peripheral Interface (SPI) port can be configured as a master or a slave, supporting the National Semiconductor®, Motorola®, and Texas Instruments® signaling protocols. The AC'97 port supports multiple codecs for multichannel audio output with a single stereo input. The I2S port supports stereo 24-bit audio. These ports are multiplexed so that the I2S port will take over either the AC'97 pins or the SPI pins. • Normal Mode: One SPI Port and one AC’97 Port • I2S on SSP Mode: One AC’97 Port and one I2S Port • I2S on AC’97 Mode: One SPI Port and one I2S Port Note: I2S Serial Input (No I2S Master Clock) Table C. Ethernet Media Access Controller Pin Assignments Pin Mnemonic SPI Bit Clock SPI Frame Clock The ADC block consists of a 12-bit analog-to-digital converter with a analog input multiplexer. The multiplexer can select to measure battery voltage and other miscellaneous voltages on the external measurement pins. Features include: • • • 5 external pins for ADC measurement Measurement pin input range: 0 to 3.3 V. ADC-conversion-complete interrupt signal Table E. 12-bit Analog-to-Digital Converter Pin Assignments Pin Mnemonic Pin Description ADC[0] (Ym, pin 135) External Analog Measurement Input ADC[1] (sXp, pin 134) External Analog Measurement Input ADC[2] (sXm, pin 133) External Analog Measurement Input ADC[3] (sYp, pin 132) External Analog Measurement Input ADC[4] (sYm, pin 131) External Analog Measurement Input I2S may not be output on AC’97 and SSP ports at the same time. DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 7 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Universal Asynchronous Receiver/Transmitters (UARTs) Two 16550-compatible UARTs are supplied. One provides asynchronous HDLC (High-level Data Link Control) protocol support for full duplex transmit and receive. The HDLC receiver handles framing, address matching, CRC checking, control-octet transparency, and optionally passes the CRC to the host at the end of the packet. The HDLC transmitter handles framing, CRC generation, and control-octet transparency. The host must assemble the frame in memory before transmission. The HDLC receiver and transmitter use the UART FIFOs to buffer the data streams. The second UART provides IrDA® compatibility. • • UART1 supports modem bit rates up to 115.2 kbps, supports HDLC and includes a 16 byte FIFO for receive and a 16 byte FIFO for transmit. Interrupts are generated on Rx, Tx and modem status change. UART2 contains an IrDA encoder operating at either the slow (up to 115 kbps), medium (0.576 or 1.152 Mbps), or fast (4 Mbps) IR data rates. It also has a 16 byte FIFO for receive and a 16 byte FIFO for transmit. Table F. Universal Asynchronous Receiver/Transmitters Pin Assignments Pin Mnemonic • Supports both low-speed (1.5 Mbps) and full-speed (12 Mbps) USB device connections • Root HUB integrated with 2 downstream USB ports • Transceiver buffers integrated, over-current protection on ports • Supports power management • Operates as a master on the bus The Open HCI host controller initializes the master DMA transfer with the AHB bus: • • • • Fetches endpoint descriptors and transfer descriptors Accesses endpoint data from system memory Accesses the HC communication area Writes status and retire transfer descriptor Table G. Dual Port USB Host Pin Assignments Pin Mnemonic Pin Name - Description USBp[2,0] USB Positive signals USBm[2,0] USB Negative Signals Note: USBm[1] and USBp[1] are not bonded out. Two-wire Interface The two-wire interface provides communication and control for synchronous-serial-driven devices. Pin Name - Description Table H. Two-Wire Port with EEPROM Support Pin Assignments TXD0 UART1 Transmit RXD0 UART1 Receive CTSn UART1 Clear To Send / Transmit Enable DSRn / DCDn UART1 Data Set Ready / Data Carrier Detect DTRn UART1 Data Terminal Ready RTSn UART1 Ready To Send EGPIO[0] / RI UART1 Ring Indicator Real-Time Clock with Software Trim TXD1 / SIROUT UART2 Transmit / IrDA Output RXD1 / SIRIN UART2 Receive / IrDA Input The software trim feature on the real time clock (RTC) provides software controlled digital compensation of the 32.768 KHz input clock. This compensation is accurate to ± 1.24 sec/month. Dual-port USB Host This includes the following feature: 8 Pin Name - Description Alternative Usage EECLK Two-wire Interface Clock General Purpose I/O EEDATA Two-Wire Interface Data General Purpose I/O Note: The USB Open Host Controller Interface (Open HCI) provides full-speed serial communications ports at a baud rate of 12 Mbits/sec. Up to 127 USB devices (printer, mouse, camera, keyboard, etc.) and USB hubs can be connected to the USB host in the USB “tieredstar” topology. • • Pin Mnemonic A real time clock must be connected to RTCXTALI or the EP9302 device will not boot. Table I. Real-Time Clock with Pin Assignments Pin Mnemonic Pin Name - Description RTCXTALI Real-Time Clock Oscillator Input RTCXTALO Real-Time Clock Oscillator Output Compliance with the USB 2.0 specification Compliance with the Open HCI Rev 1.0 specification ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch PLL and Clocking • The Processor and the Peripheral Clocks operate from a single 14.7456 MHz crystal. Software supported priority mask for all FIQs and IRQs Table