ADPOW APT150GN60JDQ4 Igbt Datasheet

APT150GN60JDQ4
600V
TYPICAL PERFORMANCE CURVES
APT150GN60JDQ4
®
E
E
Utilizing the latest Field Stop and Trench Gate technologies, these IGBT's have ultra
low VCE(ON) and are ideal for low frequency applications that require absolute minimum
conduction loss. Easy paralleling is a result of very tight parameter distribution and
a slightly positive VCE(ON) temperature coefficient. A built-in gate resistor ensures
extremely reliable operation, even in the event of a short circuit fault. Low gate charge
simplifies gate drive design and minimizes losses.
C
G
ISOTOP ®
• 600V Field Stop
• Trench Gate: Low VCE(on)
• Easy Paralleling
• Intergrated Gate Resistor: Low EMI, High Reliability
S
OT
22
7
"UL Recognized"
file # E145592
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT150GN60JDQ4
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
220
I C2
Continuous Collector Current @ TC = 110°C
123
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
450
Switching Safe Operating Area @ TJ = 175°C
450A @ 600V
Total Power Dissipation
536
Operating and Storage Junction Temperature Range
Watts
-55 to 175
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 4mA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
RG(int)
(VCE = VGE, I C = 2400µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 150A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 150A, Tj = 125°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
TYP
MAX
5.0
5.8
6.5
1.05
1.45
1.85
50
2
600
2
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
TBD
Gate-Emitter Leakage Current (VGE = ±20V)
Intergrated Gate Resistor
Volts
1.65
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
Units
nA
Ω
4-2006
MIN
Rev A
Characteristic / Test Conditions
050-7625
Symbol
APT150GN60JDQ4
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
td(on)
tr
td(off)
tf
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
tr
tf
Eon1
Eon2
Eoff
4
UNIT
pF
V
nC
510
450
A
VGE = 15V
430
RG = 1.0Ω 7
8810
ns
60
TJ = +25°C
5
MAX
65
110
µJ
8615
6
4295
Inductive Switching (125°C)
44
VCC = 400V
110
VGE = 15V
Turn-off Delay Time
95
RG = 1.0Ω 7
44
Turn-on Switching Energy (Diode)
55
ns
480
I C = 150A
Current Fall Time
Turn-off Switching Energy
970
VCC = 400V
Current Rise Time
Turn-on Switching Energy
9.5
VGE = 15V
I C = 150A
Eon1
td(off)
Gate Charge
44
Current Fall Time
Turn-on Delay Time
300
Inductive Switching (25°C)
Turn-off Delay Time
td(on)
350
f = 1 MHz
15V, L = 100µH,VCE = 600V
Current Rise Time
Turn-off Switching Energy
VGE = 0V, VCE = 25V
TJ = 175°C, R G = 4.3Ω 7, VGE =
Turn-on Delay Time
Eoff
9200
I C = 150A
Switching Safe Operating Area
TYP
Capacitance
VCE = 300V
Qge
SSOA
MIN
8880
TJ = +125°C
µJ
9735
66
5460
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
VIsolation
WT
Torque
RMS Voltage (50-60Hz Sinusoidal
MIN
TYP
MAX
0.28
.33
Waveform from Terminals to Mounting Base for 1 Min.)
Package Weight
Maximum Terminal & Mounting Torque
2500
UNIT
°C/W
Volts
1.03
oz
29.2
gm
10
Ib•in
1.1
N•m
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
050-7625
Rev A
4-2006
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RG(int) nor gate driver impedance. (MIC4452)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
TJ = -55°C
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
TJ = 25°C
250
TJ = 125°C
200
TJ = 175°C
150
100
50
0
TJ = -55°C
TJ = 25°C
TJ = 125°C
TJ = 175°C
250
200
150
100
50
0
0
250
10V
200
150
9V
100
8V
50
7V
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
300
11V
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
300
0
0
0.5 1.0
1.5 2.0
2.5 3.0
3.5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
350
12, 13 &15V
350
300
J
VCE = 120V
12
VCE = 300V
10
VCE = 480V
8
6
4
2
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 150A
C
T = 25°C
14
0
200
3.5
IC = 300A
3.0
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
2.5
2.0
IC = 150A
1.5
IC = 75A
1.0
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
1.05
3.0
2.5
IC = 300A
2.0
IC = 150A
1.5
IC = 75A
1.0
0.5
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
25
50
75 100 125 150 175
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
300
1.15
1.10
1200
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.0
400
600
800 1000
GATE CHARGE (nC)
250
200
150
100
50
0
-50 -25
0 25 50 75 100 125 150 175
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
4-2006
GE
Rev A
V
APT150GN60JDQ4
400
050-7625
350
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
50
VGE = 15V
40
30
20
VCE = 400V
10 T = 25°C, or 125°C
J
0
RG = 1.0Ω
L = 100µH
RG = 1.0Ω, L = 100µH, VCE = 400V
100 VCE = 400V
RG = 1.0Ω
L = 100µH
30
160
TJ = 125°C, VGE = 15V
140
TJ = 25 or 125°C,VGE = 15V
250
tf, FALL TIME (ns)
tr, RISE TIME (ns)
200
180
200
150
0
120
100
80
60
TJ = 25°C, VGE = 15V
40
20
0
30
40,000
EOFF, TURN OFF ENERGY LOSS (µJ)
G
30,000
TJ = 125°C
25,000
20,000
15,000
10,000
TJ = 25°C
5,000
Eon2,300A
50,000
40,000
30,000
Eoff,300A
Eon2,150A
10,000
Eon2,75A
0
Eoff,75A
Eoff,150A
20
15
10
5
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
J
0
12,000
TJ = 125°C
10,000
8,000
6,000
4,000
TJ = 25°C
2,000
40,000
= 400V
V
CE
= +15V
V
GE
T = 125°C
20,000
G
14,000
70 110 150 190 230 270 310
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
