Maxim MAX11120 1msps, low-power, serial 12-/10-/8-bit,4-/8-/16-channel adc Datasheet

19-6148; Rev 1; 4/12
EVALUATION KIT AVAILABLE
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
General Description
The MAX11120–MAX11128 are 12-/10-/8-bit with external reference and industry-leading 1.5MHz, full linear
bandwidth, high speed, low-power, serial output successive-approximation register (SAR) analog-to-digital
converters (ADCs). The MAX11120–MAX11128 include
both internal and external clock modes. These devices
feature scan mode in both internal and external clock
modes. The internal clock mode features internal averaging to increase SNR. The external clock mode features
the SampleSetK technology, a user-programmable analog input channel sequencer. The SampleSet approach
provides greater sequencing flexibility for multichannel
applications while alleviating significant microcontroller
or DSP (controlling unit) communication overhead.
The internal clock mode features an integrated FIFO
allowing data to be sampled at high speeds and then held
for readout at any time or at a lower clock rate. Internal
averaging is also supported in this mode improving SNR
for noisy input signals. The devices feature analog input
channels that can be configured to be single-ended
inputs, fully differential pairs, or pseudo-differential inputs
with respect to one common input. The MAX11120–
MAX11128 operate from a 2.35V to 3.6V supply and consume only 5.4mW at 1Msps.
The MAX11120–MAX11128 include AutoShutdownK,
fast wake-up, and a high-speed 3-wire serial interface.
The devices feature full power-down mode for optimal
power management.
The 16MHz, 3-wire serial interface directly connects to
SPI, QSPIK, and MICROWIREM devices without external
logic.
Excellent dynamic performance, low voltage, low power,
ease of use, and small package size make these converters ideal for portable battery-powered data-acquisition
applications, and for other applications that demand low
power consumption and small space.
Benefits and Features
S Scan Modes, Internal Averaging, and Internal
Clock
S 16-Entry First-In/First-Out (FIFO)
S SampleSet: User-Defined Channel Sequence with
Maximum Length of 256
S Analog Multiplexer with True Differential
Track/Hold
 16-/8-/4-Channel Single-Ended
 8-/4-/2-Channel Fully-Differential Pairs
 15-/8-/4-Channel Pseudo-Differential Relative to
a Common Input
S Two Software-Selectable Bipolar Input Ranges
 QVREF+/2, QVREF+
S Flexible Input Configuration Across All Channels
S High Accuracy
 Q1 LSB INL, Q1 LSB DNL, No Missing Codes
Over Temperature Range
S 70dB SINAD Guaranteed at 250kHz Input
Frequency
S 1.5V to 3.6V Wide Range I/O Supply
 Allows the Serial Interface to Connect Directly
to 1.8V, 2.5V, or 3.3V Digital Systems
S 2.35V to 3.6V Supply Voltage
S Longer Battery Life for Portable Applications
 Low Power
 5.4mW at 1Msps with 3V Supplies
 2µA Full-Shutdown Current
S External Differential Reference (1V to VDD)
S 16MHz, 3-Wire SPI-/QSPI-/MICROWIRE-/DSPCompatible Serial Interface
S Wide -40NC to +125NC Operation
S Space-Saving, 28-Pin, 5mm x 5mm TQFN
Packages
S 1Msps Conversion Rate, No Pipeline Delay
S 12-/10-/8-Bit Resolution
Applications
The MAX11120–MAX11128 are available in 28-pin, 5mm
x 5mm, TQFN packages and operate over the -40NC to
+125NC temperature range.
High-Speed Data Acquisition Systems
SampleSet and AutoShutdown are trademarks of Maxim
Integrated Products, Inc.
QSPI is a trademark of Motorola, Inc.
Medical Instrumentation
MICROWIRE is a registered trademark of National
Semiconductor Corporation.
Portable Systems
Ordering Information appears at end of data sheet.
High-Speed Closed-Loop Systems
Industrial Control Systems
Battery-Powered Instruments
For related parts and recommended products to use with this part,
refer to www.maxim-ic.com/MAX11120.related.
����������������������������������������������������������������� Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ABSOLUTE MAXIMUM RATINGS
VDD to GND..............................................................-0.3V to +4V
OVDD, AIN0–AIN13, CNVST/AIN14, REF+, REF-/AIN15
to GND.......................-0.3V to the lower of (VDD + 0.3V) and +4V
CS, SCLK, DIN, DOUT, EOC TO GND...... -0.3V to the Lower of
(VOVDD + 0.3V) and +4V
DGND to GND.......................................................-0.3V to +0.3V
Input/Output Current (all pins)............................................50mA
Continuous Power Dissipation (TA = +70NC)
TQFN (derate 34.4mW/NC above +70NC)..................2758mW
Operating Temperature Range......................... -40NC to +125NC
Junction Temperature......................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Soldering Temperature (reflow).......................................+260NC
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
PACKAGE THERMAL CHARACTERISTICS (Note 1)
TQFN
Junction-to-Ambient Thermal Resistance (BJA)............29NC/W
Junction-to-Case Thermal Resistance (BJC)...................2NC/W
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DC ACCURACY (Notes 3 and 4)
Resolution
RES
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
12 bit
12
±1.0
LSB
±1.0
LSB
0.7
±2.5
LSB
-0.5
±4.0
LSB
No missing codes
Offset Error
Gain Error
Bits
(Note 5)
Offset Error Temperature
Coefficient
OETC
±2
ppm/NC
Gain Temperature Coefficient
GETC
±0.8
ppm/NC
±0.5
LSB
Channel-to-Channel Offset
Matching
Line Rejection
PSR
(Note 6)
±0.4
±1.5
LSB/V
DYNAMIC PERFORMANCE (250kHz, input sine wave) (Notes 3 and 7)
Signal-to-Noise Plus Distortion
SINAD
70
72.5
dB
Signal-to-Noise Ratio
SNR
70
72.6
dB
Total Harmonic Distortion
(Up to the 5th Harmonic)
THD
Spurious-Free Dynamic Range
SFDR
Intermodulation Distortion
IMD
-87
79
f1 = 249.878kHz, f2 = 219.97kHz
-78
dB
88
dB
-85
dB
����������������������������������������������������������������� Maxim Integrated Products 2
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
-3dB
50
-0.1dB
7.5
Full-Linear Bandwidth
SINAD > 70dB
1.5
MHz
Crosstalk
-0.5dB below full scale of
249.878kHz sine wave input to the
channel being sampled, apply fullscale 219.97kHz sine wave signal to
all 15 nonselected input channels
-88
dB
Full-Power Bandwidth
MHz
CONVERSION RATE
Power-Up Time
tPU
Acquisition Time
tACQ
Conversion cycle, external clock
2
Internally clocked (Note 8)
Conversion Time
tCONV
External Clock Frequency
fSCLK
Externally clocked, fSCLK = 16MHz,
16 cycles (Note 8)
Aperture Jitter
156
ns
5.9
µs
1000
ns
0.16
Aperture Delay
RMS
Cycles
16
MHz
8
ns
30
ps
ANALOG INPUT
Unipolar (single-ended and pseudo
differential)
Input Voltage Range
VINA
Absolute Input Voltage Range
Static Input Leakage Current
Input Capacitance
Bipolar
(Note 9)
0
VREF+
RANGE bit set to 0
-VREF+/2
VREF+/2
RANGE bit set to 1
-VREF+
VREF+
AIN+, AIN- relative to GND
IILA
CAIN
-0.1
VAIN_ = VDD, GND
-0.1
During acquisition time,
RANGE bit = 0 (Note 10)
15
During acquisition time,
RANGE bit = 1 (Note 10)
7.5
V
VREF+ + 0.1
V
±1.5
FA
pF
EXTERNAL REFERENCE INPUT
REF- Input Voltage Range
VREF-
-0.3
+1
V
REF+ Input Voltage Range
VREF+
1
VDD + 50mV
V
REF+ Input Current
IREF+
VREF+ = 2.5V, fSAMPLE = 1Msps
36.7
VREF+ = 2.5V, fSAMPLE = 0
0.1
FA
����������������������������������������������������������������� Maxim Integrated Products 3
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
VOVDD O
0.25
V
DIGITAL INPUTS (SCLK, DIN, CS, CNVST)
Input Voltage Low
VIL
Input Voltage High
VIH
Input Hysteresis
VOVDD O
0.75
VOVDD O
0.15
VHYST
Input Leakage Current
IIN
Input Capacitance
CIN
V
VAIN_ = 0V or VDD
±0.09
mV
±1.0
3
FA
pF
DIGITAL OUTPUTS (DOUT, EOC)
VOVDD O
0.15
Output Voltage Low
VOL
ISINK = 200FA
Output Voltage High
VOH
ISOURCE = 200FA
Three-State Leakage Current
Three-State Output Capacitance
VOVDD O
0.85
V
V
IL
CS = VDD
-0.3
COUT
CS = VDD
4
±1.5
FA
pF
POWER REQUIREMENTS
Positive Supply Voltage
Digital I/O Supply Voltage
VDD
2.35
3.0
3.6
V
VOVDD
1.5
3.0
3.6
V
1.8
2.5
fSAMPLE = 1Msps
Positive Supply Current
IDD
fSAMPLE = 0 (1Msps devices)
Full shutdown
Normal mode
(external
reference)
Power Dissipation
AutoStandby
Full/
AutoShutdown
1
0.0015
VDD = 3V,
fSAMPLE = 1Msps
5.4
VDD = 2.35V,
fSAMPLE = 1Msps
3.8
VDD = 3V,
fSAMPLE = 1Msps
2.6
VDD = 2.35V,
fSAMPLE = 1Msps
1.6
VDD = 3V
4.5
VDD = 2.35V
2.1
mA
0.006
mW
FW
����������������������������������������������������������������� Maxim Integrated Products 4
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
TIMING CHARACTERISTICS (Figure 1) (Note 11)
SCLK Clock Period
tCP
SCLK Duty Cycle
tCH
SCLK Fall to DOUT Transition
tDOT
CLOAD =
10pF
16th SCLK Fall to DOUT Disable
tDOD
CLOAD = 10pF, channel ID on
15
ns
CLOAD = 10pF, channel ID off
16
ns
CLOAD = 10pF
14
ns
14th SCLK Fall to DOUT Disable
SCLK Fall to DOUT Enable
DIN to SCLK Rise Setup
tDOE
Externally clocked conversion
62.4
ns
40
60
VOVDD = 1.5V to 2.35V
4
16.5
VOVDD = 2.35V to 3.6V
4
15
%
ns
tDS
4
ns
