DATASHEET PORTABLE CONSUMER DEVICE ACS32201 LOW-POWER, HIGH-FIDELITY CLASS-D AMPLIFIER FEATURES The ACS32201 is a low-power, high-fidelity Class-D amplifier targeted at portable applications such as tablet computers, personal navigation devices, portable projectors and speaker docks. Built-in audio processing and a TM DDX Class-D digital speaker amplifier provide high fidelity audio for portable systems with enriched “audio presence”. • • • • • TARGET APPLICATIONS • Tablet Computers • Portable Navigation Devices • Personal Media Players • Portable Projectors • Speaker Docks Filterless Stereo DDXTM Class D Speaker Driver • • 1W/channel (8Ω) or 2W/channel (4Ω), 0.05% THD+N typical Tri-state DDXTM Class D achieves low EMI and high efficiency >80% efficiency at 1W Spread spectrum support for reduced EMI output power mode Anti-Pop circuitry Built in audio controls and processing • • • • 3D stereo enhancement Dual (cascaded) stereo 6-band parametric equalizers Programmable Compressor/Limiter/Expander Psychoacoustic Bass and Treble enhancement processing • I2S data interface • Low power with built in power management • • Very low standby and no-signal power consumption 1.8V digital / 1.7V analog supply for low power • 2-wire (I2C compatible) control interface • Package Options • • 68-pin dual row 6x6 mm TLA package 36-pin single row 5x5 mm HLA package PRELIMINARY DDXTM and the DDX logo are trademarks of Apogee Technology. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 1 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER TABLE OF CONTENTS 1. OVERVIEW ................................................................................................................................ 2 1.1. Block Diagrams ..................................................................................................................................2 1.2. Audio Outputs ....................................................................................................................................2 2. POWER MANAGEMENT .......................................................................................................... 3 2.1. Control Registers ...............................................................................................................................3 2.2. Stopping the Master Clock .................................................................................................................3 3. OUTPUT AUDIO PROCESSING ............................................................................................... 4 3.1. DC Removal ......................................................................................................................................4 3.2. Volume Control ..................................................................................................................................5 3.3. Digital DAC Volume Control ...............................................................................................................6 3.4. Parametric Equalizer .........................................................................................................................6 3.4.1. Prescaler & Equalizer Filter .................................................................................................6 3.4.2. EQ Registers ........................................................................................................................7 3.4.3. Equalizer, Bass, Treble Coefficient & Equalizer Prescaler RAM .........................................9 3.5. Gain and Dynamic Range Control ...................................................................................................12 3.6. Limiter ..............................................................................................................................................12 3.7. Compressor .....................................................................................................................................13 3.7.1. Configuration ......................................................................................................................14 3.7.2. Controlling parameters .......................................................................................................14 3.7.3. Overview ............................................................................................................................15 3.7.4. Limiter/Compressor Registers ............................................................................................17 3.7.5. Expander Registers ...........................................................................................................19 3.8. Output Effects ..................................................................................................................................20 3.9. Stereo Depth (3-D) Enhancement ...................................................................................................20 3.10. Psychoacoustic Bass Enhancement ..............................................................................................21 3.10.1. Non-linear function ...........................................................................................................21 3.10.2. Signal processing summary .............................................................................................22 3.10.3. Control Points ..................................................................................................................22 3.11. Treble Enhancement .....................................................................................................................23 3.11.1. Enhanced Treble NLF ......................................................................................................23 3.11.2. Signal processing summary .............................................................................................23 3.11.3. Control Points ..................................................................................................................24 3.12. Mute and De-Emphasis .................................................................................................................24 3.13. Mono Operation and Phase Inversion ...........................................................................................24 3.13.1. DAC Control Register .....................................................................................................24 3.14. Analog Outputs ..............................................................................................................................25 3.14.1. Speaker Outputs ..............................................................................................................25 3.14.2. Class D Audio Processing ...............................................................................................25 3.15. Other Output Capabilities ..............................................................................................................31 3.15.1. Audio Output Control .......................................................................................................31 3.15.2. Speaker Enable ...............................................................................................................31 3.15.3. Speaker Operation ...........................................................................................................32 3.16. Thermal Shutdown .........................................................................................................................32 3.16.1. Algorithm description: ......................................................................................................32 3.16.2. Thermal Trip Points. .........................................................................................................33 3.16.3. Temperature Limit State Diagram: ...................................................................................34 3.16.4. Instant Cut Mode ..............................................................................................................34 3.16.5. Short Circuit Protection ....................................................................................................34 3.16.6. Thermal Shutdown Registers ...........................................................................................35 4. DIGITAL AUDIO AND CONTROL INTERFACES ................................................................... 37 4.1. Data Interface ..................................................................................................................................37 4.2. Master and Slave Mode Operation ..................................................................................................37 4.3. Audio Data Formats .........................................................................................................................38 4.4. Left Justified Audio Interface ...........................................................................................................38 4.5. Right Justified Audio Interface (assuming n-bit word length) ...........................................................38 4.6. I2S Format Audio Interface ..............................................................................................................39 4.7. Data Interface Registers ..................................................................................................................39 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 2 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 4.7.1. Audio Data Format Control Register ..................................................................................39 4.7.2. Audio Interface Output Tri-state .........................................................................................40 4.7.3. Audio Interface Control 3 Register .....................................................................................40 4.8. Bit Clock Mode .................................................................................................................................40 4.9. Control Interface ..............................................................................................................................41 4.9.1. Register Write Cycle ..........................................................................................................41 4.9.2. Multiple Write Cycle ...........................................................................................................42 4.9.3. Register Read Cycle ..........................................................................................................42 4.9.4. Multiple Read Cycle ...........................................................................................................42 4.9.5. Device Addressing and Identification .................................................................................43 5. AUDIO CLOCK GENERATION ............................................................................................... 44 5.1. Internal Clock Generation ................................................................................................................44 5.2. Clocking and Sample Rates ............................................................................................................44 6. CHARACTERISTICS ............................................................................................................... 46 6.1. Electrical Specifications ...................................................................................................................46 6.1.1. Absolute Maximum Ratings ...............................................................................................46 6.1.2. Recommended Operating Conditions ................................................................................46 6.2. Device Characteristics .....................................................................................................................47 6.3. Typical Power Consumption ............................................................................................................48 6.4. Low Power Mode Power Consumption ............................................................................................48 7. REGISTER MAP ...................................................................................................................... 49 8. PIN INFORMATION ................................................................................................................. 51 8.1. ACS32201 TAG Pinout ....................................................................................................................51 8.2. ACS32201 NAG Pin Diagram ..........................................................................................................52 8.3. ACS32201TAG Pin Tables ..............................................................................................................53 8.3.1. ACS32201TAG Power Pins ...............................................................................................53 8.3.2. ACS32201 TAG Reference Pins ........................................................................................53 8.3.3. ACS32201 TAG Analog Output Pins .................................................................................53 8.3.4. ACS32201 TAG Data and Control Pins .............................................................................54 8.3.5. ACS32201 TAG Clock Pins ...............................................................................................54 8.4. ACS32201 NAG Pin Tables .............................................................................................................55 8.4.1. ACS32201 NAG Power Pins ..............................................................................................55 8.4.2. ACS32201 NAG Reference Pins .......................................................................................55 8.4.3. ACS32201 NAG Analog Output Pins .................................................................................55 8.4.4. ACS32201 NAG Data and Control Pins .............................................................................56 8.4.5. ACS32201 NAG Clock Pins ...............................................................................................56 9. PACKAGE INFORMATION ..................................................................................................... 57 9.1. Package Drawing .............................................................................................................................57 9.2. Pb Free Process- Package Classification Reflow Temperatures ....................................................57 10. NAG/HLA PACKAGE INFORMATION ................................................................................. 58 10.1. NAG/HLA Package Drawing ..........................................................................................................58 10.2. Pb Free Process- Package Classification Reflow Temperatures ..................................................58 11. ORDERING INFORMATION ................................................................................................. 59 12. DISCLAIMER ......................................................................................................................... 59 13. DOCUMENT REVISION HISTORY ....................................................................................... 