K. External Interrupt Controller Pin Assignment The Real Time Clock operates from a 32.768 KHz external oscillator. Pin Mnemonic Pin Name - Description INT[3] and INT[1:0] Table J. PLL and Clocking Pin Assignments Pin Mnemonic Pin Name - Description XTALI Main Oscillator Input XTALO Main Oscillator Output VDD_PLL Main Oscillator Power GND_PLL Main Oscillator Ground Note: External Interrupts 2, 1, 0 INT[2] is not bonded out. Dual LED Drivers Two pins are assigned specifically to drive external LEDs. Table L. Dual LED Pin Assignments Timers Pin Mnemonic Pin Name Description The Watchdog Timer ensures proper operation by requiring periodic attention to prevent a reset-on-timeout. GRLED Green LED General Purpose I/O REDLED Red LED General Purpose I/O Two 16-bit timers operate as free running down-counters or as periodic timers for fixed interval interrupts and have a range of 0.03 ms to 4.27 seconds. One 32-bit timer, plus a 6-bit prescale counter, has a range of 0.03 µs to 73.3 hours. One 40-bit debug timer, plus 6-bit prescale counter, has a range of 1.0 µs to 12.7 days. Interrupt Controller The interrupt controller allows up to 54 interrupts to generate an Interrupt Request (IRQ) or Fast Interrupt Request (FIQ) signal to the processor core. Thirty-two hardware priority assignments are provided for assisting IRQ vectoring, and two levels are provided for FIQ vectoring. This allows time critical interrupts to be processed in the shortest time possible. Internal interrupts may be programmed as active high or active low level sensitive inputs. GPIO pins programmed as interrupts may be programmed as active high level sensitive, active low level sensitive, rising edge triggered, falling edge triggered, or combined rising/falling edge triggered. General Purpose Input/Output (GPIO) The 16 EGPIO and the 3 FGPIO pins may each be configured individually as an output, an input, or an interrupt input. There are 10 pins that may alternatively be used as input, output, or open-drain pins, but do not support interrupts. These pins are: • Ethernet MDIO • Both LED Outputs • EEPROM Clock and Data • HGPIO[5:2] • CGPIO[0] 6 pins may alternatively be used as inputs only: • CTSn, DSRn / DCDn • 3 Interrupt Lines 2 pins may alternatively be used as outputs only: • RTSn • ARSTn Table M. General Purpose Input/Output Pin Assignment Pin Mnemonic • • • • Supports 54 interrupts from a variety of sources (such as UARTs, GPIO and ADC) Routes interrupt sources to either the ARM920T’s IRQ or FIQ (Fast IRQ) inputs Three dedicated off-chip interrupt lines operate as active high level sensitive interrupts Any of the 19 GPIO lines maybe configured to generate interrupts DS653PP3 Alternative Usage Pin Name - Description EGPIO[15:0] Expanded General Purpose Input / Output Pins with Interrupts FGPIO[3:1] Expanded General Purpose Input / Output Pins with Interrupts ©Copyright 2005 Cirrus Logic (All Rights Reserved) 9 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Reset and Power Management 12-Channel DMA Controller The chip may be reset through the PRSTn pin or through the open drain common reset pin, RSTOn. The DMA module contains 12 separate DMA channels. Ten of these may be used for peripheral-to-memory or memory-to-peripheral access. Two of these are dedicated to memory-to-memory transfers. Each DMA channel is connected to the 16-bit DMA request bus. Clocks are managed on a peripheral-by-peripheral basis and may be turned off to conserve power. The processor clock is dynamically adjustable from 0 to 200 MHz (184 MHz for industrial conditions). PRSTn Power On Reset The request bus is a collection of requests, Serial Audio and UARTs. Each DMA channel can be used independently or dedicated to any request signal. For each DMA channel, source and destination addressing can be independently programmed to increment, decrement, or stay at the same value. All DMA addresses are physical, not virtual addresses. RSTOn User Reset In/Out – Open Drain – Preserves Real Time Clock value Internal Boot ROM Table N. Reset and Power Management Pin Assignments Pin Mnemonic Pin Name - Description Hardware Debug Interface The JTAG interface allows use of ARM’s Multi-ICE or other in-circuit emulators. The Internal 16-kbyte ROM allows booting from FLASH memory, SPI or UART. Consult the EP9301 User’s Guide for operational details. Table O. Hardware Debug Interface Pin Mnemonic Pin Name - Description TCK JTAG Clock TDI JTAG Data In TDO JTAG Data Out TMS JTAG Test Mode Select TRSTn JTAG Port Reset 10 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Electrical Specifications Absolute Maximum Ratings (All grounds = 0 V, all voltages with respect to 0 V) Parameter Symbol Min Max Unit RVDD CVDD VDD_PLL VDD_ADC - 3.96 2.16 2.16 3.96 V V V V - 2 W Input Current per Pin, DC (Except supply pins) - ±10 mA Output current per pin, DC - ±50 mA -0.3 RVDD+0.3 V -40 +125 °C Power Supplies Total Power Dissipation (Note 1) Digital Input voltage (Note 2) Storage temperature Note: 1. Includes all power generated by AC and/or DC output loading. 2. The power supply pins are at maximum values listed in “Recommended Operating Conditions”, below. 