SCLK Rise to DIN Hold
tDH
1
ns
CS Fall to SCLK Fall Setup
tCSS
4
ns
1
ns
5
ns
SCLK Fall to CS Fall Hold
tCSH
CNVST Pulse Width
tCSW
CS or CNVST Rise to EOC Low
(Note 7)
tCNV_INT
See Figure 6
See Figure 7, fSAMPLE = 1Msps
tCSBW
CS Pulse Width
5.3
6.2
5
Fs
ns
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DC ACCURACY (Notes 3 and 4)
Resolution
RES
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
10 bit
Bits
±0.4
LSB
±0.4
LSB
0.5
±1.0
LSB
-0.2
±1.0
LSB
No missing codes
Offset Error
Gain Error
10
(Note 5)
Offset Error Temperature
Coefficient
OETC
±2
ppm/NC
Gain Temperature Coefficient
GETC
±0.8
ppm/NC
±0.5
LSB
Channel-to-Channel Offset
Matching
Line Rejection
PSR
(Note 6)
±0.1
±0.3
LSB/V
����������������������������������������������������������������� Maxim Integrated Products 5
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
DYNAMIC PERFORMANCE (250kHz, input sine wave) (Notes 3 and 7)
Signal-to-Noise Plus Distortion
SINAD
61
61.7
dB
Signal-to-Noise Ratio
SNR
61
61.7
dB
Total Harmonic Distortion
(Up to the 5th Harmonic)
THD
Spurious-Free Dynamic Range
SFDR
Intermodulation Distortion
IMD
-86
77
-76
85
dB
dB
f1 = 249.878kHz, f2 = 219.97kHz
-84
dB
-3dB
50
MHz
-0.1dB
7.5
MHz
Full-Linear Bandwidth
SINAD > 61dB
1.5
MHz
Crosstalk
-0.5dB below full-scale of
249.878kHz sine-wave input to the
channel being sampled; apply fullscale 219.97kHz sine wave signal to
all 15 nonselected input channels
-88
dB
Full-Power Bandwidth
CONVERSION RATE
Power-Up Time
tPU
Acquisition Time
tACQ
Conversion Time
tCONV
External Clock Frequency
Conversion cycle, external clock
Internally
clocked
2
fSAMPLE = 1Msps
(Note 8)
Externally clocked, fSCLK = 16MHz,
16 cycles (Note 8)
fSCLK
Aperture Jitter
156
ns
5.9
µs
1000
ns
0.16
Aperture Delay
RMS
Cycles
16
MHz
8
ns
30
ps
ANALOG INPUT
Input Voltage Range
VINA
Unipolar (single-ended and pseudo
differential)
Bipolar (Note 9)
Absolute Input Voltage Range
Static Input Leakage Current
Input Capacitance
0
VREF+
RANGE bit set to 0
-VREF+/2
+VREF+/2
RANGE bit set to 1
-VREF+
+VREF+
AIN+, AIN- relative to GND
IILA
CAIN
VAIN_ = VDD, GND
-0.1
VREF+ + 0.1
-0.1
During acquisition time,
RANGE bit = 0 (Note 10)
15
During acquisition time,
RANGE bit = 1 (Note 10)
7.5
V
V
FA
pF
����������������������������������������������������������������� Maxim Integrated Products 6
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
EXTERNAL REFERENCE INPUT
REF- Input Voltage Range
VREF-
-0.3
+1
V
REF+ Input Voltage Range
VREF+
1
VDD +
50mV
V
REF+ Input Current
IREF+
VREF+ = 2.5V, fSAMPLE = 1Msps
36.7
FA
VREF+ = 2.5V, fSAMPLE = 0
0.1
FA
DIGITAL INPUTS (SCLK, DIN, CS, CNVST)
Input Voltage Low
VIL
Input Voltage High
VIH
Input Hysteresis
VOVDD O
0.25
VOVDD O
0.75
VHYST
Input Leakage Current
IIN
Input Capacitance
CIN
VAIN_ = 0V or VDD
V
V
VOVDD O
0.15
mV
±0.09
FA
3
pF
DIGITAL OUTPUTS (DOUT, EOC)
VOVDD O
0.15
Output Voltage Low
VOL
ISINK = 200FA
Output Voltage High
VOH
ISOURCE = 200FA
Three-State Leakage Current
Three-State Output Capacitance
VOVDD O
0.85
V
V
IL
CS = VDD
-0.3
FA
COUT
CS = VDD
4
pF
POWER REQUIREMENTS
Positive Supply Voltage
Digital I/O Supply Voltage
VDD
VOVDD
fSAMPLE = 1Msps
Positive Supply Current
IDD
fSAMPLE = 0 (1Msps devices)
Full shutdown
Normal mode
(external
reference)
Power Dissipation
AutoStandby
Full/
AutoShutdown
2.35
3.0
3.6
V
1.5
3.0
3.6
V
1.8
2.5
1
0.0015
VDD = 3V,
fSAMPLE = 1Msps
5.4
VDD = 2.35V,
fSAMPLE = 1Msps
3.8
VDD = 3V,
fSAMPLE = 1Msps
2.6
VDD = 2.35V,
fSAMPLE = 1Msps
1.6
VDD = 3V
4.5
VDD = 2.35V
2.1
mA
0.006
mW
FW
����������������������������������������������������������������� Maxim Integrated Products 7
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
TIMING CHARACTERISTICS (Figure 1) (Note 11)
SCLK Clock Period
tCP
SCLK Duty Cycle
tCH
SCLK Fall to DOUT Transition
tDOT
CLOAD =
10pF
16th SCLK Fall to DOUT Disable
tDOD
CLOAD = 10pF, channel ID on
15
ns
CLOAD = 10pF, channel ID off
16
ns
CLOAD = 10pF
14
ns
14th SCLK Fall to DOUT Disable
SCLK Fall to DOUT Enable
tDOE
Externally clocked conversion
62.4
ns
40
60
VOVDD = 1.5V to 2.35V
4
16.5
VOVDD = 2.35V to 3.6V
4
15
%
ns
DIN to SCLK Rise Setup
tDS
4
ns
SCLK Rise to DIN Hold
tDH
1
ns
CS Fall to SCLK Fall Setup
tCSS
4
ns
SCLK Fall to CS Fall Hold
tCSH
1
ns
CNVST Pulse Width
tCSW
5
ns
CS or CNVST Rise to EOC Low
(Note 8)
tCNV_INT
See Figure 6
See Figure 7, fSAMPLE = 1Msps
tCSBW
CS Pulse Width
5.3
6.2
5
Fs
ns
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
±0.02
±0.15
LSB
No missing codes
±0.02
±0.15
LSB
0.5
±0.7
LSB
(Note 5)
-0.03
±0.3
LSB
DC ACCURACY (Notes 3 and 4)
Resolution
RES
Integral Nonlinearity
INL
Differential Nonlinearity
DNL
8 bit
Offset Error
Gain Error
8
Bits
Offset Error Temperature
Coefficient
OETC
±2
ppm/NC
Gain Temperature Coefficient
GETC
±0.8
ppm/NC
±0.5
LSB
Channel-to-Channel Offset
Matching
Line Rejection
PSR
(Note 6)
+0.03
±0.1
LSB/V
����������������������������������������������������������������� Maxim Integrated Products 8
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
SINAD
49
49.6
dB
Signal-to-Noise Ratio
SNR
49
49.6
dB
Total Harmonic Distortion
(Up to the 5th Harmonic)
THD
Spurious-Free Dynamic Range
SFDR
DYNAMIC PERFORMANCE (250kHz, input sine wave) (Notes 3 and 7)
Signal-to-Noise Plus Distortion
-77
dB
69
dB
-75
dB
-3dB
50
MHz
-0.1dB
7.5
MHz
Full-Linear Bandwidth
SINAD > 49dB
1.5
MHz
Crosstalk
-0.5dB below full-scale of 249.878kHz sinewave input to the channel being sampled;
apply full-scale 219.97kHz sine wave signal
to all 15 nonselected input channels
-88
dB
Intermodulation Distortion
IMD
Full-Power Bandwidth
63
-66
f1 = 249.878kHz, f2 = 219.97kHz
CONVERSION RATE
Power-Up Time
tPU
Acquisition Time
tACQ
Conversion cycle, external clock
Internally clocked
Conversion Time
tCONV
External Clock Frequency
2
fSAMPLE = 1Msps
(Note 8)
Externally clocked, fSCLK = 16MHz, 16
cycles (Note 8)
fSCLK
Aperture Jitter
ns
5.9
µs
1000
ns
0.16
Aperture Delay
RMS
Cycles
156
16
MHz
8
ns
30
ps
ANALOG INPUT
Input Voltage Range
VINA
Unipolar (single-ended and pseudo
differential)
Bipolar (Note 9)
Absolute Input Voltage Range
Static Input Leakage Current
Input Capacitance
CAIN
VREF+
RANGE bit set to 0
-VREF+/2
+VREF+/2
RANGE bit set to 1
-VREF+
+VREF+
-0.1
VREF+ +
0.1
AIN+, AIN- relative to GND
IILA
0
VAIN_ = VDD, GND
-0.1
During acquisition time,
RANGE bit = 0 (Note 10)
15
During acquisition time,
RANGE bit = 1 (Note 10)
7.5
V
V
FA
pF
����������������������������������������������������������������� Maxim Integrated Products 9
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
EXTERNAL REFERENCE INPUT
REF- Input Voltage Range
VREF-
-0.3
+1
V
REF+ Input Voltage Range
VREF+
1
VDD +
50mV
V
REF+ Input Current
IREF+
VREF+ = 2.5V, fSAMPLE = 1Msps
36.7
FA
VREF+ = 2.5V, fSAMPLE = 0
0.1
FA
DIGITAL INPUTS (SCLK, DIN, CS, CNVST)
Input Voltage Low
VIL
Input Voltage High
VIH
Input Hysteresis
VOVDD O
0.25
VOVDD O
0.75
VHYST
Input Leakage Current
IIN
Input Capacitance
CIN
VAIN_ = 0V or VDD
V
V
VOVDD O
0.15
mV
±0.09
FA
3
pF
DIGITAL OUTPUTS (DOUT, EOC)
Output Voltage Low
VOL
ISINK = 200FA
Output Voltage High
VOH
ISOURCE = 200FA
Three-State Leakage Current
Three-State Output Capacitance
VOVDD O
0.15
VOVDD O
0.85
V
V
IL
CS = VDD
-0.3
FA
COUT
CS = VDD
4
pF
POWER REQUIREMENTS
Positive Supply Voltage
Digital I/O Supply Voltage
Positive Supply Current
VDD
2.35
3.0
3.6
V
VOVDD
1.5
3.0
3.6
V
fSAMPLE = 1Msps
1.8
2.5
fSAMPLE = 0
1.0
IDD
Full shutdown
Normal mode (external
reference)
Power Dissipation
AutoStandby
Full/
AutoShutdown
0.0015
VDD = 3V,
fSAMPLE = 1Msps
5.4
VDD = 2.35V,
fSAMPLE = 1Msps
3.8
VDD = 3V,
fSAMPLE = 1Msps
2.6
VDD = 2.35V,
fSAMPLE = 1Msps
1.6
VDD = 3V
4.5
VDD = 2.35V
2.1
mA
0.006
mW
FW
���������������������������������������������������������������� Maxim Integrated Products 10
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126) (continued)
(VDD = 2.35V to 3.6V, VOVDD = 1.5V to 3.6V, fSAMPLE = 1Msps, fSCLK = 16MHz, 50% duty cycle, VREF+ = VDD, TA = -40NC to +125NC,
unless otherwise noted. Typical values are at TA = +25NC.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
TIMING CHARACTERISTICS (Figure 1) (Note 11)
SCLK Clock Period
tCP
SCLK Duty Cycle
tCH
SCLK Fall to DOUT Transition
tDOT
CLOAD = 10pF
16th SCLK Fall to DOUT Disable
tDOD
CLOAD = 10pF, channel ID on
15
ns
CLOAD = 10pF, channel ID off
16
ns
CLOAD = 10pF
14
ns
14th SCLK Fall to DOUT Disable
SCLK Fall to DOUT Enable
tDOE
Externally clocked conversion
62.4
ns
40
60
VOVDD = 1.5V to 2.35V
4
16.5
VOVDD = 2.35V to 3.6V
4
15
%
ns
DIN to SCLK Rise Setup
tDS
4
ns
SCLK Rise to DIN Hold
tDH
1
ns
CS Fall to SCLK Fall Setup
tCSS
4
ns
SCLK Fall to CS Fall Hold
tCSH
1
ns
CNVST Pulse Width
tCSW
5
ns
CS or CNVST Rise to EOC Low
(Note 8)
CS Pulse Width
tCNV_INT
tCSBW
See Figure 6
See Figure 7, fSAMPLE = 1Msps
5.3
5
6.2
Fs
ns
Limits are 100% production tested at TA = +25NC. Limits over the operating temperature range are guaranteed by design.
