Freescale Semiconductor Technical Data Document Number: MRF6S18100N Rev. 2, 12/2008 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs MRF6S18100NR1 MRF6S18100NBR1 Designed for GSM and GSM EDGE base station applications with frequenc ies from 1800 to 2000 MHz . S u i t a b l e f o r T D M A , C D M A a n d multicarrier amplifier applications. GSM Application • Typical GSM Performance: VDD = 28 Volts, IDQ = 900 mA, Pout = 100 Watts, f = 1990 MHz Power Gain — 14.5 dB Drain Efficiency — 49% GSM EDGE Application • Typical GSM EDGE Performance: VDD = 28 Volts, IDQ = 700 mA, Pout = 40 Watts Avg., Full Frequency Band (1805 - 1880 MHz or 1930- 1990 MHz) Power Gain — 15 dB Drain Efficiency — 35% Spectral Regrowth @ 400 kHz Offset = - 63 dBc Spectral Regrowth @ 600 kHz Offset = - 76 dBc EVM — 2% rms • Capable of Handling 5:1 VSWR, @ 28 Vdc, 1990 MHz, 100 Watts CW Output Power Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Qualified Up to a Maximum of 32 VDD Operation • Integrated ESD Protection • Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. 1805- 1990 MHz, 100 W, 28 V GSM/GSM EDGE LATERAL N - CHANNEL RF POWER MOSFETs CASE 1486 - 03, STYLE 1 TO - 270 WB - 4 MRF6S18100NR1 CASE 1484 - 04, STYLE 1 TO - 272 WB - 4 MRF6S18100NBR1 Table 1. Maximum Ratings Symbol Value Unit Drain- Source Voltage Rating VDSS - 0.5, +68 Vdc Gate- Source Voltage VGS - 0.5, +12 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C TJ 225 °C Symbol Value (2,3) Case Operating Temperature Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 100 CW Case Temperature 77°C, 40 CW RθJC 0.51 0.62 Unit °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2005 - 2006, 2008. All rights reserved. RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 68 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 500 nAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 330 μAdc) VGS(th) 1.6 2 3 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 900 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.8 3.5 Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 3.3 Adc) VDS(on) — 0.24 — Vdc Crss — 1.5 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics(1) Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, Pout = 100 W, IDQ = 900 mA, f = 1990 MHz Power Gain Gps 13 14.5 16 dB Drain Efficiency ηD 47 49 — % Input Return Loss IRL — - 12 -9 dB P1dB 100 110 — W Pout @ 1 dB Compression Point Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 700 mA, Pout = 40 W Avg., 1805- 1880 MHz or 1930 - 1990 MHz EDGE Modulation Power Gain Gps — 15 — dB Drain Efficiency ηD — 35 — % Error Vector Magnitude EVM — 2 — % rms Spectral Regrowth at 400 kHz Offset SR1 — - 63 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 76 — dBc Typical CW Performances (In Freescale GSM Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W, 1805 - 1880 MHz Power Gain Gps — 14.5 — dB Drain Efficiency ηD — 49 — % Input Return Loss IRL — - 12 — dB P1dB — 110 — W Pout @ 1 dB Compression Point 1. Part internally matched both on input and output. MRF6S18100NR1 MRF6S18100NBR1 2 RF Device Data Freescale Semiconductor R1 VBIAS VSUPPLY + R2 C1 C2 C3 Z6 C4 C5 C14 Z13 RF INPUT R3 Z1 Z2 Z3 Z4 Z5 Z9 Z7 C6 C7 Z8 Z10 Z11 DUT C8 C9 Z12 RF OUTPUT C10 Z14 VSUPPLY C11 Z1, Z12 Z2* Z3* Z4* Z5 Z6 Z7, Z8 0.250″ x 0.083″ Microstrip 0.450″ x 0.083″ Microstrip 0.535″ x 0.083″ Microstrip 0.540″ x 0.083″ Microstrip 0.365″ x 1.000″ Microstrip 1.190″ x 0.080″ Microstrip 0.115″ x 1.000″ Microstrip Z9 Z10* Z11* Z13, Z14 PCB C12 C13 0.485″ x 1.000″ Microstrip 0.590″ x 0.083″ Microstrip 0.805″ x 0.083″ Microstrip 0.870″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 *Variable for tuning. Figure 1. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1930 - 1990 MHz Table 6. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz Part Description Part Number Manufacturer C1 100 nF Chip Capacitor 12065C104KAT AVX C2, C3, C6, C10, C11 6.8 pF Chip Capacitors ATC100B6R8BT500XT ATC C4, C5, C12, C13 4.7 μF Chip Capacitors C4532X5R1H475MT TDK C7 0.3 pF Chip Capacitor ATC700B0R3BT500XT ATC C8 1.3 pF Chip Capacitor ATC100B1R3BT500XT ATC C9 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C14 470 μF, 63 V Electrolytic Capacitor, Radial EKME630ELL471MK25S Multicomp R1, R2 10 kΩ, 1/4 W Chip Resistors CRCW12061002FKEA Vishay R3 10 Ω, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 3 C14 R1 C3 R2 C1 C2 C4 C5 R3 C6 C8 CUT OUT AREA C7 C10 C9 C11 C12 C13 MRF6S18100N Rev. 0 Figure 2. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1930 - 1990 MHz MRF6S18100NR1 MRF6S18100NBR1 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 0 60 50 IRL 40 15 Gps 14 30 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) ηD 16 −10 −20 −30 VDD = 28 Vdc IDQ = 900 mA 13 1900 1920 1940 1960 1980 20 2020 2000 IRL, INPUT RETURN LOSS (dB) 17 −40 f, FREQUENCY (MHz) 60 16 50 IRL 40 15 Gps 14 ηD 30 0 −10 −20 −30 IRL, INPUT RETURN LOSS (dB) 17 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) Figure 3. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 Watts VDD = 28 Vdc IDQ = 900 mA 13 1900 1920 1940 1960 1980 20 2020 2000 −40 f, FREQUENCY (MHz) Figure 4. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 Watts 16 16 IDQ = 1350 mA 14 1125 mA Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 15 900 mA 14 665 mA 13 450 mA 12 32 V 10 28 V 8 VDD = 24 V 6 12 IDQ = 900 mA f = 1960 MHz 4 VDD = 28 Vdc f = 1960 MHz 2 11 1 10 100 0 20 40 60 80 100 120 140 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) CW Figure 5. Power Gain versus Output Power Figure 6. Power Gain versus Output Power 160 MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 25_C 50 ηD Gps 85_C 40 −30_C 25_C 14 30 85_C 12 20 10 10 8 0 1 3 44 W Avg. 2 20 W Avg. 1 0 1920 1940 1960 1980 2000 Figure 7. Power Gain and Drain Efficiency versus CW Output Power Figure 8. EVM versus Frequency 60 TC = −30_C 50 40 8 6 25_C ηD 30 20 4 85_C EVM 2 10 0 100 0 10 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) f, FREQUENCY (MHz) 1 −50 SR @ 400 kHz Pout = 61 W Avg. −55 −60 44 W Avg. −65 20 W Avg. VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz EDGE Modulation −70 SR @ 600 kHz −75 61 W Avg. −80 −85 1900 44 W Avg. 1920 Pout, OUTPUT POWER (WATTS) AVG. 1940 20 W Avg. 1960 1980 2000 2020 f, FREQUENCY (MHz) Figure 10. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency Figure 9. EVM and Drain Efficiency versus Output Power −55 −40 VDD = 28 Vdc, IDQ = 700 mA f = 1960 MHz, EDGE Modulation −45 SPECTRAL REGROWTH @ 600 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz (dBc) Pout = 61 W Avg. 4 Pout, OUTPUT POWER (WATTS) CW VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz EDGE Modulation 10 VDD = 28 Vdc IDQ = 700 mA 100 ηD, DRAIN EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% rms) 12 10 EVM, ERROR VECTOR MAGNITUDE (% rms) 16 TC = −30_C ηD, DRAIN EFFICIENCY (%) 18 Gps, POWER GAIN (dB) 5 VDD = 28 Vdc IDQ = 900 mA f = 1960 MHz 85_C −50 25_C −55 −60 TC = −30_C −65 −70 TC = −30_C VDD = 28 Vdc, IDQ = 700 mA f = 1960 MHz, EDGE Modulation −60 85_C −65 25_C −70 −75 −80 −85 −75 0 20 40 60 80 100 0 20 40 60 80 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Figure 11. Spectral Regrowth at 400 kHz versus Output Power Figure 12. Spectral Regrowth at 600 kHz versus Output Power 100 MRF6S18100NR1 MRF6S18100NBR1 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 108 MTTF (HOURS) 107 106 