AVAGO MGA-16116-TR1G Dual lna for balanced application 450 â 1450 mhz Datasheet

MGA-16116
Dual LNA for Balanced Application 450 – 1450 MHz
Data Sheet
Description
Features
Avago Technologies’ MGA-16116 is an ultra low-noise
high linearity amplifier pair with built-in active bias and
shutdown features for balanced applications in the 900
MHz band. Shutdown functionality is achieved using a
single DC voltage input pin.High linearity is achieved
through the use of Avago Technologies’ proprietary GaAs
Enhancement-mode pHEMT process [1]. It is housed in a
miniature 4.0 x 4.0 x 0.85 mm 16-pin Quad Flat No-lead
(QFN). The compact footprint coupled with ultra low noise
and high linearity makes MGA-16116 an ideal choice for
basestation transmitters and receivers.
• Ultra Low Noise Figure
For applications > 1450 MHz, it is recommended to use
MGA-16216 1440-2350 MHz or MGA-16316 1950-4000
MHz. All 3 products share the same package and pin out
configuration.
• Gain: 18.4 dB
Component Image
• Shutdown voltage Vsd range > 1.6 V
4.0 x 4.0 x 0.85 mm3 16-Lead QFN
Pin 13
Pin 14
Pin 15
Pin 16
Pin Configuration
Pin Use
Pin 12
Pin 1
Pin 2
Pin 11
Pin 17
Pin 3
Pin 10
Pin 9
Pin 8
Pin 7
Pin 6
Pin 5
Pin 4
VIEW FROM THE TOP
• High IIP3: +19 dBm typ.
• GaAs E-pHEMT Technology [1]
• Small package size: 4.0 x 4.0 x 0.85 mm3
• RoHS and MSL1 compliant.
Typical Performances
900 MHz @ 4.8 V, 60.9 mA (typ per amplifier)
• NF: 0.27 dB [2]
• IIP3: 19.1 dBm
• P1dB: 21.2 dBm
• Total shutdown current (Vsd1, Vsd2 = 3 V): 1.84 mA
Note:
Package marking provides orientation and
identification
“16116 “ = Device Code
“YYWW” = Date Code identifies year and
work week of manufacturing
“XXXX” = Last 4 digit of assembly lot
number
AVAGO
16116
YYWW
XXXX
• Variable Bias and Shutdown functionality
• Basestation receivers and transmitters in balanced
configuration.
• Ultra low-noise RF amplifiers.
Notes:
1. Enhancement mode technology employs positive Vgs, thereby
eliminating the need of negative gate voltage associated with
conventional depletion mode devices.
2. Measured at RFin pin of packaged part, other losses deembedded.
3. Good RF practice requires all unused pins to be grounded.
Pin Use
1 RFIN1
10 GND
2 GND
11 GND
3 GND
12 RFOUT1
4 RFIN2
13 Not used
5 Bias_out2 14 Bias_in1
6 Vsd2
15 Vsd1
7 Bias_in2
16 Bias_out1
8 Not used 17 GND
9 RFOUT2
Applications
– –
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 60 V
ESD Human Body Model = 300 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Absolute Maximum Rating [1] TA = 25° C
Thermal Resistance [3]
Symbol
Parameter
Units
Absolute Maximum
Vdd
Drain Voltage, RF output to ground
V
5.5
Idd
Drain Current
mA
100
Vsd
Shutdown Voltage
V
5.5
Pin
CW RF Input Power with LNA On
dBm
27
Pin
CW RF Input Power with LNA Off
dBm
27
Pd
Power Dissipation
mW
550
Tj
Junction Temperature
°C
150
Tstg
Storage Temperature
°C
-65 to 150
(Vd = 4.8 V, Idd = 53 mA, Tc =100° C)
qjc = 58.6°C/W
Notes:
1. Operation of this device is excess of any
of these limits may cause permanent
damage.
2. Source lead temperature is 25° C. Derate
17 mW/°C for Tc > 118° C.
3. Thermal resistance measured using 150° C
Infra-Red Microscopy Technique.
Electrical Specifications
TA = 25° C, Vdd1 = Vdd2 = 4.8 V, Vsd1 = Vsd2 = 0 V at Rbias = 1.5 kohm, RF performance at 900 MHz, CW operation unless
otherwise stated.