Channel ID disabled.
Tested in single-ended mode.
Offset nulled.
Line rejection D(DOUT) with VDD = 2.35V to 3.6V and VREF+ = 2.35V.
Tested and guaranteed with fully differential input.
Conversion time is defined as the number of clock cycles multiplied by the clock period with a 50% duty cycle.
Maximum conversion time: 4.73Fs + N x 16 x TOSC_MAX.
TOSC_MAX = 88.2ns, TOSC_TYP = 75ns.
Note 9: The operational input voltage range for each individual input of a differentially configured pair is from VDD to GND. The
operational input voltage difference is from -VREF+/2 to +VREF+/2 or -VREF+ to +VREF+.
Note 10: See Figure 3 (Equivalent Input Circuit).
Note 11: Guaranteed by characterization.
Note
Note
Note
Note
Note
Note
Note
2:
3:
4:
5:
6:
7:
8:
���������������������������������������������������������������� Maxim Integrated Products 11
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
tCSBW
CS
tCSS
1ST
CLOCK
SCLK
tCP
tCH
tCSH
16TH
CLOCK
tDH
tDS
tDOT
DIN
tDOD
tDOE
DOUT
Figure 1. Detailed Serial-Interface Timing Diagram
Typical Operating Characteristics
(MAX11122ATI+/MAX11125ATI+/MAX11128ATI+, TA = +25°C, unless otherwise noted.)
0.5
DNL (LSB)
INL (LSB)
0.4
0.2
0
-0.2
-0.4
fSAMPLE = 1.0Msps
0
-0.5
-0.6
3
2
OFFSET ERROR (LSB)
0.6
OFFSET ERROR vs. TEMPERATURE
MAX11120 toc02
fSAMPLE = 1.0Msps
0.8
1.0
MAX11120 toc01
1.0
DIFFERENTIAL NONLINEARITY
vs. OUTPUT CODE
MAX11120 toc03
INTEGRAL NONLINEARITY
vs. DIGITAL OUTPUT CODE
1
0
-1
-2
-0.8
-1.0
-1.0
0
1024
2048
3072
DIGITAL OUTPUT CODE (DECIMAL)
4096
0
1024
2048
3072
DIGITAL OUTPUT CODE (DECIMAL)
4096
-3
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (°C)
���������������������������������������������������������������� Maxim Integrated Products 12
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Typical Operating Characteristics (continued)
(MAX11122ATI+/MAX11125ATI+/MAX11128ATI+, TA = +25°C, unless otherwise noted.)
0
-1
29992 CODE HITS
25,000
20,000
15,000
10,000
-2
4 CODE HITS
0
2045
TEMPERATURE (°C)
2058
4 CODE HITS
2059
2060
71.0
0
2065
-95
-100
90
fIN (kHz)
500
300
400
500
-80
fSAMPLE = 1.0Msps
fIN = 250kHz
-85
-90
-95
80
400
200
THD vs. INPUT RESISTANCE
85
300
100
fIN (kHz)
THD (dB)
-90
fSAMPLE = 1.0Msps
95
SFDR (dB)
-85
200
SINAD
72.0
SFDR vs. ANALOG INPUT FREQUENCY
100
MAX11120 toc07
fSAMPLE = 1.0Msps
100
72.5
OUTPUT CODE (DECIMAL)
THD vs. ANALOG INPUT FREQUENCY
0
SNR
73.0
71.5
-40 -25 -10 5 20 35 50 65 80 95 110 125
-80
fSAMPLE = 1Msps
73.5
5000
-3
MAX11120 toc06
MAX11120 toc05
30,000
74.0
SNR AND SINAD (dB)
1
fSAMPLE = 1Msps
MAX11120 toc08
GAIN ERROR (LSB)
2
35,000
NUMBER OF OCCURENCES
MAX11120 toc04
3
THD (dB)
SNR AND SINAD
vs. ANALOG INPUT FREQUENCY
HISTOGRAM FOR 30,000 CONVERSIONS
MAX11120 toc09
GAIN ERROR vs. TEMPERATURE
-100
0
100
200
300
fIN (kHz)
400
500
0
100
200
300
400
RIN (I)
���������������������������������������������������������������� Maxim Integrated Products 13
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Typical Operating Characteristics (continued)
(MAX11122ATI+/MAX11125ATI+/MAX11128ATI+, TA = +25°C, unless otherwise noted.)
REFERENCE CURRENT
vs. SAMPLING RATE
250kHz SINE-WAVE INPUT
(8192-POINT FFT PLOT)
AMPLITUDE (dB)
-40
AHD2 = -104.1dB
f = 500kHz
-60
40
IREF (µA)
AHD3 = -92.369dB
f = 254.4kHz
MAX11120 toc11
fSAMPLE = 1Msps
fIN = 250kHz
-20
50
MAX11120 toc10
0
30
20
-80
10
-100
0
-120
100
200
300
400
0
500
200
400
ANALOG SUPPLY CURRENT
vs. TEMPERATURE
fSAMPLE = 1.0Msps
VDD = 3.0V
1000
2.0
1.5
fSAMPLE = 1.0Msps
fIN = 250kHz
73
SNR (dB)
IVDD (mA)
2.5
800
SNR vs. REFERENCE VOLTAGE
74
MAX11120 toc12
3.0
600
fSAMPLE (ksps)
FREQUENCY (kHz)
MAX11120 toc13
0
72
71
70
69
1.0
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (°C)
1.0
1.4
1.8
2.2
2.6
3.0
3.4
VREFP (V)
���������������������������������������������������������������� Maxim Integrated Products 14
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
15
REF+
16
GND
REF+
17
VDD
GND
18
VDD
VDD
19
SCLK
VDD
20
DIN
SCLK
21
CS
DIN
TOP VIEW
CS
Pin Configurations
21
20
19
18
17
16
15
DGND 22
14
GND
DGND 22
14
GND
OVDD 23
13
REF-
OVDD 23
13
REF-
DOUT 24
12
CNVST
DOUT 24
12
CNVST
11
GND
EOC 25
11
GND
10
GND
AIN0 26
10
GND
9
GND
AIN1 27
8
GND
AIN2 28
7
1
2
AIN3
AIN4
TQFN
4 CHANNEL
3
4
5
6
7
GND
6
GND
5
GND
GND
4
GND
AIN3
3
GND
2
GND
1
+
GND
+
AIN2 28
AIN7
AIN1 27
AIN6
AIN0 26
MAX11123
MAX11124
MAX11125
AIN5
MAX11120
MAX11121
MAX11122
EOC 25
9
GND
8
GND
DIN
CS
SCLK
VDD
VDD
GND
REF+
TQFN
8 CHANNEL
21
20
19
18
17
16
15
DGND 22
14
OVDD 23
13
REF-/AIN15
DOUT 24
12
CNVST/AIN14
11
AIN13
10
AIN12
9
AIN11
8
AIN10
MAX11126
MAX11127
MAX11128
EOC 25
AIN0 26
AIN1 27
5
6
7
AIN9
AIN4
4
AIN8
AIN3
3
AIN7
2
AIN6
1
AIN5
+
AIN2 28
GND
TQFN
16 CHANNEL
���������������������������������������������������������������� Maxim Integrated Products 15
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Pin Description
MAX11120
MAX11121
MAX11122
(4 CHANNEL)
MAX11123
MAX11124
MAX11125
(8 CHANNEL)
MAX11126
MAX11127
MAX11128
(16 CHANNEL)
—
—
—
26, 27, 28, 1–5
26, 27, 28,
1–11
—
26, 27, 28, 1
—
2–11
6–11
NAME
FUNCTION
AIN0–AIN13
Analog Inputs
AIN0–AIN7
Analog Inputs
—
AIN0–AIN3
Analog Inputs
—
GND
Active-Low Conversion Start Input/Analog Input 14
Ground
—
—
12
CNVST/
AIN14
12
12
—
CNVST
Active-Low Conversion Start Input
13
REF-/
AIN15
External Differential Reference Negative Input /Analog
Input 15
—
—
13
13
—
REF-
External Differential Reference Negative Input
14, 16
14, 16
14, 16
GND
Ground
15
15
15
REF+
External Positive Reference Input. Apply a reference
voltage at REF+. Bypass to GND with a 0.47FF
capacitor.
17, 18
17, 18
17, 18
VDD
19
19
19
SCLK
20
20
20
CS
Active-Low Chip Select Input. When CS is low, the serial
interface is enabled. When CS is high, DOUT is high
impedance or three-state.
21
21
21
DIN
Serial Data Input. DIN data is latched into the serial
interface on the rising edge of SCLK.
22
22
22
DGND
Digital I/O Ground
23
23
23
OVDD
Interface Digital Power-Supply Input. Bypass to GND
with a 10FF in parallel with a 0.1FF capacitors.
24
24
24
DOUT
Serial Data Output. Data is clocked out on the falling
edge of SCLK. When CS is high, DOUT is high
impedance or three-state.
