HUFA75542P3, HUFA75542S3S Data Sheet December 2001 75A, 80V, 0.014 Ohm, N-Channel, UltraFET® Power MOSFETs Packaging JEDEC TO-220AB JEDEC TO-263AB SOURCE DRAIN GATE Features • Ultra Low On-Resistance - rDS(ON) = 0.014Ω, VGS = 10V GATE SOURCE DRAIN (FLANGE) DRAIN (FLANGE) • Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com HUFA75542S3S HUFA75542P3 • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol D Ordering Information PART NUMBER PACKAGE BRAND HUFA75542P3 TO-220AB 75542P HUFA75542S3S TO-263AB 75542S G S Absolute Maximum Ratings NOTE: When ordering, use the entire part number. Add the suffix T to obtain the variant in tape and reel, e.g., HUFA75542S3ST. TC = 25oC, Unless Otherwise Specified HUFA75542P3, HUFA75542S3S UNITS 80 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 80 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 75 58 Figure 4 A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 14, 15 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 1.54 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS NOTE: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2001 Fairchild Semiconductor Corporation HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 80 - - V VDS = 75V, VGS = 0V - - 1 µA VDS = 70V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 0.012 0.014 Ω TO-220 and TO-263 - - 0.65 oC/W - - 62 oC/W - - 195 ns - 12.5 - ns - 117 - ns td(OFF) - 50 - ns tf - 80 - ns tOFF - - 195 ns - 150 180 nC - 80 96 nC - 5.7 7 nC THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 40V, ID = 75A VGS = 10V, RGS = 3.9Ω (Figures 18, 19) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 40V, ID = 75A, Ig(REF) = 1.0mA (Figures 13, 16, 17) Gate to Source Gate Charge Qgs - 15 - nC Gate to Drain "Miller" Charge Qgd - 33 - nC - 2750 - pF - 700 - pF - 250 - pF MIN TYP MAX UNITS ISD = 75A - - 1.25 V ISD = 37.5A - - 1.00 V trr ISD = 75A, dISD/dt = 100A/µs - - 102 ns QRR ISD = 75A, dISD/dt = 100A/µs - - 255 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2001 Fairchild Semiconductor Corporation SYMBOL VSD TEST CONDITIONS HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S Typical Performance Curves POWER DISSIPATION MULTIPLIER 1.2 80 VGS = 10V ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 60 40 20 0.2 0 0 25 0 25 50 75 100 125 150 50 175 75 100 125 150 175 TC, CASE TEMPERATURE (oC) TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC , NORMALIZED THERMAL IMPEDANCE 1 0.1 PDM NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t1 t2 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 1000 IDM , PEAK CURRENT (A) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: I = I25 175 - TC 150 VGS = 10V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2001 Fairchild Semiconductor Corporation HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S Typical Performance Curves (Continued) 1000 SINGLE PULSE TJ = MAX RATED TC = 25oC 100 100µs 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BV DSS - VDD) +1] IAS , AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 500 100 STARTING TJ = 25oC STARTING TJ = 150oC 10 0.001 10 100 0.01 0.1 1 10 200 tAV, TIME IN AVALANCHE (ms) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 150 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 120 ID , DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 150 90 60 TJ = 175oC 30 TJ = 25oC VGS = 20V VGS = 10V VGS = 7V 120 90 VGS = 5V 60 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC TJ = -55oC 0 0 2 3 4 0 6 5 1 VGS , GATE TO SOURCE VOLTAGE (V) 2 4 FIGURE 8. SATURATION CHARACTERISTICS 2.5 1.2 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 2.0 1.5 VGS = 10V, ID = 75A 1.0 0.5 -80 3 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS NORMALIZED DRAIN TO SOURCE ON RESISTANCE VGS = 6V -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE ©2001 Fairchild Semiconductor Corporation 200 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S Typical Performance Curves (Continued) 10000 VGS = 0V, f = 1MHz ID = 250µA 1.1 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 1.0 0.9 0.8 -80 -40 0 40 80 120 160 CISS = CGS + CGD 1000 COSS ≅ CDS + CGD CRSS = CGD 100 0.1 200 1 TJ , JUNCTION TEMPERATURE (oC) 10 80 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VGS , GATE TO SOURCE VOLTAGE (V) 10 VDD = 40V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 50A ID = 25A 2 0 0 20 40 60 80 100 Qg, GATE CHARGE (nC) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT ©2001 Fairchild Semiconductor Corporation HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG - VGS VDS VDD VDD DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + - VDD VGS = 10V VGS DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS - VDD 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 