3. At ambient temperatures above 70° C, total power dissipation must be limited to less than 2.5 Watts. WARNING: Operation beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. Recommended Operating Conditions (All grounds = 0 V, all voltages with respect to 0 V) Parameter Symbol Min Typ Max Unit RVDD CVDD VDD_PLL VDD_ADC 3.0 1.65 1.65 3.0 3.3 1.80 1.80 3.3 3.6 1.94 1.94 3.6 V V V V Operating Ambient Temperature - Commercial TA 0 +25 +70 °C Operating Ambient Temperature - Industrial TA -40 +25 +85 °C Power Supplies Processor Clock Speed - Commercial FCLK - - 200 MHz Processor Clock Speed - Industrial FCLK - - 184 MHz System Clock Speed - Commercial HCLK - - 100 MHz System Clock Speed - Industrial HCLK - - 92 MHz DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 11 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch DC Characteristics (TA = 0 to 70° C; CVDD = VDD_PLL = 1.8; RVDD = 3.3 V; All grounds = 0 V; all voltages with respect to 0 V unless otherwise noted) Parameter High level output voltage Iout = -4 mA Low level output voltage Iout = 4 mA (Note 4) Symbol Min Max Unit Voh 0.85 × RVDD - V Vol - 0.15 × RVDD V High level input voltage (Note 5) Vih 0.65 × RVDD VDD + 0.3 V Low level input voltage (Note 5) Vil −0.3 0.35 × RVDD V High level leakage current Vin = 3.3 V (Note 5) Iih - 10 µA Low level leakage current Vin = 0 (Note 5) Iil - -10 µA Min Typ Max Unit Parameter Power Supply Pins (Outputs Unloaded) Power Supply Current: CVDD / VDD_PLL Total RVDD - 180 45 230 80 mA mA Low-Power Mode Supply Current CVDD / VDD_PLL Total RVDD - 2 1.0 3.5 2 mA mA Note: 12 4. For open drain pins, high level output voltage is dependent on the external load. 5. All inputs that do not include internal pull-ups or pull-downs, must be externally driven for proper operation (See Table Q on page 39). If an input is not driven, it should be tied to power or ground, depending on the particular function. If an I/O pin is not driven and programmed as an input, it should be tied to power or ground through its own resistor. ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Timings Timing Diagram Conventions This data sheet contains one or more timing diagrams. The following key explains the components used in these diagrams. Any variations are clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated. Clock High to Low High/Low to High Bus Change Bus Valid Undefined/Invalid Valid Bus to Tristate Bus/Signal Omission Figure 1. Timing Diagram Drawing Key Timing Conditions Unless specified otherwise, the following conditions are true for all timing measurements. • TA = 0 to 70° C • CVDD = VDD_PLL = 1.8V • RVDD = 3.3 V • All grounds = 0 V • Logic 0 = 0 V, Logic 1 = 3.3 V • Output loading = 50 pF • Timing reference levels = 1.5 V • The Processor Bus Clock (HCLK) is programmable and is set by the user. The frequency is typically between 33 MHz and 100 MHz (92 MHz for industrial conditions). DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 13 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Memory Interface Figure 2 through Figure 5 define the timings associated with all phases of the SDRAM. The following table contains the values for the timings of each of the SDRAM modes. Parameter Symbol Min Typ Max Unit SDCLK high time tclk_high - (tHCLK) / 2 - ns SDCLK low time tclk_low - (tHCLK) / 2 - ns tclkrf - 2 4 ns SDCLK rise/fall time Signal delay from SDCLK rising edge time td - - 8 ns Signal hold from SDCLK rising edge time th 1 - - ns DQMn delay from SDCLK rising edge time tDQd - - 8 ns DQMn hold from SDCLK rising edge time tDQh 1 - - ns DA valid setup to SDCLK rising edge time tDAs 2 - - ns DA valid hold from SDCLK rising edge time tDAh 3 - - ns SDRAM Load Mode Register Cycle tclk_low tclkrf tclk_high SDCLK td th SDCSn RASn CASn SDWEn DQMn AD OP-Code DA Figure 2. SDRAM Load Mode Register Cycle Timing Measurement 14 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch SDRAM Burst Read Cycle tclk_low tclk_high SDCLK tclkrf td th SDCSn RASn CASn SDWEn tDQh tDQd DQMn CL = 2 tDQh DQMn CL = 3 AD td tDAs DA tDAh n n+1 n+2 n+3 CL = 2 tDAs DA CL = 3 tDAh n n+1 n+2 n+3 Figure 3. SDRAM Burst Read Cycle Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 15 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch SDRAM Burst Write Cycle tclk_high tclk_low SDCLK tclkrf td th th SDCSn RASn CASn SDWEn DQMn AD DA n n +1 n+2 n+3 Figure 4. SDRAM Burst Write Cycle Timing Measurement 16 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch SDRAM Auto Refresh Cycle tclk_high tclk_low SDCLK tclkrf td SDCSn th 7 b d e RASn CASn SDWEn Note: Chip select shown as bus to illustrate multiple devices being put into auto refresh in one access Figure 5. SDRAM Auto Refresh Cycle Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 17 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory 32-bit Read on 8-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to CSn assert time tADs tHCLK - - ns CSn assert to Address transition time tAD1 - tHCLK × (WST1 + 1) - ns Address assert time tAD2 - tHCLK × (WST1 + 1) - ns AD transition to CSn deassert time tAD3 - tHCLK × (WST1 + 2) - ns tADh - ns tHCLK - tRDpwL - tHCLK × (4 × WST1 + 5) - ns tRDd - - 3 ns CSn assert to DQMn assert delay time tDQMd - - 1 ns DA setup to AD transition time tDAs1 15 - - ns DA setup to RDn deassert time tDAs2 tHCLK + 12 - - ns DA hold