25
25
25
EOC
—
—
—
EP
Power-Supply Input. Bypass to GND with a 10FF in
parallel with a 0.1FF capacitors.
Serial Clock Input. Clocks data in and out of the serial
interface
End of Conversion Output. Data is valid after EOC pulls
low (Internal clock mode only).
Exposed Pad. Connect EP directly to GND plane for
guaranteed performance.
���������������������������������������������������������������� Maxim Integrated Products 16
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Functional Diagram
VDD
OVDD
AIN0
REF+
REF+
REF-
REF-
AIN1
ADC DOUT
I/P
MUX
CS
AIN15
SCLK
OSCILLATOR
CS
SCLK
CONTROL LOGIC
AND
SEQUENCER
DIN
DOUT
CNVST
MAX11120–MAX11128
Detailed Description
The MAX11120–MAX11128 are 12-/10-/8-bit with external
reference and industry-leading 1.5MHz, full linear bandwidth, high-speed, low-power, serial output successiveapproximation register (SAR) analog-to-digital converters
(ADC). These devices feature scan mode, internal averaging to increase SNR, and AutoShutdown.
The external clock mode features the SampleSet technology, a user-programmable analog input channel sequencer. The user may define and load a unique sequencing
pattern into the ADC allowing both high- and low-frequency inputs to be converted without interface activity. This
feature frees the controlling unit for other tasks while lowering overall system noise and power consumption.
The MAX11120–MAX11128 includes internal clock. The
internal clock mode features an integrated FIFO, allowing
EOC
data to be sampled at high speed and then held for readout at any time or at a lower clock rate. Internal averaging
is also supported in this mode improving SNR for noisy
input signals. All input channels are configurable for single-ended, fully differential or pseudo-differential inputs
in unipolar or bipolar mode. The MAX11120–MAX11128
operate from a 2.35V to 3.6V supply and consume only
5.4mW at 1Msps.
The MAX11120–MAX11128 include AutoShutdown, fast
wake-up, and a high-speed 3-wire serial interface. The
devices feature full power-down mode for optimal power
management.
Data is converted from analog voltage sources in a
variety of channel and data-acquisition configurations.
Microprocessor (FP) control is made easy through a 3-wire
SPI-/QSPI-/MICROWIRE-compatible serial interface.
���������������������������������������������������������������� Maxim Integrated Products 17
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Input Bandwidth
The ADC’s input-tracking circuitry features a 1.5MHz,
small-signal, full-linear bandwidth to digitize high-speed
transient events and measure periodic signals with
bandwidths exceeding the ADC’s sampling rate by using
undersampling techniques. Anti-alias filtering of the input
signals is necessary to avoid high-frequency signals
aliasing into the frequency band of interest.
3-Wire Serial Interface
The MAX11120–MAX11128 feature a serial interface
compatible with SPI/QSPI and MICROWIRE devices. For
SPI/QSPI, ensure the CPU serial interface runs in master mode to generate the serial clock signal. Select the
SCLK frequency of 16MHz or less, and set clock polarity
(CPOL) and phase (CPHA) in the FP control registers to
the same value. The MAX11120–MAX11128 operate with
SCLK idling high, and thus operate with CPOL = CPHA
= 1.
Set CS low to latch input data at DIN on the rising edge
of SCLK. Output data at DOUT is updated on the falling
edge of SCLK. A high-to-low transition on CS samples
the analog inputs and initiates a new frame. A frame is
defined as the time between two falling edges of CS.
There is a minimum of 16 bits per frame. The serial data
input, DIN, carries data into the control registers clocked
in by the rising edge of SCLK. The serial data output,
DOUT, delivers the conversion results and is clocked out
by the falling edge of SCLK. DOUT is a 16-bit data word
containing a 4-bit channel address, followed by a 12-bit
conversion result led by the MSB when CHAN_ID is set
to 1 in the ADC Mode Control register (Figure 2a). In
this mode, keep the clock high for at least one full SCLK
period before the CS falling edge to ensure best performance (Figure 2b). When CHAN_ID is set to 0 (external
clock mode only), the 16-bit data word includes a leading
zero and the 12-bit conversion result is followed by 3 trailing zeros (Figure 2c). In the 10-bit ADC, the last 2 LSBs
are set to 0. In the 8-bit ADC, the last 4 LSBs are set to 0.
CS
SCLK
1
2
3
4
5
6
7
8
9
10
11
12
13
14
DI[15] DI[14]
DIN
DOUT
Ch[3]
15
16
DI[0]
DI[1]
Ch[2]
Ch[1]
Ch[0]
MSB MSB-1
LSB+1
LSB
Figure 2a. External Clock Mode Timing Diagram with CHAN_ID=1
CS
SCLK
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
tQUIET > tSCLK
DIN
DOUT
DI[15]
Ch[3]
DI[1]
Ch[2]
Ch[1] Ch[0]
MSB MSB-1
LSB+1
DI[0]
LSB
Figure 2b. External Clock Mode Timing Diagram with CHAN_ID=1 for Best Performance
���������������������������������������������������������������� Maxim Integrated Products 18
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
CS
SCLK
DIN
DOUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
DI[15] DI[14]
0
16
DI[1]
MSB] MSB-1 MSB-2
LSB
DI[0]
0
Figure 2c. External Clock Timing Diagram with CHAN_ID=0
Single-Ended, Differential,
and Pseudo-Differential Input
The MAX11120–MAX11128 include up to 16 analog input
channels that can be configured to 16 single-ended
inputs, 8 fully differential pairs, or 15 pseudo-differential
inputs with respect to one common input (REF-/AIN15 is
the common input).
The analog input range is 0V to VREF+ in single-ended
and pseudo-differential mode (unipolar) and QVREF+/2 or
QVREF+ in fully differential mode (bipolar) depending on
the RANGE register settings. See Table 7 for the RANGE
register setting.
Unipolar mode sets the differential input range from 0
to VREF+. If the positive analog input swings below the
negative analog input in unipolar mode, the digital output
code is zero. Selecting bipolar mode sets the differential
input range to QVREF+/2 or QVREF+ depending on the
RANGE register settings (Table 7).
In single-ended mode, the ADC always operates in unipolar mode. The analog inputs are internally referenced
to GND with a full-scale input range from 0 to VREF+.
Single-ended conversions are internally referenced to
GND (Figure 3).
The MAX11120–MAX11128 feature 15 pseudo differential inputs by setting the PDIFF_COM bits in the Unipolar
register to 1 (Table 10). The 15 analog input signals
inputs are referenced to a DC signal applied to the
REF-/AIN15.
DAC
COMPARATOR
AINn
HOLD
AINn+1
(GND)
DAC
Figure 3. Equivalent Input Circuit
Fully Differential Reference (REF+, REF-)
When the reference is used in fully differential mode
(REFSEL = 1), the full-scale range is set by the difference
between REF+ and REF-. The output clips if the input
signal surpasses this reference range.
ADC Transfer Function
The output format of the MAX11120–MAX11128 is straight
binary in unipolar mode and two’s complement in bipolar
mode. The code transitions midway between successive
integer LSB values, such as 0.5 LSB, 1.5 LSB. Figure 4
and Figure 5 show the unipolar and bipolar transfer function, respectively. Output coding is binary, with 1 LSB =
VREF+/4096.
���������������������������������������������������������������� Maxim Integrated Products 19
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
OUTPUT CODE (hex)
OUTPUT CODE (hex)
FFF
FS = VREF+
7FF
FFE
ZS = 0
7FE
FFD
1 LSB =
VREF+
4096
FFC
001
FFB
VREF+
2
ZS = 0
-VREF+
-FS =
2
VREF+
1 LSB =
4096
+FS =
000
FFF
004
FFE
003
002
801
001
800
000
0
1
2
3
4
FS -1.5 LSB
FS
INPUT VOLTAGE (LSB)
Figure 4. Unipolar Transfer Function for 12-Bit Resolution
Internal FIFO
The MAX11120–MAX11128 contain a FIFO buffer that can
hold up to 16 ADC results. This allows the ADC to handle
multiple internally clocked conversions without tying up
the serial bus. If the FIFO is filled and further conversions
are requested without reading from the FIFO, the oldest
ADC results are overwritten by the new ADC results. Each
result contains 2 bytes, with the MSB preceded by four
leading channel address bits. After each falling edge of
CS, the oldest available byte of data is available at DOUT.
When the FIFO is empty, DOUT is zero.
External Clock
In external clock mode, the analog inputs are sampled at
the falling edge of CS. Serial clock (SCLK) is used to perform the conversion. The sequencer reads in the channel
to be converted from the serial data input (DIN) at each
frame. The conversion results are sent to the serial output
(DOUT) at the next frame.
Internal Clock
The MAX11120–MAX11128 operate from an internal
oscillator, which is accurate within Q15% of the 13.33MHz
nominal clock rate. Request internally timed conversions
by writing the appropriate sequence to the ADC Mode
-FS
0
-FS +0.5 LSB
+FS -1.5 LSB
INPUT VOLTAGE (LSB)
+FS
Figure 5. Bipolar Transfer Function for 12-Bit Resolution
Control register (Table 2). The wake-up, acquisition, conversion, and shutdown sequences are initiated through
CNVST and are performed automatically using the internal oscillator. Results are added to the internal FIFO.
With CS high, initiate a scan by setting CNVST low for
at least 5ns before pulling it high (Figure 6). Then, the
MAX11120–MAX11128 wake up, scan all requested
channels, store the results in the FIFO, and shut down.
After the scan is complete, EOC is pulled low and the
results are available in the FIFO. Wait until EOC goes
low before pulling CS low to communicate with the serial
interface. EOC stays low until CS or CNVST is pulled low
again. Do not initiate a second CNVST before EOC goes
low; otherwise, the FIFO may become corrupted.
Alternatively, set SWCNV to 1 in the ADC Mode Control
register to initiate conversions with CS rising edge
instead of cycling CNVST (Table 2). For proper operation,
CS must be held low for 17 clock cycles to guarantee
that the device interprets the SWCNV setting. A delay
is initiated at the rising edge of CS and the conversion
is started when the delay times out. Upon completing
the conversion, this bit is reset to 0 (Figure 7). Apply a
soft reset when changing from internal to external clock
mode: RESET[1:0] = 10.