Symbol
Parameter and Test Condition
Units
Vdd
Supply Voltage
V
Idd
Total Supply Current per amplifier (Idq+Ibias)
mA
48
60.9
72
Gain
Gain
dB
17.2
18.4
19.4
NF [1]
Noise Figure
dB
0.27
0.45
OP1dB
Output Power at 1dB Gain Compression
dBm
IIP3 [2]
Input Third Order Intercept Point
dBm
S11
Input Return Loss, 50 Ω source
dB
-10.9
S22
Output Return Loss, 50 Ω load
dB
-17.5
S12
Reverse Isolation
dB
-22.4
S31
Isolation between RFin1 and RFin2
dB
-36.8
Vsd1,2 [3]
Maximum shutdown voltage required to turn ON LNA
V
0.5
Vsd1,2 [3]
Minimum shutdown voltage required to turn OFF LNA
V
1.6
Idq [4]
Current at Vdd with Vsd = 0 V
mA
58.6
Current at Vdd with Vsd = 3 V
mA
0.01
Current at Vsd with Vsd = 0 V
mA
4
Current at Vsd with Vsd = 3 V
mA
220
Current at Vbias with Vsd = 0 V
mA
2.3
Current at Vbias with Vsd = 3 V
mA
1.61
Isd [4]
Ibias [4]
Notes:
1. Noise figure at the DUT RF Input pin, board losses are deembedded.
2. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.
3. Vsd1 and Vsd2 are active LOW.
4. Refer to Figure 6 for more details.
2
Min.
Typ.
Max.
4.8
21.2
17
19.1
Product Consistency Distribution Charts
LSL
45
USL
USL
50
55
60
65
70
75
Figure 1. Idd, LSL = 48 mA , nominal = 60.9 mA, USL = 72 mA
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Figure 2. NF, nominal = 0.27 dB, USL = 0.45 dB
LSL
16
17
LSL
18
19
20
21
Figure 3. IIP3, LSL = 17 dBm, nominal = 19.1 dBm
22
23
24
16.9
17.2
USL
17.5
17.8 18 18.2
18.5
18.8 19 19.2
19.5
Figure 4. Gain, LSL = 17.2 dB, nominal = 18.4 dB, USL = 19.4 dB
Notes:
1. Distribution data sample size is 6500 samples taken from 12 different wafer lots. Future wafers allocated to this product may have nominal values
anywhere between the upper and lower limits.
2. Circuit trace losses for NF have been de-embedded from measurements above.
3
Vdd1
Vdd2
Demo Board Schematic
Vsd1
Vsd2
Demo Board Layout
APRIL 2011
R9
C20
RFIN
C3
C6
R3
C7
L3
C16
L2
C12
R6
C13
C24
C25
C8
R4
C23
C2
R1
C1
L1
R10
L4
C21
R8
MGA-16X16
Demoboard
(4-Port)
Rev 1
C9
C19
RFOUT
R7
C22
C26
RO4350
DK 3.48
H 10mil
W 0.58mm
G 0.45mm
Figure 6. Demo Board Schematic Diagram
Figure 5. Demo Board Layout Diagram
Notes:
1. Recommended PCB material is 10 mils Rogers RO4350.
2. Suggested component values may vary according to layout and PCB material.
3. Input board loss at 900 MHz is 0.056 dB
4. The schematic is shown with the assumption that similar PCB is used for all MGA-16116, MGA-16216 and MGA-16316.
5. Detail of the components needed for this product is shown in Table 1.
6. R1 and R6 are for low frequency stability.
7. Bias to each LNA is adjustable using R3 and R8 (see Figure 6). Increasing R3 and R8 will reduce bias current (Idd) and vice-versa.
8. R9/R10 are stability improvement resistors that may not be needed in actual application. They are included in the demoboard to provide isolation
from power supply noise.