from AD transition time tDAh1 0 - - ns DA hold from RDn deassert time tDAh2 0 - - ns AD hold from CSn deassert time RDn assert time CSn to RDn delay time tADs tAD1 tAD2 tAD2 tADh tAD3 AD CSn WRn tRDd tRDd RDn tDQMd DQMn tDAh1 tDAh1 tDAh11 tDAh2 DA tDAs1 tDAs1 tDAs1 tDAs2 WAIT Figure 6. Static Memory Multiple Word Read 8-bit Cycle Timing Measurement 18 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory 32-bit Write on 8-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to WRn assert time tADs tHCLK − 3 - - ns WRn/DQMn deassert to AD transition time tADd - - tHCLK + 6 ns AD hold from WRn deassert time tADh tHCLK × 2 - - ns CSn hold from WRn deassert time tCSh 7 - - ns tWRd 2 ns CSn to WRn assert delay time - - WRn assert time tWRpwL - tHCLK × (WST1 + 1) - ns WRn deassert time tWRpwH - tHCLK × 2 (tHCLK × 2) + 14 ns CSn to DQMn assert delay time tDQMd - - 1 ns DQMn assert time tDQMpwL - tHCLK × (WST1 + 1) - ns DQMn deassert time tDQMpwH - - (tHCLK × 2) + 7 ns WRn / DQMn deassert to DA transition time tDAh tHCLK - - ns WRn / DQMn assert to DA valid time tDAV - - 8 ns tADs tADd tADd tADd tADh AD CSn tWRd tWRpwL tWRpwL tCSh tWRpwL WRn tWRpwH tWRpwH tWRpwH RDn tDQMd tDQMpwL tDQMpwL tDQMpwL DQMn tDQMpwH tDAV tDQMpwH tDAV tDQMpwH tDAV tDAV DA tDAh tDAh tDAh tDAh WAIT Figure 7. Static Memory Multiple Word Write 8-bit Cycle Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 19 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory 32-bit Read on 16-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to CSn assert time tADs tHCLK - - ns CSn assert to AD transition time tADd1 - tHCLK × (WST1 + 1) - ns AD transition to CSn deassert time tADd2 - tHCLK × (WST1 + 2) - ns AD hold from CSn deassert time tADh tHCLK - - ns tRDpwL - tHCLK × ((2 × WST1) + 3) - ns tRDd - - 3 ns CSn assert to DQMn assert delay time tDQMd - - 1 ns DA setup to AD transition time tDAs1 15 - - ns DA to RDn deassert time tDAs2 tHCLK + 12 - - ns DA hold from AD transition time tDAh1 0 - - ns DA hold from RDn deassert time tDAh2 0 - - ns RDn assert time CSn to RDn delay time tADs tADd1 tADd2 tADh AD CSn WRn tRDd tRDh tRDpwl RDn DQMn tDQMh tDQMd tDAs1 tDAh1 tDAs2 tDAh2 DA WAIT Figure 8. Static Memory Multiple Word Read 16-bit Cycle Timing Measurement 20 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory 32-bit Write on 16-bit External Bus Parameter Symbol Min Typ Max Unit AD setup to WRn assert time tADs tHCLK – 3 - - ns WRn/DQMn deassert to AD transition time tADd - - tHCLK + 6 ns AD hold from WRn deassert time tADh tHCLK × 2 - - ns CSn hold from WRn deassert time tCSh 7 - - ns tWRd CSn to WRn assert delay time - - 2 ns WRn assert time tWRpwL - tHCLK × (WST1 + 1) - ns WRn deassert time tWRpwH - - (tHCLK × 2) + 14 ns CSn to DQMn assert delay time tDQMd - - 1 ns DQMn assert time tDQMpwL - tHCLK × (WST1 + 1) - ns DQMn deassert time tDQMpwH - - (tHCLK × 2) + 7 ns WRn / DQMn deassert to DA transition time tDAh1 tHCLK - - ns WRn / DQMn assert to DA valid time tDAV - - 8 ns tADs tADd tADh AD CSn tWRd tWRpwL WRn tWRpwL tCSh tWRpwH RDn tDQMd tDQpwL DQMn tDQpwL tDQpwH tDAV tDAh tDAV tDAh DA WAIT Figure 9. Static Memory Multiple Word Write 16-bit Cycle Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 21 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory Burst Read Cycle Parameter Symbol Min Typ Max Unit CSn assert to Address 1 transition time tADd1 - tHCLK × (WST1 + 1) - ns Address assert time tADd2 - tHCLK × (WST2 + 1) - ns AD transition to CSn deassert time tADd3 - tHCLK × (WST1 + 2) - ns AD hold from CSn deassert time tADh tHCLK - - ns tRDd - - 3 ns CSn to RDn delay time CSn to DQMn assert delay time tDQMd - - 1 ns DA setup to AD transition time tDAs1 15 - - ns DA setup to CSn deassert time tDAs2 tHCLK + 12 - - ns DA hold from AD transition time tDAh1 0 - - ns DA hold from RDn deassert time tDAh2 0 - - ns Note: These characteristics are valid when the Page Mode Enable (Burst Mode) bit is set. See the User's Guide for details. tADs tADd1 tADd2 tADd2 tADh tADd3 AD CSn WRn tRDd RDn DQMn tDQMd tDAh1 tDAh1 tDAh1 tDAh2 DA tDAs1 tDAs1 tDAs1 tDAs2 WAIT Figure 10. Static Memory Burst Read Cycle Timing Measurement 22 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory Burst Write Cycle Parameter Symbol Min AD setup to WRn assert time tADs tHCLK − 3 ns AD hold from WRn deassert time tADh tHCLK × 2 ns WRN/DQMn deassert to AD transition time tADd CSn hold from WRn deassert time tCSh CSn to WRn assert delay time tWRd CSn to DQMn assert delay time tDQMd DQMn assert time tDQpwL DQMn deassert time tDQpwH WRn assert time tWRpwL WRn deassert time tWRpwH WRn/DQMn deassert to DA transition time tDAh WRn/DQMn assert to DA valid time tDAv Note: Typ Max Unit tHCLK + 6 ns 7 ns 2 ns 1 ns tHCLK × (WST1 + 1) ns (tHCLK × 2) + 14 ns tHCLK × (WST1 + 11) ns (tHCLK × 2) + 7 ns tHCLK ns 8 ns These characteristics are valid when the Page Mode Enable (Burst Mode) bit is set. See the User's Guide for details. tADs tADd tADh AD CSn tWRpwL WRn tCSh tWRpwH tWRd RD tDQMd tDQpwL DQMn tDQpwH tDAv tDAh DA WAIT Figure 11. Static Memory Burst Write Cycle Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 23 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory Single Read Wait Cycle Parameter Symbol Min Typ Max Unit CSn assert