���������������������������������������������������������������� Maxim Integrated Products 20
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
UP TO N INTERNALLY
CLOCKED ACQUISITIONS
AND CONVERSIONS
CNVST
tCSW
CS
EOC
tCNV_INT
SCLK
1
16
1
16
DIN
DOUT
INTERNAL
OSCILLATOR ON
READ DATA FROM FIFO
READ DATA FROM FIFO
SCAN OPERATION AND
RESULTS STORED IN FIFO
Figure 6. Internal Conversions with CNVST
UP TO N INTERNALLY
CLOCKED ACQUISITIONS
AND CONVERSIONS
tCNV_INT
(N = 1)
CS
EOC
SCLK
1
16
1
16
SWCNV = 1
DIN
DOUT
MODE CONTROL
INTERNAL OSCILLATOR ON
READ DATA FROM FIFO
SCAN OPERATION AND
RESULTS STORED IN FIFO
Figure 7. Internal Conversions with SWCNV
���������������������������������������������������������������� Maxim Integrated Products 21
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Analog Input
The MAX11120–MAX11128 produce a digital output that
corresponds to the analog input voltage as long as the
analog inputs are within the specified operating range.
Internal protection diodes confine the analog input voltage within the region of the analog power input rails
(VDD, GND) and allow the analog input voltage to swing
from GND - 0.3V to VDD + 0.3V without damaging the
device. Input voltages beyond GND - 0.3V and VDD +
0.3V forward bias the internal protection diodes. Limit the
forward diode current to less than 50mA to avoid damage to the MAX11120–MAX11128.
I/P MUX is selected every frame on the thirteenth falling
edge of SCLK. Custom_Int works with the internal clock.
Custom_Ext works with the external clock.
Standard_Int and Standard_Ext
In Standard_Int and Standard_Ext modes, the device
scans channels 0 through N in ascending order where
N is the last channel specified in the ADC Mode Control
register. A new I/P MUX is selected every frame on the
thirteenth falling edge of SCLK. Standard_Int works with
the internal clock. Standard_Ext works with the external
clock.
Scan Modes
Upper_Int and Upper_Ext
In Upper_Int and Upper_Ext modes, the device scans
channels N through 15/11/7/3 in ascending order where
N is the first channel specified in the ADC Mode Control
register. A new I/P MUX is selected every frame on the
thirteenth falling edge of SCLK. Upper_Int works with the
internal clock. Upper_Ext works with the external clock.
Manual Mode
The next channel to be selected is identified in each SPI
frame. The conversion results are sent out in the next
frame. The manual mode works with the external clock
only. The FIFO is unused.
SampleSet
The SampleSet mode of operation allows the definition
of a unique channel sequence combination with maximum length of 256. SampleSet is supported only in the
external clock mode. SampleSet is ideally suited for multichannel measurement applications where some analog
inputs must be converted more often than others.
ECHO
When writing to the ADC Configuration register, set
ECHO to 1 in ADC Configuration register to echo back
the configuration data onto DOUT at time n+1 (Figure 8,
Table 6).
The MAX11120–MAX11128 feature nine scan modes
(Table 3).
Repeat Mode
Repeat scanning channel N for number of times and
store all the conversion results in the FIFO. The number of
scans is programmed in the ADC Configuration register.
The repeat mode works with the internal clock only.
Custom_Int and Custom_Ext
In Custom_Int and Custom_Ext modes, the device scans
preprogrammed channels in ascending order. The channels to be scanned in sequence are programmed in
the Custom Scan0 or Custom Scan1 registers. A new
The SampleSet approach provides greater sequencing
flexibility for multichannel applications while alleviating
significant microcontroller or DSP (controlling unit) communication overhead. SampleSet technology allows the
user to exploit available ADC input bandwidth without
need for constant communication between the ADC and
controlling unit. The user may define and load a unique
sequencing pattern into the ADC allowing both high- and
low-frequency inputs to be converted appropriately without interface activity. With the unique sequence loaded
t = n-1
t=n
t = n+1
t = n+2
TURN ON ECHO
CONFIGURATION
DATA
CONFIGURATION
DATA
CONFIGURATION
DATA
CONFIGURATION
DATA
CONFIGURATION
DATA
CS
DIN
DOUT
Figure 8. Echo Back the Configuration Data
���������������������������������������������������������������� Maxim Integrated Products 22
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
into ADC memory, the pattern may be repeated indefinitely or changed at any time.
the ADC can resolve (Nyquist Theorem) is 31.25kHz.
If all 16 channels must be measured, with some channels having greater than 31.25kHz input frequency, the
user must revert back to manual mode requiring constant communication on the serial interface. SampleSet
technology solves this problem. Figure 9 provides a
SampleSet use-model example.
For example, the maximum throughput of MAX11120–
MAX11128 is 1Msps. Traditional ADC scan modes allow
up to 16-channel conversions in ascending order. In this
case, the effective throughput per channel is 1Msps/16
channel or 62.5ksps. The maximum input frequency that
SampleSet REPEATS: LENGTH = 256
SAMPLE SET
(DEPTH = 256)
2ND CYCLE
1ST CYCLE
3RD CYCLE
4TH CYCLE
5TH CYCLE
6TH CYCLE
7TH CYCLE
8TH CYCLE
9TH CYCLE
POTENTIAL SampleSet PATTERN
CHANNEL:
AIN2/
AIN3
AIN0
AIN1
AIN0
AIN1
AIN0
AIN1
AIN2/
AIN3
AIN4
AIN5
AIN6
AIN7
AIN8
AIN9
AIN10
AIN11
AIN12
AIN13
AIN14
AIN15
AIN2/
AIN3
AIN0
ENTRY NO.:
1
2
3
4
5
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
120 CONVERSIONS:
AIN0 AND AIN1
AIN1
AIN0
AIN1
AIN2/
AIN3
137
254
255
256
120 CONVERSIONS:
AIN0 AND AIN1
ANALOG
INPUTS
AIN0
100kHz
100 CYCLES
AIN1
135
10kHz
10 CYCLES
1
FULLY
DIFFERENTIAL
122
1kHz
1 CYCLES
256
AIN2
AIN3
123
AIN4
124
AIN5
125
AIN6
tS = 1/fS = 1/1Msps = 100ns
AIN7
CS
10
8
AIN0
AIN8
12
6
14
4
AIN9
16
2
32
18
TS
5µs
10µs
30
20
28
22
fin = 100kHz
AIN10
26
24
AIN11
AIN1
7
9
11
5
3
TS
AIN12
13
15
17
5µs
AIN13
31
19
29
21
23
25
10µs
27
Figure 9. SampleSet Use-Model Example
���������������������������������������������������������������� Maxim Integrated Products 23
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Averaging Mode
In averaging mode, the device performs the specified
number of conversions and returns the average for each
requested result in the FIFO. The averaging mode works
with internal clock only.
Scan Modes and Unipolar/Bipolar Setting
When the Unipolar or Bipolar registers are configured
as pseudo-differential or fully differential, the analog
input pairs are repeated in this automated mode. For
example, if N is set to 15 to scan all 16 channels and
all analog input pairs are configured for fully-differential
conversion, the ADC converts the channels twice. In this
case, the user may avoid dual conversions on input pairs
by implementing Manual mode or using Custom_Int or
Custom_Ext scan modes.
Register Descriptions
The MAX11120–MAX11128 communicate between the
internal registers and the external circuitry through the
SPI-/QSPI-compatible serial interface. Table 1 details the
register access and control. Table 2 through Table 14
detail the various functions and configurations.
For ADC mode control, set bit 15 of the register code
identification to zero. The ADC Mode Control register
determines when and under what scan condition the
ADC operates.
To set the ADC data configuration, set the bit 15 of the
register code identification to one.
Table 1. Register Access and Control
REGISTER IDENTIFICATION CODE
REGISTER NAME
DIN ≡ DATA INPUTS
BIT 15
BIT 14
BIT 13
BIT 12
BIT 11
ADC Mode Control
0
DIN
DIN
DIN
DIN
BIT [10:0]
DIN
ADC Configuration
1
0
0
0
0
DIN
Unipolar
1
0
0
0
1
DIN
Bipolar
1
0
0
1
0
DIN
RANGE
1
0
0
1
1
DIN
Custom Scan0
1
0
1
0
0
DIN
Custom Scan1
1
0
1
0
1
DIN
SampleSet
1
0
1
1
0
DIN
Reserved. Do not use.
1
1
1
1
1
DIN
Table 2. ADC Mode Control Register
BIT NAME
BIT
DEFAULT
STATE
FUNCTION
REG_CNTL
15
0
SCAN[3:0]
14:11
0001
ADC Scan Control register (Table 3)
CHSEL[3:0]
10:7
0000
Analog Input Channel Select register (Table 4).
See Table 3 to determine which modes use CHSEL[3:0] for the channel scan
instruction.
RESET[1:0]
6:5
00
Set to 0 to select the ADC Mode Control register
RESET1
RESET0
0
0
No reset
FUNCTION
0
1
Reset the FIFO only (resets to zero)
1
0
Reset all registers to default settings (includes FIFO)
1
1
Unused
���������������������������������������������������������������� Maxim Integrated Products 24
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 2. ADC Mode Control Register (continued)
BIT NAME
BIT
DEFAULT
STATE
PM[1:0]
4:3
00
Power Management Modes (Table 5). In external clock mode, PM[1:0] selects
between normal mode and various power-down modes of operation.
CHAN_ID
2
0
External Clock Mode. Channel address is always present in internal clock mode.
Set to 1, DOUT is a 16-bit data word containing a 4-bit channel address, followed by
a 12-bit conversion result led by the MSB.
FUNCTION
SWCNV
1
0
Set to 1 to initiate conversions with the rising edge of CS instead of cycling CNVST
(internal clock mode only).
This bit is used for the internal clock mode only and must be reasserted in the ADC
mode control, if another conversion is desired.
—
0
0
Unused
Table 3. ADC Scan Control
SCAN3
0
SCAN2
0
SCAN1
0
SCAN0
0
MODE NAME
N/A
FUNCTION
Continue to operate in the previously selected mode. Ignore data
on bits [10:0]. This feature is provided so that DIN can be held low
when no changes are required in the ADC Mode Control register.
Bits [6:3, 1] can be still written without changing the scan mode
properties.
The next channel to be selected is identified in each SPI frame. The
conversion results are sent out in the next frame.
0
0
0
1
Manual
Clock mode: External clock only
Channel scan/sequence: Single channel per frame
Channel selection: See Table 4, CHSEL[3:0]
Averaging: No
Scans channel N repeatedly. The FIFO stores 4, 8, 12, or 16
conversion results for channel N.
0
0
1
0
Repeat
Clock mode: Internal clock only
Channel scan/sequence: Single channel per frame
Channel selection: See Table 4, CHSEL[3:0]
Averaging: Yes
Scans channels 0 through N. The FIFO stores N conversion results.
