ADPOW APT20N60BCF Super junction fredfet Datasheet

600V 20A 0.220Ω
APT20N60BCF
APT20N60SCF
APT20N60BCFG* APT20N60SCFG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Super Junction FREDFET
COOLMOS
TO
Power Semiconductors
-2
47
D3PAK
• Ultra Low RDS(ON)
• Intrinsic Fast-Recovery Body Diode
• Low Miller Capacitance
• Extreme Low Reverse Recovery Charge
• Ultra Low Gate Charge, Qg
• Ideal For ZVS Applications
• Avalanche Energy Rated
• Popular TO-247 or Surface Mount D3 Package
D
• Extreme dv/dt Rated
G
S
MAXIMUM RATINGS
Symbol
VDSS
ID
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT20N60BCF(G)_SCF(G)
UNIT
Drain-Source Voltage
600
Volts
Continuous Drain Current @ TC = 25°C
20
Continuous Drain Current @ TC = 100°C
13
1
Amps
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage Continuous
±30
Volts
Total Power Dissipation @ TC = 25°C
208
Watts
Linear Derating Factor
1.67
W/°C
PD
TJ,TSTG
TL
dv/
dt
IAR
60
Operating and Storage Junction Temperature Range
-55 to 150
°C
Lead Temperature: 0.063" from Case for 10 Sec.
260
Drain-Source Voltage slope (VDS = 480V, ID = 20A, TJ = 125°C)
80
V/ns
20
Amps
Avalanche Current
7
7
EAR
Repetitive Avalanche Energy
EAS
Single Pulse Avalanche Energy
1
4
mJ
690
STATIC ELECTRICAL CHARACTERISTICS
RDS(on)
IDSS
IGSS
VGS(th)
MIN
Drain-Source Breakdown Voltage (VGS = 0V, ID = 250µA)
Drain-Source On-State Resistance
2
TYP
MAX
UNIT
Volts
600
(VGS = 10V, ID = 13A)
0.220
Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V)
2.1
Ohms
µA
Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V, TC = 150°C)
1700
Gate-Source Leakage Current (VGS = ±20V, VDS = 0V)
±100
nA
5
Volts
Gate Threshold Voltage (VDS = VGS, ID = 1mA)
3
4
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
"COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trademark of Infineon Technologies AG."
5-2005
BVDSS
Characteristic / Test Conditions
050-7235 Rev A
Symbol
APT20N60BCF(G)_SCF(G)
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Ciss
Input Capacitance
Coss
VGS = 0V
Output Capacitance
VDS = 25V
Crss
Reverse Transfer Capacitance
f = 1 MHz
Qg
3
VGS = 10V
Gate-Source Charge
VDD = 300V
Total Gate Charge
Qgs
Qgd
Gate-Drain ("Miller ") Charge
td(on)
Turn-on Delay Time
tr
VGS = 15V
ID = 20A @ 25°C
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
Eon
Turn-on Switching Energy
Eoff
Turn-off Switching Energy
UNIT
pF
40
95
18
55
12
15
60
VDD = 380V
nC
ns
RG = 3.6Ω
6.4
6
INDUCTIVE SWITCHING @ 25°C
VDD = 400V, VGS = 15V
180
ID = 20A, RG = 5Ω
60
6
INDUCTIVE SWITCHING @ 125°C
VDD = 400V, VGS = 15V
315
ID = 20A, RG = 5Ω
80
Fall Time
MAX
2520
670
RESISTIVE SWITCHING
Turn-off Delay Time
tf
TYP
ID = 20A @ 25°C
Rise Time
td(off)
MIN
µJ
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS
Symbol
IS
MIN
TYP
Pulsed Source Current
VSD
1
Diode Forward Voltage
Peak Diode Recovery
/dt
dv
/dt
(VGS = 0V, IS = -20A)
5
Reverse Recovery Time
t rr
Q rr
(IS = -20A, di/dt = 100A/µs)
Tj = 25°C
180
Tj = 125°C
260
Reverse Recovery Charge
Tj = 25°C
1.4
(IS = -20A, /dt = 100A/µs)
Tj = 125°C
2.5
Peak Recovery Current
Tj = 25°C
15
18
di
IRRM
60
(Body Diode)
2
di
(IS = -20A, /dt = 100A/µs)
MAX
20
Continuous Source Current (Body Diode)
ISM
dv
Characteristic / Test Conditions
Tj = 125°C
UNIT
Amps
1.2
Volts
40
V/ns
ns
µC
Amps
THERMAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case
RθJA
Junction to Ambient
MIN
TYP
MAX
0.60
62
1 Repetitive Rating: Pulse width limited by maximum junction
temperature
2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%
3 See MIL-STD-750 Method 3471
0.7
0.5
0.30
Note:
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
5-2005
050-7235 Rev A
0.9
0.50
0.40
0.3
0.20
t1
t2
0.10
0
t
0.1
SINGLE PULSE
0.05
10-5
10-4
°C/W
4 Starting Tj = +25°C, L = 13.80mH, RG = 25Ω, Peak IL = 10A
5 dv/dt numbers reflect the limitations of the test circuit rather than the
device itself. IS ≤ -ID20A di/dt ≤ 700A/µs VR ≤ 480V TJ ≤125°C
6 Eon includes diode reverse recovery. See figures 18, 20.
7 Repetitive avalanche causes additional power losses that can be calculated as PAV = EAR*f
APT Reserves the right to change, without notice, the specifications and information contained herein.