9. Center Paddle is grounded.
Table 1. Component list for 900 MHz matching
PART
Size
Value
Detail Part Number
C1, C12
0402
20 pF
GJM1555C1H200GB01
C2, C13, C8, C22
0402
0.1 mF
GRM155R71C104KA88D
C3, C9, C16, C19
0402
100 pF
GRM1555C1H101JD01E
C6, C20, C23, C34
0805
4.7 mF
GRM21BR60J475KA11L
C7, C21
0402
12 pF
GJM1555C1H120GB01
C25, C26
0402
NOT USED
–
L1, L2
0402
68 nH
LQW15AN68NG00
L3, L4
0402
120 nH
LQW15ANR12J00
R1, R6
0402
51 ohm
RK73B1ETTP510J
R3, R8
0402
1.5 kohm
RK73B1ELTP152J
R4, R7
0402
0 ohm
RK73B1ETTP0R0J
R9, R10
0402
10 ohm
RK73B1ETTP100J
4
Table 2. Below is the table showing the MGA-16116 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,
Idd = 35 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.
Gamma Load Position
Frequency (MHz)
Magnitude
Angle
IIP3 (dBm)
Gain (dB)
450
0.51
44.1
17.38
20.02
700
0.643
34.9
22.09
16.8
835
0.643
46.5
25.18
15.1
950
0.386
40.0
23.20
16.62
1450
0.514
86.4
25.77
14.39
Table 3. Below is the table showing the MGA-16116 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,
Idd = 60 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.
Gamma Load Position
Frequency (MHz)
Magnitude
Angle
IIP3 (dBm)
Gain (dB)
450
0.514
43.2
21.32
20.34
700
0.39
40.5
23.15
18.6
835
0.515
57.6
26.90
16.1
950
0.386
20.0
26.71
16.31
1450
0.643
92.9
29.83
13.98
Table 4. Below is the table showing the MGA-16116 Reflection Coefficient Parameters tuned for Maximum OIP3, Vdd = 4.8 V,
Idd = 75 mA per amplifier. Input gamma is tuned for Fmin. The reflection coefficients are for single amplifier.
Gamma Load Position
Frequency (MHz)
Magnitude
Angle
IIP3 (dBm)
Gain (dB)
450
0.128
59.8
21.07
22.75
700
0.257
30.1
24.33
19.16
835
0.257
149.9
23.80
18.46
950
0.128
180
24.74
17.98
1450
0.257
29.9
28.73
15.03
Notes:
1. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.
2. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.
Notes:
1. Maximum OIP3 is measured on coplanar waveguide made on 0.010
inch thick ROGER 4350.
Figure 7. RFinput and RFoutput Reference Plane
5
Typical 900 MHz RF Performance Plots
RF performance at TA = 25° C, Vdd = 4.8 V, Idd = 60 mA. Measurements made on single-ended amplifier in LNA mode
tuned to 900 MHz, using Figure 5 demoboard and Figure 6 circuit. Signal = CW unless stated otherwise. IIP3 test condition:
FRF1-FRF2 = 1 MHz with input power of -20 dBm per tone.
0.8
0.7
0.6
22
0.5
0.4
0.3
0.1
14
0.0
450 550 650 750 850 950 1050 1150 1250 1350 1450
Frequency (MHz)
12
450 550 650 750 850 950 1050 1150 1250 1350 1450
Frequency (MHz)
Figure 9. Gain vs Frequency vs Temperature
22
20
18
OP1dB (dBm)
IIP3 (dBm)
18
16
24
16
14
12
100° C
25° C
-40° C
10
8
450 550 650 750 850 950 1050 1150 1250 1350 1450
Frequency (MHz)
Figure 10. IIP3 vs Frequency vs Temperature
100° C
25° C
-40° C
650
850
1050
Frequency (MHz)
1250
3.0
20
1450
100° C
25° C
-40° C
2.5
10
0
2.0
Mu
-10
-20
-30
-50
0
0.5
1
1.5
2
2.5 3 3.5 4
Frequency (GHz)
4.5
5
5.5
1.5
1.0
S(2,1)
S(1,1)
S(2,2)
S(1,2)
-40
-60
25
24
23
22
21
20
19
18
17
16
15
450
Figure 11. OP1dB vs Frequency vs Temperature
30
S-Parameter (dB)
20
0.2
Figure 8. NF vs Frequency vs Temperature [1]
0.5
6
Figure 12. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs
Frequency
6
100° C
25° C
-40° C
24
Gain (dBm)
NF (dB)
26
100° C
25° C
-40° C
0.0
0
2
4
6
8
10 12
Frequency (GHz)
14
16
Figure 13. Mu stability factors vs Frequency vs Temperature
18
20
3.0
-20
100° C
25° C
-40° C
2.5
-25
-30
Isolation S31 (dB)
MuPrime
2.0
1.5
1.0
0.5
0.0
0
2
4
6
8 10 12
Frequency (GHz)
14
16
18
-45
-50
-60
20
0.5
1
1.5
2
2.5 3 3.5 4
Frequency (GHz)
4.5
5
5.5
6
70
100° C
25° C
-40° C
60
50
40
30
20
10
0
500
Figure 16. Idd vs Rbias [2]
1000
1500
2000
Rbias (ohm)
2500
3000
0
0
0.5
Figure 17. Idd vs Vsd
Notes:
