IRF IRGPH20 Insulated gate bipolar transistor(vces=1200v, @vge=15v, ic=4.5a) Datasheet

Previous Datasheet
Index
Next Data Sheet
PD - 9.1137
IRGPH20M
INSULATED GATE BIPOLAR TRANSISTOR
Features
Short Circuit Rated
Fast IGBT
C
• Short circuit rated - 10µs @ 125°C, V GE = 15V
• Switching-loss rating includes all "tail" losses
• Optimized for medium operating frequency (1 to
10kHz) See Fig. 1 for Current vs. Frequency curve
VCES = 1200V
VCE(sat) ≤ 4.6V
G
@VGE = 15V, I C = 4.5A
E
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have
higher usable current densities than comparable bipolar transistors, while at
the same time having simpler gate-drive requirements of the familiar power
MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
These new short circuit rated devices are especially suited for motor control
and other applications requiring short circuit withstand capability.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ T C = 25°C
IC @ T C = 100°C
ICM
ILM
tsc
VGE
EARV
PD @ T C = 25°C
PD @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
1200
6.9
4.5
14
14
10
±20
5.0
60
24
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
Junction-to-Case
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
C-463
To Order
Min.
Typ.
Max.
—
—
—
—
—
0.24
—
6 (0.21)
2.1
—
40
—
Units
°C/W
g (oz)
Revision 1
Previous Datasheet
Index
Next Data Sheet
IRGPH20M
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
Conditions
1200 —
—
V
VGE = 0V, I C = 250µA
20
—
—
V
VGE = 0V, IC = 1.0A
—
1.3
—
V/°C VGE = 0V, I C = 1.0mA
—
3.1
4.6
IC = 4.5A
V GE = 15V
—
3.9
—
V
IC = 6.9A
See Fig. 2, 5
—
4.0
—
IC = 4.5A, T J = 150°C
3.0
—
5.5
VCE = VGE, IC = 250µA
—
-11
— mV/°C VCE = VGE, IC = 250µA
1.3 2.6
—
S
VCE = 100V, I C = 4.5A
—
—
250
µA
VGE = 0V, V CE = 1200V
—
— 1000
VGE = 0V, V CE = 1200V, T J = 150°C
—
— ±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
16
24
IC = 4.5A
4.4 7.0
nC
VCC = 400V
See Fig. 8
5.5 8.3
VGE = 15V
26
—
TJ = 25°C
13
—
ns
IC = 4.5A, V CC = 960V
43
65
VGE = 15V, R G = 50Ω
430 640
Energy losses include "tail"
0.33 —
0.78 —
mJ
See Fig. 9, 10, 11, 14
1.1 1.7
—
—
µs
VCC = 720V, T J = 125°C
VGE = 15V, R G = 50Ω, VCPK < 1000V
32
—
TJ = 150°C,
20
—
ns
IC = 4.5A, V CC = 960V
480
—
VGE = 15V, R G = 50Ω
450
—
Energy losses include "tail"
2.4
—
mJ
See Fig. 10, 14
13
—
nH
Measured 5mm from package
340
—
VGE = 0V
25
—
pF
VCC = 30V
See Fig. 7
4.7
—
ƒ = 1.0MHz
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 13b )
Repetitive rating; pulse width limited
by maximum junction temperature.
VCC=80%(V CES), VGE=20V, L=10µH,
R G= 50Ω, ( See fig. 13a )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-464
To Order
Pulse width 5.0µs,
single shot.
Previous Datasheet
Index
Next Data Sheet
IRGPH20M
12
F o r b o th :
9
Load Current (A)
T ria n g u la r w a v e :
D uty c y cle: 50%
TJ = 125°C
T sink = 90° C
G ate driv e as spe c ified
P o w e r D is s ip a tio n = 1 5 W
C la m p v o lta g e :
8 0 % o f ra te d
S q u a re w a v e :
6 0 % o f ra te d
v o lta g e
6
3
Id ea l d io d e s
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=I PK)
100
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 25°C
10
TJ = 150°C
1
TJ = 25°C
TJ = 150°C
10
VGE = 15V
20µs PULSE WIDTH A
0.1
1
VCC = 100V
5µs PULSE WIDTH A
1
5
10
10
15
VGE, Gate-to-Emitter Voltage (V)
VCE , Collector-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-465
To Order
20
Previous Datasheet
Index
Next Data Sheet
IRGPH20M
15
VGE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
8
6
4
2
12
I C = 9.0A
9
6
I C = 4.5A
3
IC = 2.3A
A
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
A
0
-60
150
TC , Case Temperature (°C)
-40
-20
0
20
40
60
80
100 120 140 160
TC, Case Temperature (°C)
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T herm al Response (Z thJ C )
10
1
D = 0.50
0 .2 0
0 .10
PD M
0.0 5
0.1
0.0 2
0 .01
t
SIN G LE P U LS E
(TH ER M AL R E SP O N SE )
t2
N o te s :
1 . D u ty fa c to r D = t
0.01
0.00001
1
1
/ t
2
2 . P e a k TJ = P D M x Z th J C + T C
0.0001
0.001
0.01
0.1
1
t 1 , R ectangular Pulse D uration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-466
To Order
10
Previous Datasheet
Index
Next Data Sheet
IRGPH20M
600
VGE , Gate-to-Emitter Voltage (V)
500
C, Capacitance (pF)
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
Cies
400
300
Coes
200
Cres
100
16
12
A
0
1
10
VCE = 400V
I C = 4.5A
8
4
A
0
100
0
4
VCE, Collector-to-Emitter Voltage (V)
1.06
A
1.04
10
20
10
= 960V
= 15V
= 25°C
= 4.5A
1.08
0
16
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
RG = 50Ω
V GE = 15V
V CC = 960V
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC
VGE
TC
IC
12
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
1.10
8
20
30
40
50
I C = 9.0A
I C = 4.5A
I C = 2.3A
1
A
0.1
60
-60
-40
-20
0
20
40
60
80
100 120 140 160
TC , Case Temperature (°C)
R G , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-467
To Order
Previous Datasheet
Index
Next Data Sheet
IRGPH20M
RG
TC
V CC
V GE
5.0
100
= 50Ω
= 150°C
= 960V
= 15V
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
6.0
4.0
3.0
2.0
1.0
10
SAFE OPERATING AREA
1
0.1
A
0.0
0
2
4
6
8
VGE = 20V
TJ = 125°C
A
0
10
1
10
100
1000
VCE, Collector-to-Emitter Voltage (V)
I C , Collector-to-Emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following:
Appendix G: Section D - page D-9
Fig. 13a - Clamped Inductive Load Test Circuit
Fig. 13b - Pulsed Collector Current Test Circuit
Fig. 14a - Switching Loss Test Circuit
Fig. 14b - Switching Loss Waveform
Package Outline 3 - JEDEC Outline TO-247AC
C-468
To Order
Section D - page D-13
10000
Similar pages