0.70
0.60
UNIT
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
Typical Performance Curves
Junction
temp. (°C)
0.322
0.00498F
Power
(watts)
0.276
0.0728F
ID, DRAIN CURRENT (AMPERES)
RC MODEL
40
7.5V
30
7V
20
6.5V
10
50
40
TJ = -55°C
TJ = +25°C
TJ = +125°C
10
0
0
2
4
6
8
10
VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 4, TRANSFER CHARACTERISTICS
20
16
14
12
10
8
6
4
2
0
25
3.0
NORMALIZED TO
VGS = 10V @ 13A
1.30
1.20
VGS=10V
1.10
VGS=20V
1.00
0.90
0.80
1.15
0
5
10 15 20 25
30 35 40
ID, DRAIN CURRENT (AMPERES)
FIGURE 5, RDS(ON) vs DRAIN CURRENT
1.10
1.05
1.00
0.95
0.90
-50
-25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE
1.2
I = 10A
D
V
2.5
GS
= 10V
2.0
1.5
1.0
0.5
0
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 8, ON-RESISTANCE vs. TEMPERATURE
1.1
1.0
0.9
0.8
0.7
0.6
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE
5-2005
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
(NORMALIZED)
50
75
100
125
150
TC, CASE TEMPERATURE (°C)
FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE
1.40
050-7235 Rev A
ID, DRAIN CURRENT (AMPERES)
18
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
60
BVDSS, DRAIN-TO-SOURCE BREAKDOWN
VOLTAGE (NORMALIZED)
250µSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
20
6V
5.5V
0
5
10
15
20
25
30
VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 3, LOW VOLTAGE OUTPUT CHARACTERISTICS
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
ID, DRAIN CURRENT (AMPERES)
VDS> ID(ON) x RDS(ON) MAX.
30
8V
0
FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL
70
VGS = 15 &10 V
50
Case temperature. (°C)
80
APT20N60BCF(G)_SCF(G)
60
OPERATION HERE
LIMITED BY R
(ON)
DS
10,000
5
1mS
1
10mS
Coss
100
Crss
1
10
100
600
VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 10, MAXIMUM SAFE OPERATING AREA
VGS, GATE-TO-SOURCE VOLTAGE (VOLTS)
1,000
TC =+25°C
TJ =+150°C
SINGLE PULSE
.1
16
I = 20A
D
12
VDS=120V
VDS=300V
8
VDS=480V
4
0
20 40 60 80 100 120 140 160
Qg, TOTAL GATE CHARGE (nC)
FIGURE 12, GATE CHARGE vs GATE-TO-SOURCE VOLTAGE
100
90
10
0
10
20
30
40
50
VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
FIGURE 11, CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE
V
DD
R
50
T = 125°C
J
L = 100µH
= 5Ω
G
TJ =+150°C
TJ =+25°C
10
20
= 400V
60
100
25
tr and tf (ns)
70
200
1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
VSD, SOURCE-TO-DRAIN VOLTAGE (VOLTS)
FIGURE 13, SOURCE-DRAIN DIODE FORWARD VOLTAGE
30
td(off)
80
td(on) and td(off) (ns)
Ciss
C, CAPACITANCE (pF)
100µS
10
0
APT20N60BCF(G)_SCF(G)
20,000
IDR, REVERSE DRAIN CURRENT (AMPERES)
ID, DRAIN CURRENT (AMPERES)
60
40
tf
15
V
DD
R
20
td(on)
= 400V
= 5Ω
tr
T = 125°C
J
L = 100µH
10
30
G
5
10
0
0
5
10
15
20
ID (A)
25
30
0
35
FIGURE 14, DELAY TIMES vs CURRENT
V
DD
R
050-7235 Rev A
SWITCHING ENERGY (mJ)
5-2005
500
G
25
includes
diode reverse recovery.
Eon
300
200
Eoff
100
400
Eoff
300
V
200
DD
5
10
15
20
25
30
35
ID (A)
FIGURE 16, SWITCHING ENERGY vs CURRENT
= 400V
I = 20A
D
T = 125°C
J
100
L = 100µH
on
0
35
Eon
E
0
30
500
L = 100µH
400
15
20
ID (A)
600
= 400V
J
on
10
= 5Ω
T = 125°C
E
5
FIGURE 15, RISE AND FALL TIMES vs CURRENT
SWITCHING ENERGY (mJ)
600
0
0
includes
diode reverse recovery.
0
10
20
30
40
50
RG, GATE RESISTANCE (Ohms)
FIGURE 17, SWITCHING ENERGY VS. GATE RESISTANCE
Typical Performance Curves
APT20N60BCF(G)_SCF(G)
90%
Gate Voltage
10%
Gate Voltage
TJ125°C
td(off)
td(on)
TJ125°C
tf
tr
Drain Voltage
Drain Current
90%
90%
5%
5%
10%
Drain Voltage
10%
Drain Current
0
Switching Energy
Switching Energy
Figure 19, Turn-off Switching Waveforms and Definitions
Figure 18, Turn-on Switching Waveforms and Definitions
APT15DQ60
VDD
ID
VDS
G
D.U.T.
Figure 20, Inductive Switching Test Circuit
3
D PAK Package Outline
TO-247 Package Outline
e3 100% Sn
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Drain
(Heat Sink)
e1 SAC: Tin, Silver, Copper
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
Drain
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.41 (.528)
13.51(.532)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
2.21 (.087)
2.59 (.102)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
Gate
Drain
Source
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Source
Drain
Gate
Dimensions in Millimeters (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Drain)
and Leads
are Plated
050-7235 Rev A
0.46 (.018)
0.56 (.022) {3 Plcs}
5-2005
3.50 (.138)
3.81 (.150)
Similar pages