1. Circuit trace losses for NF have been de-embedded from measurements above.
2. Rbias is R3 and R8 from Figure 6.
7
0
Figure 15. Input Ports Isolation (S31) vs Frequency
Idd (mA)
Idd (mA)
-40
-55
Figure 14. Mu’ stability factors vs Frequency vs Temperature
90
85
80
75
70
65
60
55
50
45
40
-35
1
1.5
2
2.5
3
Vsd (V)
3.5
4
4.5
5
Table 5. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 35 mA
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplifier.
Freq
(GHz)
S11
(dB)
S11
(ang)
S21
(dB)
S21
(ang)
S12
(dB)
S12
(ang)
S22
(dB)
S22
(ang)
0.1
-1.022
-28.498
29.161
154.654
-37.965
79.027
-7.090
-19.544
0.5
-6.649
-94.870
22.772
104.259
-26.459
66.399
-13.896
-50.600
0.7
-8.297
-112.042
20.318
93.331
-24.049
64.475
-15.882
-53.370
0.9
-9.364
-125.539
18.444
84.974
-22.211
62.286
-17.478
-54.610
1.0
-9.758
-130.241
17.596
81.438
-21.400
61.255
-17.917
-53.566
1.5
-10.971
-151.257
14.416
66.113
-18.221
54.575
-20.357
-53.259
1.7
-11.091
-159.069
13.414
60.566
-17.239
51.394
-21.981
-58.813
1.9
-11.104
-166.151
12.539
55.320
-16.328
48.319
-23.407
-64.718
2.0
-11.117
-169.353
12.131
52.718
-15.905
46.647
-23.978
-68.957
2.5
-11.087
177.265
10.360
40.267
-14.104
38.400
-26.564
-97.344
3.0
-11.081
165.669
8.951
28.433
-12.604
29.781
-27.136
-132.391
3.5
-11.096
154.720
7.826
16.983
-11.325
21.025
-25.584
-162.526
4.0
-11.006
142.943
6.892
5.622
-10.213
12.016
-23.963
170.627
4.5
-10.720
129.982
6.100
-5.563
-9.244
2.746
-21.945
142.320
5.0
-10.073
118.799
5.351
-16.665
-8.445
-6.661
-19.977
114.528
5.5
-9.286
106.890
4.697
-27.610
-7.735
-16.237
-17.197
88.526
6.0
-8.439
94.245
4.087
-38.486
-7.175
-26.218
-14.231
70.377
7.0
-7.649
72.483
2.997
-58.517
-6.183
-44.375
-10.813
52.241
8.0
-9.206
56.581
2.362
-77.126
-5.224
-62.113
-10.533
46.694
9.0
-11.853
31.257
1.930
-96.806
-4.263
-81.118
-10.307
43.266
10.0
-11.268
-4.194
1.289
-117.528
-3.757
-101.712
-8.627
20.267
11.0
-10.277
-26.164
0.324
-136.898
-3.704
-120.862
-7.062
-2.650
12.0
-11.155
-52.090
-0.159
-153.598
-3.353
-139.372
-6.702
-18.056
13.0
-20.494
-61.926
-0.820
-168.479
-3.505
-153.688
-6.926
-14.524
14.0
-22.385
-159.458
-0.683
171.235
-2.651
-176.492
-6.999
-18.503
15.0
-14.569
127.065
-0.727
147.438
-2.279
158.611
-7.115
-26.831
16.0
-12.363
64.821
-1.734
115.001
-2.934
125.555
-5.770
-43.836
17.0
-7.890
-127.305
-6.052
131.616
-6.607
139.045
-2.049
-74.412
18.0
-12.876
-10.894
-5.846
90.393
-6.352
97.052
-2.285
-68.870
19.0
-7.087
108.141
-4.538
103.243
-4.669
108.441
-3.339
-89.195
20.0
-4.516
31.361
-4.779
55.113
-5.022
58.513
-4.579
-112.660
Table 6. Typical Noise Parameters, for single amplifier, Vdd = 4.8 V, Idd = 35 mA
Freq
GHz
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
450
0.31
0.570
-15.8
0.039
700
0.23
0.442
4.9
0.035
835
0.21
0.426
25.7
0.034
950
0.23
0.392
34.6
0.035
1450
0.4
0.210
86.0
0.037
Notes:
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these
measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.