60 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 3 V0.6 07/11 ACS32201 ACS422x68 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER LIST OF TABLES Table 1. Power Management Register 1 ..........................................................................................................3 Table 2. Power Management Register 2 ..........................................................................................................3 Table 3. Power Management Register1 -- Master Clock Disable ....................................................................3 Table 4. DC_COEF_SEL Register ...................................................................................................................4 Table 5. CONFIG0 Register .............................................................................................................................4 Table 6. Volume Update Control Register .......................................................................................................5 Table 7. Gain Control Register .........................................................................................................................5 Table 8. DAC Volume Control Registers ..........................................................................................................6 Table 9. CONFIG1 Register .............................................................................................................................7 Table 10. DACCRAM Read/Write Registers ...................................................................................................8 Table 11. DACCRAM Address Register ..........................................................................................................8 Table 12. DACCRAM Status Register .............................................................................................................8 Table 13. DACCRAM EQ Addresess .............................................................................................................11 Table 14. DACCRAM Bass/Treble Addresses ...............................................................................................12 Table 15. CLECTL Register ...........................................................................................................................17 Table 16. MUGAIN Register ..........................................................................................................................17 Table 17. COMPTH Register .........................................................................................................................17 Table 18. CMPRAT Register ..........................................................................................................................17 Table 19. CATKTCL Register ........................................................................................................................17 Table 20. CATKTCH Register ........................................................................................................................18 Table 21. CRELTCL Register ........................................................................................................................18 Table 22. CRELTCH Register ........................................................................................................................18 Table 23. LIMTH Register ..............................................................................................................................18 Table 24. LIMTGT Register ............................................................................................................................18 Table 25. LATKTCL Register .........................................................................................................................18 Table 26. LATKTCH Register ........................................................................................................................18 Table 27. LRELTCL Register .........................................................................................................................18 Table 28. LRELTCH Register ........................................................................................................................19 Table 29. EXPTH Register .............................................................................................................................19 Table 30. EXPRAT Register ..........................................................................................................................19 Table 31. XATKTCL Register .........................................................................................................................19 Table 32. XATKTCH Register ........................................................................................................................19 Table 33. XRELTCL Register .........................................................................................................................19 Table 34. XRELTCH Register ........................................................................................................................19 Table 35. FX Control Register ........................................................................................................................20 Table 36. CNVRTR1 Register ........................................................................................................................24 Table 37. SPKVOL L/R Registers ..................................................................................................................25 Table 38. Constant Output Power 1 Register ................................................................................................28 Table 39. Constant Output Power 2 Register ................................................................................................29 Table 40. Constant Output Power 3 Register ................................................................................................29 Table 41. CONFIG0 Register .........................................................................................................................29 Table 42. PWM0 Register ..............................................................................................................................30 Table 43. PWM1 Register ..............................................................................................................................30 Table 44. PWM2 Register ..............................................................................................................................30 Table 45. PWM3 Register ..............................................................................................................................30 Table 46. Power Management 2 Register ......................................................................................................31 Table 47. Additional Control Register ............................................................................................................32 Table 48. Speaker Operation .........................................................................................................................32 Table 49. Additional Control Register ............................................................................................................35 Table 50. THERMTS Register .......................................................................................................................35 Table 51. THERMTSPKR1 Register ..............................................................................................................36 Table 52. THERMTSPKR2 Register ..............................................................................................................36 Table 53. AIC1 Register .................................................................................................................................39 Table 54. AIC2 Register .................................................................................................................................40 Table 55. AIC3 Register .................................................................................................................................40 Table 56. Master Mode BCLK Frequency Control Register ...........................................................................40 Table 57. DEVADRl Register .........................................................................................................................43 Table 58. DEVID H&L Registers ....................................................................................................................43 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 1 V0.8 04/11 ACS422X68 ACS422x68 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER Table 59. REVID Register ..............................................................................................................................43 Table 60. RESET Register .............................................................................................................................43 Table 61. DACSR Register ............................................................................................................................44 Table 62. Master Clock and Sample Rates ....................................................................................................44 Table 63. Electrical Specification: Maximum Ratings ....................................................................................46 Table 64. Recommended Operating Conditions ............................................................................................46 Table 65. Device Characteristics ...................................................................................................................47 Table 66. Typical Power Consumption ..........................................................................................................48 Table 67. Low power mode power consumption ............................................................................................48 Table 68. Register Map ..................................................................................................................................49 Table 69. ACS32201 TAG Power Pins ..........................................................................................................53 Table 70. ACS32201 TAG Reference Pins ....................................................................................................53 Table 71. ACS32201 TAG Analog Output Pins .............................................................................................53 Table 72. ACS32201 TAG Data and Control Pins .........................................................................................54 Table 73. ACS32201 TAG Clock Pins ...........................................................................................................54 Table 74. ACS32201 NAG Power Pins ..........................................................................................................55 Table 75. ACS32201 NAG Reference Pins ...................................................................................................55 Table 76. ACS32201 NAG Analog Output Pins .............................................................................................55 Table 77. ACS32201 NAG Data and Control Pins .........................................................................................56 Table 78. ACS32201 NAG Clock Pins ...........................................................................................................56 Table 79. Reflow Temperatures .....................................................................................................................57 Table 80. Reflow Temperatures .....................................................................................................................58 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 2 V0.8 04/11 ACS422X68 ACS422x68 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER LIST OF FIGURES Figure 1. ACS32201 Block Diagram ................................................................................................................2 Figure 2. Output Audio Processing ..................................................................................................................4 Figure 3. Prescaler & EQ Filters ......................................................................................................................6 Figure 4. 6-Tap IIR Equalizer Filter ..................................................................................................................7 Figure 5. DAC Coefficient RAM Write Sequence .............................................................................................9 Figure 6. DAC Coefficient RAM Read Sequence ...........................................................................................10 Figure 7. Gain Compressor, Output vs Input .................................................................................................13 Figure 8. Compressor block diagram .............................................................................................................15 Figure 9. 3-D Channel Inversion ....................................................................................................................20 Figure 10. Bass Enhancement .......................................................................................................................21 Figure 11. Treble Enhancement ....................................................................................................................23 Figure 12. Constant Output Power Error ........................................................................................................27 Figure 13. Constant Output Power nominal and high/low ..............................................................................28 Figure 14. Temp sense volume adjustment algorithm ...................................................................................34 Figure 15. Master mode .................................................................................................................................37 Figure 16. Slave mode ...................................................................................................................................37 Figure 17. Left Justified Audio Interface (assuming n-bit word length) ..........................................................38 Figure 18. Right Justified Audio Interface (assuming n-bit word length) ........................................................38 Figure 19. I2S Justified Audio Interface (assuming n-bit word length) ...........................................................39 Figure 20. Bit Clock mode ..............................................................................................................................41 Figure 21. 2-Wire Serial Control Interface ......................................................................................................41 Figure 22. Multiple Write Cycle ......................................................................................................................42 Figure 23. Read Cycle ...................................................................................................................................42 Figure 24. Multiple Read Cycle ......................................................................................................................43 Figure 25. ACS32201 TAG Pinout .................................................................................................................51 Figure 26. ACS32201 NAG Pinout ................................................................................................................52 Figure 27. Package Outline ...........................................................................................................................57 Figure 28. NAG/HLA Package Outline ...........................................................................................................58 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 1 V0.8 04/11 ACS422X68 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 1. OVERVIEW 1.1. Block Diagrams The ACS32201 is an advanced digital Class-D amplifier. To support the design of audio subsystems in a portable device, the ACS32201 features an intelligent architecture with advanced audio processing algorithms and a 1W/channel filterless stereo class D amplifier. Clocking VDD_PLL2 VDD_PLL3 VDD_PLL1 VDD_PLSS DVDD_IO AVDD 4 PVDD 4 Internal Audio Clock(s) PLL MCLK DVDD_CORE VDD_XTAL I2C_SDA I2C_SCL Control SPKR_EN TEST Digital PWM controller vol DACBCLK DACLRCLK DACIN Source Select Switch Audio Processing BTL Class D Left+ Class D Left- DAC Left Bass/Treble Enhancement SYSTEM EQ SPEAKER EQ 3-D effect Compressor-limiter Dynamic Range Expander Vref DAC Right Digital PWM controller vol VSS_PLSS VSS_XTAL DVSS AVSS BTL 4 Class D Right+ Class D Right- PVSS 4 Figure 1. ACS32201 Block Diagram 1.2. Audio Outputs To enhance the sound available from the small, low-power speakers typically found in a portable device, the ACS32201 provides numerous audio enhancement capabilities. The ACS32201 features dual, independent, programmable left/right 6-band equalization, allowing the system designer to provide an advanced system equalizer to accommodate the specific speakers and enclosure design. A compressor/limiter features programmable attack and release thresholds, enabling the system designer to attenuate loud noise excursions to avoid speaker artifacts, thus allowing the underlying content to be played at a louder volume without distortion. For compressed audio, a programmable expander is available to help restore the dynamic range of the original content. A stereo depth enhancement algorithm allows common left/right content (e.g. dialog) to be attenuated separately from other content, providing a perceived depth separation between background and foreground audio. Psychoacoustic bass and treble enhancement algorithms achieve a rich, full tone even from originally compressed content, and even with speakers generally unable to play low-frequency sounds. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 2 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 2. POWER MANAGEMENT 2.1. Control Registers The ACS32201 has control registers to enable system software to control which functions are active. To minimize power consumption, unused functions should be disabled. To avoid audio artifacts, it is important to enable or disable functions in the correct order. Register Address 0x1A Power Management 1 Bit Label Type Default Description 7:1 RSVD RW 0 Reserved 0 DIGENB RW 0 Master clock disable 0: master clock enabled, 1: master clock disabled Table 1. Power Management Register 1 Register Address 0x1B Power Management 2 Bit Label Type Default 7:5 RSVD RW 0 Reserved Description 4 SPKL RW 0 LSPK Output Buffer 0 = Power down, 1 = Power up 3 SPKR RW 0 RSPK Output Buffer 0 = Power down, 1 = Power up 2:1 RSVD RW 0 Reserved 0 VREF RW 0 VREF (necessary for all other functions) 0 = Power down, 1 = Power up Table 2. Power Management Register 2 2.2. Stopping the Master Clock In order to minimize digital core power consumption, the master clock may be stopped in Standby and OFF modes by setting the DIGENB bit (R25, bit 0). Register Address Bit 0x1A Power Management 1 0 Label DIGENB Type Default Description 0 Master clock disable 0 = master clock enabled, 1 = master clock disabled RW Table 3. Power Management Register1 -- Master Clock Disable Note: Before DIGENB can be set, the control bits SPKL and SPKR must be set to zero and a waiting time of 100ms must be observed to allow port ramping/gain fading to complete. Any failure to follow this procedure may cause pops or, if less than 1mS, may prevent the DACs from re-starting correctly. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 3 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3. OUTPUT AUDIO PROCESSING DACCRAM 00h – 3Dh PA Treble DACCRAM ADh Mono Mix DC Removal PA Bass DACCRAM 96h EQ1 Coefficients DACCRAM 40h – 7Dh EQ2 Coefficients DACCRAM 80h – 96h Bass Coefficients DACCRAM 97h – ADh Treble Coefficients DACCRAM AEh – AFh 3D Coefficients Compressor Limiter Expander DACCRAM AFh 18h DMonoMix Prescale 1 3-D 41h Prescale 2 EQ1 Deemphasis EQ2 DC-Coef_Sel 39h FXCTRL 3Ah – 3Ch WRITE 40h ADDRESS 3Dh – 3Fh READ 8Ah STATUS 18h 33h – 38h De-emphasis GAIN 0 to 46.5 dB In 1.5 dB steps Expander DAC Volume Mute 0 to -95.25dB 0.375dB steps Phase Invert 18h DACPOL DAC_L/R 04h – 05h DAC Volume 18h 2Dh – 32h Limiter Mute 26h – 2Ch Compressor 25h Control 1Ch – 1Eh 88h 02h +12 to -77.25 dB In 0.75 dB steps BTL Power Management SPKR VOL Digital PWM controller Thermal Limit BTL Class D Left 1Bh LEFT Audio Processing Bass/Treble Enhancement SYSTEM EQ SPEAKER EQ 3-D effect Compressor-limiter Dynamic Range Expander DAC_L/R Interpolation RIGHT BTL Power Management 1Bh 1Ch – 1Eh Thermal 88h Limit 03h +12 to -77.25 dB In 0.75 dB steps SPKR VOL Digital PWM controller BTL Class D Right Figure 2. Output Audio Processing 3.1. DC Removal Before processing, a DC removal filter removes the DC component from the incoming audio data. The DC removal filter is programmable. Register Address R65 (41h) DCOFSEL Bit Label Type Default 7:3 – R 0 Reserved for future use. 5 0: dc_coef = 24'h100000; //2^^-3 = 0.125 1: dc_coef = 24'h040000; 2: dc_coef = 24'h010000; 3: dc_coef = 24'h004000; 4: dc_coef = 24'h001000; 5: dc_coef = 24'h000400; 6: dc_coef = 24'h000100; //2^^-15 = 0.00030517 7: dc_coef = 24'h000040; //2^^-17 2:0 - RW Description Table 4. DC_COEF_SEL Register Register Address R31 (1Fh) CONFIG0 Bit Label Type Default 7:2 RSVD RW 10h Description 1 dc_bypass RW 0 1 = bypass DC removal filter (WARNING DC content can damage BTL output) 0 RSVD R 0 Reserved Reserved Table 5. CONFIG0 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 4 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.2. Volume Control The signal volume can be controlled digitally, across a gain and attenuation range of -95.25dB to 0dB (0.375dB steps). The level of attenuation is specified by an eight-bit code, ‘DACVOL_x’, where ‘x’ is L, or R. The value “00000000” indicates mute; other values select the number of 0.375dB steps above -95.625dB for the volume level. The Volume Update bits control the updating of volume control data; when a bit is written as ‘0’, the Left Volume control associated with that bit is updated whenever the left volume register is written and the Right Volume control is updated when ever the right volume register is written. When a bit is written as ‘1’, the left volume data is placed into an internal holding register when the left volume register is written and both the left and right volumes are updated when the right volume register is written. This enables a simultaneous left and right volume update Register Address R10 (0Ah) VUCTL Bit Label Type Default 7 RSVD RW 1 Reserved Description 6 DACFade RW 1 1 = volume fades between old/new value 0 = volume/mute changes immediately 5:3 RSVD R 0 Reserved for future use. 2 DACVOLU RW 0 0 = Left DAC volume updated immediately 1 = Left DAC volume held until right DAC volume register written. 1 SPKVOLU RW 0 0 = Left speaker volume updated immediately 1 = Left speaker volume held until right speaker volume register written. 0 RSVD RW 0 Reserved Table 6. Volume Update Control Register The output path may be muted automatically when a long string of zero data is received. The length of zeros is programmable and a detection flag indicates when a stream of zero data has been detected. Register Address R33 (21h) Gain Control (GAINCTL) Bit Label Type Default Description 7 zerodet_flag R 0 1 = zero detect length exceeded. 6 RSVD R 0 Reserved for future use. 5:4 zerodetlen RW 2 Enable mute if input consecutive zeros exceeds this length. 0 = 512, 1 = 1k, 2 = 2k, 3 = 4k samples 3 RSVD R 0 Reserved for future use. 2 auto_mute RW 1 1 = auto mute if detect long string of zeros on input 1 RSVD R 0 Reserved for future use. 0 RSVD R 0 Reserved for future use. 7 zerodet_flag R 0 1 = zero detect length exceeded. Table 7. Gain Control Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 5 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.3. Digital DAC Volume Control The signal volume can be controlled digitally, across a gain and attenuation range of -95.25dB to 0dB (0.375dB steps). The level of attenuation is specified by an eight-bit code, ‘DACVOL_x’, where ‘x’ is L, or R. The value “00000000” indicates mute; other values select the number of 0.375dB steps above -95.625dB for the volume level. Register Address R4 (04h) Left DAC Volume Control R5 (05h) Right DAC Volume Control Bit Label DACVOL_L [7:0] 7:0 7:0 Type DACVOL_R [7:0] RW RW Default Description FF (0dB) Left DAC Volume Level 0000 0000 = Digital Mute 0000 0001 = -95.25dB 0000 0010 = -94.875dB ... 0.375dB steps up to 1111 1111 = 0dB Note: If DACVOLU is set, this setting will take effect after the next write to the Right Input Volume register. FF (0dB) Right DAC Digital Volume Level 0000 0000 = Digital Mute 0000 0001 = -95.25dB 0000 0010 = -94.875dB ... 0.375dB steps up to 1111 1111 = 0dB Table 8. DAC Volume Control Registers 3.4. Parametric Equalizer The ACS32201 has a dual 6-band digital parametric equalizer to enable fine tuning of the audio response and preferences for a given system. Each EQ may be enabled or disabled independently. Typically one EQ will be used for speaker compensation and disabled when only headphones are in use while the other EQ is used to alter the audio to make it more pleasing to the listener. This function operates on the digital audio data before it is converted back to analog by the audio DACs. In all, 186 bytes of memory are required to store the parameters for each equalizer: each filter requires 5, 24-bit coefficients. There are 6 filters per channel, requiring a total of 180 bytes of EQ coefficient RAM. Two additional 24-bit values per channel store the prescale value, resulting in 372 bytes total, described later. Rather than having all 372 bytes be in the I2C address space of the device, access to the EQ ram occurs through the Control/Status registers. 3.4.1. Prescaler & Equalizer Filter The Equalizer Filter consists of a Prescaler and 6 cascaded 6-tap IIR Filters. The Prescaler allows the input to be attenuated prior to the EQ filters in case the EQ filters introduce gain, and would thus clip if not prescaled. IDT provides a tool to enable an audio designer to determine appropriate coefficients for the equalizer filters. The filters enable the implementation of a 6-band parametric equalizer with selectable frequency bands, gain, and filter characteristics (high, low, or bandpass). EQ Filter 0 DATA IN EQ Filter 1 EQ Filter 2 EQ Filter 3 EQ Filter 4 EQ Filter 5 DATA OUT eq_prescale Figure 3. Prescaler & EQ Filters IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 6 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER The figure below shows the structure of a single EQ filter. The a(0) tap is always normalized to be equal to 1 (400000h). The remaining 5 taps are 24-bit twos compliment format programmable coefficients. (-2 ≤ coefficient < +2). x(n) y(n) b(0) b(0)*2 Z-1 Z-1 Z-1 b(1) b(1)*2 a(1) a(1)*2 b(2) a(2) Z-1 Figure 4. 6-Tap IIR Equalizer Filter 3.4.2. • EQ Registers EQ Filter Enable Register Register Address R32 (20h) CONFIG1 Bit Label Type Default Description 7 EQ2_EN R/W 0 EQ bank 2 enable 0 = second EQ bypassed, 1 = second EQ enabled 6:4 EQ2_BE[2:0] R/W 0 EQ2 band enable. When the EQ is enabled the following EQ stages are executed. 0 - Prescale only 1 - Prescale and Filter Band 0 ... 6 - Prescale and Filter Bands 0 to 5 7 - RESERVED 3 EQ1_EN R/W 0 EQ bank 1 enable 0 = first EQ bypassed, 1 = first EQ enabled 0 EQ1 band enable. When the EQ is enabled the following EQ stages are executed. 0 - Prescale only 1 - Prescale and Filter Band 0 ... 6 - Prescale and Filter Bands 0 to 5 7 - RESERVED 2:0 EQ1_BE[2:0] R/W Table 9. CONFIG1 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 7 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER • DACCRAM Read Data (0x3D–LO, 0x3E–MID, 0x3F–HI), DACCRAM Write Data (0x3A–LO, 0x3B–MID, 0x3C–HI) Registers These two 24-bit registers provide the 24-bit data holding registers used when doing indirect writes/reads to the DAC Coefficient RAM. Register Address R58 (3Ah) DACCRAM_WRITE_LO Bit 7:0 Label DACCRWD[7:0] Type Default Description 0 Low byte of a 24-bit data register, contains the values to be written to the DACCRAM. The address written will have been specified by the DACCRAM Address fields. R/W R59 (3Bh) DACCRAM_WRITE_MID 7:0 DACCRWD[15:8] R/W 0 Middle byte of a 24-bit data register, contains the values to be written to the DACCRAM. The address written will have been specified by the DACCRAM Address fields. R60 (3Ch) DACCRAM_WRITE_HI 7:0 DACCRWD[23:16] R/W 0 High byte of a 24-bit data register, contains the values to be written to the DACCRAM. The address written will have been specified by the DACCRAM Address fields. 0 Low byte of a 24-bit data register, contains the contents of the most recent DACCRAM address read from the RAM. The address read will have been specified by the DACCRAM Address fields. 0 Middle byte of a 24-bit data register, contains the contents of the most recent DACCRAM address read from the RAM. The address read will have been specified by the DACCRAM Address fields. 0 High byte of a 24-bit data register, contains the contents of the most recent DACCRAM address read from the RAM. The address read will have been specified by the DACCRAM Address fields. R61 (3Dh) DACCRAM_READ_LO R62 (3Eh) DACCRAM_READ_MID R63 (3Fh) DACCRAM_READ_HI 7:0 7:0 7:0 DACCRRD[7:0] R DACCRRD[15:8] R DACCRRD[23:16] R Table 10. DACCRAM Read/Write Registers • DACCRAM Address Register This 7-bit register provides the address to the internal RAM when doing indirect writes/reads to the DAC Coefficient RAM. Register Address R64 (40h) DACCRADDR Bit 7:0 Label DACCRADD Type Default Description 0 Contains the address (between 0 and 255) of the DACCRAM to be accessed by a read or write. This is not a byte address--it is the address of the 24-bit data item to be accessed from the DACCRAM.This address is automatically incremented after writing to DACCRAM_WRITE_HI or reading from DACCRAM_READ_HI (and the 24 bit data from the next RAM location is fetched.) R/W Table 11. DACCRAM Address Register • DACCRAM STATUS Register This control register provides the write/read enable when doing indirect writes/reads to the DAC Coefficient RAM. Register Address R138 (8Ah) DACCRSTAT Bit Label Type Default Description 7 DACCRAM_Busy R 0 1 = read/write to DACCRAM in progress, cleared by HW when done. 6:0 RSVD R 0 Reserved Table 12. DACCRAM Status Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 8 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.4.3. Equalizer, Bass, Treble Coefficient & Equalizer Prescaler RAM The DAC Coefficient RAM is a single port 161x24 synchronous RAM. It is programmed indirectly through the Control Bus in the following manner: 1. Write target address to DACCRAM_ADDR register. 2. Write D7:0 to the DACCRAM_WRITE_LO register 3. Write D15:8 to the DACCRAM_WRITE_MID register 4. Write D23:16 to the DACCRAM_WRITE_HI register 5. On successful receipt of the DACCRAM_WRITE_HI data, the part will automatically start a write cycle. The DACCRAM_Busy bit will be set high to indicate that a write is in progress. 6. On completion of the internal write cycle, the DACCRAM_Busy bit will be 0 (when operating the control interface at high speeds - TBD - software must poll this bit to ensure the write cycle is complete before starting another write cycle.) 7. The bus cycle may be terminated by the host or steps 2-6 may be repeated for writes to consecutive EQ RAM locations. Generic write operation writing 1 reigster multiple write cycle multiple write cycle S P DA6 SDA DA0 W AS RA7 RA0 RA1 AS RD7 AS RD0 RD7 AS RD0 RD7 RD0 AS SCL 2.5 uS min. EQ RAM write operation write EQ RAM Address S DA[6:0], W RA[7:0] RD[7:0] write EQ RAM Write Lo S DA[6:0], W RA[7:0] RD[7:0] EQ RAM Write Lo updated here 28 SCL cycles 70 uS min. EQ RAM read finished; EQ Read Data valid (time not fixed) EQ_A updated; EQ RAM read req = 1 register write here register write here EQ RAM write must have finished here; EQ_A ++ EQ RAM write req = 1 write EQ RAM Write Mid write EQ RAM Write Hi RD[7:0] RD[7:0] write EQ RAM Write Lo S DA[6:0], W RA[7:0] RD[7:0] write EQ RAM Write Mid RD[7:0] repeat for multiple consecutive EQ RAM locations writes Figure 5. DAC Coefficient RAM Write Sequence Reading back a value from the DACCRAM is done in this manner: 1. Write target address to DACCRAM_ADDR register.(EQ data is pre-fetched for read even if we don’t use it) 2. Start (or repeat start) a write cycle to DACCRAM_READ_LO and after the second byte (register address) is acknowledged, go to step 3. (Do not complete the write cycle.) 3. Signal a repeat start and indicate a read operation 4. Read D7:0 (register address incremented after ack by host) 5. Read D15:8 (register address incremented after ack by host) 6. Read D23:16 (register address incremented and next EQ location pre-fetched after ack by host) 7. The host stops the bus cycle To repeat a read cycle for consecutive EQ RAM locations: 1. Start (or repeat start instead of stopping the bus cycle in step 7) a write cycle indicating DACCRAM_RD_LO as the target address. 2. After the second byte is acknowledged, signal a repeated start. 3. Indicate a read operation 4. Read the DACCRAM_READ_LO register as described in step 4 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 9 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 5. Read the DACCRAM_READ_MID register as described in step 5 6. Read the DACCRAM_READ_HI register as described in step 6 7. Repeat steps 8-13 as desired Generic read operation read 1 register multiple read cycle multiple read cycle Sr RA7 SDA RA1 RA0 AS DA6 DA0 AS R RD7 RD0 AM RD7 AM RD0 RD7 RD0 NM SCL EQ_A updated; EQ RAM read req = 1 EQ RAM read operation NACK from master to end read cycle write EQ RAM Read Lo, truncate write EQ RAM Address P S DA[6:0], W RA[7:0] RD[7:0] EQ RAM Data must be valid here 30 SCL cycles 75 uS min. S DA[6:0], W RA[7:0] Sr read EQ RAM Data Lo read EQ RAM Data Mid read EQ RAM Data Hi RD[7:0] RD[7:0] RD[7:0] DA[6:0], R EQ RAM Data must be valid here EQ_A ++; prefetch data write EQ RAM Read Lo, truncate P S DA[6:0], W RA[7:0] read EQ RAM Data Lo Sr DA[6:0], R RD[7:0] repeat for multiple consecutive EQ RAM locations reads 1. 2. 3. 4. 