to WAIT time tWAITd - - tHCLK × (WST1-2) ns WAIT assert time tWAITpw tHCLK × 2 - tHCLK × 510 ns tCSnd tHCLK × 3 - tHCLK × 5 ns WAIT to CSn deassert delay time AD CSn WRn RDn DQMn DA WAIT tWAITd tWAITpw tCSnd Figure 12. Static Memory Single Read Wait Cycle Timing Measurement 24 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory Single Write Wait Cycle Parameter Symbol Min Typ Max Unit tWRd tHCLK × 2 - tHCLK × 4 ns CSn assert to WAIT time tWAITd - - tHCLK × (WST1-2) ns WAIT assert time tWAITpw tHCLK × 2 - tHCLK × 510 ns tCSnd tHCLK × 3 - tHCLK × 5 ns WAIT to WRn deassert delay time WAIT to CSn deassert delay time AD CSn tWRd WRn RDn DQMn DA tWAITd WAIT tWAITpw tCSnd Figure 13. Static Memory Single Write Wait Cycle Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 25 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Static Memory Turnaround Cycle Parameter CSnX deassert to CSnY assert time Symbol Min Typ Max Unit tBTcyc - tHCLK × (IDCY+1) - ns Notes: 1. X and Y represent any two chip select numbers. 2. IDCY occurs on read-to-write and write-to-read. 3. IDCY is honored when going from a asynchronous device (CSx) to a synchronous device (/SDCSy). tBTcyc AD CSnX CSnY WRn RDn DQMn DA WAIT Figure 14. Static Memory Turnaround Cycle Timing Measurement 26 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Ethernet MAC Interface Min Parameter Typ Max Symbol 10 Mbit mode 100 Mbit mode 10 Mbit mode 100 Mbit mode 10 Mbit mode 100 Mbit mode Unit TXCLK cycle time tTX_per - - 400 40 - - ns TXCLK high time tTX_high 140 14 200 20 260 26 ns TXCLK low time tTX_low 140 14 200 20 260 26 ns TXCLK to signal transition delay time tTXd 0 0 10 10 25 25 ns TXCLK rise/fall time tTXrf - - - - 5 5 ns RXCLK cycle time tRX_per - - 400 40 - - ns RXCLK high time tRX_high 140 14 200 20 260 26 ns RXCLK low time tRX_low 140 14 200 20 260 26 ns tRXs 10 10 - - - - ns RXDVAL / RXERR hold time tRXh 10 10 - - - - ns RXCLK rise/fall time tRXrf - - - - 5 5 ns RXDVAL / RXERR setup time MDC cycle time tMDC_per - - 400 400 - - ns MDC high time tMDC_high 160 160 - - - - ns MDC low time tMDC_low 160 160 - - - - ns MDC rise/fall time tMDCrf - - - - 5 5 ns MDIO setup time (STA sourced) tMDIOs 10 10 - - - - ns MDIO hold time (STA sourced) tMDIOh 10 10 - - - - ns MDC to MDIO signal transition delay time (PHY sourced) tMDIOd - - - - 300 300 ns STA - Station - Any device that contains an IEEE 802.11 conforming Medium Access Control (MAC) and physical layer (PHY) interface to the wireless medium. PHY - Ethernet physical layer interface. DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 27 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch tTX_high tTX_low TXCLK TXD[3:0]/ TXEN/ TXERR tTXd tTX_per tRX_low tRX_high RXCLK tRXh RXD[3:0]/ RXDVAL/ RXERR tRX_per tRXs MDC MDIO (Sourced by STA) tMDC_high tMDC_low tMDIOs tMDIOh tMDC_per MDC MDIO (Sourced by PHY) tMDIOd Figure 15. Ethernet MAC Timing Measurement 28 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Audio Interface The following table contains the values for the timings of each of the SPI modes. Parameter Symbol Min Typ Max Unit SCLK cycle time tclk_per - tspix_clk - ns SCLK high time tclk_high - (tspix_clk) / 2 - ns SCLK low time tclk_low - (tspix_clk) / 2 - ns SCLK rise/fall time tclkrf 1 - 8 ns Data from master valid delay time tDMd - - 3 ns Data from master setup time tDMs 20 - - ns Data from master hold time tDMh 40 - - ns Data from slave setup time tDSs 20 - - ns Data from slave hold time tDSh 40 - - ns Note: DS653PP3 The tspix_clk is programmable by the user. ©Copyright 2005 Cirrus Logic (All Rights Reserved) 29 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Texas Instruments’ Synchronous Serial Format tclk_per tclk_high tclkrf SCLK tclk_low SFRM SSPTXD/ SSPRXD MSB LSB 4 to 16 bits Figure 16. TI Single Transfer Timing Measurement Microwire tclk_high tclk_per tclkrf SCLK tclk_low SFRM SSPTXD LSB MSB 8-bit control SSPRXD 0 MSB LSB 4 to 16 bits output data Figure 17. Microwire Frame Format, Single Transfer 30 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Motorola SPI tclk_per tclk_high tclkrf SCLK (SPO=0) tclk_low SCLK (SPO=1) tDMs SSPTXD (master) tDMh MSB LSB tDMd tDSs SSPRXD (slave) tDSh MSB LSB SFRM Figure 18. SPI Format with SPH=1 Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 31 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Inter-IC Sound - I2S Parameter Symbol Min Typ Max Unit SCLK cycle time tclk_per - ti2s_clk - ns SCLK high time tclk_high - (ti2s_clk) / 2 - ns SCLK low time tclk_low - (ti2s_clk) / 2 - ns SCLK rise/fall time tclkrf 1 4 8 ns SCLK to LRCLK assert delay time tLRd - - 3 ns Hold between SCLK assert then LRCLK deassert or Hold between LRCLK deassert then SCLK assert tLRh 0 - - ns SDI to SCLK deassert setup time tSDIs 12 - - ns SDI from SCLK deassert hold time tSDIh 0 - - ns SCLK assert to SDO delay time tSDOd - - 9 ns SDO from SCLK assert hold time tSDOh 1 - - ns Note: ti2s_clk is programmable by the user. tclk_per tclk_low tclk_high tclkrf SCLK tLRd tLRh LRCLK tSDIs tSDIh SDI tSDOd tSDOh SDO Figure 19. Inter-IC Sound (I2S) Timing Measurement 32 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch AC’97 Parameter Symbol Min Typ Max Unit ABITCLK input cycle time tclk_per - 81.4 - ns ABITCLK