19. SWITCHING TIME WAVEFORM HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S PSPICE Electrical Model .SUBCKT HUFA75542P3 2 1 3 ; rev 15 Feb 2000 CA 12 8 4.4e-9 CB 15 14 4.2e-9 CIN 6 8 2.5e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 LGATE GATE 1 11 + 50 RDRAIN 6 8 EVTHRES + 19 8 + MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD EVTEMP RGATE + 18 22 9 20 21 EBREAK 16 17 18 - DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 5.5e-3 RGATE 9 20 1.0 RLDRAIN 2 5 10 RLGATE 1 9 26 RLSOURCE 3 7 11 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.3e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B ESLC - IT 8 17 1 DBREAK + RSLC2 ESG LDRAIN 2 5 1.0e-9 LGATE 1 9 2.6e-9 LSOURCE 3 7 1.1e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 87.2 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*230),2.5))} .MODEL DBODYMOD D (IS = 2.5e-12 RS = 2.85e-3 XTI = 5.5 TRS1 = 2e-3 TRS2 = 1e-6 CJO = 3.2e-9 TT = 5.5e-8 M = 0.6) .MODEL DBREAKMOD D (RS = 2.9e- 1TRS1 = 1e- 3TRS2 = 1e-6) .MODEL DPLCAPMOD D (CJO = 3.4e- 9IS = 1e-3 0M = 0.8 N = 10) .MODEL MMEDMOD NMOS (VTO = 3.06 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1) .MODEL MSTROMOD NMOS (VTO = 3.5 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.67 KP = 0.08 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 10) .MODEL RBREAKMOD RES (TC1 =1.3e- 3TC2 = -9e-7) .MODEL RDRAINMOD RES (TC1 = 1.1e-2 TC2 = 2.5e-5) .MODEL RSLCMOD RES (TC1 = 4.5e-3 TC2 = 1e-5) .MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.5e-3 TC2 = -1.1e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e- 3TC2 = 0) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.0 VOFF= -4.5) VON = -4.5 VOFF= -6.0) VON = -0.5 VOFF= 0.5) VON = 0.5 VOFF= -0.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2001 Fairchild Semiconductor Corporation HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S SABER Electrical Model REV 15 Feb 00 template hufa75542p3 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (is = 2.5e-12, rs = 2.85e-3, xti = 5.5, trs1 = 2e-3, trs2 = 1e-6, cjo = 3.2e-9, tt = 5.5e-8, m = 0.6) dp..model dbreakmod = (rs = 2.9e-1, trs1 = 1e-3, trs2 = 1e-6) dp..model dplcapmod = (cjo = 3.4e-9, is = 1e-30, m = 0.8, nl = 10) m..model mmedmod = (type=_n, vto = 3.06, kp = 4.8, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.5, kp = 80, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.67, kp = 0.08, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.0, voff = -4.5) DPLCAP 5 sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -4.5, voff = -6.0) 10 sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.5, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -0.5) RSLC1 DRAIN 2 RLDRAIN 51 c.ca n12 n8 = 4.4e-9 c.cb n15 n14 = 4.2e-9 c.cin n6 n8 = 2.5e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RSLC2 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 11 16 MWEAK 6 MSTRO m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u CIN DBODY EBREAK + 17 18 - MMED RLGATE res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -9e-7 res.rdrain n50 n16 = 5.5e-3, tc1 = 1.1e-2, tc2 = 2.5e-5 res.rgate n9 n20 = 1.0 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 26 res.rlsource n3 n7 = 11 res.rslc1 n5 n51 = 1e-6, tc1 = 4.5e-3, tc2 = 1e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.3e-3, tc1 = 0, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 0 res.rvthres n22 n8 = 1, tc1 = -2.5e-3, tc2 = -1.1e-5 DBREAK 50 - i.it n8 n17 = 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 2.6e-9 l.lsource n3 n7 = 1.1e-9 LDRAIN 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - spe.ebreak n11 n7 n17 n18 = 87.2 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/230))** 2.5)) } } ©2001 Fairchild Semiconductor Corporation HUFA75542P3, HUFA75542S3S Rev. B HUFA75542P3, HUFA75542S3S SPICE Thermal Model th JUNCTION REV 15 Feb 00 T75542 CTHERM1 th 6 4.1e-3 CTHERM2 6 5 5.5e-3 CTHERM3 5 4 8.6e-3 CTHERM4 4 3 1.5e-2 CTHERM5 3 2 1.6e-2 CTHERM6 2 tl 6.5e-2 RTHERM1 RTHERM1 th 6 2.0e-4 RTHERM2 6 5 3.5e-3 RTHERM3 5 4 2.5e-2 RTHERM4 4 3 9.0e-2 RTHERM5 3 2 1.6e-1 RTHERM6 2 tl 2.3e-1 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model t75542 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 4.1e-3 ctherm.ctherm2 6 5 = 5.5e-3 ctherm.ctherm3 5 4 = 8.6e-3 ctherm.ctherm4 4 3 = 1.5e-2 ctherm.ctherm5 3 2 = 1.6e-2 ctherm.ctherm6 2 tl = 6.5e-2 rtherm.rtherm1 th 6 = 2.0e-4 rtherm.rtherm2 6 5 = 3.5e-3 rtherm.rtherm3 5 4 = 2.5e-2 rtherm.rtherm4 4 3 = 9.0e-2 rtherm.rtherm5 3 2 = 1.6e-1 rtherm.rtherm6 2 tl = 2.3e-1 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2001 Fairchild Semiconductor Corporation CASE HUFA75542P3, HUFA75542S3S Rev. B TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4