8
Table 7. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 60 mA
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplifier.
Freq
(GHz)
S11
(dB)
S11
(ang)
S21
(dB)
S21
(ang)
S12
(dB)
S12
(ang)
S22
(dB)
S22
(ang)
0.1
-1.074
-31.307
30.372
152.301
-38.598
79.819
-8.582
-20.776
0.5
-7.419
-99.051
23.126
101.761
-26.683
69.129
-15.871
-48.167
0.7
-9.041
-115.776
20.596
91.484
-24.165
66.973
-17.771
-49.366
0.9
-10.023
-128.775
18.669
83.583
-22.241
64.407
-19.273
-49.337
1.0
-10.399
-133.219
17.812
80.178
-21.408
63.192
-19.593
-47.750
1.5
-11.500
-153.458
14.600
65.392
-18.141
55.849
-21.764
-45.214
1.7
-11.572
-161.056
13.591
60.010
-17.142
52.498
-23.571
-49.907
1.9
-11.538
-167.985
12.711
54.875
-16.230
49.228
-25.238
-55.033
2.0
-11.537
-171.125
12.302
52.304
-15.809
47.475
-25.944
-59.265
2.5
-11.445
175.803
10.521
40.088
-13.992
38.931
-29.570
-90.923
3.0
-11.401
164.403
9.105
28.417
-12.490
30.048
-30.232
-135.945
3.5
-11.399
153.594
7.971
17.073
-11.217
21.106
-27.571
-170.069
4.0
-11.292
141.943
7.028
5.853
-10.123
11.945
-25.227
162.620
4.5
-10.974
129.027
6.226
-5.240
-9.162
2.551
-22.592
135.000
5.0
-10.296
117.928
5.475
-16.254
-8.374
-6.976
-20.256
108.170
5.5
-9.477
106.083
4.815
-27.119
-7.680
-16.555
-17.261
83.874
6.0
-8.603
93.478
4.202
-37.909
-7.123
-26.573
-14.249
67.156
7.0
-7.784
71.674
3.114
-57.850
-6.153
-44.852
-10.893
50.129
8.0
-9.391
55.504
2.483
-76.469
-5.211
-62.621
-10.730
45.175
9.0
-12.116
29.799
2.048
-96.207
-4.265
-81.667
-10.574
42.707
10
-11.471
-5.874
1.407
-116.940
-3.779
-102.196
-8.835
20.126
11
-10.440
-27.549
0.451
-136.443
-3.736
-121.324
-7.217
-2.639
12
-11.273
-53.811
-0.038
-153.270
-3.384
-139.868
-6.823
-17.959
13
-20.959
-65.754
-0.721
-168.292
-3.563
-154.175
-7.004
-13.899
14
-22.024
-163.703
-0.599
171.370
-2.714
-176.815
-7.040
-17.790
15
-14.309
126.539
-0.665
147.554
-2.345
158.380
-7.104
-26.156
16
-12.226
65.090
-1.681
115.096
-3.019
125.379
-5.734
-43.382
17
-7.911
-127.772
-6.012
131.726
-6.652
139.053
-2.042
-74.188
18
-12.992
-10.792
-5.844
90.462
-6.431
96.994
-2.257
-68.762
19
-7.042
108.026
-4.522
103.345
-4.710
108.465
-3.313
-89.050
20
-4.476
31.259
-4.758
55.261
-5.060
58.580
-4.528
-112.266
Table 8. Typical Noise Parameters, for single amplifier, Vdd = 4.8 V, Idd = 60 mA
Freq
GHz
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
450
700
835
950
1450
0.31
0.23
0.21
0.23
0.42
0.557
0.438
0.460
0.423
0.172
-17.0
0.5
21.6
33.1
92.7
0.035
0.033
0.032
0.032
0.036
Notes:
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these
measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.