5. DA: Device Address RA: Register Address EQ_A: EQ RAM Address RD: Register Data A S : Acknowledge from slave 6. A M : Acknowledge from master 7. N M : Not Acknowledge from master 8. S: Start 9. S r: Repeated Start 10. P: Stop Figure 6. DAC Coefficient RAM Read Sequence • DACCRAM EQ Addresess EQ 0 EQ1 Addr Channel 0 Coefficients Addr Channel 1 Coefficients Addr Channel 0 Coefficients Addr Channel 1 Coefficients 0x00 EQ_COEF_0F0_B0 0x20 EQ_COEF_1F0_B0 0x40 EQ_COEF_2F0_B0 0x60 EQ_COEF_3F0_B0 0x01 EQ_COEF_0F0_B1 0x21 EQ_COEF_1F0_B1 0x41 EQ_COEF_2F0_B1 0x61 EQ_COEF_3F0_B1 0x02 EQ_COEF_0F0_B2 0x22 EQ_COEF_1F0_B2 0x42 EQ_COEF_2F0_B2 0x62 EQ_COEF_3F0_B2 0x03 EQ_COEF_0F0_A1 0x23 EQ_COEF_1F0_A1 0x43 EQ_COEF_2F0_A1 0x63 EQ_COEF_3F0_A1 0x04 EQ_COEF_0F0_A2 0x24 EQ_COEF_1F0_A2 0x44 EQ_COEF_2F0_A2 0x64 EQ_COEF_3F0_A2 0x05 EQ_COEF_0F1_B0 0x25 EQ_COEF_1F1_B0 0x45 EQ_COEF_2F1_B0 0x65 EQ_COEF_3F1_B0 0x06 EQ_COEF_0F1_B1 0x26 EQ_COEF_1F1_B1 0x46 EQ_COEF_2F1_B1 0x66 EQ_COEF_3F1_B1 0x07 EQ_COEF_0F1_B2 0x27 EQ_COEF_1F1_B2 0x47 EQ_COEF_2F1_B2 0x67 EQ_COEF_3F1_B2 0x08 EQ_COEF_0F1_A1 0x28 EQ_COEF_1F1_A1 0x48 EQ_COEF_2F1_A1 0x68 EQ_COEF_3F1_A1 0x09 EQ_COEF_0F1_A2 0x29 EQ_COEF_1F1_A2 0x49 EQ_COEF_2F1_A2 0x69 EQ_COEF_3F1_A2 0x0A EQ_COEF_0F2_B0 0x2A EQ_COEF_1F2_B0 0x4A EQ_COEF_2F2_B0 0x6A EQ_COEF_3F2_B0 0x0B EQ_COEF_0F2_B1 0x2B EQ_COEF_1F2_B1 0x4B EQ_COEF_2F2_B1 0x6B EQ_COEF_3F2_B1 0x0C EQ_COEF_0F2_B2 0x2C EQ_COEF_1F2_B2 0x4C EQ_COEF_2F2_B2 0x6C EQ_COEF_3F2_B2 0x0D EQ_COEF_0F2_A1 0x2D EQ_COEF_1F2_A1 0x4D EQ_COEF_2F2_A1 0x6D EQ_COEF_3F2_A1 0x0E EQ_COEF_0F2_A2 0x2E EQ_COEF_1F2_A2 0x4E EQ_COEF_2F2_A2 0x6E EQ_COEF_3F2_A2 0x0F EQ_COEF_0F3_B0 0x2F EQ_COEF_1F3_B0 0x4F EQ_COEF_2F3_B0 0x6F EQ_COEF_3F3_B0 0x10 EQ_COEF_0F3_B1 0x30 EQ_COEF_1F3_B1 0x50 EQ_COEF_2F3_B1 0x70 EQ_COEF_3F3_B1 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 10 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER EQ 0 EQ1 Addr Channel 0 Coefficients Addr Channel 1 Coefficients Addr Channel 0 Coefficients Addr Channel 1 Coefficients 0x11 EQ_COEF_0F3_B2 0x31 EQ_COEF_1F3_B2 0x51 EQ_COEF_2F3_B2 0x71 EQ_COEF_3F3_B2 0x12 EQ_COEF_0F3_A1 0x32 EQ_COEF_1F3_A1 0x52 EQ_COEF_2F3_A1 0x72 EQ_COEF_3F3_A1 0x13 EQ_COEF_0F3_A2 0x33 EQ_COEF_1F3_A2 0x53 EQ_COEF_2F3_A2 0x73 EQ_COEF_3F3_A2 0x14 EQ_COEF_0F4_B0 0x34 EQ_COEF_1F4_B0 0x54 EQ_COEF_2F4_B0 0x74 EQ_COEF_3F4_B0 0x15 EQ_COEF_0F4_B1 0x35 EQ_COEF_1F4_B1 0x55 EQ_COEF_2F4_B1 0x75 EQ_COEF_3F4_B1 0x16 EQ_COEF_0F4_B2 0x36 EQ_COEF_1F4_B2 0x56 EQ_COEF_2F4_B2 0x76 EQ_COEF_3F4_B2 0x17 EQ_COEF_0F4_A1 0x37 EQ_COEF_1F4_A1 0x57 EQ_COEF_2F4_A1 0x77 EQ_COEF_3F4_A1 0x18 EQ_COEF_0F4_A2 0x38 EQ_COEF_1F4_A2 0x58 EQ_COEF_2F4_A2 0x78 EQ_COEF_3F4_A2 0x19 EQ_COEF_0F5_B0 0x39 EQ_COEF_1F5_B0 0x59 EQ_COEF_2F5_B0 0x79 EQ_COEF_3F5_B0 0x1A EQ_COEF_0F5_B1 0x3A EQ_COEF_1F5_B1 0x5A EQ_COEF_2F5_B1 0x7A EQ_COEF_3F5_B1 0x1B EQ_COEF_0F5_B2 0x3B EQ_COEF_1F5_B2 0x5B EQ_COEF_2F5_B2 0x7B EQ_COEF_3F5_B2 0x1C EQ_COEF_0F5_A1 0x3C EQ_COEF_1F5_A1 0x5C EQ_COEF_2F5_A1 0x7C EQ_COEF_3F5_A1 0x1D EQ_COEF_0F5_A2 0x3D EQ_COEF_1F5_A2 0x5D EQ_COEF_2F5_A2 0x7D EQ_COEF_3F5_A2 0x1E - 0x3E - 0x5E - 0x7E - 0x1F EQ_PRESCALE0 0x3F EQ_PRESCALE1 0x5F EQ_PRESCALE2 0x7F EQ_PRESCALE3 Table 13. DACCRAM EQ Addresess • DACCRAM Bass/Treble Addresses Addr Bass Coefficients1 Addr Treble Coefficients Addr 3D Coefficients 0x80 BASS_COEF_EXT1_B0 0x97 TREB_COEF_EXT1_B0 0xAE 3D_COEF 0x81 BASS_COEF_EXT1_B1 0x98 TREB_COEF_EXT1_B1 0xAF 3D_MIX 0x82 BASS_COEF_EXT1_B2 0x99 TREB_COEF_EXT1_B2 0x83 BASS_COEF_EXT1_A1 0x9A TREB_COEF_EXT1_A1 0x84 BASS_COEF_EXT1_A2 0x9B TREB_COEF_EXT1_A2 0x85 BASS_COEF_EXT2_B0 0x9C TREB_COEF_EXT2_B0 0x86 BASS_COEF_EXT2_B1 0x9D TREB_COEF_EXT2_B1 0x87 BASS_COEF_EXT2_B2 0x9E TREB_COEF_EXT2_B2 0x88 BASS_COEF_EXT2_A1 0x9F TREB_COEF_EXT2_A1 0x89 BASS_COEF_EXT2_A2 0xA0 TREB_COEF_EXT2_A2 0x8A BASS_COEF_NLF_M12 0xA1 TREB_COEF_NLF_M1 0x8B BASS_COEF_NLF_M2 0xA2 TREB_COEF_NLF_M2 0x8C BASS_COEF_LMT_B0 0xA3 TREB_COEF_LMT_B0 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 11 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER Addr Bass Coefficients1 Addr Treble Coefficients 0x8D BASS_COEF_LMT_B1 0xA4 TREB_COEF_LMT_B1 0x8E BASS_COEF_LMT_B2 0xA5 TREB_COEF_LMT_B2 0x8F BASS_COEF_LMT_A1 0xA6 TREB_COEF_LMT_A1 0x90 BASS_COEF_LMT_A2 0xA7 TREB_COEF_LMT_A2 0x91 BASS_COEF_CTO_B0 0xA8 TREB_COEF_CTO_B0 0x92 BASS_COEF_CTO_B1 0xA9 TREB_COEF_CTO_B1 0x93 BASS_COEF_CTO_B2 0xAA TREB_COEF_CTO_B2 0x94 BASS_COEF_CTO_A1 0xAB TREB_COEF_CTO_A1 0x95 BASS_COEF_CTO_A2 0xAC TREB_COEF_CTO_A2 Addr 3D Coefficients 0x96 BASS_MIX 0xAD TREB_MIX 1.All B0 coefficients are set to unity (400000h) by default. All others, including M1 and M2, are 0 by default. 2.NLF coefficients (M1, M2) have a range defined as +/-8, with 1 sign bit, 3 integer bits, and 20 fraction bits. So, unity for these values is 100000h. This is as opposed to the rest of the coefficient RAM, which has a range defined as +/-2, with 1 sign bit, 1 integer bit, and 22 fraction bits. Table 14. DACCRAM Bass/Treble Addresses 3.5. Gain and Dynamic Range Control The gain for a given channel is controlled by the DACVOL registers. The range of gain supported is from -95.625db to 0db in 0.375db steps. If the result of the gain multiply step would result in overflow of the 24-bit output word width, the output is saturated at the max positive or negative value. In addition to simple gain control, the ACS32201 also provides sophisticated dynamic range control. The dynamic range control processing element implements limiting, dynamic range compression, and dynamic range expansion functions. 3.6. Limiter The Limiter function will limit the output of the DSP module to the Class-D and DAC modules. If the signal is greater than 0dB it will saturate at 0dB as the final processing step within the DSP module. There are times when the user may intentionally want the output Limiter to perform this saturation, for example +6dB of gain applied within the DSP gain control and then limited to 0dB when output to the Class-D module would result in a clipped signal driving the speaker output. This clipped signal would obviously contribute to increased distortion on the speaker output which from the user listening perception it would “sound louder”. At other times, the system implementor may wish to protect speakers from overheating or provide hearing protection by intentionally limiting the output level before full scale is reached. A limit threshold, independent of the compressor threshold is provided for this purpose. It is expected that the limit threshold is set to a higher level than the compressor threshold. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 12 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.7. Compressor Limit Threshold: -6 dBFS Compressor Threshold: -14.25 dBFS Expander Threshold: -18 dBFS 0 Output (dBFS) -2 Compressor Ratio: Expander Ratio: 3:1 1:2 -4 -6 -8 -10 -12 Compressed Output Range Limit Threshold -14 Natural Output Range Compressor Threshold -16 -18 -20 Expander Threshold Expanded Output Range -22 -22 -20 -18 -16 -14 -12 I -10 t (dBFS) -8 -6 -4 -2 0 Figure 7. Gain Compressor, Output vs Input The traditional compressor algorithm provides two functions simultaneously (depending on signal level). For higher level signals, it can provide a compression function to reduce the signal level. For lower level signals, it can provide an expansion function for either increasing dynamic range or noise gating. The compressor monitors the signal level and, if the signal is higher than a threshold, will reduce the gain by a programmed ratio to restrict the dynamic range. Limiting is an extreme example of the compressor where, as the input signal level is increased, the gain is decreased to maintain a specific output level. In addition to limiting the bandwidth of the compressed audio, it is common for compressed audio to also compress the dynamic range of the audio. The expansion function in the ACS32201 can help restore the original dynamics to the audio. The expander is a close relative of the compressor. Rather than using signal dependent gain to restrict the dynamic range, the expander uses signal dependent gain to expand the dynamic range. Thus if a signal level is below a particular threshold, the expander will reduce the gain even further to extend the dynamic range of the material. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 13 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.7.1. Configuration This compressor limiter provides the following configurable parameters. 3.7.2. • Compressor/limiter • Threshold – The threshold above which the compressor will reduce the dynamic range of the audio in the compression region. • Ratio – The ratio between the input dynamic range and the output dynamic range. For example, a ratio of 3 will reduce an input dynamic range of 9db to 3db. • Attack Time – The amount of time that changes in gain are smoothed over during the attack phase of the compressor. • Release Time – The amount of time that changes in gain are smoothed over during the release phase of the compressor. • Makeup gain – Used to increase the overall level of the compressed audio. • Expander • Threshold – The threshold below which the expander will increase the dynamic range of the audio. • Ratio – The ratio between the input dynamic range and the output dynamic range of the audio in the expansion range. For example a ratio of 3 will take an input dynamic range of 9db and expand it to 27db. • Attack Time – The amount of time that changes in gain are smoothed over during the attack phase of the expander • Release Time • - The amount of time that changes in gain are smoothed over during the release phase of the expander. • Two level detection algorithms • RMS – Use an RMS measurement for the level. • Peak – Use a peak measurement for the level. Controlling parameters In order to control this processing, there are a number of configurable parameters. The parameters and their ranges are: • Compressor/limiter • Threshold – -40db to 0db relative to full scale. • Ratio – 1 to 20 • Attack Time – typically 0 to 500ms • Release Time – typically 25ms to 2 seconds • Makeup gain – 0 to 40db • Expander • Threshold – -30 to -60 dB • Ratio – 1 to 6 • Attack Time – same as above • Release Time – same as above. • Two level detection algorithms • RMS • Peak IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 14 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.7.3. Overview A basic block diagram of the compressor is shown below: Audio In Audio Out Level Detector Peak or RMS Attack/ release filter Gain Calc Compare to Thresholds Lowpass filter Gains based on Calc Gain Attack and release Figure 8. Compressor block diagram As this diagram shows, there are 3 primary components of the compressor. 1. Level Detector: The level detector, oddly enough, detects the level of the incoming signal. Since the comp/limiter is designed to work on blocks of signals, the level detector will either find the peak value of the block of samples to be processed or the rms level of the samples within a block. 2. Gain Calculation: The gain calculation block is responsible for taking the output of the level detector and calculating a target gain based on that level and the compressor and expander thresholds. The compressor recalculates the target gain value every block, typically every 10ms. • The gain calculation operates in 3 regions: • Linear region – If the level is higher than the expander threshold and lower than the compression threshold, then the gain is 1.0 • Compression region – When the level is higher than the compressor threshold, then the comp/limiter is in the compression region. The gain is a function of the compressor ratio and the signal level. • Expansion region – When the signal is lower than the expansion threshold, the comp/limiter is in the expansion region. In this region, the gain is a function of the signal level and the expansion ratio. • Compression region gain calculation: In the compression region, the gain calculation is: Atten(in db) = (1-1/ratio)(threshold(in db) – level(in db); • For example, • Ratio = 4:1 compression • Threshold = -16db • Level = -4 db The required attenuation is: 9db or a gain coefficient of 0.1259. Translating this calculation from log space to linear yields the formula: Gain =(level/threshold)1/ratio*(threshold/level) • Expansion region gain calculation: In the expansion region, the attenuation calculation is: IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 15 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER Atten(in db) = (1 - ratio)(threshold-level); • For example, • Ratio = 3:1 • Threshold = -40db • Level = -44 db The resulting attenuation required is 8db or a gain value of 0.1585. The linear equation for calculating the gain is: Gain =(level/threshold)ratio*(threshold/level) • State Transitions: In addition to calculating the new gain for the compressor, the gain calculation block will also select the filter coefficient for the attack/release filter. The rules for selecting the coefficient are as follows: In the compression region: • If the gain calculated is less than the last gain calculated (more compression is being applied), then the filter coefficient is the compressor attack. • If the gain calculated is more than the last gain calculated (less compression), the filter coefficient is the compressor release. • In the expansion region: • If the calculated gain is less than the last gain calculated (closing expander, the filter coefficient is the expander attack. • If the calculated gain is more than the last gain calculated, the filter coefficient is the expander release. In the linear region: • Modify gain until a gain of 1.0 is obtained. • If the last non-linear state was compression, use the compressor release. • If the last non-linear state was expansion, use the expander attack. 3. Attack/Release filter: In order to prevent objectionable artifacts, the gain is smoothly ramped from the current value to the new value calculated by the gain calculation block. In the PC-based comp/limiter, this is achieved using a simple tracking lowpass filter to smooth out the abrupt transitions. The calculation (using the coefficient (coeff) selected by the gain block) is: Filtered_gain = coeff*last_filtered_gain + (1.0 - coeff)*target_gain; This creates a exponential ramp from the current gain value to the new value. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 16 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.7.4. • Limiter/Compressor Registers General compressor/limiter/expander control Register Address R37 (25h) CLECTL Bit Label Type Default 7:5 RSVD R 0h Reserved 4 Lvl_Mode RW 0 CLE Level Detection Mode 0 = Average 1 = Peak 0 Window width selection for level detection: 0 = equivalent of 512 samples of selected Base Rate (~10-16ms) 1 = equivalent of 64 samples of selected Base Rate (~1.3-2ms) 3 WindowSel RW Description 2 Exp_en RW 0 1 = enable expander 1 Limit_en RW 0 1 = enable limiter 0 Comp_en RW 0 1 = enable compressor Table 15. CLECTL Register • Compressor/Limiter/Expander make-up gain Register Address R38 (26h) MUGAIN Bit Label Type Default 7:5 RSVD R 0h Reserved Description 4:0 CLEMUG[4:0] RW 0h 0dB..46.5dB in 1.5dB steps Table 16. MUGAIN Register • Compressor Threshold Register Address R39 (27h) COMPTH Bit Label Type Default 7:0 COMPTH[7:0] RW 00h Description FFh..00h = 0dB..95.625dB in 0.375dB steps. Table 17. COMPTH Register • Compressor ratio register Register Address R40 (28h) CMPRAT Bit Label Type Default 7:5 RSVD R 000 Reserved 00h Compressor Ratio 00h = Reserved 01h = 1.5:1 02h..14h = 2:1..20:1 15h..1Fh = Reserved 4:0 CMPRAT[4:0] RW Description Table 18. CMPRAT Register • Compressor Attack Time Constant Register (Low) Register Address R41 (29h) CATKTCL Bit 7:0 Label Type CATKTC[7:0] RW Default Description 00h Low byte of the time constant used to ramp to a new gain value during a compressor attack phase. Table 19. CATKTCL Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 17 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER • Compressor Attack Time Constant Register (High) Register Address R42 (2Ah) CATKTCH Bit 7:0 Label Type CATKTC[15:8] RW Default Description 00h High byte of the time constant used to ramp to a new gain value during a compressor attack phase. Table 20. CATKTCH Register • Compressor Release Time Constant Register (Low) Register Address R43 (2Bh) CRELTCL Bit Label Type Default Description 7:0 CRELTC[7:0] RW 00h Low byte of the time constant used to ramp to a new gain value during a compressor release phase. Table 21. CRELTCL Register • Compressor Release Time Constant Register (High) Register Address R44 (2Ch) CRELTCH Bit 7:0 Label Type CRELTC[15:8] RW Default Description 00h High byte of the time constant used to ramp to a new gain value during a compressor release phase. Table 22. CRELTCH Register • Limiter Threshold Register Register Address R45 (2Dh) LIMTH Bit Label Type Default 7:0 LIMTH[7:0] RW 00h Description FFh..00h = 0dB..95.625dB in 0.375dB steps. Table 23. LIMTH Register • Limiter Target Register Register Address R46 (2Eh) LIMTGT Bit Label Type Default 7:0 LIMTGT[7:0] RW 00h Description FFh..00h = 0dB..95.625dB in 0.375dB steps. Table 24. LIMTGT Register • Limiter Attack Time Constant Register (Low) Register Address R47 (2Fh) LATKTCL Bit Label Type Default Description 7:0 LATKTC[7:0] RW 00h Low byte of the time constant used to ramp to a new gain value during a limiter attack phase. Table 25. LATKTCL Register • Limiter Attack Time Constant Register (High) Register Address R48 (30h) LATKTCH Bit 7:0 Label Type LATKTC[15:8] RW Default Description 00h High byte of the time constant used to ramp to a new gain value during a limiter attack phase. Table 26. LATKTCH Register • Limiter Release Time Constant Register (Low) Register Address R49 (31h) LRELTCL Bit Label Type Default Description 7:0 LRELTC[7:0] RW 00h Low byte of the time constant used to ramp to a new gain value during a limiter release phase. Table 27. LRELTCL Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 18 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER • Limiter Release Time Constant Register (High) Register Address R50 (32h) LRELTCH Bit 7:0 Label Type LRELTC[15:8] RW Default Description 00h High byte of the time constant used to ramp to a new gain value during a limiter release phase. Table 28. LRELTCH Register 3.7.5. • Expander Registers Expander Threshold Register Register Address R51 (33h) EXPTH Bit Label Type Default 7:0 EXPTH[7:0] RW 00h Description Expander threshold: 0..95.625dB in 0.375dB steps Table 29. EXPTH Register • Expander Ratio Register Register Address Bit Label Type Default 7:3 RSVD R 00h Reserved 000 Expander Ratio 0h..1h = Reserved 2h..7h = 1:2..1:7 R52 (34h) EXPRAT EXPRAT[2:0] RW Description Table 30. EXPRAT Register • Expander Attack Time Constant Register (Low) Register Address R53 (35h) XATKTCL Bit Label Type Default Description 7:0 XATKTC[7:0] RW 00h Low byte of the time constant used to ramp to a new gain value during a expander attack phase. Table 31. XATKTCL Register • Expander Attack Time Constant Register (High) Register Address R54 (36h) XATKTCH Bit 7:0 Label Type XATKTC[15:8] RW Default Description 00h High byte of the time constant used to ramp to a new gain value during a expander attack phase. Table 32. XATKTCH Register • Expander Release Time Constant Register (Low) Register Address R55 (37h) XRELTCL Bit Label Type Default Description 7:0 XRELTC[7:0] RW 0 Low byte of the time constant used to ramp to a new gain value during a expander release phase. Table 33. XRELTCL Register • Expander Release Time Constant Register (High) Register Address R56 (38h) XRELTCH Bit 7:0 Label Type XRELTC[15:8] Default Description 0 High byte of the time constant used to ramp to a new gain value during a expander release phase. RW Table 34. XRELTCH Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 19 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.8. Output Effects The ACS32201 offers Bass enhancement, Treble enhancement, Stereo Depth enhancement. The output effects processing is outlined in the following sections.l Register Address R57 (39h) FXCTL Bit Label Type Default 7:5 RSVD R 000 Description Reserved 4 3DEN RW 0 3D Enhancement Enable 0 = Disabled 1 = Enabled 3 TEEN RW 0 Treble Enhancement Enable 0 = Disabled 1 = Enabled 2 TNLFBYP RW 0 Treble Non-linear Function Bypass: 0 = Enabled 1 = Bypassed 1 BEEN RW 0 Bass Enhancement Enable 0 = Disabled 1 = Enabled 0 BNLFBYP RW 0 Bass Non-linear Function Bypass: 0 = Enabled 1 = Bypassed Table 35. FX Control Register 3.9. Stereo Depth (3-D) Enhancement The ACS32201 has a digital depth enhancement option to artificially increase the separation between the left and right channels, by enabling the attenuation of the content common to both channels. The amount of attenuation is programmable within a range. The input is prescaled (fixed) before summation to prevent saturation. The 3-D enhancement algorithm is a tried and true algorithm that uses two principles. 1. If the material common to the two channels is removed, then the speakers will sound more 3-D. 2. If the material for the opposite channel is presented to the current channel inverted, it will tend to cancel any material from the opposite channel on the current ear. For example, if the material from the right is presented to the left ear inverted, it will cancel some of the material from the right ear that is leaking into the right ear. Left Left Right Right Figure 9. 3-D Channel Inversion Note: 3D_Mix specifies the amount of the common signal that is subtracted from the left and right channels. This number is a fractional amount between 0 and 1. For proper operation, this value is typically negative. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 20 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.10. Psychoacoustic Bass Enhancement One of the primary audio quality issues with small speaker systems is their inability to reproduce significant amounts of energy in the bass region (below 200Hz). While there is no magic mechanism to make a speaker reproduce frequencies that it is not capable of, there are mechanisms for fooling the ear into thinking that the bass material is being heard. The psychoacoustic bass processor relies on a psychoacoustic principle called “missing fundamental”. If the human ear hears a proper series of harmonics for a particular bass note, the listener will hear the fundamental of that series, even if it is not present. A processing algorithm using this principle allows for improving the apparent low frequency response of an audio system below what it is actually capable of. Below is a diagram of the implementation of this algorithm. . Cutoff Filter Limit Filter Extract Filter NLF Figure 10. Bass Enhancement This implementation is composed of 5 major components: 1. Extract filter – This filter extracts the bass information that the speaker system can't reproduce. This is a 4th order band pass filter with a typical bandwidth of 1.5 to 2 octaves. 2. NLF – This is a Nonlinear function that is used to generate the harmonics of the fundamentals in the extracted audio. More on this function later. 3. Limit Filter – This filter will limit the amplitude of the harmonics generated to prevent the harmonics from creating noise in the midrange. Too many harmonics will spill into the mid range and be heard as unwanted buzzing. Too few and the psychoacoustic effect is not reached. The exact composition of this filter is still or be determined. A 2nd order filter is currently sufficient for the NLF function employed. 4. Mixing – This structure allows mixing of the generated harmonics and the original material. 5. Cutoff Filter – This filter is used to remove all material below the cutoff frequency of the speaker systems. This includes the fundamentals used to create the psychoacoustic effect, since they can't be reproduced. This is a 2nd order high pass filter. 3.10.1. Non-linear function A new, more pleasing, non-linear function has been found. In particular, the new non-linear function involves two separate operations: Taking the sine of the input signal, which generates odd harmonics, half wave rectifying the signal, which generates even harmonics. The transfer function is shown below: // Sine part Temp = in*mix1; // Mix 1 can be between 0 and 8.0 Temp = clip(Temp); // clip this result to between -1 and 1 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 21 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER SineOut = sin(Temp*pi/2); usage. // Take the sine of this, the pi/2 provides full // half wave rectifier part Temp = in*mix2; // Mix 2 can be between 0 and 8.0 Temp = clip(temp); // clip this result halfOut = rect(in); //Half wave rectify input; // if input<0; output=0; else output=input output = SineOut + halfOut; // Sum the two Implementation Notes: It is probably not practical to actually implement a sine function in hardware, so a table implementation is probably appropriate. After some experimentation, a table of 512 entries provides sufficient resolution. Note that the table is symmetric, sin(x) = y; sin(-x) = -y. Depending on complexity of dealing with the sine, this can cut the table size in half. 3.10.2. Signal processing summary • 3.10.3. DSP requirements: • Filters: • Extract Filter - 2 Biquads - 4th order extraction provides a tighter bass. • Limit Filter - 1 Biquad - 2nd order is now acceptable for limiting the output • Cutoff Filter - 1 Biquad - 2nd order is sufficient for this high pass filter. • Non-linear function: • 2 Clipping Multiplies. • Sine lookup • Half wave rectifier. • Sum • Final Mixer: • 2 multplies and sum Control Points • Bass Extract Filter– Controls the frequency content that is processed by the harmonic generator. This is 2 biquadratic filters the 2 sets of 5 coefficients are held in the EQ RAM block (see EQ section for RAM access information and coefficient addresses). • Nonlinear Function– Controls the harmonics generated. The 2 sets of coefficients are held in the EQ RAM block (see EQ section for RAM access information and coefficient addresses). • Limit Filter – Limits the harmonics mixed into the audio stream. This is a biquadratic filter. The 5 coefficients are held in the EQ RAM block (see EQ section for RAM access information and coefficient addresses). • Cutoff Filter – Limits the low frequencies sent to the speaker. This is a biquadratic filter. The 5 coefficients are held in the EQ RAM block (see EQ section for RAM access information and coefficient addresses). • Bass mix control – Controls the amount of the generated harmonics that are added to the original signal. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 22 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.11. Treble Enhancement One of the mechanisms used to limit the bit rate for compressed audio is to first remove high frequency information before compression. When these files are decompressed, this can lead to dull sounding audio. The IDT treble enhancement replaces these lost high frequencies. The enhanced treble function works much like the enhanced bass, however it's intended use is different. The enhanced treble uses a non linear function to add treble harmonics to a signal that has limited high-frequency bandwidth (such as a low bit rate MP3). In this case, the algorithm makes use of the audio fact that presence of audio between 4-8K is a good predictor of audio between 10K-20K. Extract Filter Limit Filter NLF Figure 11. Treble Enhancement This implementation extracts the high frequency content that is available in the audio, generates harmonics of those frequencies. These harmonics are then summed back into the original signal, providing a brighter sound. This algorithm has 4 components. 3.11.1. • Extract Filter– This filter is used to extract the treble between 4-8K. This is 2 2nd order high pass filters. • Enhanced Treble Non-Linear Function– Generates high frequency components • Limit Filter– This filter limits the harmonics generated by the NLF to prevent any significant aliasing. A second order filter is sufficient. • Mixing Network – This simply sums the generated harmonic signals into the original signal. Enhanced Treble NLF The enhanced treble NLF has a different set of requirements than the psychoacoustic bass. In particular, the presence of odd high frequency harmonics is objectionable. Thus the most promising NLF for enhanced treble is a half wave rectifier. 3.11.2. Signal processing summary Thus the signal processing summary for the enhanced treble is currently: • 1 bi-quad as an extraction filter. • same as Psychoacoustic bass (if possible) to a half wave rectifier - 1 comparison • 1 bi-quad as a limit filter • Mixing network - 2 multiplies and sum. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 23 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.11.3. Control Points • Extract Filter – This controls which frequencies in the original material are used to create the harmonics. This is 2 biquadratic filters. The 2 sets of 5 coefficients are held in the EQ RAM block (see EQ section for RAM access information and coefficient addresses.) • Nonlinear Function– This controls the creation of the harmonics. The 2 coefficients are held in the EQ RAM block (see EQ section for RAM access information and coefficient addresses.) • Limit Filter – This limits the harmonics mixed with the audio signal to prevent aliasing. This is a biquadratic filter. The 5 coefficients are held in the EQ RAM block (see EQ section for RAM access information and coefficient addresses.) • Treble (Harmonic) mix– controls how much of the generated harmonics are mixed back into the original content. 3.12. Mute and De-Emphasis The ACS32201 has a Soft Mute function, which is used to gradually attenuate the digital signal volume to zero. The gain returns to its previous setting if the soft mute is removed. At startup, the codec is muted by default; to enable audio play, the mute bit must be cleared to 0. After the equalization filters, de-emphasis may be performed on the audio data to compensate for pre-emphasis that may be included in the audio stream. De-emphasis filtering is only available for 48kHz, 44.1kHz, and 32kHz sample rates. 3.13. Mono Operation and Phase Inversion Normal stereo operation converts left and right channel digital audio data to analog in separate DACs. However, it is also possible to have the same signal (left or right) appear on both output channels by disabling one channel; alternately, there is a mono-mix mode that mixes the two channels digitally before converting to using only one converter. In this mode, the resulting mixed stream signal can appear on both PWM output channels. The DAC output defaults to non-inverted. Setting DACPOLL and DACPOLR bits will invert the DAC output phase on the left and right channels. 3.13.1. DAC Control Register Register Address Bit Label Type Default 7 DACPOLR RW 0 Invert DAC Right signal Description 6 DACPOLL RW 0 Invert DAC Left signal 5:4 DMONOMIX [1:0] RW 00 DAC mono mix 00: stereo 01: mono ((L/2)+(R/2)) into DACL, ‘0’ into DACR 10: mono ((L/2)+(R/2)) into DACR, ‘0’ into DACL 11: mono ((L/2)+(R/2)) into DACL and DACR 3 DACMU RW 1 Digital Soft Mute 1 = mute 0 = no mute (signal active) 2 DEEMP RW 0 De-emphasis Enable 1 = De-emphasis Enabled 0 = No De-emphasis 1:0 RSVD R 00 Reserved R24 (18h) CNVRTR1 Table 36. CNVRTR1 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 24 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.14. Analog Outputs 3.14.1. Speaker Outputs The LSPKOut (L+, L-) and RSPKOut (R+, R-) pins are intended to drive an 8 ohm speaker pair. The SPKOut pins can drive a 16Ω or 32Ω headphone or alternately drive a line output. The signal volume of the speaker amplifier can be independently adjusted under software control by writing to SPKVOL_L and SPKVOL_R. Setting the volume to 0000000 will mute the output driver; the output remains at ground, so that no click noise is produced when muting or un-muting. Gains above 0dB run the risk of clipping large signals. To minimize artifacts such as clicks and zipper noise, the BTL outputs feature a volume fade function that smoothly changes volume from the current value to the target value. 3.14.1.1. Register Address R2 (2h) SPKVOLL R3 (3h) SPKVOLR Speaker Volume Control Registers Bit Label Type Default 7 RSVD R 0 6:0 SPKVOL_L [6:0] RW 7 RSVD R 6:0 SPKVOL_R [6:0] RW Description Reserved Left Speaker Volume 1111111 = +12dB 1111110 = +11.25dB … 1101111 1101111 = 0dB (0dB) ... 0001000 to 0000001 = -77.25dB 0000000= Mute Note: If SPKVOLU is set, this setting will take effect after the next write to the Right Input Volume register. 0 Reserved Right Speaker Volume 1111111 = +12dB 1111110 = +11.25dB 1101111 … 1101111 = 0dB (0dB) ... 0001000 to 0000001 = -77.25dB 0000000 = Mute Table 37. SPKVOL L/R Registers 3.14.2. Class D Audio Processing The Class D PWM Controller performs the following signal processing: • Feedback filters are applied to shape any noise. The filters move noise from audible frequencies to frequencies above the audio range. • The PWM block converts the data streams to tri-state PWM signals and sends them to the power stages. • Finally, the Class-D controller block adjusts the output volume to provide constant output power across supply voltage. The power stages boost the signals to higher levels, sufficient to drive speakers at a comfortable listening level. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 25 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.14.2.1. Constant Output Power Mode In normal operation the BTL amplifier is rated at 0.5W (full scale digital with 6dB BTL gain) into an 8 ohm load at 3.6V but will vary from about 0.38W to about 1.2W across a 3.1V to 5.5V supply range. However, when constant output power mode is enabled, the full scale output is held constant from 3.1V to 5.5V. The BTL amplifier in ACS32201 will continuously adjust to power supply changes to ensure that the full scale output power remains constant. This is not an automatic level control. Rather, this function prevents sudden volume changes when switching between battery and line power. Please note, when in this mode the amplifier efficiency may be reduced and decreases with higher supply voltages and lower target values. A simple 5-bit ADC is used to monitor PVDD. As PVDD raises or lowers, the analog circuit will send a 5-bit code to the digital section that will average and then calculate a gain adjustment. The BTL audio signal will be multiplied by this gain value (in addition to the user volume controls). The user will select a target value for the circuit. The constant output function will calculate a gain adjustment that will provide approximately the same full scale output voltage as provided when PVDD causes the same code value. So, if the target is 9 then a PVDD voltage of about 3.7V would generate a code value of 9 and a full scale output power of about 630mW into 8 ohms. If PVDD should rise to 4V, generating a code of 13, then the constant output power circuit would reduce the gain by 0.75dB (4 codes * 0.1875dB) to keep the full scale output at the target level. The circuit may be configured to add gain, attenuation, or both to maintain the full-scale output level. If the needed adjustment falls outside of the range of the circuit (only attenuation is enabled and gain is needed, for example) then the circuit will apply as much correction as it is able. Through the use of gain, attenuation, and target values, different behaviors may be implemented: • • • • Attenuation only, target set to mimic a low supply voltage - Constant output level across battery state with constant quality (THD/SNR) Attenuation only, target set to mimic a moderate supply voltage - Output limiting to an approximate power level. Level will decrease at lower supply voltages but won’t increase beyond a specific point. Gain only, target at or near max - Output will remain relatively constant but distortion will increase as PVDD is lowered. This mimics the behavior of common class-AB amplifiers. Gain and attenuation - Output remains at a level below the maximum possible at the highest supply voltage and above the theoretical full scale at minimum supply. Full scale PCM input clips when the supply voltage is low but won’t become too loud when the supply voltage is high. In addition to maintaining a constant output level, PVDD may be monitored for a large, sudden, change. If the High Delta function is enabled and PVDD changes more than 4 code steps since the last cycle, the output will be rapidly reduced then gradually increased to the target level. When using this circuit, please take note of the following: • • • The full scale output power may be limited by the supply voltage. Full scale output power is affected by other gain controls in the output path including the EQ and compressor/limiter. The Constant Output Power function is intended to help maintain a constant output level, not an exact output level. The output level for a specific target may vary part to part. If limiting is IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 26 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER • required for safety or other reasons, be conservative and set the target well below the maximum allowable level. Noise on the PVDD supply may cause erratic behavior. Use the recommended supply decoupling caps and verify that the power supply can support the peak currents demanded by a class-D amplifier. Constant Output Power error (dB) relative to a target of 8 for an ideal part and the output error if left uncorrected across a 3.1 to 5.5V supply range. 3 2 1 relative to target 0 3.1 4.1 5.1 Nom dB ‐1 ‐2 ‐3 Figure 12. Constant Output Power Error Constant Output Power for nominal and high/low reference across a 3.1 to 5.5V supply range.(Uncorrected power shown for reference) A target of 8 roughly corresponds to 0.5W at 3.6V into 8 ohms. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 27 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 1.2 1.1 1 0.9 0.8 Off 0.7 Nom Hi Low 0.6 0.5 0.4 0.3 0.2 3.1 4.1 5.1 Figure 13. Constant Output Power nominal and high/low 3.14.2.2. Under Voltage Lock Out When the PVDD supply becomes low, the BTL amplifier may be disabled to help prevent undesirable amplifier operation (overheat) or system level problems (battery under-voltage.) The same circuit that monitors the PVDD supply to help maintain a constant output power is used to monitor the PVDD supply for a critical under-voltage situation. If the sense circuit consistently returns a 0 code then the PVDD supply is less than the minimum required for proper operation. To prevent accidental shutdown due to a noisy supply at the minimum operating range, the output of the PVDD sense circuit will be averaged for at least 200ms. 3.14.2.3. • Registers Constant Output Power 1 Register Address R34 (22h) Constant Output Power 1 Bit Label Type Default Description 7 COPAtten RW 0 1 = Constant Output Power function will use attenuate the BTL output if the PVDD sense circuit returns a code higher than the target value. 6 COPGain RW 0 1 = Constant Output Power function will use attenuate the BTL output if the PVDD sense circuit returns a code higher than the target value. 5 HDeltaEn RW 0 1 = If the PVDD code value has changed more than 4 counts since the last gain adjustment, the output will be reduced rapidly then slowly returned to the target level. 4:0 COPTarget[4:0] RW 8h 5-bit target for the Constant Output Power function. Table 38. Constant Output Power 1 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 28 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER • Constant Output Power 2 Register Address Bit Label Type Default 7 RSVD R 0 Reserved 6 RSVD R 0 Reserved 5:3 AvgLength[2:0] RW 000 Number of sense cycles to average: 000 = 1 001 = 2 010 = 4 011 = 8 100 = 16 101 = 32 110 = 64 111 = 128 100 Rate the PVDD supply is monitored: 000 = 0.0625ms 001 = 0.125ms 010 = 0.25ms 011 = 0.5ms 100 = 1ms 101 = 2ms 110 = 4ms 111 = 8ms R35 (23h) Constant Output Power 2 2:0 MonRate[2:0] RW Description Table 39. Constant Output Power 2 Register • Constant Output Power 3 Register Address R137 (89h) Constant Output Power 3 Bit Label Type Default 7 HighDelta R 0 1 = A high delta situation has been detected (positive code change > 4) and the constant output power function is adjusting. 6 RSVD R 0 1 = Constant Output Power function will use attenuate the BTL output if the PVDD sense circuit returns a code higher than the target value. 0h Amount that the Constant Output Power function is adjusting the signal gain. Value is 2s compliment with each step equal to 0.1875dB. The approximate range is +/- 6dB 5:0 COPAdj R Description Table 40. Constant Output Power 3 Register • Configuration Register Register Address R31 (1Fh) CONFIG0 Bit Label Type Default 7:2 RSVD R 0h Reserved for future use. Description 1 dc_bypass RW 0 1 = bypass DC removal filter (WARNING DC content can damage BTL output) 0 RSVD R 0 Reserved Table 41. CONFIG0 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 29 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER • PWM Control 0 Register Register Address R66 (42h) PWM0 Bit Label Type Default Description 7:5 SCTO RW 11 Class-D Short Circuit Detect Time-out 00 = 10uS 01 = 100uS 10 = 500uS 11 = 100mS 5 UVLO RW 1 Under Voltage Lock Out 1 = BTL output disabled if PVDD sense circuit returns code 0 4 roundup RW 1 1 = roundup, 0 = truncate for quantizer 3 bfclr RW 0 1 = disable binomial filter 2 fourthorder RW 1 1 = 4th order binomial filter; 0 = 3rd order 1 = 24-bit Noise Shaper output (pre-quantizer) 0 = 8/9/10-bit quantizer output 1 add3_sel RW 0 0 quantizer_sel RW 0 Table 42. PWM0 Register • PWM Control 1 Register Register Address R67 (43h) PWM1 Bit Label Type Default 7 RSVD R 0 Reserved Description 6:2 dithpos[4:0] RW 0 Dither position, where dither inserted after NS. 0,1,2 = dither bits 2:0 4 = dither bits 3:1 5 = dither bits 4:1 .... 19 = dither bits 19:17 1 dith_range RW 0 1 = dither -1 to +1, 0 = -3 to +3 0 dithclr RW 0 1 = disable dither Table 43. PWM1 Register • PWM Control 2 Register Register Address R68 (44h) PWM2 Bit Label Type Default 7:2 dvalue[5:0] RW 18h Description 1 pwm_outflip RW 0 1 = swap pwm a/b output pair for all channels The control lines to the power stage are swapped inverting the output signal. 0 pwm_outmode RW 1 1 = tristate, 0 = binary dvalue constant field Table 44. PWM2 Register • PWM Control 3 Register Register Address R69 (45h) PWM3 Bit Label Type Default 7:6 outctrl[1:0] RW 00 5:0 cvalue[5:0] RW 0Ah Description pwm output muxing 0 = normal 1 = swap 0/1 2 = ch0 on both 3 = ch1 on both tristate constant field, must be even and not 0 Table 45. PWM3 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 30 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.15. Other Output Capabilities Each audio analog output can be separately enabled. Disabling outputs serves to reduce power consumption, and is the default state of the device. 3.15.1. Audio Output Control See Power management section. The output enable bits are also power management bits and the outputs will be turned off when disabled. Register Address R27 (1Bh) Power Management (2) Bit Label Type Default Description 7:5 RSVD RW 0 Reserved 4 SPKOutL RW 0 Left Speaker Output Enable 3 SPKOutR RW 0 Right Speaker Output Enable 2 RSVD RW 0 1 RSVD RW 0 0 VREF RW 1 Voltage reference Note: A value of “1” indicates the output is enabled; a value of ‘0’ disables the output. Table 46. Power Management 2 Register 3.15.2. Speaker Enable The SPKR_EN pin is used to enable the speaker outputs.. Control bits determine the meaning and polarity of the input. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 31 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.15.2.1. Register Address R29 (1Ch) Additional Control (CTL) Speaker Enable Register Bit Label Type Default 7 SWEN RW 0 SPKR_EN Input 0: disabled 1: enabled 6 SWPOL RW 0 Speaker Polarity 0: Speaker off when pin is high 1: Speaker is on when pin is high 5:2 RSVD RW 00 Reserved 1 TSDEN RW 0 Thermal Shutdown Enable (See section 7.9) 0: thermal shutdown disabled 1: thermal shutdown enabled 0 Zero Cross Time-out Enable 0: Time-out Disabled 1: Time-out Enabled - volumes updated if no zero cross event has occurred before time-out 0 TOEN RW Description Table 47. Additional Control Register 3.15.3. Speaker Operation SWEN SWPOL SPKR_EN Pin state SPKOut1 Speaker Enabled 0 X X 0 no 0 X X 1 yes 1 0 0 0 no 1 0 0 1 yes 1 0 1 X no 1 1 0 X no 1 1 1 0 no 1 1 1 1 yes Table 48. Speaker Operation 1.SPKOut = Logical OR of the SPKL and SPKR enable (power state) bits 3.16. Thermal Shutdown To avoid overpowering and overheating the codec when the amplifier outputs are driving large currents, the ACS32201 incorporates a thermal protection circuit. If enabled, and the device temperature reaches approximately 150°C, the speaker and headphone amplifier outputs will be disabled. Once the device cools, the outputs will be automatically re-enabled. 3.16.1. Algorithm description: There are 2 trip points, “high” and “low”. High indicates a critical overheat requiring a reduction in volume to avoid damage to the part. Low is set for a slightly lower temperature point, indicating that the current level is safe but that increased volume would result in a critical overheat condition. Normally, the overheat bits are polled every 8ms but may be polled at 4ms, 8ms, 16ms, or 32ms by adjusting the Poll value. Reductions in volume will be allowed to happen at the Poll rate. Increases in volume are programmable to happen every 1, 2, 4, or 8 Poll cycles and in steps of 0.75dB to 6dB. This allows a full scale volume increase in a range of 10s of milliseconds to 10s of seconds. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 32 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER When both overheat bits are 0, the volume is allowed to increment by the IncStep size, unless the volume has already reached the maximum value allowed. Any subsequent increment will be held off until the programmed number of polling cycles have occurred. When the low overheat bit is 1 and the high overheat bit is 0, this indicates that the volume is currently at a safe point but the temperature is higher than desired and incrementing the volume may cause severe overheating. The volume is held at the current value. When the high overheat bit is 1, damage could occur, so the volume setting will be immediately reduced by the Decrement Step value. As the overheat bits are re-polled, this volume reduction will continue until the high overheat bit drops to 0 or the volume value reaches the minimum setting. If the high overheat bit remains 1 even at the minimum setting, then the mute control bit will be asserted. If the high overheat bit persists even after mute, then the BTL amp will be powered down. 3.16.2. Thermal Trip Points. The high and low trip points can be adjusted to suit the needs of a particular system implementation. There is a “shift” value (TripShift) which sets the low trip point, and there is a “split” value (TripSplit) that sets how many degrees above the low trip point the high trip point is. By default: TripShift = 2 (140 degrees C) TripSplit = 0 (15 degrees C) Therefore: High Trip Point = 155°C. Low Trip Point = 140°C. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 33 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.16.3. Temperature Limit State Diagram: TS Disabled IDLE Every “Poll” time (8ms default) Increment Volume by IncStep Increment Ratio Count No 01 OverheatHL ==? 00 Ratio met & Vol /= Max? Yes 1X Decrement Volume by DecStep No Vol @ Min? Yes Volume = Mute No Vol = Mute? Yes BTL PWD Figure 14. Temp sense volume adjustment algorithm 3.16.4. Instant Cut Mode This mode can be used to make our algorithm react faster to reduce thermal output but will cause more pronounced volume changes. If enabled: • Only the high overheat is used, the low overheat is ignored. • Whenever polled, if the high overheat is 1, then the volume setting will immediately be set to 0h. • Conversely, if the high overheat is 0, the volume setting will immediately be set to the MaxVol value. • Both volume clear and volume set events occur at the polling rate. During this mode, the algorithm still possesses the ability to mute and then power down the BTL amp if the high overheat continues to be 1. This mode is disabled by default. 3.16.5. Short Circuit Protection To avoid damage to the outputs if a short circuit condition should occur, both the headphone and BTL amplifiers implement short circuit protection circuits. The headphone output amplifier will detect the load current and limit its output if in an over current state. The BTL amplifier will sense a short to PVDD, ground, or between its +/- outputs and disable its output if a short is detected. After a brief time, the amplifier will turn on again. If a short circuit condition is still present, the amplifier will disable itself again. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 34 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.16.6. Thermal Shutdown Registers The thermal shutdown circuit is enabled using the Additional Control Register, see Table 49. 3.16.6.1. Register Address R29 (1Ch) Additional Control (CTL) Bit Additional Control Register Label Type Default Description 7 SWEN RW 0 SPKR_EN Input 0: disabled 1: enabled 6 SWPOL RW 0 Speaker Polarity 0: off 1: on 5:2 RSVD RW 00 Reserved 1 TSDEN RW 0 Thermal Shutdown Enable (See section 7.9) 0: thermal shutdown disabled 1: thermal shutdown enabled 0 Zero Cross Time-out Enable 0: Time-out Disabled 1: Time-out Enabled - volumes updated if no zero cross event has occurred before time-out 0 TOEN RW Table 49. Additional Control Register 3.16.6.2. Register Address Temp Sensor Control/Status Register Bit Label Type Default 7 TripHighStat R 0 Temp sensor high trip point status 0 = Normal Operation 1 = Over Temp Condition 6 TripLowStat R 0 Temp sensor low trip point status 0 = Normal Operation 1 = Over Temp Condition 0h Temp sensor “split” setting. Determines how many degrees above the low trip point the high trip is set: 0h = 15 Degrees C 1h = 30 Degrees C 2h = 45 Degrees C 3h = 60 Degrees C. 2h Temp sensor “shift” setting. Determines the low trip temperature: 0h = 110 Degrees C 1h = 125 Degrees C 2h = 140 Degrees C 3h = 155 Degrees C. 1h Temp sensor polling interval 0h = 4ms 1h = 8ms 2h = 16ms 3h = 32ms 5:4 TripSplit[1:0] RW R29 (1Dh) Temp Sensor Control/Status (THERMTS) 3:2 1:0 TripShift[1:0] Poll[1:0] RW RW Description Table 50. THERMTS Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 35 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 3.16.6.3. Register Address Bit 7 6 R30 (1Eh) Speaker Thermal Algorithm Control (THERMSPKR1) 5:4 3:2 1:0 Temp Sensor Status Register Label Type ForcePwd InstCutMode IncRatio[1:0] IncStep[1:0] DecStep[1:0] RW RW RW RW RW Default Description 1 Force powerdown enable for the speaker thermal algorithm: 0 = Speaker will remain powered up even if the temp sensor continues to report an overheat condition at minimum volume (mute) 1 = Speaker will be powered down if the temp sensor reports an overheat at the minimum volume (mute) 0 Instant Cut Mode 0 = Both temp sensor status bits used to smoothly adjust the volume. 1 = Only the high temp sensor status bit will be used to set the volume. volume will be set to the full volume or mute (IncStep and DecStep are ignored.) 0h Increment interval ratio. Determines the ratio between the speaker volume increment interval and the speaker volume decrement interval (increment rate is equal to or slower than decrement rate): 0h = 1:1 1h = 2:1 2h = 4:1 3h = 8:1 0h Increment step size for the speaker thermal control algorithm (occurs at the temp sensor polling rate X the increment interval ratio.) 0h = 0.75dB 1h = 1.5dB 2h = 3.0dB 3h = 6.0dB 1h Decrement step size for the speaker thermal control algorithm (occurs at the temp sensor polling rate.) 0h = 3dB 1h = 6dB 2h = 12dB 3h = 24dB Table 51. THERMTSPKR1 Register Register Address R136 (88h) Speaker Thermal Algorithm Status (THERMSPKR2) Bit 7 6:0 Label Type ForcePwdStatus VolStatus[6:0] R R Default Description 0 0: Speaker not powered down due to thermal algorithm 1: Speaker has been powered down because overtemp condition was present even though the speaker was muted. 