Clock mode: Internal clock
0
0
1
1
Standard_Int
Channel scan/sequence: N channels in ascending order
Channel selection: See Table 4, CHSEL[3:0] determines channel N
Averaging: Yes
���������������������������������������������������������������� Maxim Integrated Products 25
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 3. ADC Scan Control (continued)
SCAN3
SCAN2
SCAN1
SCAN0
MODE NAME
FUNCTION
Scans channels 0 through N
Clock mode: External clock
0
1
0
0
Standard_Ext
Channel scan/sequence: N channels in ascending order
Channel selection: See Table 4, CHSEL[3:0] determines channel N
Averaging: No
Scans channel N through the highest numbered channel. The FIFO
stores X conversion results where:
0
1
0
1
Upper_Int
X = Channel 16–N
16-channel devices
X = Channel 8–N
8-channel devices
X = Channel 4–N
4-channel devices
Clock mode: Internal clock
Channel scan/sequence: Channel N through the highest numbered
channel in ascending order
Channel selection: See Table 4, CHSEL[3:0] determines channel N
Averaging: Yes
Scans channel N through the highest numbered channel
Clock mode: External clock
0
1
1
0
Upper_Ext
Channel scan/sequence: Channel N through the highest numbered
channel in ascending order
Channel selection: See Table 4, CHSEL[3:0] determines channel N
Averaging: No
Scans preprogrammed channels in ascending order. The FIFO
stores conversion results for this unique channel sequence.
Clock mode: Internal clock
0
1
1
1
Custom_Int
Channel scan/sequence: Unique ascending channel sequence
Maximum depth: 16 conversions
Channel selection: See Table 12, Custom Scan0 register and Table
13, Custom Scan1 register
Averaging: Yes
Scans preprogrammed channels in ascending order
Clock mode: External clock
Channel scan/sequence: Unique ascending channel sequence
1
0
0
0
Custom_Ext
Maximum depth: 16 conversions
Channel selection: See Table 12, Custom Scan0 register and Table
13, Custom Scan1 register
Averaging: No
���������������������������������������������������������������� Maxim Integrated Products 26
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 3. ADC Scan Control (continued)
SCAN3
SCAN2
SCAN1
SCAN0
MODE NAME
FUNCTION
Scans preprogrammed channel sequence with maximum length of
256. There is no restriction on the channel pattern.
Clock mode: External clock only
1
0
0
1
SampleSet
Channel scan/sequence: Unique channel sequence
Maximum depth: 256 conversions
Channel Selection: See Table 4
Averaging: No
1
0
1
0
—
Continue to operate in the previously selected mode. Ignore data on
bits [10:0].
1
0
1
1
—
Continue to operate in the previously selected mode. Ignore data on
bits [10:0].
1
1
0
0
—
Continue to operate in the previously selected mode. Ignore data on
bits [10:0].
1
1
0
1
—
Continue to operate in the previously selected mode. Ignore data on
bits [10:0].
1
1
1
0
—
Continue to operate in the previously selected mode. Ignore data on
bits [10:0].
1
1
1
1
—
Continue to operate in the previously selected mode. Ignore data on
bits [10:0].
Table 4. Analog Input Channel Select
CHSEL3
CHSEL2
CHSEL1
CHSEL0
SELECTED CHANNEL (N)
0
0
0
0
AIN0
0
0
0
1
AIN1
0
0
1
0
AIN2
0
0
1
1
AIN3
0
1
0
0
AIN4
0
1
0
1
AIN5
0
1
1
0
AIN6
0
1
1
1
AIN7
1
0
0
0
AIN8
1
0
0
1
AIN9
1
0
1
0
AIN10
1
0
1
1
AIN11
1
1
0
0
AIN12
1
1
0
1
AIN13
1
1
1
0
AIN14
1
1
1
1
AIN15
���������������������������������������������������������������� Maxim Integrated Products 27
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Power-Down Mode
The MAX11120–MAX11128 feature three power-down
modes.
Static Shutdown
The devices shut down when the SPM bits in the ADC
Configuration register are asserted (Table 6). There are
two shutdown options:
U Full shutdown where all circuitry is shutdown.
U Partial shutdown where all circuitry is powered down
except for the internal bias generator.
AutoShutdown with External Clock Mode
When the PM_ bits in the ADC Mode Control register are
asserted (Table 5), the device shuts down at the rising
edge of CS in the next frame. The device powers up
again at the following falling edge of CS. There are two
available options:
U AutoShutdown where all circuitry is shutdown.
U AutoStandby where all circuitry are powered down
except for the internal bias generator.
AutoShutdown with Internal Clock Mode
The device shuts down after all conversions are completed. The device powers up again at the next falling edge
of CNVST or at the rising edge of CS after the SWCNV
bit is asserted.
Table 5. Power Management Modes
PM1
PM0
MODE
0
0
Normal
FUNCTION
0
1
AutoShutdown
1
0
AutoStandby
1
1
—
All circuitry is fully powered up at all times.
The device enters full shutdown mode at the end of each conversion. All circuitry
is powered down. The device powers up following the falling edge of CS. It takes 2
cycles before valid conversions take place. The information in the registers is retained.
The device powers down all circuitry except for the internal bias generator. The part
powers up following the falling edge of CS. It takes 2 cycles before valid conversions
take place. The information in the registers is retained.
Unused.
Table 6. ADC Configuration Register
BIT NAME
BIT
DEFAULT
STATE
CONFIG_SETUP
15:11
N/A
REFSEL
AVGON
10
9
0
0
FUNCTION
Set to 10000 to select the ADC Configuration register.
REFSEL
VOLTAGE REFERENCE
REF- CONFIGURATION
0
External single-ended
AIN15 ( for the 16-channel devices)
1
External differential
REF-
Set to 1 to turn averaging on. Valid for internal clock mode only.
Set to 0 to turn averaging off.
���������������������������������������������������������������� Maxim Integrated Products 28
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 6. ADC Configuration Register (continued)
BIT NAME
BIT
DEFAULT
STATE
FUNCTION
Valid for internal clock mode only.
NAVG[1:0]
8:7
AVGON
NAVG1
NAVG0
0
X
X
Performs 1 conversion for each requested
result.
1
0
0
Performs 4 conversions and returns the
average for each requested result.
1
0
1
Performs 8 conversions and returns the
average for each requested result.
1
1
0
Performs 16 conversions and returns the
average for each requested result.
1
1
1
Performs 32 conversions and returns the
average for each requested result.
00
FUNCTION
Scans channel N and returns 4, 8, 12, or 16 results. Valid for repeat mode only.
NSCAN[1:0]
6:5
NSCAN1
NSCAN0
0
0
Scans channel N and returns 4 results.
0
1
Scans channel N and returns 8 results.
1
0
Scans channel N and returns 12 results.
1
1
Scans channel N and returns 16 results.
00
FUNCTION
Static power-down modes
SPM[1:0]
4:3
00
SPM1
SPM0
MODE
0
0
Normal
FUNCTION
0
1
Full
Shutdown
All circuitry is powered down. The information
in the registers is retained.
1
0
Partial
Shutdown
All circuitry is powered down except for
the reference and reference buffer. The
information in the registers is retained.
1
1
—
All circuitry is fully powered up at all times.
Unused
ECHO
2
0
Set to 0 to disable the instruction echo on DOUT.
Set to 1 to echo back the DIN instruction given at time = n onto the DOUT line at
time = n + 1. It takes 1 full cycle for the echoing to begin (Figure 8).
—
1:0
0
Unused
���������������������������������������������������������������� Maxim Integrated Products 29
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 7. RANGE Register (RANGE Settings Only Applies to Bipolar Fully Differential
Analog Input Configurations)
BIT NAME
BIT
DEFAULT
STATE
RANGE_SETUP
15:11
N/A
RANGE0/1
10
0
Set to 0 for AIN0/1: +VREF+/2
Set to 1 for AIN0/1: +VREF+
RANGE2/3
9
0
Set to 0 for AIN2/3: +VREF+/2
Set to 1 for AIN2/3: +VREF+
RANGE4/5
8
0
Set to 0 for AIN4/5: +VREF+/2
Set to 1 for AIN4/5: +VREF+
RANGE6/7
7
0
Set to 0 for AIN6/7: +VREF+/2
Set to 1 for AIN6/7: +VREF+
RANGE8/9
6
0
Set to 0 for AIN8/9: +VREF+/2
Set to 1 for AIN8/9: +VREF+
RANGE10/11
5
0
Set to 0 for AIN10/11: +VREF+/2
Set to 1 for AIN10/11: +VREF+
RANGE12/13
4
0
Set to 0 for AIN12/13: +VREF+/2
Set to 1 for AIN12/13: +VREF+
RANGE14/15
3
0
Set to 0 for AIN14/15: +VREF+/2
Set to 1 for AIN14/15: +VREF+
—
2:0
000
FUNCTION
Set to 10011 to select the RANGE register
Unused
ADC OUTPUT as a Function
of Unipolar and Bipolar Modes
The ADC Scan Control register (Table 3) determines the
ADC mode of operation. The Unipolar and Bipolar registers in Table 10 and Table 11 determine output coding
and whether input configuration is single-ended or fully
differential.
Table 9 details the conversion output for analog inputs,
AIN0 and AIN1. The truth table is consistent for any other
valid input pairs (AINn/AINn+1). Table 8 shows the applicable input signal format with respect to analog input
configurations.
CHSEL[3:0] is used for MANUAL, REPEAT,
STANDARD_EXT,
STANDARD_INT,
UPPER_EXT,
UPPER_INT modes of operation. CHSCAN[15:0] is used
for CUSTOM_EXT and CUSTOM_INT modes of operation.
SampleSet Mode of Operation
The SampleSet register stores the unique channel
sequence length. The sequence pattern is comprised of
up to 256 unique single-ended and/or differential conversions with any order or pattern.
Patterns are assembled in 4-bit channel identifier nibbles as described in Table 4. Figure 10 presents the
SampleSet timing diagram. Note that two CS frames are
required to configure the SampleSet functionality. The
first frame indicates the sequence length. The second
frame is used to encode the channel sequence pattern.
After the SampleSet register has been coded (Table 14),
by the next falling edge of CS, the new SampleSet pattern
is activated (Figure 10). If the pattern length is less than
SEQ_LENGTH, the remaining channels default to AIN0. If
the select pattern length is greater than SEQ_LENGTH,
the additional data is ignored as the ADC waits for the rising edge of CS. If CS is asserted in the middle of a nibble,
the full nibble defaults to AIN0.
���������������������������������������������������������������� Maxim Integrated Products 30
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 8. Analog Input Configuration and Unipolar/Bipolar Waveforms
SUPPORTED WAVEFORMS
ANALOG INPUT
CONFIGURATION
REFSEL = 0
VIN+
Unipolar
(Binary
Coding)
REF+
RANGE: 1V - VDD
REF+
VIN+
REF+
1V
GND, AIN15
PDIFF_COM = 1
0V
-0.3V
REF+
RANGE: 1V - VDD
REF+
RANGE: 1V - VDD
VIN(DC OFFSET
OR
SINUSOID)
REF+
2
VIN-
VFS = 2REF+
RANGE = 1
REF+
VFS = REF+
RANGE = 0
Bipolar
(2’s Comp)
VIN(DC OFFSET
OR
SINUSOID)
REF+
RANGE: 1V - VDD
VIN+
Table 10. Unipolar Register:
Set desired channel(s) to 0
or PDIFF_COM to 1.