9
Table 9. Typical Scattering Parameters, Vdd = 4.8 V, Idd = 75 mA
LNA SPAR (100 MHz – 20 GHz) The S-parameter are for single amplifier.
Freq
(GHz)
S11
(dB)
S11
(ang)
S21
(dB)
S21
(ang)
S12
(dB)
S12
(ang)
S22
(dB)
S22
(ang)
0.1
-1.313
-33.530
31.014
150.648
-38.589
82.014
-9.661
-21.676
0.5
-7.873
-101.259
23.314
100.420
-26.803
70.767
-17.048
-45.449
0.7
-9.472
-117.752
20.741
90.485
-24.212
68.268
-18.831
-45.680
0.9
-10.402
-130.466
18.790
82.841
-22.239
65.516
-20.230
-44.960
1.0
-10.777
-134.737
17.925
79.542
-21.407
64.225
-20.421
-43.253
1.5
-11.805
-154.527
14.699
65.015
-18.111
56.520
-22.336
-39.860
1.7
-11.852
-162.032
13.689
59.715
-17.106
53.063
-24.200
-43.748
1.9
-11.792
-168.879
12.807
54.640
-16.185
49.733
-25.976
-48.172
2.0
-11.784
-171.996
12.394
52.113
-15.760
47.932
-26.759
-52.109
2.5
-11.656
175.184
10.608
40.041
-13.941
39.243
-31.149
-84.360
3.0
-11.594
163.899
9.189
28.441
-12.442
30.253
-32.084
-136.841
3.5
-11.581
153.195
8.048
17.188
-11.174
21.216
-28.646
-173.768
4.0
-11.462
141.576
7.102
6.023
-10.080
11.962
-25.816
158.924
4.5
-11.124
128.688
6.296
-5.029
-9.126
2.544
-22.900
131.803
5.0
-10.429
117.634
5.542
-15.972
-8.341
-7.041
-20.389
105.521
5.5
-9.589
105.823
4.879
-26.805
-7.655
-16.664
-17.298
81.989
6.0
-8.686
93.240
4.265
-37.559
-7.099
-26.672
-14.261
65.816
7.0
-7.862
71.395
3.176
-57.450
-6.142
-44.949
-10.940
49.294
8.0
-9.495
55.210
2.549
-76.083
-5.204
-62.770
-10.846
44.633
9.0
-12.268
29.175
2.104
-95.838
-4.274
-81.847
-10.697
42.499
10.0
-11.584
-6.517
1.463
-116.574
-3.791
-102.332
-8.928
20.087
11.0
-10.522
-28.153
0.508
-136.137
-3.751
-121.438
-7.284
-2.588
12.0
-11.357
-54.514
0.015
-153.014
-3.401
-139.971
-6.889
-17.777
13.0
-21.178
-67.548
-0.677
-168.073
-3.589
-154.248
-7.059
-13.574
14.0
-21.655
-166.052
-0.566
171.616
-2.742
-176.860
-7.048
-17.396
15.0
-14.145
126.771
-0.631
147.729
-2.383
158.332
-7.099
-25.793
16.0
-12.117
65.327
-1.666
115.223
-3.062
125.393
-5.710
-43.125
17.0
-7.916
-127.952
-5.980
131.954
-6.667
139.243
-2.048
-74.067
18.0
-13.009
-9.966
-5.842
90.681
-6.475
97.145
-2.253
-68.631
19.0
-6.983
107.757
-4.520
103.388
-4.751
108.605
-3.313
-88.879
20.0
-4.463
31.666
-4.751
55.507
-5.083
58.833
-4.500
-112.076
Table 10. Typical Noise Parameters, for single amplifier, Vdd = 4.8 V, Idd = 75 mA
Freq
GHz
Fmin
dB
Γopt
Mag.
Γopt
Ang.
Rn/50
450
700
835
950
1450
0.32
0.23
0.23
0.25
0.43
0.521
0.426
0.387
0.388
0.139
-18.1
-6.4
17.8
25.5
93.9
0.036
0.033
0.033
0.033
0.037
Notes:
1. The Fmin values are based on noise figure measurements at multiple input impedances using Focus source pull test system. From these
measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the
end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 7.