08 Current speaker volume value. If no overheat is being reported by the temperature sensor, this value should be equal to the greater of the left or right speaker volume setting. Table 52. THERMTSPKR2 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 36 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 4. DIGITAL AUDIO AND CONTROL INTERFACES 4.1. Data Interface For digital audio data, the ACS32201 uses 3 pins to input and output digital audio data. • DACDIN: DAC data input • DACLRCK: DAC data alignment clock • DACBCLK: Bit clock, for synchronization The clock signals DACBCLK and DACLRCK are outputs when the ACS32201 operates as a master; they are inputs when it is a slave. Three different data formats are supported: • Left justified • Right justified • I2S All of these modes are MSB first. 4.2. Master and Slave Mode Operation The ACS32201 can be used as either a master or slave device, selected by the MS Bit. When operating as a master, the ACS32201 generates DACBCLK and DACLRCLK and controls sequencing of the data transfer the data pins. In slave mode, the ACS32201 provides data aligned to clocks it receives. CODEC DSP ENCODER/ DECODER DACBCLK DACLRCLK DACDIN Figure 15. Master mode CODEC DSP ENCODER/ DECODER DACBCLK DACLRCLK DACDIN Figure 16. Slave mode IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 37 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 4.3. Audio Data Formats The ACS32201 supports 3 common audio interface formats and programmable clocking that provides broad compatibility with DSPs, Consumer Audio and Video SOCs, FPGAs, handset chipsets, and many other products. In all modes, depending on word length, BCLK frequency and sample rate, there may be unused BCLK cycles before each LRCLK transition. If the converter word length is smaller than the number of clocks per sample in the frame then the DAC will ignore (truncate) the extra bits. If the converter word length chosen is larger than the number of clocks available per sample in the frame, and the DAC data will be zero padded. 4.4. Left Justified Audio Interface In Left Justified mode, the MSB is available on the first rising edge of BCLK following a LRCLK transition. The other bits are then transmitted in order. The LRCLK signal is high when left channel data is present and low when right channel data is present. 1/fs Left Justified Left Channel Right Channel LRCLK BCLK SDI / SDO 1 2 3 n-2 n-1 MSB n 1 LSB MSB 2 3 n n-2 n-1 LSB Word Length (WL) Figure 17. Left Justified Audio Interface (assuming n-bit word length) 4.5. Right Justified Audio Interface (assuming n-bit word length) In Right Justified mode, the LSB is available on the last rising edge of BCLK before a LRCLK transition. All other bits are transmitted in order. The LRCLK signal is high when left channel data is present and low when right channel data is present. 1/fs Right Justified Left Channel Right Channel LRCLK BCLK SDI / SDO 1 2 3 n-2 n-1 MSB n 1 LSB MSB 2 3 n-2 n-1 n LSB Word Length (WL) Figure 18. Right Justified Audio Interface (assuming n-bit word length) IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 38 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 4.6. I2S Format Audio Interface In I2S mode, the MSB is available on the second rising edge of BCLK following a LRCLK transition. The other bits up to the LSB are then transmitted in order. 1/fs I2S Left Channel Right Channel LRCLK BCLK 1 BCLK SDI / SDO 1 2 1 BCLK 3 n-2 n-1 MSB n 1 LSB 2 3 n-2 n-1 MSB n LSB Word Length (WL) Figure 19. I2S Justified Audio Interface (assuming n-bit word length) 4.7. Data Interface Registers 4.7.1. Audio Data Format Control Register Register Address R19 (13h) Digital Audio Interface Format (AIC1) Bit Label Type Default 7 RSVD R 0 Reserved 6 BCLKINV RW 0 BCLK invert bit (for master and slave modes) 0 = BCLK not inverted 1 = BCLK inverted 5 MS RW 0 Master / Slave Mode Control 1 = Enable Master Mode 0 = Enable Slave Mode 4 LRP RW 0 Right, left and I2S modes – LRCLK polarity 1 = invert LRCLK polarity 0 = normal LRCLK polarity 10 Audio Data Word Length 11 = 32 bits 10 = 24 bits 01 = 20 bits 00 = 16 bits 10 Audio Data Format Select 11 = Reserved 10 = I2S Format 01 = Left justified 00 = Right justified 3:2 1:0 WL[1:0] FORMAT[1:0] RW RW Description Table 53. AIC1 Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 39 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 4.7.2. Audio Interface Output Tri-state TRI is used to tri-state the DACLRCK and DACBCLK pins. In Slave mode (MASTER=0) all pins are configured as inputs. The Tri-stated pins are pulled low with an internal pull-down resistor unless that resistor is disabled. Register Address Bit R20 (14h) Audio Interface Control 2 (AIC2) Label Type Default Description 7:6 DACDSEL[1:0] RW 00 00: left DAC = left I2S data; right DAC = right I2S data 01: left DAC = left I2S data; right DAC = left I2S data 10: left DAC = right I2S data; right DAC = right I2S data 11: left DAC = right I2S data; right DAC = left I2S data 5:4 RSVD RW 00 Reserved Tri-states DACLRCLK and DACBCLK pins. 0 = DACLRCLK and DACBCLK are inputs (slave mode) or outputs (master mode) 1 = DACLRCLK and DACBCLK are high impedance 3 TRI RW 0 2:0 BLRCM[2:0] RW 000 Bitclock and LRClock mode. See Table Below Table 54. AIC2 Register 4.7.3. Audio Interface Control 3 Register Register Address R21 (15h) Audio Interface Control 3 (AIC3) Bit Label Type Default 7:3 RSVD R 0 Reserved Description 2 DDIPDD RW 0 DACDIN Pull-Down Disable 0 = Pull-Down active 1 = Pull-Down always disabled 1 DLRPDD RW 0 DACLRCLK Pull-Down Disable 0 = Pull-Down active when configured as input 1 = Pull-Down always disabled 0 DBCPDD RW 0 DACBCLK Pull-Down Disable 0 = Pull-Down active when configured as input 1 = Pull-Down always disabled Table 55. AIC3 Register 4.8. Bit Clock Mode The default master mode bit clock generator automatically produces a bit clock frequency based on the sample rate and word length. When enabled by setting the appropriate BCM bits, the bit clock mode (BCM) function overrides the default master mode bit clock generator to produce the bit clock frequency shown below: Note that selecting a word length of 24-bits in Auto mode generates 64 clocks per frame (64fs) . Register Address R25 (17h/19h DAC Sample Rate Control Bit 7:6 Label DBCM[1:0] Type RW Default 00 Description BCLK Frequency 00 = Auto 01 = 32 x fs 10 = 40 x fs 11 = 64 x fs Table 56. Master Mode BCLK Frequency Control Register The BCM mode bit clock generator produces 16, 20, or 32 bit cycles per sample. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 40 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER LRCLK Fs x 64 Fs x 40 Fs x 32 Figure 20. Bit Clock mode Note: The clock cycles are evenly distributed throughout the frame (true multiple of LRCLK not a gated clock.) 4.9. Control Interface The registers are accessed through a serial control interface using a multi-word protocol comprised of 8-bit words. The first 8 bits provide the device address and Read/Write flag. In a write cycle, the next 8 bits provide the register address; all subsequent words contain the data, corresponding to the 8 bits in each control register.The control interface operates using a standard 2-wire interface, as a slave device only. 4.9.1. Register Write Cycle The controller indicates the start of data transfer with a high to low transition on SDA while SCL remains high, signalling that a device address and data will follow. All devices on the 2-wire bus respond to the start condition and shift in the next eight bits on SDIN (7-bit address + Read/Write bit, MSB first). If the device address received matches the address of the ACS32201 and the R/W bit is ‘0’, indicating a write, then the ACS32201 responds by pulling SDA low on the next clock pulse (ACK); otherwise, the ACS32201 returns to the idle condition to wait for a new start condition and valid address. Once the ACS32201 has acknowledged a correct device address, the controller sends the ACS32201 register address. The ACS32201 acknowledges the register address by pulling SDA low for one clock pulse (ACK). The controller then sends a byte of data (B7 to B0), and the ACS32201 acknowledges again by pulling SDA low. When there is a low to high transition on SDA while SCL is high, the transfer is complete. After receiving a complete address and data sequence the ACS32201 returns to the idle state. If a start or stop condition is detected out of sequence, the device returns to the idle condition. SCL Device Address DA[6:0] SDA nW Register Address RA[7:0] ACK Register Data RD[7:0] ACK START ACK STOP Figure 21. 2-Wire Serial Control Interface The ACS32201 has device address D4. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 41 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 4.9.2. Multiple Write Cycle The controller may write more than one register within a single write cycle. To write additional registers, the controller will not generate a stop or start (repeated start) command after receiving the acknowledge for the second byte of information (register address and data). Instead the controller will continue to send bytes of data. After each byte of data is received, the register address is incremented. SCL Device Address DA[6:0] SDA nW Register Address RA[7:0] ACK Register Data RD[7:0] ACK Register Data RD[7:0] @RA[7:0]+1 ACK Register Data RD[7:0] @RA[7:0]+n ACK ACK START STOP Register Write 1 Register Write 2 ... Register Write n Figure 22. Multiple Write Cycle 4.9.3. Register Read Cycle The controller indicates the start of data transfer with a high to low transition on SDA while SCL remains high, signalling that a device address and data will follow. If the device address received matches the address of the ACS32201 and the R/W bit is ‘0’, indicating a write, then the ACS32201 responds by pulling SDA low on the next clock pulse (ACK); otherwise, the ACS32201 returns to the idle condition to wait for a new start condition and valid address. Once the ACS32201 has acknowledged a correct address, the controller sends a restart command (high to low transition on SDA while SCL remains high). The controller then re-sends the devices address with the R/W bit set to ‘1’ to indicate a read cycle.The ACS32201 acknowledges by pulling SDA low for one clock pulse. The controller then receives a byte of register data (B7 to B0). For a single byte transfer, the host controller will not acknowledge (high on data line) the data byte and generate a low to high transition on SDA while SCL is high, completing the transfer. If a start or stop condition is detected out of sequence, the device returns to the idle condition. SCL Device Address DA[6:0] SDA nW Register Address RA[7:0] ACK Device Address DA[6:0] ACK START RESTART R Register Data RD[7:0] nACK ACK STOP Figure 23. Read Cycle The ACS32201 has device address D4. 4.9.4. Multiple Read Cycle The controller may read more than one register within a single read cycle. To read additional registers, the controller will not generate a stop or start (repeated start) command after sending the acknowledge for the byte of data. Instead the controller will continue to provide clocks and acknowledge after each byte of received data. The codec will automatically increment the internal register address after each register has had its data successfully read (ACK from host) but will not increment the register address if the data is not received correctly by the host (nACK from host) or if the bus cycle is terminated unexpectedly (however the EQ/Filter address will be incremented even if the register address is not incremented when performing EQ/Filter RAM reads). By automatically incrementing the internal register address after each byte is read, all the internal registers of the codec may be read in a single read cycle. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 42 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER S DA[6:0] nW ACK RA[7:0] ACK Sr DA[6:0] Set Register Address R ACK RD[7:0] ACK Read Register @ RA[7:0] RD[7:0] Read Register @ RA[7:0] + 1 ACK RD[7:0] nACK P Read Register @ RA[7:0] + n Figure 24. Multiple Read Cycle 4.9.5. Device Addressing and Identification The ACS32201 has a default slave address of D4. However, it is sometimes necessary to use a different address. The ACS32201 has a device address register for this purpose. The part itself has an 8-bit Identification register and an 8-bit revision register that provide device specific information for software. In addition, an 8-bit programmable subsystem ID register can allow firmware to provide a descriptive code to higher level software such as an operating system driver or application software. 4.9.5.1. • Device Registers Device Address Register Register Address R124 (7Ch) DEVADR Bit Label Type Default 7:1 ADDR[7:1] RW 1101010 7-bit slave address 0 RSVD R 0 Description Not used - this bit is the R/nW bit in the 2-wire protocol. Table 57. DEVADRl Register • Device Identification Registers Bit Label Type Default R126 (7Eh) DEVIDH Register Address 7:0 DID[15:8] R 32h R125 (7Dh) DEVIDL 7:0 DID[7:0] R 01h Description 16-bit device identification number. Contact IDT. Table 58. DEVID H&L Registers • Device Revision Register Register Address R127 (7Fh) REVID Bit Label Type Default 7:4 MAJ[3:0] R xh 4-bit major revision number. Contact IDT. Description 3:0 MNR[3:0] R xh 4-bit minor revision number. Contact IDT. Table 59. REVID Register 4.9.5.2. Register Reset The ACS32201 registers may be reset to their default values using the reset register. Writing a special, non-zero value to this register causes all other registers to assume their default states. Device status bits will not necessarily change their values depending on the state of the device. Register Address R128 (80h) RESET Bit 7:0 Label Reset[7:0] Type RW Default Description 00h Reset register Writing a value of 85h will cause registers to assume their default values. Reading this register returns 00h Table 60. RESET Register IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 43 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 5. AUDIO CLOCK GENERATION 5.1. Internal Clock Generation The PLL block provides two clocks for the audio portion of the device. They are • 122.880 MHz (2560 x 48 KHz) • 112.896 (2560 x 44.1 KHz) It is important that the crystal oscillator and needed PLLs remain on until all audio functions are disabled. 5.2. Clocking and Sample Rates The ACS32201 utilizes internal PLLs to generate the audio master clock (MCLK) at 56.448MHz (22.5792MHz *2.5) and 61.44MHz (24.576 *2.5). It then generates audio sample rates directly from the master clock. After changing rate, a delay of up to 5mS may be needed for the part to properly lock PLLs, flush filters, etc. Register Address R25 (19h) DAC Sample Rate Control (DACSR) Bit Label Type Default Description DAC Bit Clock Mode (for data interface DACBCLK generation in master mode) 00 = Auto 01 = 32x fs 10 = 40x fs 11 = 64x fs 7:6 DBCM[1:0] RW 00 5 RSVD R 0 Reserved 10 DAC Base Rate 00 = 32KHz 01 = 44.1KHz 10 = 48KHz 11 = Reserved 010 DAC Base Rate Multiplier 000 = 0.25x 001 = 0.50x 010 = 1x 011 = 2x 100-111 = Reserved 4:3 2:0 DBR[1:0] RW DBM[2:0] RW Table 61. DACSR Register The clocking of the ACS32201 is controlled using the BR[1:0] and BM[2:0] control bits. Each value of BR[1:0] + BM[2:0]selects one combination of MCLK division ratios and hence one combination of sample rates The BR[1:0] and BM[2:0] bits must be set to configure the appropriate ADC and DAC sample rates in both master and slave mode. BR [1:0] BM [2:0] MCLK 001 00 010 SAMPLE RATE 8 kHz (MCLK/5120) 000 16 kHz (MCLK/2560) 40.96 MHz 32 kHz (MCLK/1280) 011 Reserved 100-111 Reserved Table 62. Master Clock and Sample Rates IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 44 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER BR [1:0] 01 BM [2:0] MCLK 000 11.025 kHz (MCLK/5120) 001 22.05 kHz (MCLK/2560) 010 56.448MHz 011 11 44.1 kHz (MCLK/1280) 88.2 kHz (MCLK/640) 100-111 Reserved 000 12 kHz (MCLK/5120) 001 10 SAMPLE RATE 010 24 kHz (MCLK/2560) 61.44 MHz 48 kHz (MCLK/1280) 011 96 kHz (MCLK/640) 100-111 Reserved 000-111 - Reserved Table 62. Master Clock and Sample Rates IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 45 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 6. CHARACTERISTICS 6.1. Electrical Specifications 6.1.1. Absolute Maximum Ratings Stresses above the ratings listed below can cause permanent damage to the ACS32201. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. Item Maximum Rating Voltage on any pin relative to Ground Vss - 0.3V TO Vdd + 0.3V Operating Temperature 0 oC TO 70 oC Storage Temperature -55 oC TO +125 oC Soldering Temperature 260 oC MICBias Output Current 3mA Amplifier Maximum Supply Voltage 6 Volts = PVDD Audio Maximum Supply Voltage 3 Volts = AVDD/CPVDD Digital I/O Maximum Supply Voltage 3.6 Volts = DVDD_IO Digital Core Maximum Supply Voltage 2.0 Volts = DVDD Table 63. Electrical Specification: Maximum Ratings 6.1.2. Recommended Operating Conditions Parameter Power Supplies Min. DVDD_Core Typ. 1.4 Max. Units 2.0 V DVDD_IO 1.4 3.5 AVDD/CPVDD 1.7 2.0 PVDD 3.0 5.5 V 70 oC 90 oC Ambient Operating Temperature Analog - 5 V Case Temperature Tcase 0 25 Table 64. Recommended Operating Conditions ESD: The ACS32201 is an ESD (electrostatic discharge) sensitive device. The human body and test equipment can accumulate and discharge electrostatic charges up to 4000 Volts without detection. Even though the ACS32201 implements internal ESD protection circuitry, proper ESD precautions should be followed to avoid damaging the functionality or performance. 