input high time tclk_high 36 - 45 ns ABITCLK input low time tclk_low 36 - 45 ns tclkrf 2 - 6 ns ts 10 - - ns ABITCLK input rise/fall time ASDI setup to ABITCLK falling th 10 - - ns ASDI input rise/fall time trfin 2 - 6 ns ABITCLK rising to ASDO / ASYNC valid, CL = 55 pF tco 2 - 15 ns trfout 2 - 6 ns ASDI hold after ABITCLK falling ASYNC / ASDO rise/fall time, CL = 55 pF tclk_high tclk_low tclk_per ABITCLK tclkrf tclkrf th ts trfin ASDI ASDO trfout tco tco tco ASYNC trfout trfout Figure 20. AC ‘97 Configuration Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 33 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch ADC Parameter Resolution Comment Value No missing codes Range of 0 to 3.3 V 50K counts (approximate) Integral non-linearity Units 0.01% Offset error ±15 Full scale error mV 0.2% Maximum sample rate ADIV = 0 ADIV = 1 3750 925 Samples per second Samples per second Channel switch settling time ADIV = 0 ADIV = 1 500 2 µs ms 120 µV Noise (RMS) - typical Note: ADIV refers to bit 16 in the KeyTchClkDiv register. ADIV = 0 means the input clock to the ADC module is equal to the external 14.7456 MHz clock divided by 4. ADIV = 1 means the input clock to the ADC module is equal to the external 14.7456 MHz clock divided by 16. 61A8 0000 FFFF 9E58 0 Vref/2 Vref A/D Converter Transfer Function (approximately ±25,000 counts) Figure 21. ADC Transfer Function Using the ADC: This ADC has a state-machine based conversion engine that automates the conversion process. The initiator for a conversion is the read access of the TSXYResult register by the CPU. The data returned from reading this register contains the result as well as the status bit indicating the state of the ADC. However, this peripheral requires a delay between each successful conversion and the issue of the next conversion command, or else the returned value of successive samples may not reflect the analog input. Since the state of the ADC state machine is returned through the same channel used to initiate the conversion process, there must be a delay inserted after every complete conversion. Note that reading TSXYResult during a conversion will not affect the result of the ongoing process. The following is a recommended procedure for safely polling the ADC from software: 1. Read the TSXYResult register into a local variable to initiate a conversion. 2. If the value of bit 31 of the local variable is '0' then repeat step 1. 3. Delay long enough to meet the maximum sample rate as shown above. 4. Mask the local variable with 0xFFFF to remove extraneous data. 5. If signed mode is used, do a sign extend of the lower halfword. 6. Return the sampled value. 34 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch JTAG Parameter Symbol Min Max Units TCK clock period tclk_per 100 - ns TCK clock high time tclk_high 50 - ns TCK clock low time tclk_low 50 - ns TMS / TDI to clock rising setup time tJPs 20 - ns Clock rising to TMS / TDI hold time tJPh 45 - ns JTAG port clock to output tJPco - 30 ns JTAG port high impedance to valid output tJPzx - 30 ns JTAG port valid output to high impedance tJPxz - 30 ns TMS TDI tclk_per tclk_high tJPs tJPh tclk_low TCK tJPzx tJPco tJPxz TDO Figure 22. JTAG Timing Measurement DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 35 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch 208 Pin LQFP Package Outline 2.19 208-Pin LQFP (28 × 28 × 1.40-mm Body) 29.60 (1.165) 30.40 (1.197) 27.80 (1.094) 28.20 (1.110) 0.17 (0.007) 0.27 (0.011) 27.80 (1.094) 28.20 (1.110) 29.60 (1.165) 30.40 (1.197) 0.50 (0.0197) BSC Pin 1 Indicator Pin 208 Pin 1 0.45 (0.018) 0.75 (0.030) 1.35 (0.053) 1.45 (0.057) 1.00 (0.039) BSC 0.09 (0.004) 0.20 (0.008) 0° MIN 7° MAX 1.40 (0.055) 1.60 (0.063) 0.05 (0.002) 0.15 (0.006) NOTES: 1) Dimensions are in millimeters, and controlling dimension is millimeter. 2) Package body dimensions do not include mold protrusion, which is 0.25 mm (0.010 in). 3) Pin 1 identification may be either ink dot or dimple. 4) Package top dimensions can be smaller than bottom dimensions by 0.20 mm (0.008 in). 5) The ‘lead width with plating’ dimension does not include a total allowable dambar protrusion of 0.08 mm (at maximum material condition). 6) Ejector pin marks in molding are present on every package. 7) Drawing above does not reflect exact package pin count. 36 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch 208 Pin LQFP Pinout The following table shows the 208 pin LQFP pinout. • VDD_core is CVDD. • VDD_ring is RVDD. • NC means that the pin is not connected. Pin List The following Low-Profile Quad Flat Pack (LQFP) pin assignment table is sorted in order of pin. Table P. Pin List in Numerical Order by Pin Number Pin Number Pin Name Pin Number Pin Name Pin Number Pin Name Pin Number Pin Name Pin Number Pin Name Pin Number Pin Name 1 CSn[7] 36 AD[5] 71 AD[9] 106 2 CSn[6] 37 DA[12] 72 DA[1] 107 USBp[0] 141 EGPIO[10] 176 TXEN ABITCLK 142 EGPIO[9] 177 MIITXD[0] 3 CSn[3] 38 AD[4] 73 AD[8] 108 CTSn 143 EGPIO[8] 178 MIITXD[1] 4 CSn[2] 39 DA[11] 74 DA[0] 109 RXD[0] 144 EGPIO[7] 179 MIITXD[2] 5 CSn[1] 40 AD[3] 75 DSRn 110 RXD[1] 145 EGPIO[6] 180 MIITXD[3] 6 AD[25] 41 vdd_ring 76 DTRn 111 vdd_ring 146 EGPIO[5] 181 TXCLK 7 vdd_ring 42 gnd_ring 77 TCK 112 gnd_ring 147 EGPIO[4] 182 