IRF IRF8327SPBF Directfet power mosfet Datasheet

PD - 97669
IRF8327SPbF
IRF8327STRPbF
DirectFET® Power MOSFET ‚
l
l
l
l
l
l
l
l
l
l
RoHS Compliant and Halogen Free 
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible 
Ultra Low Package Inductance
Optimized for High Frequency Switching 
Ideal for CPU Core DC-DC Converters
Optimized for Control FET application
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques 
100% Rg tested
Typical values (unless otherwise specified)
VDSS
VGS
RDS(on)
RDS(on)
30V max ±20V max 5.1mΩ@ 10V 8.5mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
3.0nC
1.2nC
19nC
7.9nC
1.9V
tot
9.2nC
DirectFET® ISOMETRIC
SQ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SX
SQ
ST
MQ
MX
MT
MP
Description
The IRF8327SPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET ® package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET® package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF8327SPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF8327SPbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
VGS, Gate-to-Source Voltage (V)
Typical RDS(on) (mΩ)
25
ID = 14A
20
15
T J = 125°C
10
5
T J = 25°C
0
0
5
10
15
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
e
e
f
Max.
Units
30
±20
14
11
60
110
62
11
V
A
mJ
A
14.0
ID= 11A
12.0
10.0
VDS= 24V
VDS= 15V
VDS= 6.0V
8.0
6.0
4.0
2.0
0.0
0
5
10
15
20
25
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 1.1mH, RG = 25Ω, IAS = 11A.
1
05/04/11
IRF8327SPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
ΔΒVDSS/ΔTJ
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
22
5.1
VGS(th)
Gate Threshold Voltage
–––
1.4
8.5
1.9
VGS = 0V, ID = 250μA
–––
V
––– mV/°C Reference to 25°C, ID = 1mA
7.3
mΩ VGS = 10V, ID = 14A
VGS = 4.5V, ID = 11A
10.9
VDS = VGS, ID = 25μA
2.4
V
ΔVGS(th)/ΔTJ
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
–––
-6.3
–––
–––
–––
1.0
150
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
Forward Transconductance
Total Gate Charge
25
–––
–––
9.2
–––
14
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
–––
2.7
1.2
3.0
–––
–––
–––
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
2.3
4.2
–––
–––
Output Charge
Gate Resistance
–––
–––
7.9
2.1
–––
3.7
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
–––
–––
–––
7.8
8.9
9.3
–––
–––
–––
Fall Time
Input Capacitance
–––
–––
5.3
1430
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
370
140
–––
–––
Min.
Typ. Max. Units
–––
–––
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
i
i
mV/°C
μA VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
V
nA
GS = 20V
S
VGS = -20V
VDS = 15V, ID = 11A
VDS = 15V
nC
VGS = 4.5V
ID = 11A
See Fig. 15
nC
VDS = 16V, VGS = 0V
Ω
VDD = 15V, VGS = 4.5V
ns
ID = 11A
i
RG = 1.8Ω
pF
See Fig. 17
VGS = 0V
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
ISM
VSD
trr
Qrr
Continuous Source Current
(Body Diode)
Pulsed Source Current
g
–––
–––
Conditions
A
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 11A, VGS = 0V
TJ = 25°C, IF = 11A
52
110
(Body Diode)
Diode Forward Voltage
–––
0.80
1.0
V
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
17
19
26
29
ns
nC
di/dt = 230A/μs
i
i
Notes:
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRF8327SPbF
Absolute Maximum Ratings
e
e
f
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
Max.
Units
2.2
1.4
42
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
Typ.
Max.
Units
–––
12.5
20
–––
1.0
58
–––
–––
3.0
–––
°C/W
0.017
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
1
0.20
0.10
0.05
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
τA
τ2
τ1
τ3
τ2
Ci= τi/Ri
Ci= τi/Ri
0.01
0.001
1E-006
0.0001
τA
30.637
0.75858
22.090
36.9
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
τ3
Ri (°C/W) τi (sec)
5.276
0.00315
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ
Notes:
ˆ Used double sided cooling , mounting pad with large heatsink.
