PD - 97669 IRF8327SPbF IRF8327STRPbF DirectFET® Power MOSFET l l l l l l l l l l RoHS Compliant and Halogen Free Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for Control FET application Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques 100% Rg tested Typical values (unless otherwise specified) VDSS VGS RDS(on) RDS(on) 30V max ±20V max 5.1mΩ@ 10V 8.5mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 3.0nC 1.2nC 19nC 7.9nC 1.9V tot 9.2nC DirectFET® ISOMETRIC SQ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SX SQ ST MQ MX MT MP Description The IRF8327SPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET ® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF8327SPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF8327SPbF has been optimized for parameters that are critical in synchronous buck operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g h VGS, Gate-to-Source Voltage (V) Typical RDS(on) (mΩ) 25 ID = 14A 20 15 T J = 125°C 10 5 T J = 25°C 0 0 5 10 15 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com e e f Max. Units 30 ±20 14 11 60 110 62 11 V A mJ A 14.0 ID= 11A 12.0 10.0 VDS= 24V VDS= 15V VDS= 6.0V 8.0 6.0 4.0 2.0 0.0 0 5 10 15 20 25 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.1mH, RG = 25Ω, IAS = 11A. 1 05/04/11 IRF8327SPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 30 ––– ΔΒVDSS/ΔTJ RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 22 5.1 VGS(th) Gate Threshold Voltage ––– 1.4 8.5 1.9 VGS = 0V, ID = 250μA ––– V ––– mV/°C Reference to 25°C, ID = 1mA 7.3 mΩ VGS = 10V, ID = 14A VGS = 4.5V, ID = 11A 10.9 VDS = VGS, ID = 25μA 2.4 V ΔVGS(th)/ΔTJ IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– ––– -6.3 ––– ––– ––– 1.0 150 IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– 100 -100 Forward Transconductance Total Gate Charge 25 ––– ––– 9.2 ––– 14 Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– ––– 2.7 1.2 3.0 ––– ––– ––– Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 2.3 4.2 ––– ––– Output Charge Gate Resistance ––– ––– 7.9 2.1 ––– 3.7 Turn-On Delay Time Rise Time Turn-Off Delay Time ––– ––– ––– 7.8 8.9 9.3 ––– ––– ––– Fall Time Input Capacitance ––– ––– 5.3 1430 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 370 140 ––– ––– Min. Typ. Max. Units ––– ––– gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss i i mV/°C μA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C V nA GS = 20V S VGS = -20V VDS = 15V, ID = 11A VDS = 15V nC VGS = 4.5V ID = 11A See Fig. 15 nC VDS = 16V, VGS = 0V Ω VDD = 15V, VGS = 4.5V ns ID = 11A i RG = 1.8Ω pF See Fig. 17 VGS = 0V VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current g ––– ––– Conditions A MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 11A, VGS = 0V TJ = 25°C, IF = 11A 52 110 (Body Diode) Diode Forward Voltage ––– 0.80 1.0 V Reverse Recovery Time Reverse Recovery Charge ––– ––– 17 19 26 29 ns nC di/dt = 230A/μs i i Notes: Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com IRF8327SPbF Absolute Maximum Ratings e e f PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG Max. Units 2.2 1.4 42 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range °C Thermal Resistance Parameter el jl kl fl RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e Typ. Max. Units ––– 12.5 20 ––– 1.0 58 ––– ––– 3.0 ––– °C/W 0.017 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 1 0.20 0.10 0.05 0.02 0.01 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ2 τ1 τ3 τ2 Ci= τi/Ri Ci= τi/Ri 0.01 0.001 1E-006 0.0001 τA 30.637 0.75858 22.090 36.9 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 τ3 Ri (°C/W) τi (sec) 5.276 0.00315 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad with large heatsink. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF8327SPbF 1000 TOP ID, Drain-to-Source Current (A) 100 BOTTOM 10 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 1 0.1 2.5V TOP ID, Drain-to-Source Current (A) 1000 100 BOTTOM 10 2.5V 1 ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 25°C 0.01 0.1 1 Tj = 150°C 0.1 10 0.1 100 VDS, Drain-to-Source Voltage (V) 100 2.0 VDS = 15V ≤60μs PULSE WIDTH ID = 14A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 10 Fig 5. Typical Output Characteristics 1000 100 T J = 150°C T J = 25°C T J = -40°C 10 1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 10000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 40 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED T J = 25°C 35 C rss = C gd Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Ciss 1000 Coss Crss Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 8.0V Vgs = 10V 30 25 20 15 10 5 100 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 0 20 40 60 80 100 120 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF8327SPbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 150°C 100 T J = 25°C T J = -40°C 10 1 VGS = 0V 100 10 1msec 0.1 0.10 1.00 10.00 100.00 VDS, Drain-to-Source Voltage (V) Fig11. Maximum Safe Operating Area 3.0 Typical VGS(th) Gate threshold Voltage (V) 60 50 ID, Drain Current (A) T A = 25°C T J = 150°C 0.01 VSD, Source-to-Drain Voltage (V) 40 30 20 10 2.5 2.0 1.5 125 ID = 25μA ID = 100μA ID = 150μA ID = 250μA ID = 1.0mA ID = 1.0A 1.0 0 100 DC Single Pulse Fig 10. Typical Source-Drain Diode Forward Voltage 75 10msec 1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 50 100μsec 0.01 0 25 OPERATION IN THIS AREA LIMITED BY R DS(on) -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 250 ID 0.82A 1.0A BOTTOM 11A TOP 200 150 100 50 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF8327SPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 15a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T V RGSG 20V DRIVER L VDS tp + - VDD IAS tp I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VDS VGS RG VDS RD 90% D.U.T. + - VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 A 10% VGS td(on) tr t d(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF8327SPbF Driver Gate Drive D.U.T + - RG * • • • • *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD ** P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel ISD *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs DirectFET® Board Footprint, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G D www.irf.com S D 7 IRF8327SPbF DirectFET® Outline Dimension, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC IMPERIAL MIN MAX CODE MIN MAX 4.75 4.85 0.187 0.191 A 3.70 3.95 0.146 0.156 B 0.108 2.75 2.85 0.112 C 0.014 0.35 0.45 0.018 D 0.48 0.52 0.019 0.020 E 0.78 0.82 0.031 0.032 F 0.88 0.92 0.035 0.036 G H 0.78 0.82 0.031 0.032 J N/A N/A N/A N/A 0.93 0.97 0.037 0.038 K L 2.00 2.10 0.079 0.083 M 0.59 0.70 0.023 0.028 0.08 0.17 0.003 0.007 P R 0.020 0.080 0.0008 0.0031 Dimensions are shown in millimeters (inches) DirectFET® Part Marking GATE MARKING LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" 8 www.irf.com IRF8327SPbF DirectFET® Tape & Reel Dimension (Showing component orientation). E A B D C F G H NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF8327STRPBF). For 1000 parts on 7" reel, order IRF8327STR1PBF REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) METRIC METRIC IMPERIAL IMPERIAL MIN MAX MIN MIN MAX CODE MIN MAX MAX 6.9 12.992 N.C 330.0 N.C A 177.77 N.C N.C 0.75 0.795 N.C 20.2 B 19.06 N.C N.C N.C 0.53 0.504 0.50 12.8 C 13.5 0.520 13.2 12.8 0.059 D 0.059 N.C 1.5 1.5 N.C N.C N.C 2.31 E 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C 0.53 N.C N.C 0.724 N.C 18.4 13.50 G 0.47 0.488 N.C 12.4 0.567 11.9 14.4 12.01 H 0.47 0.469 N.C 11.9 0.606 11.9 15.4 12.01 LO AD ED TAPE FEED DIRECTION A H F C D B E NOTE: CONTROLLING DIMENSIONS IN MM CO DE A B C D E F G H G DIMENSIO NS IMPERIAL METRIC MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 3.90 0.161 4.10 0.469 0.484 11.90 12.30 0.215 5.45 0.219 5.55 0.158 4.00 0.165 4.20 0.197 5.00 0.205 5.20 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/2011 www.irf.com 9