RXERR 8 gnd_ring 43 DA[10] 78 TDI 113 TXD[0] 148 EGPIO[3] 183 RXDVAL 9 AD[24] 44 AD[2] 79 TDO 114 TXD[1] 149 gnd_ring 184 MIIRXD[0] 10 SDCLK 45 DA[9] 80 TMS 115 CGPIO[0] 150 vdd_ring 185 MIIRXD[1] 11 AD[23] 46 AD[1] 81 vdd_ring 116 gnd_core 151 EGPIO[2] 186 MIIRXD[2] 12 vdd_core 47 DA[8] 82 gnd_ring 117 PLL_GND 152 EGPIO[1] 187 gnd_ring 13 gnd_core 48 AD[0] 83 BOOT[1] 118 XTALI 153 EGPIO[0] 188 vdd_ring 14 SDWEn 49 vdd_ring 84 BOOT[0] 119 XTALO 154 ARSTn 189 MIIRXD[3] 15 SDCSn[3] 50 gnd_ring 85 gnd_ring 120 PLL_VDD 155 TRSTn 190 RXCLK 16 SDCSn[2] 51 NC 86 NC 121 vdd_core 156 ASDI 191 MDIO 17 SDCSn[1] 52 NC 87 EECLK 122 gnd_ring 157 USBm[2] 192 MDC 18 SDCSn[0] 53 vdd_ring 88 EEDAT 123 vdd_ring 158 USBp[2] 193 RDn 19 vdd_ring 54 gnd_ring 89 ASYNC 124 RSTOn 159 WAITn 194 WRn 20 gnd_ring 55 AD[15] 90 vdd_core 125 PRSTn 160 EGPIO[15] 195 AD[16] 21 RASn 56 DA[7] 91 gnd_core 126 CSn[0] 161 gnd_ring 196 AD[17] 22 CASn 57 vdd_core 92 ASDO 127 gnd_core 162 vdd_ring 197 gnd_core 23 DQMn[1] 58 gnd_core 93 SCLK1 128 vdd_core 163 EGPIO[14] 198 vdd_core 24 DQMn[0] 59 AD[14] 94 SFRM1 129 gnd_ring 164 EGPIO[13] 199 HGPIO[2] 25 AD[22] 60 DA[6] 95 SSPRX1 130 vdd_ring 165 EGPIO[12] 200 HGPIO[3] 26 AD[21] 61 AD[13] 96 SSPTX1 131 ADC[4] 166 gnd_core 201 HGPIO[4] 27 vdd_ring 62 DA[5] 97 GRLED 132 ADC[3] 167 vdd_core 202 HGPIO[5] 28 gnd_ring 63 AD[12] 98 RDLED 133 ADC[2] 168 FGPIO[3] 203 gnd_ring 29 DA[15] 64 DA[4] 99 vdd_ring 134 ADC[1] 169 FGPIO[2] 204 vdd_ring 30 AD[7] 65 AD[11] 100 gnd_ring 135 ADC[0] 170 FGPIO[1] 205 AD[18] 31 DA[14] 66 vdd_ring 101 INT[3] 136 ADC_VDD 171 gnd_ring 206 AD[19] 32 AD[6] 67 gnd_ring 102 INT[1] 137 RTCXTALI 172 vdd_ring 207 AD[20] 208 SDCLKEN 33 DA[13] 68 DA[3] 103 INT[0] 138 RTCXTALO 173 CLD 34 vdd_core 69 AD[10] 104 RTSn 139 ADC_GND 174 CRS 35 gnd_core 70 DA[2] 105 USBm[0] 140 EGPIO[11] 175 TXERR DS653PP3 ©Copyright 2005 Cirrus Logic (All Rights Reserved) 37 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch The following section focuses on the EP9302 pin signals from two viewpoints - the pin usage and pad characteristics, and the pin multiplexing usage. The first table (Table Q) is a summary of all the EP9302 pin signals. The second table (Table R) illustrates the pin signal multiplexing and configuration options. Table Q is a summary of the EP9302 pin signals, which illustrates the pad type and pad pull type (if any). The symbols used in the table are defined as follows. (Note: A blank box means Not Applicable (NA) or, for Pull Type, No Pull (NP).) Under the Pad Type column: • A - Analog pad • P - Power pad • G - Ground pad • I - Pin is an input only • I/O - Pin is input/output • 4mA - Pin is a 4mA output driver • 8mA - Pin is an 8mA output driver • 12mA - Pin is an 12mA output driver See the text description for additional information about bi-directional pins. Under the Pull Type Column: • • 38 PU - Resistor is a pull up to the RVDD supply PD - Resistor is a pull down to the RGND supply ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch . Table Q. Pin Descriptions (Continued) Table Q. Pin Descriptions Block Pad Type MDC EMAC 4ma JTAG data in MDIO EMAC 4ma PU Management data input/output JTAG data out RXCLK EMAC I PD Receive clock in PD JTAG test mode select MIIRXD[3:0] EMAC I PD Receive data in I PD JTAG reset RXDVAL EMAC I PD Receive data valid System I PD Boot mode select in RXERR EMAC I PD Receive data error XTALI PLL A Main oscillator input TXCLK EMAC I PU Transmit clock in XTALO PLL A Main oscillator output MIITXD[3:0] EMAC I PD Transmit data out VDD_PLL PLL P Main oscillator power, 1.8V TXEN EMAC 4ma PD Transmit enable GND_PLL PLL G Main oscillator ground TXERR EMAC 4ma PD Transmit error RTCXTALI RTC A RTC oscillator input CRS EMAC I PD Carrier sense RTCXTALO RTC A RTC oscillator output CLD EMAC I PU Collision detect WRn EBUS 4ma SRAM Write strobe out GRLED LED 12ma Green LED RDn EBUS 4ma SRAM Read / OE strobe out RDLED LED 12ma Red LED WAITn EBUS I SRAM Wait in EECLK EEPROM 4ma PU EEPROM / Two-wire Interface clock AD[25:0] EBUS 8ma Shared Address bus out EEDAT EEPROM 4ma PU EEPROM / Two-wire Interface data DA[15:0] EBUS 8ma PU Shared Data bus in/out ABITCLK AC97 8ma PD AC97 bit clock CSn[3:0] EBUS 4ma PU Chip select out ASYNC AC97 8ma PD AC97 frame sync CSn[7:6] EBUS 4ma PU Chip select out ASDI AC97 I PD AC97 Primary input DQMn[1:0] EBUS 8ma Shared data mask out ASDO AC97 8ma PU AC97 output SDCLK SDRAM 8ma SDRAM clock out ARSTn AC97 8ma SDCLKEN SDRAM 8ma SDRAM clock enable out SCLK1 SPI1 8ma PD SPI bit clock SDCSn[3:0] SDRAM 4ma SDRAM chip selects out SFRM1 SPI1 8ma PD SPI Frame Clock RASn SDRAM 8ma SDRAM RAS out SSPRX1 SPI1 I PD SPI input CASn SDRAM 8ma SDRAM CAS out SSPTX1 SPI1 8ma SDWEn SDRAM 8ma SDRAM write enable out INT[3], INT[1:0] INT I PD External interrupts ADC[4:0] ADC A External Analog Measurement Input PRSTn Syscon I PU Power on reset VDD_ADC ADC P ADC power, 3.3V RSTOn Syscon 4ma User Reset in out - open drain GND_ADC ADC G ADC ground SLA[1:0] EEPROM 4ma Flash programming voltage control USBp[2, 0] USB A USB positive signals EGPIO[15:0] GPIO I/O, 4ma PU Enhanced GPIO USBm[2, 0] USB A USB negative signals FGPIO[3:1] GPIO I/O, 8ma PU GPIO on Port F TXD0 UART1 4ma HGPIO[5:2] GPIO I/O, 8ma PU GPIO on Port H RXD0 UART1 I PU