Counterpart Register
Table 11. Bipolar Register:
Set desired channel(s) to 0.
Table 10. Unipolar Register:
Set desired channel(s) to 1.
REF+
VIN+
REF+
VIN-
1V
0V
-0.3V
REF-
REF+
RANGE: 1V - VDD
VFS = 2REF+
RANGE = 1
REF+ V
INVINGND
Fully
Differential
VIN+
REF-
VIN+
Unipolar
(Binary
Coding)
Fully
Differential
REF+
RANGE: 1V - VDD
VFS = REF+
RANGE = 0
SingleEnded
UNIPOLAR/BIPOLAR
REGISTER SETTING
REFSEL = 1
1V
GND
0V
-0.3V
REF-
Counterpart Register
Table 11. Bipolar Register:
Set desired channel(s) to 0.
See Table 11. Bipolar
Register:
Set desired channel(s) to 1.
Counterpart Register
Table 10. Unipolar Register:
Set desired channel(s) to 0.
Table 9. ADC Output as a Function of Unipolar/Bipolar Register Settings
CHANNEL SELECTION
BIT NAME
AIN0 Selection:
CHSEL[3:0] = 0000
CHSCAN0 = 1
AIN1 Selection:
CHSEL[3:0] = 0001
CHSCAN1 = 1
UNIPOLAR REGISTER
BIPOLAR REGISTER
FUNCTION
UCH0/1
PDIFF_COM
BCH0/1
0
0
0
AIN0 (binary, unipolar)
0
0
1
AIN0/1 pair (two’s complement, bipolar)
1
0
0
AIN0/1 pair (binary, unipolar)
1
0
1
AIN0/1 pair (binary, unipolar); Unipolar register
takes precedence
X
0
0
1
0
0
X
0
1
AIN0 referred to REF-/AIN15 (binary, unipolar)
AIN1 (binary, unipolar)
AIN0/1 pair (two’s complement, bipolar)
1
0
0
AIN0/1 pair (binary, unipolar)
1
0
1
AIN0/1 pair (binary, unipolar), Unipolar register
takes precedence
X
1
X
AIN1 referred to REF-/AIN15 (binary, unipolar)
���������������������������������������������������������������� Maxim Integrated Products 31
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 10. Unipolar Register
BIT NAME
BIT
DEFAULT
STATE
UNI_SETUP
15:11
—
UCH0/1
10
0
UCH2/3
9
0
UCH4/5
8
0
UCH6/7
7
0
UCH8/9
6
0
UCH10/11
5
0
UCH12/13
4
0
UCH14/15
3
0
PDIFF_COM
2
0
—
1:0
000
FUNCTION
Set to 10001 to select the Unipolar register.
Set to 1 to configure AIN0 and AIN1 for pseudo-differential conversion.
Set to 0 to configure AIN0 and AIN1 for single-ended conversion.
Set to 1 to configure AIN2 and AIN3 for pseudo-differential conversion.
Set to 0 to configure AIN2 and AIN3 for single-ended conversion.
Set to 1 to configure AIN4 and AIN5 for pseudo-differential conversion.
Set to 0 to configure AIN4 and AIN5 for single-ended conversion.
Set to 1 to configure AIN6 and AIN7 for pseudo-differential conversion.
Set to 0 to configure AIN6 and AIN7 for single-ended conversion.
Set to 1 to configure AIN8 and AIN9 for pseudo-differential conversion.
Set to 0 to configure AIN8 and AIN9 for single-ended conversion.
Set to 1 to configure AIN10 and AIN11 for pseudo-differential conversion.
Set to 0 to configure AIN10 and AIN11 for single-ended conversion.
Set to 1 to configure AIN12 and AIN13 for pseudo-differential conversion.
Set to 0 to configure AIN12 and AIN13 for single-ended conversion.
Set to 1 to configure AIN14 and AIN15 for pseudo-differential conversion.
Set to 0 to configure AIN14 and AIN15 for single-ended conversion.
Set to 1 to configure AIN0–AIN14 to be referenced to one common DC voltage on
the REF-/AIN15. Set to 0 to disable the 15:1 pseudo differential mode.
Unused.
Table 11. Bipolar Register
BIT NAME
BIT
DEFAULT
STATE
BIP_SETUP
15:11
—
Set to 10010 to select the Bipolar register.
BCH0/1
10
0
Set to 1 to configure AIN0 and AIN1 for bipolar fully differential conversion.
Set to 0 to configure AIN0 and AIN1 for unipolar conversion mode.
BCH2/3
9
0
Set to 1 to configure AIN2 and AIN3 for bipolar fully differential conversion.
Set to 0 to configure AIN2 and AIN3 for unipolar conversion mode.
BCH4/5
8
0
Set to 1 to configure AIN4 and AIN5 for bipolar fully differential conversion.
Set to 0 to configure AIN4 and AIN5 for unipolar conversion mode.
BCH6/7
7
0
Set to 1 to configure AIN6 and AIN7 for bipolar fully differential conversion.
Set to 0 to configure AIN6 and AIN7 for unipolar conversion mode.
BCH8/9
6
0
Set to 1 to configure AIN8 and AIN9 for bipolar fully differential conversion.
Set to 0 to configure AIN8 and AIN9 for unipolar conversion mode.
BCH10/11
5
0
Set to 1 to configure AIN10 and AIN11 for bipolar fully differential conversion.
Set to 0 to configure AIN10 and AIN11 for unipolar conversion mode.
BCH12/13
4
0
Set to 1 to configure AIN12 and AIN13 for bipolar fully differential conversion.
Set to 0 to configure AIN12 and AIN13 for unipolar conversion mode.
BCH14/15
3
0
Set to 1 to configure AIN14 and AIN15 for bipolar fully differential conversion.
Set to 0 to configure AIN14 and AIN15 for unipolar conversion mode.
—
2:0
000
FUNCTION
Unused.
���������������������������������������������������������������� Maxim Integrated Products 32
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Table 12. Custom Scan0 Register
BIT NAME
BIT
DEFAULT
STATE
CUST_SCAN0
15:11
—
Set to 10100 to select the Custom Scan0 register.
CHSCAN15
10
0
Set to 1 to scan AIN15. Set to 0 to omit AIN15.
CHSCAN14
9
0
Set to 1 to scan AIN14. Set to 0 to omit AIN14.
CHSCAN13
8
0
Set to 1 to scan AIN13. Set to 0 to omit AIN13.
CHSCAN12
7
0
Set to 1 to scan AIN12. Set to 0 to omit AIN12.
CHSCAN11
6
0
Set to 1 to scan AIN11. Set to 0 to omit AIN11.
CHSCAN10
5
0
Set to 1 to scan AIN10. Set to 0 to omit AIN10.
CHSCAN9
4
0
Set to 1 to scan AIN9. Set to 0 to omit AIN9.
CHSCAN8
3
0
Set to 1 to scan AIN8. Set to 0 to omit AIN8.
—
2:0
000
FUNCTION
Unused.
Table 13. Custom Scan1 Register
BIT NAME
BIT
DEFAULT
STATE
CUST_SCAN1
15:11
—
Set to 10101 to select the Custom Scan1 register.
CHSCAN7
10
0
Set to 1 to scan AIN7. Set to 0 to omit AIN7.
CHSCAN6
9
0
Set to 1 to scan AIN6. Set to 0 to omit AIN6.
CHSCAN5
8
0
Set to 1 to scan AIN5. Set to 0 to omit AIN5.
CHSCAN4
7
0
Set to 1 to scan AIN4. Set to 0 to omit AIN4.
CHSCAN3
6
0
Set to 1 to scan AIN3. Set to 0 to omit AIN3.
CHSCAN2
5
0
Set to 1 to scan AIN2. Set to 0 to omit AIN2.
CHSCAN1
4
0
Set to 1 to scan AIN1. Set to 0 to omit AIN1.
CHSCAN0
3
0
Set to 1 to scan AIN0. Set to 0 to omit AIN0.
—
2:0
000
FUNCTION
Unused.
Table 14. SampleSet Register
BIT NAME
BIT
DEFAULT STATE
SMPL_SET
15:11
—
SEQ_LENGTH
10:3
00000000
—
2:0
—
FUNCTION
Set to 10110 to select the SampleSet register.
8-bit binary word indicating desired sequence length. The equation is:
Sequence length = SEQ_LENGTH + 1
00000000 = Sequence length = 1
11111111 = Sequence length = 256
Coding: Straight binary
Maximum length: 256 ADC conversions
Unused.
���������������������������������������������������������������� Maxim Integrated Products 33
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
CS
SCLK
1
16
1
1
DIN
ENTRY 1
DOUT
WRITE SampleSet REGISTER
DEFINE SEQ_LENGTH
ENTRY 2
ENTRY N = (SEQ_LENGTH)
LOAD SampleSet PATTERN
TIME BETWEEN CS FALLING AND
RISING EDGE DEPENDS IN SEQ_LENGTH
WRITE ADC MODE CONTROL
OR CONTINUE WITH ADDITIONAL
CONFIGURATION SETTINGS
Figure 10. SampleSet Timing Diagram
Upon receiving the SampleSet pattern, the user can
set the ADC Mode Control register to begin the conversion process where data readout begins with the first
SampleSet entry. While the last conversion result is read,
the ADC can be instructed to enter AutoShutdown, if
desired. If the user wishes to change the SampleSet
length, a new pattern must be loaded into the ADC as
described in Figure 10.
Applications Information
How to Program Modes
1) Configure the ADC (set the MSB on DIN to 1).
2) Program ADC mode control (set the MSB on DIN to 0)
to begin the conversion process or to control power
management features.
• If ADC mode control is written during a conversion
sequence, the ADC finishes the present conversion and at the next falling edge of CS initiates its
new instruction.
• If configuration data (MSB on DIN is a 1) is written
during a conversion sequence, the ADC finishes
the present conversion in the existing scan mode.
However, data on DOUT is not valid in following
frames until a new ADC mode control instruction
is coded.
Programming Sequence Flow Chart
See Figure 11 for programming sequence.
Layout, Grounding, and Bypassing
For best performance, use PCBs with a solid ground
plane. Ensure that digital and analog signal lines are
separated from each other. Do not run analog and digital
(especially clock) lines parallel to one another or digital
lines underneath the ADC package. Noise in the VDD,
OVDD, and REF affects the ADC’s perfor­mance. Bypass
the VDD, OVDD, and REF to ground with 0.1FF and 10FF
bypass capacitors. Minimize capacitor lead and trace
lengths for best supply-noise rejection.