3. Idd can be obtained by varying the Vg1/Vg2. Refer to figure 7.
10
BALANCED MODE APPLICATION
Electrical Specifications
TA = 25° C, Vdd1 = Vdd2 = 4.8 V, Idd1 = Idd2 = 60 mA at Rbias =1.5 kohm, RF performance at 900 MHz, CW operation
unless otherwise stated.
Symbol
Parameter and Test Condition
Units
Typ.
Vdd
Supply Voltage per amplifier
V
4.8
Idd
Supply Current per amplifier
mA
60
Gain
Gain
dB
18.2
NF
Noise Figure
dB
0.37
OP1dB
Output Power at 1dB Gain Compression
dBm
23.9
IIP3
Input Third Order Intercept Point
dBm
21.6
S11
Input Return Loss, 50 Ω source
dB
-24.1
S22
Output Return Loss, 50 Ω load
dB
-34.7
S12
Reverse Isolation
dB
-23.1
Vdd2
R9
C20
C5
C6
C4
L1
C2
R1
C1
R10
C23
R3
C7
R4
L2
C14
R2
C12
R6
C13
C21
R8
L4
C18
R7
C17
X2
C22
C26
Figure 18. Balanced Amplifier Demo Board Layout Diagram
Notes:
1. Recommended PCB material is 10 mils Rogers RO4350.
2. Suggested component values may vary according to layout and PCB material.
3. Input board loss at 900 MHz is 0.133 dB.
11
RFOUT
R5
C9
C19
C16
C15
C24
C25
C8
RO4350
DK 3.48
H 10mil
W 0.58mm
G 0.45mm
C11
L3 C10
C3
X1
RFIN
Vdd1
MGA-16X16 Demoboard
(2-Port)
Rev 1
Vsd1
Vsd2
Balanced Amplifier Demo Board Layout
APRIL 2011
Balanced Amplifier Demo Board Schematic
Figure 19. Balanced Amplifier Demo Board Schematic.
Table 11. Component list for 900 MHz matching
PART
Size
Value
Detail Part Number
C1, C12
0402
20 pF
GJM1555C1H200GB01
C2, C8, C13, C22
0402
0.1 mF
GRM155R71C104KA88D
C3, C9, C16, C19
0402
100 pF
GRM1555C1H101JD01E
C6, C20, C23, C34
0805
4.7 mF
GRM21BR60J475KA11L
C7, C21
0402
12 pF
GJM1555C1H120GB01
C4, C5, C10, C11, C14, C15, C17, C18, C25, C26
0402
NOT USED
L1, L2
0402
68 nH
LQW15AN68NG00
L3, L4
0402
120 nH
LQW15ANR12J00
R1, R6
0402
51 ohm
RK73B1ETTP510J
R3, R8
0402
1.5 kohm
RK73B1ELTP152J
R4, R7
0402
0 ohm
RK73B1ETTP0R0J
R9, R10
0402
10 ohm
RK73B1ETTP100J
R2, R5
0402
51 ohm
RK73B1ETTP510J
X1
–
–
X3C09P1-03S
X2
–
–
C0810J5003AHF
12
Typical 900 MHz RF Performance Plots on Balanced Mode
RF performance at TA = 25° C, Vdd1 = Vdd2 = 4.8 V, Idd1 = Idd2 = 60 mA, LNA mode, measured on demo board in Figure
18. Signal is CW unless stated otherwise. Application Test Circuit is shown in Figure 19 and Table 11. IIP3 test condition:
FRF1-FRF2 = 1MHz with input power of -20 dBm per tone.