Receive in CGPIO[0] GPIO I/O, 8ma PU GPIO on Port C CTSn UART1 I PU Clear to send / transmit enable CVDD Power P Digital power, 1.8V DSRn UART1 I PU Data set ready / Data Carrier Detect RVDD Power P Digital power, 3.3V DTRn UART1 4ma Data Terminal Ready output CGND Ground G Digital ground RTSn UART1 4ma Ready to send RGND Ground G Digital ground TXD1 UART2 4ma Transmit / IrDA output RXD1 UART2 I Block Pad Type Pull Type TCK JTAG I PD JTAG clock in TDI JTAG I PD TDO JTAG 4ma TMS JTAG I TRSTn JTAG Pin Name BOOT[1:0] DS653PP3 PU Description Transmit out PU Pin Name Pull Type Description Management data clock AC97 reset SPI output Receive / IrDA input ©Copyright 2005 Cirrus Logic (All Rights Reserved) 39 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Table R illustrates the pin signal multiplexing and configuration options. Table R. Pin Multiplex Usage Information 40 Physical Pin Name Description Multiplex signal name EGPIO[0] Ring Indicator Input RI EGPIO[1] 1Hz clock monitor CLK1HZ EGPIO[3] HDLC Clock HDLCCLK1 EGPIO[4] I2S Transmit Data 1 SDO1 EGPIO[5] I2S Receive Data 1 SDI1 EGPIO[6] I2S Transmit Data 2 SDO2 EGPIO[7] DMA Request 0 DREQ0 EGPIO[8] DMA Acknowledge 0 DACK0 EGPIO[9] DMA EOT 0 DEOT0 EGPIO[10] DMA Request 1 DREQ1 EGPIO[11] DMA Acknowledge 1 DACK1 EGPIO[12] DMA EOT 1 DEOT1 EGPIO[13] I2S Receive Data 2 SDI2 EGPIO[14] PWM1 Output PWMOUT1 EGPIO[15] Device active / present DASP ABITCLK I2S Serial clock SCLK ASYNC I2S Frame Clock LRCK ASDO I2S Transmit Data 0 SDO0 ASDI I2S Receive Data 0 SDI0 ARSTn I2S Master clock MCLK SCLK1 I2S Serial clock SCLK SFRM1 I2S Frame Clock LRCK SSPTX1 I2S Transmit Data 0 SDO0 SSPRX1 I2S Receive Data 0 SDI0 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Acronyms and Abbreviations The following tables list abbreviations and acronyms used in this data sheet. Term Term Definition OHCI Open Host Controller Interface PHY Ethernet PHYsical layer interface PIO Programmed I/O RISC Reduced Instruction Set Computer SDMI Secure Digital Music Initiative SDRAM Synchronous Dynamic RAM SPI Serial Peripheral Interface SRAM Static Random Access Memory STA Station - Any device that contains an IEEE 802.11 conforming Medium Access Control (MAC) and physical layer (PHY) interface to the wireless medium TFT Thin Film Transistor TLB Translation Lookaside Buffer USB Universal Serial Bus Definition ADC Analog-to-Digital Converter ALT Alternative AMBA Advanced Micro-controller Bus Architecture ATAPI ATA Packet Interface CODEC COder / DECoder CRC Cyclic Redundancy Check DAC Digital-to-Analog Converter DMA Direct-Memory Access EBUS External Memory Bus EEPROM Electronically Erasable Programmable Read Only Memory EMAC Ethernet Media Access Controller FIFO First In / First Out FIQ Fast Interrupt Request FLASH Flash memory GPIO General Purpose I/O °C degree Celsius HDLC High-level Data Link Control Hz Hertz = cycle per second I/F Interface kbps kilobits per second kbyte kilobyte I2 S Inter-IC Sound kHz kiloHertz = 1000 Hz IC Integrated Circuit Mbps Megabits per second ICE In-Circuit Emulator MHz MegaHertz = 1,000 KiloHertz IDE Integrated Drive Electronics µA microAmpere = 10-6 Ampere IEEE Institute of Electronics and Electrical Engineers µs microsecond = 1,000 nanoseconds = 10-6 seconds IrDA Infrared Data Association mA milliAmpere = 10-3 Ampere IRQ Standard Interrupt Request ms millisecond = 1,000 microseconds = 10-3 seconds ISO International Standards Organization mW milliWatt = 10-3 Watts JTAG Joint Test Action Group ns nanosecond = 10-9 seconds LFSR Linear Feedback Shift Register pF picoFarad = 10-12 Farads MII Media-independent Interface V Volt MMU Memory Management Unit W Watt DS653PP3 Units of Measurement Symbol Unit of Measure ©Copyright 2005 Cirrus Logic (All Rights Reserved) 41 EP9302 High-speed ARM9 System-on-chip Processor with MaverickCrunch Ordering Information The order numbers for the device are: EP9302-CQ EP9302-CQZ EP9302-IQ EP9302-IQZ 0 °C to +70 °C 0 °C to +70 °C -40 °C to +85 °C -40 °C to +85 °C 208-pin LQFP 208-pin LQFP 208-pin LQFP 208-pin LQFP Lead Free Lead Free EP9302 — CQZ Lead Material: Z = Lead Free Part Number Product Line: Embedded Processor Note: Package Type: Q = 208 pin, Low Profile Quad Flat Pack (28 mm x 28 mm) Temperature Range: C = Commercial E = Extended Operating Version I = Industrial Operating Version Go to the Cirrus Logic Internet site at http://www.cirrus.com to find contact information for your local sales representative. Contacting Cirrus Logic Support For all product questions and inquiries contact a Cirrus Logic Sales Representative. To find one nearest you go to www.cirrus.com IMPORTANT NOTICE "Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES. Cirrus Logic, Cirrus, MaverickCrunch, MaverickKey, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners. Microsoft and Windows are registered trademarks of Microsoft Corporation. Microwire is a trademark of National Semiconductor Corp. National Semiconductor is a registered trademark of National Semiconductor Corp. Texas Instruments is a registered trademark of Texas Instruments, Inc. Motorola and SPI are registered trademarks of Motorola, Inc. LINUX is a registered trademark of Linus Torvalds. 42 ©Copyright 2005 Cirrus Logic (All Rights Reserved) DS653PP3