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 100 W, and ηD = 49%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 13. MTTF versus Junction Temperature GSM TEST SIGNAL −10 −20 Reference Power VBW = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 −70 −80 −90 400 kHz 400 kHz 600 kHz 600 kHz −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 14. EDGE Spectrum MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 7 Zo = 5 Ω f = 2020 MHz Zsource f = 2020 MHz Zload f = 1900 MHz f = 1900 MHz VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W f MHz Zsource W Zload W 1900 2.80 - j4.53 1.75 - j3.52 1930 2.71 - j4.27 1.67 - j3.25 1960 2.63 - j4.03 1.59 - j2.99 1990 2.56 - j3.79 1.52 - j2.74 2020 2.51 - j3.57 1.47 - j2.51 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance — 1930 - 1990 MHz MRF6S18100NR1 MRF6S18100NBR1 8 RF Device Data Freescale Semiconductor R1 VBIAS VSUPPLY + R2 C1 C2 C3 Z6 C4 C5 C17 Z14 RF INPUT R3 Z1 Z2 Z3 Z4 Z5 C8 Z9 Z7 C6 C7 Z8 Z10 DUT C9 C10 Z11 Z12 C11 C12 Z13 RF OUTPUT C13 Z15 VSUPPLY C14 Z1, Z13 Z2* Z3* Z4* Z5 Z6 Z7, Z8 0.250″ x 0.083″ Microstrip 0.620″ x 0.083″ Microstrip 0.715″ x 0.083″ Microstrip 0.190″ x 0.083″ Microstrip 0.365″ x 1.000″ Microstrip 1.190″ x 0.080″ Microstrip 0.115″ x 1.000″ Microstrip Z9 Z10* Z11* Z12* Z14, Z15 PCB C15 C16 0.485″ x 1.000″ Microstrip 0.080″ x 0.083″ Microstrip 0.340″ x 0.083″ Microstrip 0.975″ x 0.083″ Microstrip 0.960″ x 0.080″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 *Variable for tuning. Figure 16. MRF6S18100NR1(NBR1) Test Circuit Schematic — 1805 - 1880 MHz Table 7. MRF6S18100NR1(NBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz Part Description Part Number Manufacturer C1 100 nF Chip Capacitor 12065C104KAT AVX C2, C3, C6, C13, C14 8.2 pF Chip Capacitors ATC100B8R2BT500XT ATC C4, C5, C15, C16 4.7 μF Chip Capacitors C4532X5R1H475MT TDK C7, C8, C11, C12 0.2 pF Chip Capacitors ATC700B0R2BT500XT ATC C9 1 pF Chip Capacitor ATC100B1R0BT500XT ATC C10 0.5 pF Chip Capacitor ATC100B0R5BT500XT ATC C17 470 μF, 63 V Electrolytic Capacitor, Radial EKME630ELL471MK25S Multicomp R1, R2 10 kΩ, 1/4 W Chip Resistors CRCW12061002FKEA Vishay R3 10 Ω, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 9 C17 R1 R2 C3 C1 C2 C4 C5 R3 C10 C7 C8 C9 CUT OUT AREA C6 C13 C11 C14 C12 C15 C16 MRF6S18100N Rev. 0 Figure 17. MRF6S18100NR1(NBR1) Test Circuit Component Layout — 1805 - 1880 MHz MRF6S18100NR1 MRF6S18100NBR1 10 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1805 - 1880 MHz 17 60 ηD 40 Gps 14 30 IRL 13 20 VDD = 28 Vdc IDQ = 900 mA 12 1800 1810 1820 1830 1840 1850 1860 1870 10 1880 −10 −20 −30 IRL, INPUT RETURN LOSS (dB) 15 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 0 50 16 −40 f, FREQUENCY (MHz) Figure 18. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 100 Watts 40 15 ηD 14 30 VDD = 28 Vdc IDQ = 900 mA 1810 1820 1830 1840 1850 1860 20 1870 1880 −20 −30 IRL, INPUT RETURN LOSS (dB) Gps 13 1800 −10 50 IRL ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 16 −40 f, FREQUENCY (MHz) Figure 19. Power Gain, Input Return Loss and Drain Efficiency versus Frequency @ Pout = 40 Watts Pout = 60 W Avg. 4 3 42 W Avg. 2 25 W Avg. 1820 1840 1860 1880 f, FREQUENCY (MHz) Figure 20. EVM versus Frequency 1900 VDD = 28 Vdc IDQ = 700 mA f = 1840 MHz EDGE Modulation 8 40 6 30 ηD 4 TC = 25_C 2 EVM 0 1 10 20 10 ηD, DRAIN EFFICIENCY (%) 5 1 1800 50 10 VDD = 28 Vdc IDQ = 700 mA EVM, ERROR VECTOR MAGNITUDE (% rms) EVM, ERROR VECTOR MAGNITUDE (% rms) 6 0 100 Pout, OUTPUT POWER (WATTS) AVG. Figure 21. EVM and Drain Efficiency versus Output Power MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 11 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) TYPICAL