Choosing an Input Amplifier
It is important to match the settling time of the input
amplifier to the acquisition time of the ADC. The conver­
sion results are accurate when the ADC samples the
input signal for an interval longer than the input signal’s
worst-case settling time. By definition, settling time is
the interval between the application of an input voltage
step and the point at which the output signal reaches
and stays within a given error band centered on the
resulting steady-state amplifier output level. The ADC
input sampling capacitor charges during the sampling
cycle, referred to as the acquisition period. During this
acquisition period, the settling time is affected by the
input resistance and the input sampling capacitance.
This error can be estimated by looking at the settling
of an RC time constant using the input capacitance
and the source impedance over the acquisition time
period. Figure 13 shows a typical application circuit. The
MAX4430, offering a settling time of 37ns at 16-bit resolution, is an excellent choice for this application. See the
THD vs. Input Resistance graph in the Typical Operating
Characteristics.
���������������������������������������������������������������� Maxim Integrated Products 34
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
SELECT REFERENCE
EXTERNAL SINGLE-ENDED
EXTERNAL DIFFERENTIAL
SINGLE-ENDED
OR DIFFERENTIAL
SELECT ADC
CONFIGURATION REGISTER
SET REFSEL BIT TO 1
SELECT ADC
CONFIGURATION REGISTER
SET REFSEL BIT TO 0
FIGURE OUT NUMBER
OF CHANNELS TO USE (N)
FOR EACH ADC CHANNEL
SINGLE-ENDED
PSEUDODIFFERENTIAL
PSEUDO-DIFFERENTIAL
SELECT UNIPOLAR AND
REGISTER SET BIT PDIFF_COM
TO 1 FOR PSEUDODIFFERENTIAL SELECTION
SINGLE-ENDED
PSEUDODIFFERENTIAL
FULLYDIFFERENTIAL
SE, PsD/FD
SINGLE-ENDED
UNIPOLAR OR
BIPOLAR
BIPOLAR
SELECT UNIPOLAR AND
BIPOLAR REGISTER SET PER
CHANNEL UCH{X}/{X+1}
AND BCH{X}/{X+1} TO 0 FOR
SINGLE-ENDED SELECTION
SELECT BIPOLAR REGISTER
SET PER CHANNEL
BCH{X}/{X+1} TO 1
FOR BIPOLAR FULLY
DIFFERENTIAL
SELECT RANGE REGISTER SET PER CHANNEL
PAIR RANGE{X}/{X+1} TO 1 QVREF+
1
UNIPOLAR
SELECT UNIPOLAR
REGISTER SET PER
CHANNEL UCH{X}/{X+1}
TO 1 FOR UNIPOLAR
RANGE SELECT
0
FOR EACH ADC CHANNEL
SELECT RANGE REGISTER SET PER CHANNEL
PAIR RANGE{X}/{X+1} TO 0 QVREF+/2
NEXT CHANNEL
SEE FIGURE 12
Figure 11. ADC Programming Sequence
���������������������������������������������������������������� Maxim Integrated Products 35
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
INTERNAL
YES
REPEAT
AVERAGE
INTERNAL/EXTERNAL
CLOCK
NO
EXTERNAL
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 0001
SET CHSEL[3:0] TO CHANNEL NUMBER
SELECT THE PM[1:0] BITS
YES
YES
NO
MANUAL
NO
ADC CONFIGURATION REGISTER
SET AVG ON BIT TO 1
SET NAVG[1:0] TO N
ADC CONFIGURATION REGISTER
SET NSCAN[1:0] FOR SCAN COUNT
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 0010
SET CHSEL[3:0] TO CHANNEL NUMBER
SELECT THE RIGHT SWCNV BIT
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 0100
SET CHSEL[3:0] TO CHANNEL NUMBER
STANDARD-EXT
YES
NO
YES
STANDARD-INT
AVERAGE
NO
YES
NO
ADC CONFIGURATION REGISTER
SET AVG ON BIT TO 1
SET NAVG[1:0] TO N
ADC MODE CONTROL REGISTER
SET SCA[3:0] TO 0011
SET CHSEL[3:0] TO CHANNEL NUMBER
SELECT THE RIGHT SWCNV BIT
UPPER-INT
YES
AVERAGE
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 0110
SET CHSEL[3:0] TO CHANNEL NUMBER
UPPER-EXT
YES
NO
NO
YES
NO
ADC CONFIGURATION REGISTER
SET AVG ON BIT TO 1
SET NAVG[1:0] TO N
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 0101
SET CHSEL[3:0] TO CHANNEL NUMBER
SELECT THE RIGHT SWCNV BIT
CUSTOM-INT
NO
YES
AVERAGE
NO
SET CUSTOM Scan0 REGISTER
SET CUSTOM Scan1 REGISTER
CUSTOM-EXT
YES
NO
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 1000
SET CHSEL[3:0] TO CHANNEL NUMBER
YES
ADC CONFIGURATION REGISTER
SET AVGON BIT TO 1
SET NAVG[1:0] TO N
SET CUSTOM Scan0 REGISTER
SET CUSTOM Scan1 REGISTER
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 0111
SET CHSEL[3:0] TO CHANNEL NUMBER
SELECT THE RIGHT SWCNV BIT
SampleSet REGISTER
SET SEQ_DEPTH[7:0] TO SET
CHANNEL CAPTURE DEPTH
SampleSet
YES
FOLLOW SampleSet REGISTER WITH
CHANNEL PATTERN OF THE SAME SIZE
AS SEQUENCE DEPTH
ADC MODE CONTROL REGISTER
SET SCAN[3:0] TO 1001
SET CHSEL[3:0] TO CHANNEL NUMBER
Figure 12. ADC Mode Select Programming Sequence
���������������������������������������������������������������� Maxim Integrated Products 36
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Choosing a Reference
U Initial voltage accuracy
For devices using an external reference, the choice of the
reference determines the output accuracy of the ADC.
An ideal voltage reference provides a perfect initial accuracy and maintains the reference voltage indepen­dent
of changes in load current, temperature, and time. The
following parameters need to be considered in selecting
a reference:
U Temperature drift
U Current source capability
U Current sink capability
U Quiescent current
U Noise. The MAX6033 and MAX6043 are also excellent
reference choices (Figure 13).
+5V
0.1µF
10µF
VDD
100pF
VOVDD
VDD
0.1µF
500I
500I
INPUT 1
0.1µF
10µF
AGND
4
5
3
2
MAX11120–MAX11128
10I
1
MAX4430
VDC
OVDD
10µF
AIN0
COG
CAPACITOR
-5V
0.1µF
470pF
AIN1
10µF
COG
470pF
CAPACITOR
INPUT 2
10µF
0.1µF
SCLK
DOUT
MISO
CPU
AIN15
REF
+5V
SCLK
GND
CS
SS
DIN
MOSI
10µF
+5V
100pF
7
6
500I
500I
INPUT 2
4
0.1µF
5
MAX4430
VDC
3
2
10I
1
4
3
IN
OUTF
2
1µF
OUTS
GNDS
GND
MAX6126
NR
0.1µF
1
0.1µF
-5V
0.1µF
10µF
Figure 13. Typical Application Circuit
���������������������������������������������������������������� Maxim Integrated Products 37
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Definitions
Total Harmonic Distortion
Total harmonic distortion (THD) is expressed as:
Integral Nonlinearity
Integral nonlinearity (INL) is the deviation of the values
on an actual transfer function from a straight line. This
straight line can be either a best-straight-line fit or a line
drawn between the end points of the transfer function,
once offset and gain errors have been nulled. The static
linearity parameters for the MAX11120–MAX11128 are
measured using the end-points method.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between
an actual step width and the ideal value of 1 LSB. A DNL
error specification of 1 LSB or less guarantees no missing codes and a monotonic transfer function.
Signal-to-Noise Ratio
Signal-to-noise ratio is the ratio of the amplitude of the
desired signal to the amplitude of noise signals at a
given point in time. The larger the number, the better. The
theoretical minimum analog-to-digital noise is caused by
quantization error and results directly from the ADC’s
resolution (N bits):
SNR = (6.02 x N + 1.76) dB
In reality, there are other noise sources besides quantization noise, including thermal noise, reference noise, clock
jitter, etc. Therefore, SNR is computed by taking the ratio
of the RMS signal to the RMS noise, which includes all
spectral components minus the fundamental, the first five
harmonics, and the DC offset.
THD
=


V 2 + V32 + V42 + V52 
20 × log  2


V1


where V1 is the fundamental amplitude, and V2 through V5
are the amplitudes of the 2nd- through 5th-order harmonics.
Spurious-Free Dynamic Range
Spurious-free dynamic range (SFDR) is the ratio of the
RMS amplitude of the fundamental (maximum signal
component) to the RMS value of the next largest distortion component.
Full-Power Bandwidth
Full-power bandwidth is the frequency at which the input
signal amplitude attenuates by 3dB for a full-scale input.
Full-Linear Bandwidth
Full-linear bandwidth is the frequency at which the signal-to-noise plus distortion (SINAD) is more than 68dB.
Intermodulation Distortion
Any device with nonlinearities creates distortion products
when two sine waves at two different frequencies (f1 and
f2) are input into the device. Intermodulation distortion
(IMD) is the total power of the IM2 to IM5 intermodulation
products to the Nyquist frequency relative to the total
input power of the two input tones, f1 and f2. The individual input tone levels are at -6dBFS.
���������������������������������������������������������������� Maxim Integrated Products 38
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Ordering Information
PIN-PACKAGE
BITS
SPEED (Msps)
NO. OF CHANNELS
MAX11120ATI+*
PART
28 TQFN-EP**
8
1
4
MAX11121ATI+*
28 TQFN-EP**
10
1
4
MAX11122ATI+*
28 TQFN-EP**
12
1
4
MAX11123ATI+*
28 TQFN-EP**
8
1
8
MAX11124ATI+*
28 TQFN-EP**
10
1
8
MAX11125ATI+
28 TQFN-EP**
12
1
8
MAX11126ATI+
28 TQFN-EP**
8
1
16
MAX11127ATI+
28 TQFN-EP**
10
1
16
MAX11128ATI+
28 TQFN-EP**
12
1
16
Note: All devices are specified over the -40°C to +125°C temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*Future product—contact factory for availability.
**EP = Exposed pad.
Package Information
For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE
NO.
LAND
PATTERN NO.
28 TQFN-EP
T2855+3
21-0140
90-0023
���������������������������������������������������������������� Maxim Integrated Products 39
MAX11120–MAX11128
1Msps, Low-Power, Serial 12-/10-/8-Bit,
4-/8-/16-Channel ADCs
Revision History
REVISION
NUMBER
REVISION
DATE
0
12/11
Initial release
—
1
4/12
Released the MAX11125.
39
DESCRIPTION
PAGES
CHANGED
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
©
2012 Maxim Integrated Products
40
Maxim is a registered trademark of Maxim Integrated Products, Inc.
Similar pages