1.6
1.4
1.2
22
1.0
0.8
0.6
0.0
450
550
650
750 850 950
Frequency (MHz)
26
28
24
27
22
26
P1dB (dBm)
18
16
14
12
550
650
750
850 950
Frequency (MHz)
1050
1150
1250
20
10
0
-10
-20
S(2,1)
S(1,1)
S(2,2)
S(1,2)
-50
0
0.5
1 1.5
2
1050 1150 1250
100° C
25° C
-40° C
25
24
23
20
450
550
650
750 850 950
Frequency (MHz)
Figure 23. OP1dB vs Frequency vs Temperature
30
-40
750 850 950
Frequency (MHz)
21
Figure 22. IIP3 vs Frequency vs Temperature
-30
650
22
100° C
25° C
-40° C
10
8
450
550
Figure 21. Gain vs Frequency vs Temperature
20
IIP3 (dBm)
12
450
1050 1150 1250
Figure 20. NF vs Frequency vs Temperature[1]
S-Parameter (dB)
18
14
0.2
2.5 3 3.5 4
Frequency (GHz)
4.5
5 5.5
6
Figure 24. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs
Frequency
13
20
16
0.4
-60
100° C
25° C
-40° C
24
Gain (dB)
NF (dB)
26
100° C
25° C
-40° C
1050
1150
1250
3.0
2.5
2.5
2.0
2.0
MuPrime
Mu
3.0
1.5
1.0
1.0
100° C
25° C
-40° C
0.5
0.0
1.5
0
2
4
6
8
10 12
Frequency (GHz)
14
16
18
100° C
25° C
-40° C
0.5
20
Figure 25. Mu stability factors vs Frequency vs Temperature
0.0
0
2
4
6
8
10 12
Frequency (GHz)
14
16
18
Figure 26. Mu’ stability factors vs Frequency vs Temperature
Note:
1. Circuit trace losses for NF have been de-embedded from measurements above.
Part Number Ordering Information
Part Number
No. of Devices
Container
MGA-16116-BLKG
100
Antistatic Bag
MGA-16116-TR1G
1000
7” Reel
Package Dimensions
Pin 1 Dot
By marking
0.20 Ref.
4.00 ±0.10
2.10
Pin #1 Identification
Chamfer 0.30 X 45°
0.55
4.00 ±0.10
AVAGO
16116
YYWW
XXXX
0.30
2.10
0.00 –0.05
0.65
Bsc
0.85 ±0.10
TOP VIEW
14
SIDE VIEW
BOTTOM VIEW
20
Recommended PCB Land Pattern and Stencil Design
4.000
3.935
0.300
0.270
PIN #1
PIN #1
0.400
0.650
2.10
0.492
4.000
0.650
1.980
2.10
3.935
1.980
0.55
0.485
Stencil Opening
Land Pattern
4.000
0.650
4.000
2.100
Note :
1. ALL DIMENSIONS ARE IN MILIMETERS
2. 4mil stencil thickness is recommended
0.550
Combination of Land Pattern & Stencil Opening
Device Orientation
REEL
USER FEED DIRECTION
CARRIER
TAPE
USER
FEED
DIRECTION
15
COVER TAPE
AVAGO
16116
YYWW
XXXX
AVAGO
16116
YYWW
XXXX
TOP VIEW
AVAGO
16116
YYWW
XXXX
END VIEW
Tape Dimensions
2.00 ±0.05
8.00 ±0.10
Ø 1.50 ±0.10
1.75 ±0.10
4.00 ±0.10
5.50 ±0.05
12.0 ±0.30
–0.10
Ø1.50 ±0.25
0.279 ±0.02
10° MAX
16
10° MAX
4.25 ±0.10
1.13 ±0.10
4.25 ±0.10
A.
K.
B.
Reel Dimensions – 7 inch
6.25 mm EMBOSSED LETTERS
LETTERING THICKNESS: 1.6 mm
SLOT HOLE "a"
SEE DETAIL "X"
Ø 178.0 ±0.5
SLOT HOLE "b"
FRONT
BACK
6
PS
SLOT HOLE (2x)
180° APART.
RECYCLE LOGO
SLOT HOLE "a": 3.0 ±0.5 mm (1x)
SLOT HOLE "b": 2.5 ±0.5 mm (1x)
FRONT VIEW
1.5 MIN.
+1.5*
-0.0
+0.5
Ø 13.0 -0.2
Ø 20.2 MIN.
BACK
45°
Ø 55.0 ±0.5
FRONT
EMBOSSED RIBS
RAISED: 0.25 mm, WIDTH: 1.25 mm
Ø 178.0 ±0.5
Ø 51.2 ±0.3
BACK VIEW
For product information and a complete list of distributors, please go to our web site:
SEE DETAIL "Y"
DETAIL "X"
Ø 178.0 ±0.5
R5.2
°
R10.65
120
65°
12.4
45°
18.0*
MAX.
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-3721EN - October 31, 2012
3.5
DETAIL "Y"
(Slot Hole)
1.0
6
PS
Similar pages