CHARACTERISTICS — 1805 - 1880 MHZ −45 −50 Pout = 60 W Avg. SR @ 400 kHz −55 42 W Avg. −60 VDD = 28 Vdc IDQ = 700 mA f = 1960 MHz −65 25 W Avg. −70 −75 60 W Avg. SR @ 600 kHz 42 W Avg. −80 25 W Avg. −85 1780 1800 1820 1840 1860 1880 1900 1920 f, FREQUENCY (MHz) Figure 22. Spectral Regrowth at 400 kHz and 600 kHz versus Frequency −60 VDD = 28 Vdc, IDQ = 700 mA f = 1840 MHz, EDGE Modulation −50 SPECTRAL REGROWTH @ 600 kHz (dBc) SPECTRAL REGROWTH @ 400 kHz (dBc) −45 −55 TC = 25_C −60 −65 −70 VDD = 28 Vdc, IDQ = 700 mA f = 1840 MHz, EDGE Modulation −65 −70 TC = 25_C −75 −80 −85 −75 0 20 40 60 80 0 20 40 60 80 Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) Figure 23. Spectral Regrowth at 400 kHz versus Output Power Figure 24. Spectral Regrowth at 600 kHz versus Output Power MRF6S18100NR1 MRF6S18100NBR1 12 RF Device Data Freescale Semiconductor Zo = 5 Ω f = 1900 MHz Zload f = 1780 MHz f = 1900 MHz f = 1780 MHz Zsource VDD = 28 Vdc, IDQ = 900 mA, Pout = 100 W f MHz Zsource W Zload W 1780 1.96 - j4.09 1.94 - j2.90 1804 1.90 - j3.86 1.88 - j2.67 1840 1.82 - j3.53 1.80 - j2.42 1880 1.76 - j3.16 1.73 - j1.99 1900 1.72 - j2.97 1.70 - j1.82 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 25. Series Equivalent Source and Load Impedance — 1805 - 1880 MHz MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 13 PACKAGE DIMENSIONS MRF6S18100NR1 MRF6S18100NBR1 14 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 15 MRF6S18100NR1 MRF6S18100NBR1 16 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 17 MRF6S18100NR1 MRF6S18100NBR1 18 RF Device Data Freescale Semiconductor MRF6S18100NR1 MRF6S18100NBR1 RF Device Data Freescale Semiconductor 19 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 2 Dec. 2008 Description • Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13232, p. 1, 2 • Changed Storage Temperature Range in Max Ratings table from - 65 to +175 to - 65 to +150 for standardization across products, p. 1 • Removed Total Device Dissipation from Max Ratings table as data was redundant (information already provided in Thermal Characteristics table), p. 1 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 1 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table, related “Continuous use at maximum temperature will affect MTTF” footnote added and changed 200°C to 225°C in Capable Plastic Package bullet, p. 1 • Corrected VDS to VDD in the RF test condition voltage callout for VGS(Q), On Characteristics table, p. 2 • Removed Forward Transconductance from On Characteristics table as it no longer provided usable information, p. 2 • Updated Part Numbers in Tables 6, 7, Component Designations and Values, to RoHS compliant part numbers, p. 3, 9 • Removed lower voltage tests from Fig. 6, Power Gain versus Output Power, due to fixed tuned fixture limitations, p. 5 • Replaced Fig. 13, MTTF versus Junction Temperature with updated graph. Removed Amps2 and listed operating characteristics and location of MTTF calculator for device, p. 7 • Replaced Case Outline 1486 - 03, Issue C, with 1486 - 03, Issue D, p. 14 - 16. Added pin numbers 1 through 4 on Sheet 1. • Replaced Case Outline 1484 - 04, Issue D, with 1484 - 04, Issue E, p. 17 - 19. Added pin numbers 1 through 4 on Sheet 1, replacing Gate and Drain notations with Pin 1 and Pin 2 designations. • Added Product Documentation and Revision History, p. 20 MRF6S18100NR1 MRF6S18100NBR1 20 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or +1 - 303- 675- 2140 Fax: +1 - 303- 675- 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005 - 2006, 2008. All rights reserved. MRF6S18100NR1 MRF6S18100NBR1 Document RF DeviceNumber: Data MRF6S18100N Rev. 2, 12/2008 Freescale Semiconductor 21