‰ Mounted on minimum footprint full size board with metalized
Š Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF8327SPbF
1000
TOP
ID, Drain-to-Source Current (A)
100
BOTTOM
10
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
1
0.1
2.5V
TOP
ID, Drain-to-Source Current (A)
1000
100
BOTTOM
10
2.5V
1
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 25°C
0.01
0.1
1
Tj = 150°C
0.1
10
0.1
100
VDS, Drain-to-Source Voltage (V)
100
2.0
VDS = 15V
≤60μs PULSE WIDTH
ID = 14A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
10
Fig 5. Typical Output Characteristics
1000
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
0.1
V GS = 10V
V GS = 4.5V
1.5
1.0
0.5
1.5
2.0
2.5
3.0
3.5
4.0
4.5
20 40 60 80 100 120 140 160
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
10000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
40
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
T J = 25°C
35
C rss = C gd
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
C, Capacitance(pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Ciss
1000
Coss
Crss
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 8.0V
Vgs = 10V
30
25
20
15
10
5
100
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
0
20
40
60
80
100
120
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF8327SPbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
100
T J = 25°C
T J = -40°C
10
1
VGS = 0V
100
10
1msec
0.1
0.10
1.00
10.00
100.00
VDS, Drain-to-Source Voltage (V)
Fig11. Maximum Safe Operating Area
3.0
Typical VGS(th) Gate threshold Voltage (V)
60
50
ID, Drain Current (A)
T A = 25°C
T J = 150°C
0.01
VSD, Source-to-Drain Voltage (V)
40
30
20
10
2.5
2.0
1.5
125
ID = 25μA
ID = 100μA
ID = 150μA
ID = 250μA
ID = 1.0mA
ID = 1.0A
1.0
0
100
DC
Single Pulse
Fig 10. Typical Source-Drain Diode Forward Voltage
75
10msec
1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
50
100μsec
0.01
0
25
OPERATION IN THIS AREA
LIMITED BY R DS(on)
-75 -50 -25
150
0
25
50
75 100 125 150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
250
ID
0.82A
1.0A
BOTTOM 11A
TOP
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF8327SPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
D.U.T
V
RGSG
20V
DRIVER
L
VDS
tp
+
- VDD
IAS
tp
I AS
0.01Ω
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
VDS
RD
90%
D.U.T.
+
- VDD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 17a. Switching Time Test Circuit
6
A
10%
VGS
td(on)
tr
t d(off) tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF8327SPbF
Driver Gate Drive
D.U.T
ƒ
+
‚
-

RG
*
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
**
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET® Board Footprint, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
G
D
www.irf.com
S
D
7
IRF8327SPbF
DirectFET® Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
IMPERIAL
MIN
MAX
CODE MIN MAX
4.75
4.85
0.187
0.191
A
3.70
3.95
0.146
0.156
B
0.108
2.75
2.85
0.112
C
0.014
0.35
0.45
0.018
D
0.48
0.52
0.019
0.020
E
0.78
0.82
0.031
0.032
F
0.88
0.92
0.035
0.036
G
H
0.78
0.82
0.031
0.032
J
N/A
N/A
N/A
N/A
0.93
0.97
0.037
0.038
K
L
2.00
2.10
0.079
0.083
M
0.59
0.70
0.023
0.028
0.08
0.17
0.003
0.007
P
R
0.020 0.080 0.0008 0.0031
Dimensions are shown in
millimeters (inches)
DirectFET® Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
8
www.irf.com
IRF8327SPbF
DirectFET® Tape & Reel Dimension (Showing component orientation).
E
A
B
D
C
F
G
H
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF8327STRPBF). For 1000 parts on 7"
reel, order IRF8327STR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
METRIC
METRIC
IMPERIAL
IMPERIAL
MIN
MAX
MIN
MIN
MAX
CODE
MIN
MAX
MAX
6.9
12.992
N.C
330.0
N.C
A
177.77 N.C
N.C
0.75
0.795
N.C
20.2
B
19.06
N.C
N.C
N.C
0.53
0.504
0.50
12.8
C
13.5
0.520
13.2
12.8
0.059
D
0.059
N.C
1.5
1.5
N.C
N.C
N.C
2.31
E
3.937
N.C
100.0
58.72
N.C
N.C
N.C
F
N.C
0.53
N.C
N.C
0.724
N.C
18.4
13.50
G
0.47
0.488
N.C
12.4
0.567
11.9
14.4
12.01
H
0.47
0.469
N.C
11.9
0.606
11.9
15.4
12.01
LO AD ED TAPE FEED DIRECTION
A
H
F
C
D
B
E
NOTE: CONTROLLING
DIMENSIONS IN MM
CO DE
A
B
C
D
E
F
G
H
G
DIMENSIO NS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311
0.319
7.90
8.10
0.154
3.90
0.161
4.10
0.469
0.484
11.90
12.30
0.215
5.45
0.219
5.55
0.158
4.00
0.165
4.20
0.197
5.00
0.205
5.20
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/2011
www.irf.com
9
Similar pages