46 ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 6.2. Device Characteristics (Tambient = 25 ºC, DVDD_CORE=DVDD_IO=AVDD=1.9V, PVDD=3.6V, 997Hz signal, fs=48KHz, Input Gain=0dB, 24-bit audio) Parameter Symbol Test Conditions Min Typ Max Unit Speaker Outputs (L+, L-, R+, R- with 8ohms bridge-tied load) Full Scale Output Level Output Power VFSOV PVDD=5V PVDD=3.6V 3.0 2.1 PO 997Hz full scale signal, output power mode disabled PVDD=5V, 8ohm PVDD=3.6V, 8ohm PVDD = 5V, 4 ohm DIDD = 3.6V, 4 ohm Signal to Noise Ratio SNR A-weighted Total Harmonic Distortion + Noise THD+N 5V/8ohms/0.5W Speaker Supply Leakage Current IPVDD Efficiency h Vrms 1 0.5 W(ave) 2 1 W(ave) PVDD=3.6V RL=8,PO = 0.5W PVDD=5V RL=8,PO = 1W PVDD=3.6V RL=4,PO = 1W PVDD=5V RL=4,PO = 2W 90 dB 0.05 % 1 uA 87 87 83 83 % Analog Voltage Reference Levels Charge Pump Output V- -5% -AVDD +100mV +5% V Digital Input/Output ADC/DAC BCLK input rate Fmax 30 I2S BCLK/LRCLK ratio 32 MHz 1022 clocks/ frame 0.7x Input High Level VIH Input LOW Level VIL Output High Level VOH IOH=-1mA Output LOW Level VOL IOL=1mA V DVDD_ IO 0.3x DVDD_IO 0.9x DVDD_IO V 0.1xDVDD_IO Input Capacitance 5 Input Leakage -0.9 V V pF 0.9 uA ESD / Latchup IEC1000-4-2 1 Level JESD22-A114-B 2 Class JESD22-C101 4 Class Table 65. Device Characteristics 47 ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 6.3. Typical Power Consumption Mode AVDD (V) Playback to Speaker only 1.9 DVDD_IO PVDD DVDD_CORE (V) (V) 3.6 1.9 IAVDD (mA) IPVDD (mA) <1 329 IDVDD_I IDVDD_CO PTOTAL O RE (mW) (mA) (mA) 2 9 1206 Notes Full scale 500mW/8ohms; includes load but not PLL/clock buffer section. fs=48kHz, stereo. Table 66. Typical Power Consumption 6.4. Low Power Mode Power Consumption Mode AVDD (V) Playback to Speaker only 1.9 DVDD_IO PVDD DVDD_CORE (V) (V) 3.6 1.9 IAVDD (mA) IPVDD (mA) <1 336 IDVDD_I IDVDD_CO PTOTAL O RE (mW) (mA) (mA) 2 7 1228 Notes 500mW/8ohms; includes load but not PLL/clock buffer section. fs=48kHz, stereo. Table 67. Low power mode power consumption Low Power Settings 1) DAC/ADC modulators set to half rate 2) Constant Output Power function disabled 3) All unused functions disabled (for example, Input PGA, Input mux, and ADC disabled for playback tests) 4) Register 0x73=0x06 5) Register 0x75=0x02 6) PLL block power consumption not included IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 48 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 7. REGISTER MAP Register (D15:9) Name Remarks Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] Default R0 (00h) RSVD Reserved R1 (01h) RSVD Reserved R2 (02h) SPKVOLL SPKR Left volume R3 (03h) SPKVOLR SPKR Right volume R4 (04h) DACVOLL Left DAC volume DACVOL_L[7:0] R5 (05h) DACVOLR Right DAC volume DACVOL_R[7:0] R6 (06h) RSVD Reserved BFh R7 (07h) RSVD Reserved BFh R8 (08h) RSVD Reserved 17h R9 (09h) RSVD Reserved R10 (0Ah) VUCTL Volume Update Control 77h 77h SPKVOL_L[6:0] 6Fh SPKVOL_R[6:0] 6Fh FFh FFh 17h DACFade DACVOLU SPKVOLU C0h R11 (0Bh) RSVD Reserved 00h R12 (0Ch) RSVD Reserved 00h R13 (0Dh) RSVD Reserved 00h R14 (0Eh) RSVD Reserved 00h R15 (0Fh) RSVD Reserved 7Bh R16 (10h) RSVD Reserved 00h R17 (11h) RSVD Reserved 32h R18 (12h) RSVD Reserved R19 (13h) AIC1 Audio Interface 1 R20 (14h) AIC2 Audio Interface 2 R21 (15h) AIC3 Audio Interface 3 R22 (16h) RSVD Reserved R23 (17h) RSVD Reserved R24 (18h) CNVRTR1 DAC Control R25 (19h) DACSR DAC Sample rate R26 (1Ah) PWRM1 Pwr Mgmt (1) 00h BCLKINV DACPOLL Pwr Mgmt (2) SWEN SWPOL R29 (1Dh) THERMTS Temp Sensor Control TripHighStat TripLowStat R30 (1Eh) THERMSPKR1 Speaker Thermal Algorithm Control ForcePwd InstCutMod e R31 (1Fh) CONFIG0 CONFIG0 R32 (20h) CONFIG1 CONFIG1 EQ2_EN R33 (21h) GAINCTL Gain Control zerodet_flag R34 (22h) COP1 Constant Output Power1 COPAtten R35 (23h) COP2 Constant Output Power2 Reserved R38 (26h) MUGAIN CLEMakeUpGain R39 (27h) COMPTH Compressor Threshold DMONOMIX[1:0] DBCM[1:0] Additional control CMPLMTCTL 0Ah BLRCM[2:0] DLRPDD 00h DBCPDD 00h 12h DACPOLR CTL RSVD TRI FORMAT[1:0] 08h PWRM2 CLECTL WL[1:0] DDIPDD R27 (1Bh) R37 (25h) LRP DACDSEL[1:0] R28 (1Ch) R36 (24h) MS DACMU DBR[1:0] SPKL COPGain 08h DBM[2:0] 12h DIGENB 00h VREF 00h SPKR TSDEN TripSplit[1:0] TripShift[1:0] IncRatio[1:0] IncStep[1:0] DSDM1 EQ2_BE2 DEEMPH DSDM0 EQ2_BE1 EQ2_BE0 zerodetlen1 zerodetlen0 EQ1_EN EQ1_BE2 TOEN 00h Poll[1:0] 09h DecStep[1:0] 81h dc_bypass sd_force_on EQ1_BE1 EQ1_BE0 00h auto_mute HDeltaEn 24h COPTarget[4:0] HDCOMP MODE AvgLength[3:0] A0h 08h MonRate[1:0] 02h 00h Lvl_Mode COMPTH7 COMPTH6 COMPTH5 WindowSel Exp_En Limit_En Comp_En 00h CLEMUG4 CLEMUG3 CLEMUG2 CLEMUG1 CLEMUG0 00h COMPTH4 COMPTH3 COMPTH2 COMPTH1 COMPTH0 00h 00h R40 (28h) CMPRAT Compressor Ratio CMPRAT4 CMPRAT3 CMPRAT2 CMPRAT1 CMPRAT0 R41 (29h) CATKTCL Comp Attack time const Low CATKTC7 CATKTC6 CATKTC5 CATKTC4 CATKTC3 CATKTC2 CATKTC1 CATKTC0 00h R42(2Ah) CATKTCH Comp Attack time const High CATKTC15 CATKTC14 CATKTC13 CATKTC12 CATKTC11 CATKTC10 CATKTC9 CATKTC8 00h R43 (2Bh) CRELTCL Comp release time const Low CRELTC7 CRELTC6 CRELTC5 CRELTC4 CRELTC3 CRELTC2 CRELTC1 CRELTC0 00h R44 (2Ch) CRELTCH Comp release time const High CRELTC15 CRELTC14 CRELTC13 CRELTC12 CRELTC11 CRELTC10 CRELTC9 CRELTC8 00h R45 (2Dh) LIMTH Limiter Threshold LIMTH7 LIMTH6 LIMTH5 LIMTH4 LIMTH3 LIMTH2 LIMTH1 LIMTH0 00h R46 (2Eh) LIMTGT Limiter Target LIMTGT7 LIMTG6 LIMTGT5 LIMTGT4 LIMTGT3 LIMTGT2 LIMTGT1 LIMTGT0 00h R47 (2Fh) LATKTCL Limiter Attack time constant Low LATKTC7 LATKTC6 LATKTC5 LATKTC4 LATKTC3 LATKTC2 LATKTC1 LATKTC0 00h R48 (30h) LATKTCH Limiter Attack time constant High LATKTC15 LATKTC14 LATKTC13 LATKTC12 LATKTC11 LATKTC10 LATKTC9 LATKTC8 00h R49 (31h) LRELTCL Limiter Release time constant Low LRELTC7 LRELTC6 LRELTC5 LRELTC4 LRELTC3 LRELTC2 LRELTC1 LRELTC0 00h R50 (32h) LRELTCH Limiter Release time constant High LRELTC15 LRELTC14 LRELTC13 LRELTC12 LRELTC11 LRELTC10 LRELTC9 LRELTC8 00h R51 (33h) EXPTH Expander Threshold EXPTH7 EXPTH6 EXPTH5 EXPTH4 EXPTH3 EXPTH2 EXPTH1 EXPTH0 00h Table 68. Register Map IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 49 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER Register (D15:9) Name Remarks R52 (34h) EXPRAT Expander Ratio R53 (35h) XATKTCL Expander Attack time constant Low XATKTC7 XATKTC6 XATKTC5 XATKTC4 R54 (36h) XATKTCH Expander Attack time constant High XATKTC15 XATKTC14 XATKTC13 R55 (37h) XRELTCL Expander Release time constant Low XRELTC7 XRELTC6 R56 (38h) XRELTCH Expander Release time constant High XRELTC15 XRELTC14 R57 (39h) FXCTL Effects Control R58 (3Ah) DACCRWRL DACCRAM_WRITE_LO Bit[7] Bit[6] Bit[5] Bit[4] Bit[3] Bit[2] Bit[1] Bit[0] Default EXPRAT2 EXPRAT1 EXPRAT0 00h XATKTC3 XATKTC2 XATKTC1 XATKTC0 00h XATKTC12 XATKTC11 XATKTC10 XATKTC9 XATKTC8 00h XRELTC5 XRELTC4 XRELTC3 XRELTC2 XRELTC1 XRELTC0 00h XRELTC13 XRELTC12 XRELTC11 XRELTC10 XRELTC9 XRELTC8 00h 3DEN TEEN TNLFBYP BEEN BNLFBYP 00h DACCRWD[7:0] 00h 00h R59 (3Bh) DACCRWRM DACCRAM_WRITE_MID DACCRWD[15:8] R60 (3Ch) DACCRWRH DACCRAM_WRITE_HI DACCRWD[23:16] 00h R61 (3Dh) DACCRRDL DACCRAM_READ_LO DACCRRD[7:0] 00h R62 (3Eh) DACCRRDM DACCRRAM_READ_MID DACCRRD[15:8] 00h R63 (3Fh) DACCRRDH DACCRRAM_READ_HI DACCRRD[23:16] 00h R64 (40h) DACCRADDR DACCRAM_ADDR DACCRADD[7:0] R65 (41h) DCOFSEL DC_COEF_SEL R66-123 RSVD R124(7Ch) DEVADR 00h dc_coef_sel[2:0] 05h RSVD I2C Device Address ADDR7 ADDR6 ADDR5 ADDR4 NA ADDR3 ADDR2 ADDR1 ADDR0 D4h R125(7Dh) DEVIDL Device IDLow DID7 DID6 DID5 DID4 DID3 DID2 DID1 DID0 32h R126(7Eh) DEVIDH Device ID High DID15 DID14 DID13 DID12 DID11 DID10 DID9 DID8 01h R127(7Fh) REVID Device Revision MAJ3 MAJ2 MAJ1 MAJ0 MNR3 MNR2 MNR1 MNR0 xxh1 Reset R128(80h) RESET R129-R135 (81h - 87h) Reserved R136(88h) THERMSPKR2 R137-R255 (88h-FFh) Reserved 1. Speaker Thermal Algorithm Status Writing 0x85 to this register resets all registers to their default state 00h RSVD NA ForcePwd Status VolStatus[6:0] RSVD 08h NA Table 68. Register Map For device revision information, please contact IDT. Note: • Registers not described in this map should be considered “reserved”. • Numerous portions of the register map are compatible with popular codecs from other vendors. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 50 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 8. PIN INFORMATION SPKR_EN 52 NC 53 54 55 57 56 NC NC AVDD AVSS NC 58 59 60 61 62 NC NC NC AVSS NC 63 65 64 NC NC 66 NC 67 68 Vref AVDD ACS32201 TAG Pinout NC 01 AVSS AVSS 02 50 03 AVDD 04 NC 48 06 NC DVSS 38 34 33 NC MCLK_IN VSS_PLL NC 32 31 NC VDD_PLL3 30 29 NC NC 28 27 NC NC 26 25 NC NC 24 23 NC NC 22 21 20 I2C_SDA I2C_SCL 18 19 35 TESTC VSS_XTAL VDD_XTAL 36 17 TEST VDD_PLL2 37 16 PVDD PVDD 39 15 TESTB CLASS D R- 40 14 TESTA CLASS D R+ 41 13 DACDIN PVSS 42 12 DACLRCLK PVSS 43 11 DACBCLK PVSS 44 ACS32201 (Top View) 10 DVDDIO PVSS 45 08 DVDD_CORE CLASS D L- 46 09 NC CLASS D L+ 47 07 NC PVDD 49 05 AVDD PVDD 51 VDD_PLL1 8.1. Figure 25. ACS32201 TAG Pinout IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 51 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER NC 28 AVDD 29 DVDD_CORE 30 DVSS 27 26 25 24 23 22 21 20 NC SPKR_EN PVDD AVDD AVSS AVSS AVDD Vref ACS32201 NAG Pin Diagram AVSS 8.2. 19 18 CLASSD_L+ 17 CLASSD_L- 31 16 PVSS DVDDIO 32 15 CLASSD_R+ DACBCLK 33 14 DACLRCLK 34 13 DACDIN 35 TESTA 36 VDD_PLL1/3 7 8 9 VDD_XTAL/PLL2 6 VSS_PLL 5 I2C_SCL 4 I2C_SDA 3 TESTC TESTB 2 MCLK Top View CLASSD_R- TEST 12 PVDD 11 VSS_XTAL 10 NC ACS32201 5x5mm 36-pad HLA Figure 26. ACS32201 NAG Pinout IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 52 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 8.3. ACS32201TAG Pin Tables 8.3.1. ACS32201TAG Power Pins Pin Name Pin Function I/O Internal Pull-up Pull-down Pin location PVDD BTL supply I(Power) None 40, 41, 50,51 PVSS BTL supply I(Power) None 44, 45, 46, 47 DVDD_Core DSP and other core logic+clocks I(Power) None 10 I(Power) None 12 I(Power) None 11 DVDDIO Interface (I2 2 S, I C, GPIO) DVSS Digital return AVDD Analog core supply I(Power) None 4, 5, 56, 64 AVSS Analog return I(Power) None 2, 3, 57, 62 VDD_PLL1 PLL supply I(Power) None 21 VDD_PLL3 PLL supply I(Power) None 31 VDD_PLL2 PLL supply I(Power) None 38 VDD_XTAL Oscillator supply I(Power) None 36 VSS_PLL PLL return I(Power) None 32 VSS_XTAL Oscillator return I(Power) None 37 Table 69. ACS32201 TAG Power Pins Total Pins: 25 8.3.2. ACS32201 TAG Reference Pins Pin Name Pin Function I/O Internal Pull-up Pull-down Pin location Vref VREF reference pin (bypass) I(Analog) None 1 Table 70. ACS32201 TAG Reference Pins Total Pins: 1 8.3.3. ACS32201 TAG Analog Output Pins Pin Name Pin Function I/O Internal Pull-up Pin location Pull-down Class D L+ BTL Left positive output I(Analog) None 49 Class D L- BTL Left negative output I(Analog) None 48 Class D R+ BTL Right positive output I(Analog) None 43 Class D R- BTL Right negative output I(Analog) None 42 Table 71. ACS32201 TAG Analog Output Pins Total Pins: 4 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 53 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 8.3.4. ACS32201 TAG Data and Control Pins Pin Name Pin Function I/O Internal Pull-up Pull-down Pin location TEST A Test pin do not connect I/O(Digital) Pull-Down 16 TEST B Test pin do not connect I/O(Digital) Pull-Down 17 TEST C Test pin do not connect O(Digital) Pull-Down 18 I2 DACBCLK DAC S shift clock I/O(Digital) Pull-Down 13 DACLRCLK DAC I2S framing clock I/O(Digital) Pull-Down 14 I2 DACDIN DAC S input data I(Digital) Pull-Down 15 I2C_SCL SCL I2C shift clock I(Digital) Pull-Up 19 I2C_SDA SDA I2C shift data I(Digital) Pull-Up 20 SPKR_EN Speaker Enable I(Digital) Pull-Up 52 TEST Reserved test pin I(Analog) Pull-Down 39 Table 72. ACS32201 TAG Data and Control Pins Total Pins: 10 8.3.5. ACS32201 TAG Clock Pins Pin Name Pin Function I/O MCLK Master Clock I(Digital) NC No Connect NC Internal Pull-up Pin location Pull-down None 34 NC 6-9, 22-30, 33, 35, 53-55, 58-61, 63, 65-68 Table 73. ACS32201 TAG Clock Pins Total Pins: 28 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 54 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 8.4. ACS32201 NAG Pin Tables 8.4.1. ACS32201 NAG Power Pins Pin Name Pin Function I/O Internal Pull-up Pull-down Pin location PVDD BTL supply I(Power) None 12, 21 PVSS BTL supply I(Power) None 16 DVDD_Core DSP and other core logic+clocks I(Power) None 30 I(Power) None 32 I(Power) None 31 DVDDIO Interface (I2 2 S, I C, GPIO) DVSS Digital return AVDD Analog core supply I(Power) None 22, 25, 29 AVSS Analog return I(Power) None 23, 24, 27 VDD_PLL1/3 PLL supply I(Power) None 6 VDD_XTAL/PLL2 PLL supply I(Power) None 9 VSS_PLL PLL return I(Power) None 7 VSS_XTAL Oscillator return I(Power) None 11 Table 74. ACS32201 NAG Power Pins Total Pins: 16 8.4.2. ACS32201 NAG Reference Pins Pin Name Pin Function I/O Internal Pull-up Pull-down Pin location Vref VREF reference pin (bypass) I(Analog) None 26 Table 75. ACS32201 NAG Reference Pins Total Pins: 1 8.4.3. ACS32201 NAG Analog Output Pins Pin Name Pin Function I/O Internal Pull-up Pin location Pull-down Class D L+ BTL Left positive output I(Analog) None 18 Class D L- BTL Left negative output I(Analog) None 17 Class D R+ BTL Right positive output I(Analog) None 15 Class D R- BTL Right negative output I(Analog) None 14 Table 76. ACS32201 NAG Analog Output Pins Total Pins: 4 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 55 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 8.4.4. ACS32201 NAG Data and Control Pins Pin Name Pin Function I/O Internal Pull-up Pull-down Pin location DACBCLK DAC I2S shift clock I/O(Digital) Pull-Down 33 I/O(Digital) Pull-Down 34 I(Digital) Pull-Down 35 DACLRCLK DAC I2 S framing clock DAC I2S input data DACDIN I2 I2C_SCL SCL C shift clock I(Digital) Pull-Up 5 I2C_SDA SDA I2C shift data I(Digital) Pull-Up 4 SPKR_EN Speaker Enable I(Digital) Pull-Up 20 TEST TEST A/B/C Reserved test pin Do not connect I(Analog) None 13 36/2/3 Table 77. ACS32201 NAG Data and Control Pins Total Pins: 10 8.4.5. ACS32201 NAG Clock Pins Internal Pull-up Pin location Pull-down Pin Name Pin Function I/O MCLK Master Clock I(XTAL) None 8 NC No Connect NC NC 10, 19/28 Table 78. ACS32201 NAG Clock Pins Total Pins: 4 IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 56 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 9. PACKAGE INFORMATION 9.1. Package Drawing Note: To create a thermal pad size follow “D2” and “E2” value. Ignore “P” and “k” Figure 27. Package Outline 9.2. Pb Free Process- Package Classification Reflow Temperatures Package Thickness Volume mm3 <350 Volume mm3 350 - 2000 Volume mm3 >2000 <1.6mm 260 + 0 oC* 260 + 0 oC* 260 + 0 oC* o o 1.6mm - 2.5mm 260 + 0 C* 250 + 0 C* 245 + 0 oC* > or = 2.5mm 250 + 0 oC* 245 + 0 oC* 245 + 0 oC* *Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0 oC. For example 260 oC+0 oC) at the rated MSL level. Table 79. Reflow Temperatures Note: IDT’s package thicknesses are <2.5mm and <350 mm3, so 260 applies in every case. 57 ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 10. NAG/HLA PACKAGE INFORMATION 10.1. NAG/HLA Package Drawing Figure 28. NAG/HLA Package Outline 10.2. Pb Free Process- Package Classification Reflow Temperatures Package Thickness Volume mm3 <350 Volume mm3 350 - 2000 Volume mm3 >2000 <1.6mm 260 + 0 oC* 260 + 0 oC* 260 + 0 oC* oC* oC* 245 + 0 oC* 245 + 0 oC* 245 + 0 oC* 1.6mm - 2.5mm > or = 2.5mm 260 + 0 250 + 0 250 + 0 oC* *Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0 oC. For example 260 oC+0 oC) at the rated MSL level. Table 80. Reflow Temperatures Note: IDT’s package thicknesses are <2.5mm and <350 mm3, so 260 applies in every case. 58 ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 11. ORDERING INFORMATION ACS32201XTAGyyX ACS32201XNAGyyX TLA package HLA package yy = silicon revision, contact IDT for current part number. 12. DISCLAIMER While the information presented herein has been checked for both accuracy and reliability, manufacturer assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications, such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements, are not recommended without additional processing by manufacturer. Manufacturer reserves the right to change any circuitry or specifications without notice. Manufacturer does not authorize or warrant any product for use in life support devices or critical medical instruments. IDT CONFIDENTIAL ©2011 INTEGRATED DEVICE TECHNOLOGY, INC. 59 V0.6 07/11 ACS32201 ACS32201 LOW-POWER, HIGH-FIDELITY, CLASS-D AMPLIFIER 13. DOCUMENT REVISION HISTORY Revision Date Description of Change 0.5 June 2011 initial release 0.6 July 2011 updated power consumption, TLA package drawing. 6024 Silver Creek Valley Road San Jose, California 95138 DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.