70 110 150 190 230 270 310
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
60,000
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
16,000
0
0
70,000
30
18,000
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
35,000
RG = 1.0Ω, L = 100µH, VCE = 400V
70 110 150 190 230 270 310
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
70 110 150 190 230 270 310
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
400
50
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=125°C
300
110 150 190 230 270 310
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
100
4-2006
400
0
300
Rev A
500
110 150 190 230 270 310
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
30
350
050-7625
APT150GN60JDQ4
600
60
= 400V
V
CE
= +15V
V
GE
R = 1.0Ω
35,000
Eon2,300A
G
30,000
25,000
20,000
Eoff,300A
15,000
Eon2,150A
10,000
Eoff,150A
5,000
0
Eoff,75A
Eon2,75A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
20,000
500
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
10,000
APT150GN60JDQ4
500
100
50
Coes
400
300
200
100
Cres
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
D = 0.9
0.25
0.20
0.7
0.15
0.5
Note:
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
0.3
t1
t2
0.05
0
0.1
t
SINGLE PULSE
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-5
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.00770
Power
(watts)
0.184
0.300
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 1.0Ω
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
30
50
70 90 110 130 150 170 190
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
4-2006
0.0964
F
Rev A
Junction
temp. (°C)
10
050-7625
RC MODEL
FMAX, OPERATING FREQUENCY (kHz)
50
APT150GN60JDQ4
APT100DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
tr
IC
V CC
V CE
Collector Current
90%
5%
10%
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
td(off)
TJ = 125°C
90%
tf
Collector Voltage
10%
0
Collector Current
Switching Energy
050-7625
Rev A
4-2006
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT150GN60JDQ4
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
IF(AV)
IF(RMS)
IFSM
All Ratings: TC = 25°C unless otherwise specified.
APT100GN60LDQ4
Characteristic / Test Conditions
Maximum Average Forward Current (TC = 103°C, Duty Cycle = 0.5)
100
RMS Forward Current (Square wave, 50% duty)
146
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
1000
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
MIN
Forward Voltage
TYP
IF = 150A
1.83
IF = 300A
2.33
IF = 150A, TJ = 125°C
1.47
MAX
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
trr
Reverse Recovery Time
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
IF = 1A, diF/dt = -100A/µs, VR = 30V, TJ = 25°C
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 100A, diF/dt = -200A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 400V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 100A, diF/dt = -200A/µs
IF = 100A, diF/dt = -1000A/µs
VR = 400V, TC = 125°C
Maximum Reverse Recovery Current
MIN
TYP
MAX
UNIT
-
34
-
160
-
290
-
5
-
220
ns
-
1530
nC
-
13
-
100
ns
-
2890
nC
-
44
Amps
ns
nC
-
-
Amps
Amps
D = 0.9
0.30
0.25
0.7
0.20
0.5
Note:
0.15
PDM
0.3
0.10
t1
t2
0.05
0
10-5
t
0.1
0.05
0.05
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE
SINGLE PULSE
PULSE
10-4
10-3
10-2
10-1
1.0
10
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
0.0182
0.188
0.361
0.0743
5.17
Case temperature (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
Rev A
Power
(watts)
0.0673
4-2006
Junction
temp (°C)
050-7625
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.35
300
trr, REVERSE RECOVERY TIME
(ns)
TJ = 25°C
250
IF, FORWARD CURRENT
(A)
APT150GN60JDQ4
300
200
TJ = 175°C
150
TJ = 125°C
100
50
T =125°C
J
V =400V
R
250
200A
200
100A
50A
150
100
50
TJ = -55°C
0
0
0.5
1.0
1.5
2.0
2.5
3.0
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
60
T =125°C
J
V =400V
3500
R
200A
3000
100A
2500
2000
50A
1500
1000
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
0.6
IRRM
Qrr
CJ, JUNCTION CAPACITANCE
(pF)
4-2006
Rev A
Duty cycle = 0.5
T =175°C
J
100
80
60
40
20
0
1400
050-7625
10
120
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
1200
1000
800
600
400
200
0
50A
20
140
0.2
0.0
100A
30
160
trr
0.4
200A
40
180
trr
0.8
R
50
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
Qrr
1.0
T =125°C
J
V =400V
0
IF(AV) (A)
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
IRRM, REVERSE RECOVERY CURRENT
(A)
Qrr, REVERSE RECOVERY CHARGE
(nC)
4000
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT150GN60JDQ4
Vr
diF /dt Adjust
+18V
APT60M75L2LL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
SOT-227 (ISOTOP®) Package Outline
31.5 (1.240)
31.7 (1.248)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
14.9 (.587)
15.1 (.594)
1.95 (.077)
2.14 (.084)
* Emitter/Anode
30.1 (1.185)
30.3 (1.193)
Collector/Cathode
* Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.
38.0 (1.496)
38.2 (1.504)
* Emitter/Anode
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a Registered Trademark of SGS Thomson. APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
4-2006
3.3 (.129)
3.6 (.143)
Rev A
r = 4.0 (.157)
(2 places)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
050-7625
7.8 (.307)
8.2 (.322)
11.8 (.463)
12.2 (.480)
Similar pages