IRF IRHNB3160 Radiation hardened power mosfet surface mount (smd-3) Datasheet

PD - 91795A
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (SMD-3)
IRHNB7160
100V, N-CHANNEL
®
™
RAD Hard HEXFET TECHNOLOGY
Product Summary
Part Number
IRHNB7160
IRHNB3160
IRHNB4160
IRHNB8160
Radiation Level
100K Rads (Si)
300K Rads (Si)
600K Rads (Si)
1000K Rads (Si)
RDS(on)
0.040Ω
0.040Ω
0.040Ω
0.040Ω
ID
51A
51A
51A
51A
SMD-3
HEXFET®
International Rectifier’s RADHard
technology provides high performance power MOSFETs for
space applications. This technology has over a decade of proven performance and reliability in satellite
applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE).
The combination of low Rdson and low gate charge
reduces the power losses in switching applications
such as DC to DC converters and motor control. These
devices retain all of the well established advantages
of MOSFETs such as voltage control, fast switching,
ease of paralleling and temperature stability of electrical parameters.
Features:
!
!
!
!
!
!
!
!
!
!
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Proton Tolerant
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Package
Surface Mount
Light Weight
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current ➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy ➁
Avalanche Current ➀
Repetitive Avalanche Energy ➀
Peak Diode Recovery dv/dt ➂
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
Units
51
32.5
204
300
2.4
±20
500
51
30
7.3
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
300 ( for 5 sec)
3.5 (Typical )
C
g
For footnotes refer to the last page
www.irf.com
1
12/10/01
IRHNB7160
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Min
Typ Max Units
100
—
—
V
—
0.11
—
V/°C
—
—
2.0
16
—
—
—
—
—
—
—
—
0.040
0.045
4.0
—
25
250
Ω
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
4.0
100
-100
310
53
110
35
150
150
200
—
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
5300
1600
350
—
—
—
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, ID = 1.0mA
nC
VGS = 12V, ID =32.5A ➃
VGS = 12V, ID =51A
VDS = VGS, ID = 1.0mA
VDS > 15V, IDS = 32.5A ➃
VDS= 80V ,VGS=0V
VDS = 80V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID =51A
VDS = 50V
ns
VDD = 50V, ID =51A
VGS =12V, RG = 2.35Ω
V
S( )
Ω
Parameter
BVDSS
Drain-to-Source Breakdown Voltage
∆BV DSS/∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
µA
nA
nH
pF
Measured from the center of drain
pad to center of source pad
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
t rr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) ➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
51
204
1.8
520
6.5
Test Conditions
A
V
nS
µC
Tj = 25°C, IS = 51A, VGS = 0V ➃
Tj = 25°C, IF = 51A, di/dt ≤ 100A/µs
VDD ≤ 50V ➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
R thJC
RthJ-PCB
Junction-to-Case
Junction-to-PC board
Min Typ Max Units
—
—
—
1.6
Test Conditions
0.42 °C/W
— """"Soldered to a 1 inch square clad PC board
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHNB7160
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ➄➅
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
100 K Rads(Si)1
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source" ➃
On-State Resistance (TO-3)
Static Drain-to-Source" ➃
On-State Resistance (SMD-3)
Diode Forward Voltage" ➃
300 - 1000K Rads (Si)2
Units
Test Conditions
Min
Max
Min
Max
100
2.0
—
—
—
—
—
4.0
100
-100
25
0.040
100
1.25
—
—
—
—
—
4.5
100
-100
50
0.057
nA
µA
Ω
VGS = 0V, ID = 1.0mA
VGS = VDS, ID = 1.0mA
VGS = 20V
VGS = -20 V
VDS=80V, VGS =0V
VGS = 12V, ID =32.5A
—
0.040
—
0.057
Ω
VGS = 12V, ID =32.5A
—
1.8
—
1.8
V
VGS = 0V, IS = 51A
V
1. Part number IRHNB7160
2. Part numbers IRHNB3160, IRHNB4160 and IRHNB8160
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
LE T
MeV/(mg/cm²))
Energy
(MeV)
VDS(V)
Range
(µm)
@VGS=0V
@VGS=-5V @VGS=-10V @VGS=-15V
@VGS=-20V
Cu
28
285
43
100
100
100
80
60
Br
36.8
305
39
100
90
70
50
—
120
100
VDS
80
Cu
60
Br
40
20
0
0
-5
-10
-15
-20
-25
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHNB7160
1000
Pre-Irradiation
1000
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
100
100
10
5.0V
20 s PULSE WIDTH
TJ = 25 C
1
0.1
1
10
10
100
1
3.0
R DS(on) , Drain-to-Source On Resistance
(Normalized)
TJ = 25 C
100
TJ = 150 C
10
V DS = 50V
20 s PULSE WIDTH
6
7
8
9
10
11
12
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
100
Fig 2. Typical Output Characteristics
1000
5
10
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1
20 s PULSE WIDTH
TJ = 150 C
5.0V
VDS , Drain-to-Source Voltage (V)
I D , Drain-to-Source Current (A)
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
ID = 51A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature( C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
VGS =
Ciss =
Crss =
Coss =
C, Capacitance (pF)
8000
6000
0V,
f = 1MHz
Cgs + Cgd , Cds SHORTED
Cgd
Cds + Cgd
Ciss
4000
Coss
2000
20
VGS , Gate-to-Source Voltage (V)
10000
IRHNB7160
ID = 51A
VDS = 80V
VDS = 50V
VDS = 20V
16
12
8
4
Crss
0
1
10
FOR TEST CIRCUIT
SEE FIGURE 13
0
100
0
VDS , Drain-to-Source Voltage (V)
40
80
120
160
200
240
280
QG , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
1000
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
100us
100
100
TJ = 150 C
10
1ms
10ms
10
TJ = 25 C
1
0.0
V GS = 0 V
0.5
1.0
1.5
2.0
2.5
3.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
3.5
TC = 25 C
TJ = 150 C
Single Pulse
1
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHNB7160
Pre-Irradiation
60
VGS
50
I D , Drain Current (A)
RD
VDS
D.U.T.
RG
+
-VDD
40
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
30
Fig 10a. Switching Time Test Circuit
20
VDS
10
90%
0
25
50
75
100
125
150
TC , Case Temperature ( C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.01
0.001
0.00001
0.20
0.10
0.05
0.02
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
Pre-Irradiation
IRHNB7160
D R IVE R
L
D .U .T
RG
+
- VD D
IA S
VGS
20V
tp
TOP
1000
1 5V
VD S
EAS , Single Pulse Avalanche Energy (mJ)
1200
A
0 .0 1 Ω
Fig 12a. Unclamped Inductive Test Circuit
BOTTOM
ID
23A
32A
51A
800
600
400
200
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( C)
V (B R )D S S
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHNB7160
Pre-Irradiation
Foot Notes:
➀ Repetitive Rating; Pulse width limited by
maximum junction temperature.
➁ VDD = 25V, starting TJ = 25°C, L=0.38mH
Peak IL = 51A, VGS =12V
➂ ISD ≤ 51A, di/dt ≤ 410A/µs,
VDD ≤ 100V, TJ ≤ 150°C
➃ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
➄ Total Dose Irradiation with VGS Bias.
12 volt VGS applied and VDS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
➅ Total Dose Irradiation with VDS Bias.
80 volt VDS applied and VGS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — SMD-3
PAD ASSIGNMENTS
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 12/01
8
www.irf.com
Similar pages